[go: up one dir, main page]

JP2013014546A - Dna synthase inhibitor - Google Patents

Dna synthase inhibitor Download PDF

Info

Publication number
JP2013014546A
JP2013014546A JP2011148800A JP2011148800A JP2013014546A JP 2013014546 A JP2013014546 A JP 2013014546A JP 2011148800 A JP2011148800 A JP 2011148800A JP 2011148800 A JP2011148800 A JP 2011148800A JP 2013014546 A JP2013014546 A JP 2013014546A
Authority
JP
Japan
Prior art keywords
compound
general formula
group
formula
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011148800A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Mizushina
善之 水品
Hiromi Yoshida
弘美 吉田
Fumio Sugawara
二三男 菅原
Michifumi Takeuchi
倫文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Gakuin Educational Foundation
Original Assignee
Kobe Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Gakuin Educational Foundation filed Critical Kobe Gakuin Educational Foundation
Priority to JP2011148800A priority Critical patent/JP2013014546A/en
Publication of JP2013014546A publication Critical patent/JP2013014546A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pyrane Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound having DNA synthase inhibitory activity, and to provide a pharmaceutical composition (a DNA synthase inhibitor and an anticancer drug) containing the compound as an active ingredient.SOLUTION: The compound is expressed by general formula (1). In the formula, R1 and R2 are different from each other, representing a hydrogen atom or a benzoyl group in which the second position is substituted with a methyl group, the fourth and the sixth positions are substituted with a specified substituent such as a hydroxy group and an alkoxy group; and R3 represents an alkenyl group optionally having a hydroxy group. The pharmaceutical composition containing the above compound as an active ingredient is also provided.

Description

本発明は、DNA合成酵素阻害作用を有する化合物とその利用に関する。この化合物は、DNA合成酵素阻害剤として、例えば生化学試薬などに利用できるほか、抗癌剤として利用し得る。     The present invention relates to a compound having a DNA synthase inhibitory action and use thereof. This compound can be used as a DNA synthase inhibitor, for example, as a biochemical reagent, or as an anticancer agent.

真核生物のDNA合成酵素(DNAポリメラーゼ)は、これまでα、β、γ、δ、ε、ζ、η、θ、ι、κ、λ、μ、σ及びTdT(ターミナル・デオキシヌクレオチジル・トランスフェラーゼ)、Rev1の15種類の分子種が知られている。これらのDNA合成酵素群は、細胞の増殖、分裂、分化などに関与しているが、α型はDNA複製、β型、λ型及びTdTは修復と組換え、δ型及びε型は複製と修復の双方、ζ〜κ型とRev1型は修復を担うといった具合にタイプによって異なる機能を有することが知られている。   Eukaryotic DNA synthases (DNA polymerases) are α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, μ, σ and TdT (terminal deoxynucleotidyl transferase). ), 15 molecular species of Rev1 are known. These DNA synthase groups are involved in cell growth, division, differentiation, etc., but α type is DNA replication, β type, λ type and TdT are repair and recombination, and δ type and ε type are replication. It is known that both ζ-κ type and Rev1 type have different functions depending on the type of repair, such as being responsible for repair.

このようにDNA合成酵素は細胞の増殖等に関与することから、その酵素活性を阻害するDNA合成酵素阻害剤は、例えば、癌に対して癌細胞の増殖抑制作用を示し、エイズに対してHIV由来逆転写酵素に対する阻害作用を示し、また、免疫疾患に対して抗原に対する特異的抗体産生を抑制する免疫抑制作用を示すことが考えられる。このため、DNA合成酵素阻害剤を用いた癌、エイズ等のウイルス疾患、免疫疾患の予防・治療に効果のある医薬品の開発が期待されている。   Since DNA synthase is involved in cell growth and the like in this way, a DNA synthase inhibitor that inhibits the enzyme activity exhibits, for example, cancer cell growth inhibitory action against cancer and HIV against AIDS. It is considered that it exhibits an inhibitory effect on the derived reverse transcriptase and an immunosuppressive action that suppresses specific antibody production against an antigen against an immune disease. For this reason, development of pharmaceuticals effective for prevention and treatment of cancer diseases, viral diseases such as AIDS, and immune diseases using a DNA synthase inhibitor is expected.

例えば、DNA合成酵素阻害活性を有する糖脂質が、制癌剤、HIV由来逆転写酵素阻害剤、免疫抑制剤として有用であることが報告されている(下記特許文献1参照)。現在、DNA合成酵素阻害剤として、ジデオキシTTP(ddTTP)、N-メチルマレイミド、ブチルフェニル-dGTPなどが知られている(下記非特許文献1参照)。また植物由来の糖脂質であるスルホキノボシルアシルグリセリドにもDNA合成酵素阻害作用が見出されている(下記特許文献2参照)。   For example, it has been reported that glycolipids having DNA synthase inhibitory activity are useful as anticancer agents, HIV-derived reverse transcriptase inhibitors, and immunosuppressants (see Patent Document 1 below). Currently, dideoxy TTP (ddTTP), N-methylmaleimide, butylphenyl-dGTP, and the like are known as DNA synthetase inhibitors (see Non-Patent Document 1 below). In addition, sulfosynovosyl acylglycerides, which are plant-derived glycolipids, have been found to inhibit DNA synthase (see Patent Document 2 below).

特開平11‐106395号公報Japanese Patent Laid-Open No. 11-106395 特開平2000‐143516号公報JP 2000-143516 A

Annual Review of Biochemistry, 2002, 71, 133-163頁Annual Review of Biochemistry, 2002, 71, 133-163

本発明は、DNA合成酵素阻害活性を有する化合物、及び該化合物を有効成分として含有する医薬組成物(DNA合成酵素阻害剤及び抗癌剤)を提供することを目的とする。   An object of this invention is to provide the compound which has DNA synthetase inhibitory activity, and the pharmaceutical composition (DNA synthetase inhibitor and anticancer agent) which contains this compound as an active ingredient.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、一般式(1)で示される化合物が、優れたDNA合成酵素阻害活性を有することを見出した。さらに、この化合物が癌細胞の増殖を特異的に抑制することも見出した。かかる知見に基づきさらに研究を重ねた結果、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the compound represented by the general formula (1) has an excellent DNA synthase inhibitory activity. Furthermore, it has also been found that this compound specifically suppresses the growth of cancer cells. As a result of further research based on this knowledge, the present invention has been completed.

即ち、本発明は、下記の構成を有するものである。   That is, the present invention has the following configuration.

項1. 一般式(1):   Item 1. General formula (1):

Figure 2013014546
Figure 2013014546

[式中、RとRは異なって、水素、又は一般式(2): [Wherein R 1 and R 2 are different from each other, hydrogen, or general formula (2):

Figure 2013014546
Figure 2013014546

(式中、R及びRは同一又は異なって水素、低級アルキル基、又はアルカノイル基を示す。)
で表される基を示し、Rは水酸基を有していてもよいアルケニル基を示す。]
で表される化合物を有効成分として含有するDNA合成酵素阻害剤。
(In the formula, R 4 and R 5 are the same or different and each represents hydrogen, a lower alkyl group, or an alkanoyl group.)
R 3 represents an alkenyl group which may have a hydroxyl group. ]
A DNA synthase inhibitor comprising a compound represented by the formula:

項2. Rが水酸基を有していてもよいC3〜5のアルケニル基であり、R及びRが水素である項1に記載のDNA合成酵素阻害剤。 Item 2. R 3 is an alkenyl group C3~5 which may have a hydroxyl group, DNA synthesis inhibitor according to claim 1 R 4 and R 5 are hydrogen.

項3. 項1に記載の一般式(1)で表される化合物を有効成分として含有する抗癌剤。   Item 3. An anticancer agent comprising the compound represented by the general formula (1) according to Item 1 as an active ingredient.

項4. 一般式(3):   Item 4. General formula (3):

Figure 2013014546
Figure 2013014546

[式中、RとRは異なって、水素、又は一般式(2): [Wherein R 6 and R 7 are different from each other, hydrogen or general formula (2):

Figure 2013014546
Figure 2013014546

(式中、R及びRは同一又は異なって水素、低級アルキル基、又はアルカノイル基を示す。)
で表される基を示し、Rが一般式(2)で表される基であり且つRが水素である場合は、Rはアルケニル基を示し、Rが水素であり且つRが一般式(2)で表される基である場合は、Rは水酸基を有するアルケニル基を示す。]
で表される化合物。
(In the formula, R 4 and R 5 are the same or different and each represents hydrogen, a lower alkyl group, or an alkanoyl group.)
When R 6 is a group represented by the general formula (2) and R 7 is hydrogen, R 8 represents an alkenyl group, R 6 is hydrogen and R 7 Is a group represented by the general formula (2), R 8 represents an alkenyl group having a hydroxyl group. ]
A compound represented by

項5. 項4に記載の一般式(3)で表される化合物を有効成分として含有する医薬組成物。   Item 5. Item 5. A pharmaceutical composition comprising the compound represented by the general formula (3) according to Item 4 as an active ingredient.

項6. 項4に記載の一般式(3)で表される化合物を配合してなる食品組成物。   Item 6. A food composition comprising the compound represented by the general formula (3) according to Item 4.

項7. 一般式(1)で表される化合物の製造方法であって、penicillium pinofhilum Hedgcockの培養物を精製する工程を含むことを特徴とする製造方法。   Item 7. A method for producing a compound represented by the general formula (1), comprising a step of purifying a culture of penicillium pinofhilum Hedgcock.

項8. 一般式(4):   Item 8. General formula (4):

Figure 2013014546
Figure 2013014546

(式中、R及びRは前記に同じ。)
で表される化合物の製造方法であって、一般式(5):
(In the formula, R 4 and R 5 are the same as above.)
A process for producing a compound represented by the general formula (5):

Figure 2013014546
Figure 2013014546

で表される化合物と、一般式(6): A compound represented by formula (6):

Figure 2013014546
Figure 2013014546

(式中、R及びR10は同一又は異なって保護基を示す。)
で表される化合物を反応させることを特徴とする製造方法。
(In the formula, R 9 and R 10 are the same or different and each represents a protecting group.)
The manufacturing method characterized by making the compound represented by these react.

本発明によれば、DNA合成酵素阻害活性を有する化合物、及び該化合物を有効成分として含有する医薬組成物(DNA合成酵素阻害剤及び抗癌剤)を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pharmaceutical composition (DNA synthetase inhibitor and anticancer agent) which contains a compound which has DNA synthetase inhibitory activity, and this compound as an active ingredient can be provided.

化合物1a及び1bの構造及び炭素番号を示す構造式と、化合物1cの構造を示す構造式を示す。A structural formula showing the structures and carbon numbers of compounds 1a and 1b and a structural formula showing the structure of compound 1c are shown. (A)には化合物1aのHMBC相関、及び化合物1bのHMQC相関を示し、(B)には化合物1a及び化合物1bの1H-1H NOESY相関を示す。(A) shows the HMBC correlation of Compound 1a and HMQC correlation of Compound 1b, and (B) shows the 1 H- 1 H NOESY correlation of Compound 1a and Compound 1b. CDCl3中で測定した、化合物1a及びMeOD中で測定した1bの1H-NMR、13C-NMRデータを示す。 1 H-NMR and 13 C-NMR data of compound 1a and 1b measured in CDCl 3 are shown. 化合物1cの合成計画を示す。1 shows a synthetic scheme for compound 1c. 化合物1a、1b、又は1cの、DNA合成酵素に対する阻害活性の評価結果を示す。The evaluation result of the inhibitory activity with respect to a DNA synthetase of compound 1a, 1b, or 1c is shown. 化合物1aの、DNA合成酵素の阻害様式の判定結果を示す。The determination result of the inhibition mode of a DNA synthetase of compound 1a is shown. 化合物1a、1b、又は1cの、ヒト癌細胞及びヒト正常細胞の増殖への影響の評価結果を示す。The evaluation result of the influence of the compound 1a, 1b, or 1c on the proliferation of human cancer cells and human normal cells is shown.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

1.化合物
本発明の化合物は、一般式(1):
1. Compound The compound of the present invention has the general formula (1):

Figure 2013014546
Figure 2013014546

[式中、RとRは異なって、水素、又は一般式(2): [Wherein R 1 and R 2 are different from each other, hydrogen, or general formula (2):

Figure 2013014546
Figure 2013014546

(式中、R及びRは同一又は異なって水素、低級アルキル基、又はアルカノイル基を示す。)
で表される基を示し、Rは水酸基を有していてもよいアルケニル基を示す。]
で表される化合物である。
(In the formula, R 4 and R 5 are the same or different and each represents hydrogen, a lower alkyl group, or an alkanoyl group.)
R 3 represents an alkenyl group which may have a hydroxyl group. ]
It is a compound represented by these.

一般式(1)におけるRとRは異なって、水素又は一般式(2)で表される基を示す。すなわち、Rが一般式(2)で表される基である場合は、Rは水素であり、Rが水素である場合は、Rは一般式(2)で表される基である。好ましくはRが一般式(2)で表される基であり、Rが水素である。 R 1 and R 2 in the general formula (1) are different and represent hydrogen or a group represented by the general formula (2). That is, when R 1 is a group represented by the general formula (2), R 2 is hydrogen, and when R 1 is hydrogen, R 2 is a group represented by the general formula (2). is there. R 1 is preferably a group represented by the general formula (2), and R 2 is hydrogen.

一般式(1)におけるRは「水酸基を有していてもよいアルケニル基」を示す。 R 3 in the general formula (1) represents an “alkenyl group optionally having a hydroxyl group”.

「水酸基を有していてもよいアルケニル基」の「アルケニル基」としては、例えば、炭素数(以下「C」と表記する)2〜8、好ましくはC3〜5、より好ましくはC3〜4のアルケニル基が挙げられる。また、「アルケニル基」は、直鎖状、分枝状のいずれでもよいが、直鎖状のアルケニル基が好ましく挙げられる。具体例としては、ビニル、1−プロペニル、2−プロペニル、1−メチル−1−プロペニル、2−メチル−1−プロペニル、1−ブテニル、2−ブテニル、3−ブテニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、1,3−ブタジエニル、1,3−ペンタジエニル、2−ペンテン−4−イニル、2−ヘキセニル、1−ヘキセニル、5−へキセニル、3−ヘキセニル、4−へキセニル、3,3−ジメチル−1−プロペニル、2−エチル−1−プロペニル、1,3,5−ヘキサトリエニル、1,3−ヘキサジエニル、1,4−ヘキサジエニル等が挙げられる。   Examples of the “alkenyl group” in the “alkenyl group optionally having a hydroxyl group” include 2 to 8 carbon atoms (hereinafter referred to as “C”), preferably C3 to 5, more preferably C3 to C4. An alkenyl group is mentioned. The “alkenyl group” may be either linear or branched, but is preferably a linear alkenyl group. Specific examples include vinyl, 1-propenyl, 2-propenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl and 2-pentenyl. , 3-pentenyl, 4-pentenyl, 1,3-butadienyl, 1,3-pentadienyl, 2-pentene-4-ynyl, 2-hexenyl, 1-hexenyl, 5-hexenyl, 3-hexenyl, 4-hexenyl 3,3-dimethyl-1-propenyl, 2-ethyl-1-propenyl, 1,3,5-hexatrienyl, 1,3-hexadienyl, 1,4-hexadienyl and the like.

「水酸基を有するアルケニル基」としては、上記「アルケニル基」の炭素上に、例えば1〜4、好ましくは1〜3、より好ましくは1〜2の水酸基を有する基が挙げられる。具体例としては、3−ヒドロキシ−1−プロペニル、4−ヒドロキシ−1−ブテニル、4−ヒドロキシ−2−ブテニル等が挙げられる。   Examples of the “alkenyl group having a hydroxyl group” include a group having a hydroxyl group of 1 to 4, preferably 1 to 3, more preferably 1 to 2, on the carbon of the “alkenyl group”. Specific examples include 3-hydroxy-1-propenyl, 4-hydroxy-1-butenyl, 4-hydroxy-2-butenyl and the like.

一般式(1)におけるRとしては、好ましくはアルケニル基が挙げられる。 R 3 in the general formula (1) is preferably an alkenyl group.

一般式(2)におけるR及びRは、同一又は異なって水素、低級アルキル基、又はアルカノイル基を示す。 R 4 and R 5 in the general formula (2) are the same or different and each represents hydrogen, a lower alkyl group, or an alkanoyl group.

低級アルキル基としては、例えばC1〜6、好ましくはC1〜4、より好ましくはC1〜2のアルキル基が挙げられる。低級アルキル基は、直鎖状又は分枝状のいずれでもよいが、好ましくは直鎖状の低級アルキル基が挙げられる。具体例としては、メチル、エチル、n‐プロピル、イソプロピル、n‐ブチル、イソブチル、sec‐ブチル、tert‐ブチル等が挙げられる。   Examples of the lower alkyl group include C1-6, preferably C1-4, more preferably C1-2 alkyl groups. The lower alkyl group may be either linear or branched, and preferably a linear lower alkyl group. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and the like.

アルカノイル基としては、例えばC1〜6、好ましくはC1〜4、より好ましくはC1〜2のアルカノイル基が挙げられる。アルカノイル基は、直鎖状又は分枝状のいずれでもよいが、好ましくは直鎖状のアルカノイル基が挙げられる。具体例としては、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、tert‐ブチルカルボニル、ヘキサノイル等が挙げられる。   Examples of the alkanoyl group include C1-6, preferably C1-4, more preferably C1-2 alkanoyl groups. The alkanoyl group may be either linear or branched, but preferably a linear alkanoyl group. Specific examples include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, tert-butylcarbonyl, hexanoyl and the like.

一般式(2)におけるR及びRとしては、好ましくは同一又は異なって水素又は低級アルキル基、より好ましくは水素が挙げられる。 R 4 and R 5 in the general formula (2) are preferably the same or different and include hydrogen or a lower alkyl group, more preferably hydrogen.

一般式(1)で表される化合物には、立体異性体及び光学異性体が含まれ、これらは特に限定されるものではない。一般式(1)で表される化合物の中でも、好ましい立体構造を有する化合物としては、下記一般式(1’):   The compound represented by the general formula (1) includes stereoisomers and optical isomers, and these are not particularly limited. Among the compounds represented by the general formula (1), as a compound having a preferable steric structure, the following general formula (1 ′):

Figure 2013014546
Figure 2013014546

[式中、RとRは異なって、水素、又は一般式(2)で表される基を示し、Rは水酸基を有していてもよいアルケニル基を示す。式は相対配置を示す。]
で表される化合物が挙げられる。
[Wherein, R 1 and R 2 are different and represent hydrogen or a group represented by the general formula (2), and R 3 represents an alkenyl group which may have a hydroxyl group. The formula indicates relative placement. ]
The compound represented by these is mentioned.

一般式(1)で表される化合物の特に好ましい具体例としては、
式(1a):
As a particularly preferred specific example of the compound represented by the general formula (1),
Formula (1a):

Figure 2013014546
Figure 2013014546

で表される化合物、
式(1b):
A compound represented by
Formula (1b):

Figure 2013014546
Figure 2013014546

で表される化合物、又は
式(1c):
Or a compound represented by the formula (1c):

Figure 2013014546
Figure 2013014546

で表される化合物
が挙げられる。式(1a)、(1b)、及び(1c)は、相対配置を示す。これらの中でも、DNA阻害活性がより高いという観点、及び癌細胞の増殖を抑制する作用がより強いという観点から、好ましくは式(1a)又は式(1c)で表される化合物、より好ましくは式(1a)で表される化合物が挙げられる。
The compound represented by these is mentioned. Formulas (1a), (1b), and (1c) indicate relative arrangement. Among these, from the viewpoint of higher DNA inhibitory activity and a stronger action of suppressing the growth of cancer cells, the compound represented by formula (1a) or formula (1c) is preferred, more preferably formula The compound represented by (1a) is mentioned.

一般式(1)で表される化合物の別の好ましい態様としては、一般式(3):   As another preferred embodiment of the compound represented by the general formula (1), the general formula (3):

Figure 2013014546
Figure 2013014546

[式中、RとRは異なって、水素、又は一般式(2)で表される基を示し、Rが一般式(2)で表される基であり且つRが水素である場合は、Rはアルケニル基を示し、Rが水素であり且つRが一般式(2)で表される基である場合は、Rは水酸基を有するアルケニル基を示す。]
で表される化合物が挙げられる。
[Wherein R 6 and R 7 are different and each represents hydrogen or a group represented by the general formula (2), R 6 represents a group represented by the general formula (2), and R 7 represents hydrogen. In some cases, R 8 represents an alkenyl group, and when R 6 is hydrogen and R 7 is a group represented by the general formula (2), R 8 represents an alkenyl group having a hydroxyl group. ]
The compound represented by these is mentioned.

一般式(3)におけるRは、水素、又は一般式(2)で表される基を示す。 R 6 in the general formula (3) represents hydrogen or a group represented by the general formula (2).

一般式(3)におけるRは、水素、又は一般式(2)で表される基を示す。 R 7 in the general formula (3) represents hydrogen or a group represented by the general formula (2).

但し、Rが一般式(2)で表される基である場合は、Rは水素を示し、Rが水素である場合は、Rは一般式(2)で表される基を示す。 However, when R 6 is a group represented by the general formula (2), R 7 represents hydrogen, and when R 6 is hydrogen, R 7 represents a group represented by the general formula (2). Show.

一般式(3)におけるRは、アルケニル基、又は水酸基を有するアルケニル基を示す。 R 8 in the general formula (3) represents an alkenyl group or an alkenyl group having a hydroxyl group.

但し、Rが一般式(2)で表される基であり且つRが水素である場合は、Rはアルケニル基を示し、Rが水素であり且つRが一般式(2)で表される基である場合は、Rは水酸基を有するアルケニル基を示す。 However, when R 6 is a group represented by the general formula (2) and R 7 is hydrogen, R 8 represents an alkenyl group, R 6 is hydrogen and R 7 is the general formula (2). R 8 represents an alkenyl group having a hydroxyl group.

におけるアルケニル基は、Rにおけるアルケニル基と同じであり、Rにおける水酸基を有するアルケニル基は、Rにおける水酸基を有するアルケニル基と同じである。 The alkenyl group in R 8 is the same as the alkenyl group in R 3 , and the alkenyl group having a hydroxyl group in R 8 is the same as the alkenyl group having a hydroxyl group in R 3 .

一般式(3)で表される化合物の特に好ましい具体例としては、式(1a)又は式(1b)で表される化合物が挙げられる。これらの中でも、DNA阻害活性がより高いという観点、及び癌細胞の増殖を抑制する作用がより強いという観点から、好ましくは式(1a)で表される化合物が挙げられる。   Particularly preferred specific examples of the compound represented by the general formula (3) include compounds represented by the formula (1a) or the formula (1b). Among these, the compound represented by the formula (1a) is preferable from the viewpoint of higher DNA inhibitory activity and a stronger action of suppressing cancer cell growth.

2.化合物の製造方法‐1
本発明の製造方法‐1は、一般式(1)で表される化合物の製造方法であって、penicillium pinofhilum Hedgcockの培養物を精製する工程を含むことを特徴とする製造方法である。
2. Compound production method-1
The production method-1 of the present invention is a method for producing a compound represented by the general formula (1), and includes a step of purifying a culture of penicillium pinofhilum Hedgcock.

一般式(1)で表される化合物のうち、式(1a)、式(1b)、及び式(1c)で表される化合物は、Penicillium pinofhilum Hedgcockの培養物を精製する工程により得ることができる。精製後、必要に応じて、式(1a)、(1b)、又は(1c)における、式(2a):   Among the compounds represented by the general formula (1), the compounds represented by the formula (1a), the formula (1b) and the formula (1c) can be obtained by purifying a culture of Penicillium pinofhilum Hedgcock. . After purification, if necessary, formula (2a) in formula (1a), (1b), or (1c):

Figure 2013014546
Figure 2013014546

で表される基中の水酸基を、低級アルキル基、又はアルカノイル基で保護する工程を経ることによって、一般式(1)で表される化合物を製造することができる。 The compound represented by General formula (1) can be manufactured by passing through the process which protects the hydroxyl group in group represented by a lower alkyl group or an alkanoyl group.

Penicillium pinofhilumHedgcockは公知のアオカビの一種であり、種々の微生物寄託機関から入手することができる。例えば、NBRC (NITE Biological Resource Center)から、IFO番号33285T、100533T、6345、又は106907のカビとして入手することができる。 Penicillium pinofhilumHedgcock is a kind of known blue mold and can be obtained from various microorganism deposit institutions. For example, it can be obtained from NBRC (NITE Biological Resource Center) as mold having IFO number 33285 T , 100533 T , 6345 or 106907.

培養物を得る方法としては、Penicillium pinofhilum Hedgcockを、例えばPDB培地(ポテトデキストロース液体培地)、コーンミールとローズベンガルとの混合培地、麦芽エキス培地、又は肉エキス培地等の公知の培地中で静置培養し、培養液から菌体を除去して得られる濾液を溶媒で抽出する方法が挙げられる。抽出溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタ ノール等のアルコール類、1,3−ブチレングリコール、グリセリン、プロピレングリコール等のグリコール類、酢酸エチル、酢酸ブチル等のエステル類、エチルエーテル、プロピルエーテル、イソプロピルエーテル,テトラヒドロフラン、ジオキサン等のエーテル類、塩化メチレン、クロロホルム等のハロゲン化炭化水素等の極性有機溶媒;ヘキサン、シクロヘキサン、石油エーテル等の無極性有機溶媒等を用いることができるこれらの溶媒を単独で又は2種以上の混合溶媒として用いることもできる。   As a method for obtaining a culture, Penicillium pinofhilum Hedgcock is allowed to stand still in a known medium such as PDB medium (potato dextrose liquid medium), a mixed medium of corn meal and rose bengal, a malt extract medium, or a meat extract medium. A method of culturing and extracting a filtrate obtained by removing cells from the culture solution with a solvent may be mentioned. Examples of the extraction solvent include alcohols such as methanol, ethanol, propanol and butanol, glycols such as 1,3-butylene glycol, glycerin and propylene glycol, esters such as ethyl acetate and butyl acetate, ethyl ether and propyl Ethers such as ether, isopropyl ether, tetrahydrofuran and dioxane, polar organic solvents such as halogenated hydrocarbons such as methylene chloride and chloroform; non-polar organic solvents such as hexane, cyclohexane and petroleum ether, and the like. Can be used alone or as a mixed solvent of two or more.

これらの内で、塩化メチレン等のハロゲン化炭化水素、メタノール、エタノール等のアルコール類、酢酸エチル等のエステル類からなる群から選ばれる少なくとも一種の抽出溶媒を用いることが好ましい。溶媒を混合して用いる場合には、各溶媒の混合比は、溶媒の種類に応じて適宜調整すればよい。   Among these, it is preferable to use at least one extraction solvent selected from the group consisting of halogenated hydrocarbons such as methylene chloride, alcohols such as methanol and ethanol, and esters such as ethyl acetate. When mixing and using a solvent, what is necessary is just to adjust the mixing ratio of each solvent suitably according to the kind of solvent.

培養物を精製する方法としては、特に限定されないが、好ましくはDNA合成酵素阻害活性を指標として精製する方法が挙げられる。精製手法としては、特に限定されるものではなく、公知の精製手法を採用することができるが、好ましくはクロマトグラフィー精製が挙げられる。   The method for purifying the culture is not particularly limited, but preferably includes a method for purification using DNA synthase inhibitory activity as an indicator. The purification method is not particularly limited, and a known purification method can be adopted, and preferably, chromatographic purification is used.

クロマトグラフィーとしては、例えばアルミナカラムクロマトグラフィー、シリカゲルクロマトグラフィー、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、高速液体クロマトグラフィー等が挙げられ、シリカゲルクロマトグラフィーが好ましく挙げられる。   Examples of the chromatography include alumina column chromatography, silica gel chromatography, gel filtration chromatography, ion exchange chromatography, hydrophobic chromatography, high performance liquid chromatography and the like, and silica gel chromatography is preferably exemplified.

クロマトグラフィーの移動相としては、例えばメタノール、エタノール、プロパノール、ブタノール、クロロホルム、酢酸エチル、トルエン、ヘキサン、ベンゼン等 の有機溶媒を1種又は2種以上組み合わせたものが挙げられる。   Examples of the mobile phase for chromatography include a combination of one or more organic solvents such as methanol, ethanol, propanol, butanol, chloroform, ethyl acetate, toluene, hexane, and benzene.

培養物を精製する工程で得られた精製物を、さらに精製してもよい。この場合の精製条件は、培養物を精製する工程と同じ条件でもよいし、担体の種類や移動相の種類などを変えた条件でもよい。   The purified product obtained in the step of purifying the culture may be further purified. The purification conditions in this case may be the same conditions as in the step of purifying the culture, or may be the conditions in which the type of carrier or mobile phase is changed.

式(2a)で表される基中の水酸基を保護する基は、低級アルキル基又はアルカノイル基である。低級アルキル基は、一般式(2)におけるR及びRの低級アルキル基と同じである。アルカノイル基は、一般式(2)におけるR及びRのアルカノイル基と同じである。保護する方法は、特に限定されず、公知の手法を採用することができる。 The group for protecting the hydroxyl group in the group represented by the formula (2a) is a lower alkyl group or an alkanoyl group. The lower alkyl group is the same as the lower alkyl group represented by R 4 and R 5 in the general formula (2). The alkanoyl group is the same as the alkanoyl group of R 4 and R 5 in the general formula (2). The method for protecting is not particularly limited, and a known method can be employed.

上記本発明の製造方法‐1により、一般式(1)で表される化合物に包含される化合物、例えば、式(1a)で表される化合物、式(1b)で表される化合物、式(1c)で表される化合物、一般式(3)で表される化合物、又は後述の一般式(4)で表される化合物も製造することができる。   By the production method-1 of the present invention, the compound included in the compound represented by the general formula (1), for example, the compound represented by the formula (1a), the compound represented by the formula (1b), the formula ( A compound represented by 1c), a compound represented by the general formula (3), or a compound represented by the following general formula (4) can also be produced.

なお、培養物からの化合物の製造及び同定は、具体的 には実施例1の記載に従い行うことができる。   In addition, the production and identification of the compound from the culture can be performed specifically as described in Example 1.

3.化合物の製造方法‐2
本発明の製造方法‐2は、一般式(4):
3. Compound production method-2
The production method-2 of the present invention has the general formula (4):

Figure 2013014546
Figure 2013014546

(式中、R及びRは前記に同じ。)
で表される化合物の製造方法であって、一般式(5):
(In the formula, R 4 and R 5 are the same as above.)
A process for producing a compound represented by the general formula (5):

Figure 2013014546
Figure 2013014546

で表される化合物と、一般式(6): A compound represented by formula (6):

Figure 2013014546
Figure 2013014546

(式中、R及びR10は同一又は異なって保護基を示し、R11は塩素、ヨウ素、臭素、又はフッ素を示す)
で表される化合物を反応させることを特徴とする製造方法である。
(Wherein R 9 and R 10 are the same or different and each represents a protecting group, and R 11 represents chlorine, iodine, bromine, or fluorine)
A production method characterized by reacting a compound represented by the formula:

一般式(5)で表される化合物は、例えば、後述の実施例2における前駆体13の合成方法によって得ることができる。   The compound represented by the general formula (5) can be obtained, for example, by a method for synthesizing the precursor 13 in Example 2 described later.

一般式(6)におけるR及びR10は同一又は異なって保護基を示す。保護基としては、特に限定されず、公知の保護基、例えば、アシル基(アセチル、プロパノイル、ベンゾイル基等)、シリル基(トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、tert−ブチルジメチルシリル基等)、アルキル基(メチル、エチル、プロピル、ブチル基等)、アルケニル基(アリル、クロチル基等)、アラルキル基(ベンジル、フェネチル基等)、アルコキシメチル基(メトキシメチル基等)、スルホニル基(メタンスルホニル、ベンゼンスルホニル基等)等が挙げられる。Rとしては、好ましくはベンジル基が挙げられ、R10としては、好ましくはアルキル基、より好ましくはメチル基が挙げられる。 R 9 and R 10 in the general formula (6) are the same or different and represent a protecting group. The protective group is not particularly limited, and is a known protective group such as an acyl group (acetyl, propanoyl, benzoyl group, etc.), a silyl group (trimethylsilyl, triethylsilyl, triisopropylsilyl, tert-butyldimethylsilyl group, etc.), Alkyl groups (such as methyl, ethyl, propyl, and butyl groups), alkenyl groups (such as allyl and crotyl groups), aralkyl groups (such as benzyl and phenethyl groups), alkoxymethyl groups (such as methoxymethyl groups), sulfonyl groups (such as methanesulfonyl, Benzenesulfonyl group and the like). R 9 is preferably a benzyl group, and R 10 is preferably an alkyl group, more preferably a methyl group.

一般式(6)におけるR11は塩素、ヨウ素、臭素、又はフッ素を示す。R11としては、好ましくは塩素、臭素、又はヨウ素、より好ましくは塩素又は臭素、特に好ましくは塩素が挙げられる。 R 11 in the general formula (6) represents chlorine, iodine, bromine, or fluorine. R 11 is preferably chlorine, bromine, or iodine, more preferably chlorine or bromine, and particularly preferably chlorine.

一般式(5)で表される化合物と一般式(6)で表される化合物の反応としては、特に限定されず、公知の方法を採用することができる。例えば、一般式(5)で表される化合物と一般式(6)で表される化合物を、塩基存在下、好ましくは有機塩基存在下、より好ましくは3級アミン類存在下で反応させる方法が挙げられる。   The reaction of the compound represented by the general formula (5) and the compound represented by the general formula (6) is not particularly limited, and a known method can be adopted. For example, there is a method in which the compound represented by the general formula (5) and the compound represented by the general formula (6) are reacted in the presence of a base, preferably in the presence of an organic base, more preferably in the presence of a tertiary amine. Can be mentioned.

塩基としては、例えば、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリブチルアミン、N−メチル−ジエチルアミン、N−エチル−ジメチルアミン、N−エチル−ジアミルアミン、N,N−ジイソプロピルエチルアミン、N,N−ジメチル−シクロヘキシルアミン、N,N−ジエチル−シクロヘキシルアミン等の脂肪族アミン;N,N−ジメチルアニリン、N,N−ジエチルアニリン等の芳香族アミン;ピリジン、ピコリン、N,N−ジメチルアミノピリジン、4−ピロリジノピリジン等の複素環アミン; 1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,5−ジアザビシクロ[4.3.0] ノン−5−エン、キヌクリジン、1,4-ジアザビシクロ[2.2.2]オクタン等の脂環式アミン等が挙げられ、好ましくはN,N−ジイソプロピルエチルアミン、又はN,N−ジメチルアミノピリジンが挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。   Examples of the base include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tributylamine, N-methyl-diethylamine, N-ethyl-dimethylamine, N-ethyl-diamilamine, N, N-diisopropylethylamine, Aliphatic amines such as N, N-dimethyl-cyclohexylamine and N, N-diethyl-cyclohexylamine; aromatic amines such as N, N-dimethylaniline and N, N-diethylaniline; pyridine, picoline, N, N- Heterocyclic amines such as dimethylaminopyridine and 4-pyrrolidinopyridine; 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene And alicyclic amines such as quinuclidine and 1,4-diazabicyclo [2.2.2] octane Preferably, N, N-diisopropylethylamine or N, N-dimethylaminopyridine is used. These may be used alone or in combination of two or more.

溶媒としては、特に限定されないが、例えば有機溶媒を使用することができる。有機溶媒としては、例えば、ヘプタン、ヘキサン、オクタン、ジクロロメタン、クロロホルム、エチレンジクロライド、アセトン、アセトニトリル、シクロヘキサノン、シクロペンタノン、2−ヘプタノン、γ−ブチロラクトン、メチルエチルケトン、メチルイソブチルケトン、2−メトキシエチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ベンゼン、トルエン、キシレン、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ジエチルエーテル、ジt-ブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられ、好ましくはジクロロメタンが挙げられる。これらは1種又は2種以上を組み合わせて用いてもよい。   Although it does not specifically limit as a solvent, For example, an organic solvent can be used. Examples of the organic solvent include heptane, hexane, octane, dichloromethane, chloroform, ethylene dichloride, acetone, acetonitrile, cyclohexanone, cyclopentanone, 2-heptanone, γ-butyrolactone, methyl ethyl ketone, methyl isobutyl ketone, 2-methoxyethyl acetate, Ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, benzene, toluene, xylene, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl methoxypropionate, ethyl ethoxypropionate, methyl pyruvate, ethyl pyruvate, pyruvin Propyl acid, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, diethyl ether Di t- butyl ether, cyclopentyl methyl ether, tetrahydrofuran, 1,4-dioxane and the like, with preference given to dichloromethane. These may be used alone or in combination of two or more.

反応温度、反応時間はいずれも公知の条件を採用することが出来る。また、反応終了後
の反応液から一般式(4)で表される化合物を単離及び精製する手段も公知の方法(分液
、蒸留、クロマトグラフィー、再結晶等)を採用できる。
Known conditions can be adopted for both the reaction temperature and the reaction time. Moreover, a well-known method (separation, distillation, chromatography, recrystallization etc.) can also be employ | adopted for the means to isolate and refine | purify the compound represented by General formula (4) from the reaction liquid after completion | finish of reaction.

上記のように、一般式(5)で表される化合物と一般式(6)で表される化合物の反応させた後、必要に応じて、R及びR10に示される保護基を公知の方法によって脱保護してもよい。 As described above, after reacting the compound represented by the general formula (5) and the compound represented by the general formula (6), the protecting groups represented by R 9 and R 10 are publicly known as necessary. You may deprotect by the method.

さらに、必要に応じて、R及びR10に示される保護基の脱保護後、脱保護後に生じる水酸基を、低級アルキル基、又はアルカノイル基で保護してもよい。低級アルキル基は、一般式(2)におけるR及びRの低級アルキル基と同じである。アルカノイル基は、一般式(2)におけるR及びRのアルカノイル基と同じである。保護する方法は、特に限定されず、公知の手法を採用することができる。 Furthermore, after the deprotection of the protecting group represented by R 9 and R 10 , the hydroxyl group generated after the deprotection may be protected with a lower alkyl group or an alkanoyl group as necessary. The lower alkyl group is the same as the lower alkyl group represented by R 4 and R 5 in the general formula (2). The alkanoyl group is the same as the alkanoyl group of R 4 and R 5 in the general formula (2). The method for protecting is not particularly limited, and a known method can be employed.

上記本発明の製造方法‐2により、一般式(4)で表される化合物に包含される化合物、例えば式(1c)で表される化合物も製造することができる。   By the production method-2 of the present invention, a compound included in the compound represented by the general formula (4), for example, a compound represented by the formula (1c) can also be produced.

4.化合物の用途
本発明の一般式(1)で表される化合物は、DNA合成酵素選択的阻害作用を有することから、医薬品への利用、具体的にはDNA合成酵素阻害剤等への利用が可能である。またこの化合物は、特に哺乳類のDNA合成酵素を選択的に阻害するという性質を有すること、及び鋳型DNAに対して非拮抗阻害であり、デオキシリボヌクレオチド三リン酸(dNTP)に対して拮抗阻害であるという性質を有することから、これらの性質に特化した用途のDNA合成酵素阻害剤としても利用することができる。さらに、一般式(1)で表される化合物は、ヒト正常細胞(例えば、正常ヒト皮膚線維芽細胞、正常ヒト臍帯静脈内皮細胞等)の増殖には影響を与えず、ヒト癌細胞(ヒト肺癌細胞、ヒト白血病性B細胞、ヒト大腸癌細胞、ヒト子宮頸癌細胞、ヒト胃癌細胞等)の増殖を選択的に抑制するという特徴を有している。従って、一般式(1)で表される化合物、又は一般式(1)で表される化合物を有効成分として含有するDNA合成酵素阻害剤は、癌、腫瘍等の予防又は治療剤、具体的には抗癌剤として利用することもできる。DNA合成酵素阻害活性と癌細胞の増殖抑制活性には同じ傾向の構造活性相関が見られる。
4). Use of the compound The compound represented by the general formula (1) of the present invention has a selective inhibitory action on DNA synthase, so that it can be used for pharmaceuticals, specifically, a DNA synthase inhibitor and the like. It is. In addition, this compound has the property of selectively inhibiting mammalian DNA synthase, and is non-competitive inhibition against template DNA, and is competitive inhibition against deoxyribonucleotide triphosphate (dNTP). Therefore, it can also be used as a DNA synthase inhibitor for applications specialized in these properties. Furthermore, the compound represented by the general formula (1) does not affect the proliferation of human normal cells (for example, normal human dermal fibroblasts, normal human umbilical vein endothelial cells, etc.), and human cancer cells (human lung cancer) Cells, human leukemic B cells, human colon cancer cells, human cervical cancer cells, human gastric cancer cells and the like). Therefore, a compound represented by the general formula (1) or a DNA synthase inhibitor containing the compound represented by the general formula (1) as an active ingredient is a preventive or therapeutic agent for cancer, tumor, etc., specifically Can also be used as an anticancer agent. The same structure-activity relationship is observed between the DNA synthase inhibitory activity and the cancer cell growth inhibitory activity.

本発明の化合物を体内投与する際は経口投与よりも非経口投与が好ましく、またリポソームなどの運搬体に封入して投与することが好ましい。このとき癌細胞を特異的に認識する運搬体などを利用すれば、標的部位(病変部位)に本発明の化合物を効率よく運ぶことができ効果的である。   When the compound of the present invention is administered into the body, parenteral administration is preferred over oral administration, and administration in a carrier such as a liposome is preferred. At this time, if a carrier that specifically recognizes cancer cells is used, the compound of the present invention can be efficiently transported to the target site (lesion site).

本発明の化合物を有効成分とする医薬品は、これをそのまま、あるいは慣用の医薬製剤担体とともに医薬組成物となし、動物およびヒトに投与することができる。医薬組成物の剤形としては特に制限されるものではなく必要に応じて適宜選択すればよいが、例えば、錠剤、カプセル剤、顆粒剤、細粒剤、散剤等の経口剤、注射剤、坐剤等の非経口剤が挙げられ、好適には非経口剤を挙げることができる。   A pharmaceutical comprising the compound of the present invention as an active ingredient can be administered to animals and humans as it is or as a pharmaceutical composition together with a conventional pharmaceutical preparation carrier. The dosage form of the pharmaceutical composition is not particularly limited and may be appropriately selected as necessary. For example, tablets, capsules, granules, fine granules, powders and other oral preparations, injections, and suppositories Parenteral preparations such as agents, and the like, and preferably include parenteral preparations.

本発明において錠剤、カプセル剤、顆粒剤、細粒剤、散剤としての経口剤は、例えば、デンプン、乳糖、白糖、マンニット、カルボキシメチルセルロース、コーンスターチ、無機塩類等を用いて常法に従って製造される。これらの製剤中の本発明の化合物の配合量は特に限定されるものではなく適宜設計できる。この種の製剤には本発明の化合物の他に、結合剤、崩壊剤、界面活性剤、滑沢剤、流動性促進剤、矯味剤、着色剤、香料等を適宜に使用することができる。   In the present invention, oral preparations such as tablets, capsules, granules, fine granules, and powders are produced according to a conventional method using, for example, starch, lactose, sucrose, mannitol, carboxymethylcellulose, corn starch, inorganic salts, and the like. . The compounding amount of the compound of the present invention in these preparations is not particularly limited and can be appropriately designed. In addition to the compound of the present invention, a binder, a disintegrant, a surfactant, a lubricant, a fluidity promoter, a corrigent, a colorant, a fragrance and the like can be appropriately used for this type of preparation.

ここに、結合剤としてデンプン、デキストリン、アラビアゴム末、ゼラチン、ヒドロキシプロピルスターチ、メチルセルロースナトリウム、ヒドロキシプロピルセルロース、結晶セルロース、エチルセルロース、ポリビニルピロリドン、マクロゴール等を例示できる。崩壊剤としてはデンプン、ヒドロキシプロピルスターチ、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロース、低置換ヒドロキシプロピルセルロース等を例として挙げることができる。界面活性剤の例としてラウリル硫酸ナトリウム、大豆レシチン、蔗糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等を挙げることができる。滑沢剤では、タルク、ロウ類、水素添加植物油、蔗糖脂肪酸エステル、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ポリエチレングリコール等を例示できる。流動性促進剤では、軽質無水ケイ酸、乾燥水酸化アルミニウムゲル、合成ケイ酸アルミニウム、ケイ酸マグネシウム等を例として挙げることができる。また、本発明の化合物は懸濁液、エマルション剤、シロップ剤、エリキシル剤としても投与することができ、これらの各種剤形には、矯味矯臭剤、着色剤を含有させてもよい。   Examples of the binder include starch, dextrin, gum arabic powder, gelatin, hydroxypropyl starch, sodium methylcellulose, hydroxypropylcellulose, crystalline cellulose, ethylcellulose, polyvinylpyrrolidone, macrogol and the like. Examples of the disintegrant include starch, hydroxypropyl starch, carboxymethylcellulose sodium, carboxymethylcellulose calcium, carboxymethylcellulose, and low-substituted hydroxypropylcellulose. Examples of the surfactant include sodium lauryl sulfate, soybean lecithin, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester and the like. Examples of lubricants include talc, waxes, hydrogenated vegetable oils, sucrose fatty acid esters, magnesium stearate, calcium stearate, aluminum stearate, polyethylene glycol and the like. Examples of the fluidity promoter include light anhydrous silicic acid, dry aluminum hydroxide gel, synthetic aluminum silicate, magnesium silicate and the like. The compounds of the present invention can also be administered as suspensions, emulsions, syrups, and elixirs, and these various dosage forms may contain flavoring agents and colorants.

非経口剤として本発明の所望の効果を発現せしめるには、患者の年齢、体重、疾患の程度により異なるが、通常、成人で本発明の化合物の重量として1日あたり1〜60mgの静注、点滴静注、皮下注射、筋肉注射が適当である。この非経口投与剤は常法に従って製造され、希釈剤として一般に注射用蒸留水、生理食塩水、ブドウ糖水溶液、注射用植物油、ゴマ油、ラッカセイ油、大豆油、トウモロコシ油、プロピレングリコール等を用いることができる。さらに必要に応じて、殺菌剤、防腐剤、安定剤を加えてもよい。また、この非経口剤は安定性の点から、バイアル等に充填後冷凍し、通常の凍結乾燥処理により水分を除き、使用直前に凍結乾燥物から液剤を再調製することもできる。さらに必要に応じて、等張化剤、安定剤、防腐剤、無痛化剤を加えてもよい。これら製剤中の本発明の化合物の配合量は特に限定されるものではなく任意に設定できる。その他の非経口剤の例として、外用液剤、軟膏等の塗布剤、直腸内投与のための坐剤等が挙げられ、これらも常法に従って製造される。   In order to express the desired effect of the present invention as a parenteral agent, it varies depending on the age, body weight, and degree of disease of the patient, but usually, 1 to 60 mg intravenously per day as the weight of the compound of the present invention in an adult, Intravenous infusion, subcutaneous injection, and intramuscular injection are suitable. This parenteral preparation is produced according to a conventional method, and generally used as a diluent is distilled water for injection, physiological saline, aqueous glucose solution, vegetable oil for injection, sesame oil, peanut oil, soybean oil, corn oil, propylene glycol, etc. it can. Furthermore, you may add a disinfectant, antiseptic | preservative, and a stabilizer as needed. In addition, from the viewpoint of stability, this parenteral preparation can be frozen after filling into a vial or the like, the water can be removed by ordinary freeze-drying treatment, and the liquid preparation can be re-prepared from the freeze-dried product immediately before use. Furthermore, you may add an isotonic agent, a stabilizer, an antiseptic | preservative, and a soothing agent as needed. The compounding quantity of the compound of this invention in these formulations is not specifically limited, It can set arbitrarily. Examples of other parenteral agents include liquid preparations for external use, coating agents such as ointments, suppositories for rectal administration, etc., and these are also produced according to conventional methods.

また、本発明の化合物は、医薬品への利用以外に、食品への利用が可能である。例えば、飲食品へ添加・配合することにより抗癌効果、あるいは抗発癌効果をもった食用組成物(例えば、健康食品等)として利用することも可能である。   Moreover, the compound of this invention can be utilized for food other than the utilization to a pharmaceutical. For example, it can be used as an edible composition (for example, health food) having an anticancer effect or an anticarcinogenic effect by being added to and blended with food and drink.

即ち、本発明の化合物は、これをそのまま液状、ゲル状あるいは固形状の食品、例えばジュース、清涼飲料、茶、スープ、豆乳、サラダ油、ドレッシング、ヨーグルト、ゼリー、プリン、ふりかけ、育児用粉乳、ケーキミックス、粉末状または液状の乳製品、パン、クッキー等に添加したり、必要に応じてデキストリン、乳糖、澱粉等の賦形剤や香料、色素等とともにペレット、錠剤、顆粒等に加工したり、またゼラチン等で被覆してカプセルに成形加工して健康食品や栄養補助食品等として利用できる。   That is, the compound of the present invention is used as it is in a liquid, gel or solid food such as juice, soft drink, tea, soup, soy milk, salad oil, dressing, yogurt, jelly, pudding, sprinkle, infant formula, cake. Add to mixes, powdered or liquid dairy products, bread, cookies, etc., and if necessary, process into pellets, tablets, granules etc. with excipients such as dextrin, lactose, starch, flavorings, pigments, etc. Further, it can be coated with gelatin or the like and molded into a capsule to be used as a health food or nutritional supplement.

なお、ヒトと他の哺乳類のDNA合成酵素の構造は殆ど同じであるため、本発明のDNA合成酵素阻害剤は、ヒト以外の哺乳類由来のDNA合成酵素阻害剤としても利用可能である。   Since the DNA synthase structure of humans and other mammals is almost the same, the DNA synthase inhibitor of the present invention can be used as a DNA synthase inhibitor derived from mammals other than humans.

さらに、本発明の化合物は、生化学的試薬、具体的にはDNA合成酵素阻害剤、又は癌7細胞特異的増殖抑制剤としての利用も可能である。即ち、本発明の化合物は、単独、若しくは生化学試薬に含有させるものとして公知の成分、例えば緩衝剤、塩等と共に、生化学的試薬として利用できる。   Furthermore, the compound of the present invention can also be used as a biochemical reagent, specifically, a DNA synthase inhibitor, or a cancer 7 cell-specific growth inhibitor. That is, the compound of the present invention can be used as a biochemical reagent alone or together with known components such as buffers, salts and the like to be contained in a biochemical reagent.

また、本発明の化合物は、さらに上記の薬剤の開発過程におけるリード化合物として利用することもできる。本発明の化合物をリードとして、DNA合成酵素に対する阻害活性を調べることにより、抗癌剤の候補化合物の効率的なスクリーニングが期待できる。本発明には、このようなスクリーニング方法も含まれる。なお、本スクリーニング方法において、DNA合成酵素に対する阻害活性を調べる方法は実施例記載の方法に限定されるものではなく、公知の試験方法の中から適した方法を選択すればよい。   Further, the compound of the present invention can also be used as a lead compound in the above-mentioned drug development process. By examining the inhibitory activity against DNA synthase using the compound of the present invention as a lead, efficient screening of candidate compounds for anticancer agents can be expected. The present invention includes such a screening method. In this screening method, the method for examining the inhibitory activity against DNA synthase is not limited to the method described in the examples, and a suitable method may be selected from known test methods.

以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.

実施例1.化合物の精製
(1)菌株の単離
佐渡島の海岸に生息する海藻を5%酢酸で処理後、滅菌水に懸濁させた。該懸濁液をPDA培地プレート(ポテトデキストロース寒天培地プレート)に滴下し、該プレートを27℃で培養した。培養後、プレートから公知の手法により菌株を単離した。単離した菌株は、菌株同定(株式会社テクノスルガ・ラボ)の結果、Penicillium pinofhilum Hedgcock(IFO番号33285T、100533T、6345、又は106907)であると同定された。
Example 1. Purification of compounds
(1) Isolation of strains Seaweeds living on the coast of Sado Island were treated with 5% acetic acid and then suspended in sterilized water. The suspension was added dropwise to a PDA medium plate (potato dextrose agar plate), and the plate was cultured at 27 ° C. After culturing, the strain was isolated from the plate by a known method. The isolated strain was identified as Penicillium pinofhilum Hedgcock (IFO No. 33285 T , 100533 T , 6345, or 106907) as a result of strain identification (Techno Suruga Lab Co., Ltd.).

(2)化合物の精製
単離した菌株を本菌株は2L×2のPDB培地(ポテトデキストロース液体培地)を入れた2個の3L三角フラスコで14日間、暗所で静置培養した。本菌株を培養した培養液はガーゼを用いて菌体を除去した。得られた濾液を塩化メチレン(CH2Cl2)で抽出し、ロータリーエバポレーターを用いて溶媒を留去し、粗抽出物(160 mg)を得た。この粗抽出物はシリカゲルを担体とし、展開溶媒としてクロロホルム-メタノール(100:0→0:100)を用いたカラムクロマトグラフィーによって4つのフラクション(Fr.1〜Fr.4)に分画した。
(2) Purification of the compound The isolated strain was statically cultured in two 3 L Erlenmeyer flasks containing 2 L × 2 PDB medium (potato dextrose liquid medium) in the dark for 14 days. From the culture solution in which this strain was cultured, the cells were removed using gauze. The obtained filtrate was extracted with methylene chloride (CH 2 Cl 2 ), and the solvent was distilled off using a rotary evaporator to obtain a crude extract (160 mg). This crude extract was fractionated into four fractions (Fr. 1 to Fr. 4) by column chromatography using silica gel as a carrier and chloroform-methanol (100: 0 → 0: 100) as a developing solvent.

クロロホルム-メタノール(80:1→60:1)で溶出したFr.2は、シリカゲルを担体とし、展開溶媒としてトルエン-酢酸エチル(12:1〜10:1)を用いたカラムクロマトグラフィーによって、3つのフラクション(Fr.2-1〜Fr.2-3)に分画した。そして、トルエン-酢酸エチル(12:1)で溶出したFr. 2-1から、黄色の粉末として化合物1aを、トルエン酢酸エチル(10:1)で溶出したFr. 2-2から、黄色の粉末として化合物1cを得た。   Fr. 2 eluted with chloroform-methanol (80: 1 → 60: 1) was obtained by column chromatography using silica gel as a carrier and toluene-ethyl acetate (12: 1 to 10: 1) as a developing solvent. Fractions were fractionated into two fractions (Fr.2-1 to Fr.2-3). Then, from Fr. 2-1 eluted with toluene-ethyl acetate (12: 1), compound 1a as a yellow powder, and from Fr. 2-2 eluted with toluene ethyl acetate (10: 1), yellow powder As a result, Compound 1c was obtained.

クロロホルム-メタノール(40:1→20:1)で溶出したFr.4は、シリカゲルを担体とし、展開溶媒としてトルエン-酢酸エチル(4:1〜3:1)を用いたカラムクロマトグラフィーによって、3つのフラクション(Fr.4-1〜Fr.4-3)に分画した。そして、トルエン-酢酸エチル(4:1〜3:1)で溶出したFr. 4-1から、黄色の固形状物として化合物1bを得た。   Fr. 4 eluted with chloroform-methanol (40: 1 → 20: 1) was obtained by column chromatography using silica gel as a carrier and toluene-ethyl acetate (4: 1 to 3: 1) as a developing solvent. Fractions were fractionated into two fractions (Fr.4-1 to Fr.4-3). Compound 1b was obtained as a yellow solid from Fr. 4-1, which was eluted with toluene-ethyl acetate (4: 1 to 3: 1).

(3)精製化合物の構造決定
化合物1a、1b、及び1cは、HR-ESIMS、IR、1H-NMR、13C-NMR、1H-1H NOESY、HMBC、HMQCによって構造決定した。図1には化合物1a及び1bの構造並びに炭素番号を示す構造式と、化合物1cの構造式を示す。図2の(A)には化合物1aのHMBC相関(図2(A)中の「1a」)、及び化合物1bのHMQC相関(図2(A)中の「1b」)を示し、(B)には化合物1aの1H-1H NOESY相関(図2(B)中の「1a」)及び化合物1bの1H-1H NOESY相関(図2(B)中の「1b」)を示した。図3にはCDCl3中で測定した化合物1a及びMeOD中で測定した化合物1bの1H-NMR、13C-NMRデータを示した。
(3) Structure determination of purified compound The compounds 1a, 1b, and 1c were determined by HR-ESIMS, IR, 1 H-NMR, 13 C-NMR, 1 H- 1 H NOESY, HMBC, and HMQC. FIG. 1 shows the structures of compounds 1a and 1b, the structural formulas indicating the carbon numbers, and the structural formula of compound 1c. FIG. 2A shows the HMBC correlation of compound 1a (“1a” in FIG. 2A) and the HMQC correlation of compound 1b (“1b” in FIG. 2A). Shows the 1 H- 1 H NOESY correlation of compound 1a ("1a" in FIG. 2B) and the 1 H- 1 H NOESY correlation of compound 1b ("1b" in FIG. 2B). . FIG. 3 shows 1 H-NMR and 13 C-NMR data of Compound 1a measured in CDCl 3 and Compound 1b measured in MeOD.

化合物1aの諸性質及びスペクトルデータ(NMRデータは除く)は次の通りである。黄色固体状; mp 213-215°C (decomp.); [α]23 D-114.5 (c 0.065, MeOH); IR (neat) νmax 3373, 2919, 2828, 1728, 1648, 1585 cm-1; HR ESIMS m/z 387.1430 (M+H+)(calcd for 387.1438)。 Various properties and spectrum data (excluding NMR data) of Compound 1a are as follows. Yellow solid; mp 213-215 ° C (decomp.); [Α] 23 D -114.5 (c 0.065, MeOH); IR (neat) ν max 3373, 2919, 2828, 1728, 1648, 1585 cm -1 ; HR ESIMS m / z 387.1430 (M + H + ) (calcd for 387.1438).

化合物1bの諸性質及びスペクトルデータ(NMRデータは除く)は次の通りである。黄色固体状; mp 212-214°C (decomp.); [α]23 D+92.4 (c 0.62, MeOH); IR (neat) νmax 3376, 2923, 2853, 1725, 1651, 1585 cm-1; HR ESIMS m/z 403.1390 (M+H+)(calcd for 403.1387)。 Various properties and spectrum data (excluding NMR data) of Compound 1b are as follows. Yellow solid; mp 212-214 ° C (decomp.); [Α] 23 D +92.4 (c 0.62, MeOH); IR (neat) ν max 3376, 2923, 2853, 1725, 1651, 1585 cm -1 ; HR ESIMS m / z 403.1390 (M + H + ) (calcd for 403.1387).

化合物1cは、解析の結果、公知化合物であるSch 725680であることが明らかとなった。図1の「1c」に構造式を示す。   As a result of analysis, Compound 1c was found to be Sch 725680, which is a known compound. “1c” in FIG. 1 shows the structural formula.

化合物1aは、HR-ESIMSから分子式C22H22O7を持つことが示された。IRスペクトラムから、水酸基(3373 cm-1)、共役したエステル基(1728 cm-1)、及び共役したケトン基(1648 cm-1)の存在が示唆された。図3に示す1H及び13C-NMRスペクトルより、化合物1aは部分構造として、アザフィロン骨格及び2,4-ジヒドロキシ-6-メチル安息香酸を有していることが示唆された。アザフィロン骨格は、主に、HMBC実験において測定された1H-13C ロングレンジ相関によって決定された。H-3’からC-1’及びC-2’へのHMBC相関より、1H-NMRにおいて二重の二重線を示しているメチル基は、2つのメチン炭素からなる二重結合に隣接していると決定された。H-4からC-1’及びC-5へのHMBC相関、並びにH-5からC-4へのHMBC相関に基づくと、この二重結合は、さらに2つの二重結合に共役し、C-6’ケトンにまでつながる。H-5からC-7(δ18.4)へのHMBC相関から判定すると、ケトン(C-6)の隣は、酸素官能基を持つ第4級炭素原子(C-7)であった。これは、7- CH3からC-6、及びC-7、C-8へのHMBC相関に基づくと、メチル基(7-CH3)及び酸素官能基を持つメチン基(C-8)で置換されていた。H-1、H-5、及びH-8からのロングレンジ相関を示す脂肪族のメチン(C-8a)は、C-1、及びC-4a、C-8に隣接していると決定された。以上より、シクロヘキセノン環が決定された。酸素官能基を有するメチレンのプロトンシグナル(H-1α及びH-1β)からオレフィン炭素(C-3)へのHMBC相関より、ジヒドロピラン部分の存在が示唆された。以上より、6,7,8,8a-テトラヒドロ-1H-イソクロメン環骨格が決定された。H-4”からC-2”及びC-3”、C-5”、C-6”へのHMBC相関、H-6”からC-2”及びC-4”、7”-MeへのHMBC相関、並びに 7”-MeからC-2”及びC-6”、C-7”へのHMBC相関より、残りの7つの炭素を2,4-ジヒドロ-6-メチルベンゾイル基と決定した。H-8及び8-OHの相関に基づき、ベンゾイル基の位置は7-O位に決定した。化合物1aの相対的立体配置は、1H-1H結合定数及びNOESY相関より決定された。H-8とH-8aの相対配置は、結合定数(J8-8a=10.0 Hz)から、antiであると決定した。H-8aと7-O-ベンゾイル基の相対立体化学は、7”-CH3とH-8aとの間のNOE相関、 7-CH3と8-Hとの間のNOE相関、並びに7-CH3と8-OHとの間のNOE相関から、synであると決定した。化合物1aの絶対立体化学を,CD励起子キラリティー法を用いて決定した。化合物1aのCDスペクトルは325nm(Δε=-28.2),297nm(Δε=+9.2)と負のコットン効果をとることからC-7の絶対立体化学をSと決定した。以上より、化合物1aを(7S,8S,8aS)-8-hydroxy-7-methyl-6-oxo-3[(1E)-prop-1-en-1-yl]-6,7,8,8a-tetrahydro-1H-isochromen-7-yl 2,4-dihydroxy-6-methylbenzoateであると決定した。図1の「1a」に構造式を示す。 Compound 1a was shown by HR-ESIMS to have the molecular formula C 22 H 22 O 7 . The IR spectrum suggested the presence of a hydroxyl group (3373 cm −1 ), a conjugated ester group (1728 cm −1 ), and a conjugated ketone group (1648 cm −1 ). From the 1 H and 13 C-NMR spectra shown in FIG. 3, it was suggested that compound 1a has an azaphyrone skeleton and 2,4-dihydroxy-6-methylbenzoic acid as partial structures. The azaphyllon skeleton was determined mainly by the 1 H- 13 C long range correlation measured in the HMBC experiment. From the HBC correlation from H-3 'to C-1' and C-2 ', the methyl group showing a double double line in 1 H-NMR is adjacent to the double bond consisting of two methine carbons. Determined to be. Based on the HMBC correlation from H-4 to C-1 ′ and C-5, and the HMBC correlation from H-5 to C-4, this double bond is further conjugated to two double bonds and C -6 'leads to ketones. Judging from the HMBC correlation from H-5 to C-7 (δ18.4), next to the ketone (C-6) was a quaternary carbon atom (C-7) with an oxygen functional group. Based on the HMBC correlation from 7-CH 3 to C-6, and C-7, C-8, this is a methine group (C-8) with a methyl group (7-CH 3 ) and an oxygen functional group. It was replaced. Aliphatic methine (C-8a) showing long range correlation from H-1, H-5, and H-8 was determined to be adjacent to C-1, and C-4a, C-8 It was. From the above, the cyclohexenone ring was determined. The HMBC correlation from proton signals (H-1α and H-1β) of methylene with oxygen functional group to olefin carbon (C-3) suggested the presence of dihydropyran moiety. From the above, the 6,7,8,8a-tetrahydro-1H-isochromene ring skeleton was determined. HMBC correlation from H-4 "to C-2" and C-3 ", C-5" and C-6 ", from H-6" to C-2 "and C-4" and 7 "-Me The remaining 7 carbons were determined to be 2,4-dihydro-6-methylbenzoyl groups from the HMBC correlation and the HMBC correlation from 7 ″ -Me to C-2 ″ and C-6 ″, C-7 ″. Based on the correlation between H-8 and 8-OH, the position of the benzoyl group was determined at the 7-O position, and the relative configuration of compound 1a was determined from the 1 H- 1 H binding constant and the NOESY correlation. The relative configuration of -8 and H-8a was determined to be anti from the binding constant (J 8-8a = 10.0 Hz). The relative stereochemistry of H-8a and 7-O-benzoyl group was 7 "- NOE correlation between CH 3 and H-8a, NOE correlation between 7-CH 3 and 8-H, and NOE correlation between 7-CH 3 and 8-OH, determined to be syn did. The absolute stereochemistry of compound 1a was determined using CD exciton chirality method. Since the CD spectrum of Compound 1a has a negative Cotton effect of 325 nm (Δε = −28.2) and 297 nm (Δε = + 9.2), the absolute stereochemistry of C-7 was determined to be S. From the above, compound 1a was converted to (7S, 8S, 8aS) -8-hydroxy-7-methyl-6-oxo-3 [(1E) -prop-1-en-1-yl] -6,7,8,8a -tetrahydro-1H-isochromen-7-yl 2,4-dihydroxy-6-methylbenzoate. “1a” in FIG. 1 shows the structural formula.

化合物1bは、HR-ESIMSから分子式C22H22O8を持つことが示された。図3に示す1H及び13C-NMRスペクトラより、化合物1bは、化合物1a及び化合物1cと類似した構造を有しており、側鎖のC-3’においてのみ異なっていることが示唆された。HMQCスペクトラムにおいて、化合物1bにおいては、化合物1cのH-3’(δ1.84)の1Hシグナルが、C-3’(δ61.1)と相関を示すH-3’(δ4.22)に置換されていた。このことは、HR-ESIMSの結果とも一致し、C-3’アルコールの存在を示唆している。化合物1bの相対的立体配置は、1H-1H結合定数及びNOESY相関より決定した。H-8とH-8aの相対立体化学は、結合定数(J8-8a=10.0 Hz)から、antiであると決定した。7-OHとH-8の相対立体化学は、7”-CH3とH-8との間のNOE相関から、antiであると決定した。以上より、化合物1bを(7R*,8R*,8aR*)-7-hydroxy-3-[(1E)-3-hydroxyprop-1-en-1-yl]-7-methyl-6-oxo-6,7,8,8a-tetrahydro-1H-isochromen-8-yl 2,4-dihydroxy-6-methylbenzoateであると決定した。図1の「1b」に構造式を示す。 Compound 1b was shown by HR-ESIMS to have the molecular formula C 22 H 22 O 8 . From the 1 H and 13 C-NMR spectra shown in FIG. 3, it was suggested that Compound 1b has a similar structure to Compound 1a and Compound 1c, and is different only in the side chain C-3 ′. . In the HMQC spectrum, in compound 1b, the 1 H signal of H-3 ′ (δ1.84) of compound 1c becomes H-3 ′ (δ4.22) that correlates with C-3 ′ (δ61.1). It was replaced. This is consistent with the results of HR-ESIMS and suggests the presence of C-3 ′ alcohol. The relative configuration of the compound 1b was determined from 1 H- 1 H coupling constants and NOESY correlation. The relative stereochemistry of H-8 and H-8a was determined to be anti from the binding constant (J 8-8a = 10.0 Hz). The relative stereochemistry of 7-OH and H-8 was determined to be anti from the NOE correlation between 7 ″ -CH 3 and H-8. From the above, compound 1b was determined to be (7R *, 8R *, 8aR *)-7-hydroxy-3-[(1E) -3-hydroxyprop-1-en-1-yl] -7-methyl-6-oxo-6,7,8,8a-tetrahydro-1H-isochromen- It was determined to be 8-yl 2,4-dihydroxy-6-methylbenzoate, and the structural formula is shown in FIG.

化合物1cの絶対立体化学を,CD励起子キラリティー法を用いて決定した。化合物1cのCDスペクトルは362nm(Δε=6.7),307nm(Δε=-5.3)と正のコットン効果をとることからC-8の絶対立体化学をSと決定した。   The absolute stereochemistry of compound 1c was determined using the CD exciton chirality method. Since the CD spectrum of Compound 1c has a positive cotton effect of 362 nm (Δε = 6.7) and 307 nm (Δε = −5.3), the absolute stereochemistry of C-8 was determined to be S.

実施例2.化合物1cの有機合成
化合物1cを、図4に示す合成計画に従って、既知化合物である化合物1から合成した。図4に示す構造式は相対配置を示す。合成方法の詳細は下記の通りである。
Example 2 Compound 1c Organic Synthesis Compound 1c was synthesized from compound 1, which is a known compound, according to the synthesis plan shown in FIG. The structural formula shown in FIG. 4 shows a relative arrangement. Details of the synthesis method are as follows.

前駆体2の合成:既知のイミド(化合物1)5.0gのテトラヒドロフラン溶液をリチウムジイソプロピルアミド(LDA, 1.6当量)のTHF溶液に加え、-78℃で30分攪拌した。オルトチタン酸クロロトリイソプロピルのヘキサン溶液(1 M, 56.4 mL)を加えた後-40℃で3時間攪拌した。再び-78℃に冷却した後、既知のアルデヒド(前駆体1)4.1gのテトラヒドロフラン溶液を加え-45℃で一晩攪拌した。反応液に飽和塩化アンモニウム水溶液を室温で加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し5.71gを得た。   Synthesis of Precursor 2: A tetrahydrofuran solution of 5.0 g of a known imide (Compound 1) was added to a THF solution of lithium diisopropylamide (LDA, 1.6 equivalents) and stirred at −78 ° C. for 30 minutes. A hexane solution (1 M, 56.4 mL) of chlorotriisopropyl orthotitanate was added, and the mixture was stirred at −40 ° C. for 3 hours. After cooling again to −78 ° C., a tetrahydrofuran solution of 4.1 g of a known aldehyde (Precursor 1) was added and stirred overnight at −45 ° C. A saturated aqueous ammonium chloride solution was added to the reaction solution at room temperature, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain 5.71 g.

前駆体2の諸性質及びスペクトルデータは次の通りである。透明油状;[α]D 22 +54.8 (c 0.085, CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.29 - 7.39 (m, 8H), 7.18 (d, J = 8.7 Hz, 2H), 5.21 (s, 1H), 4.67 (dd, J = 8.9, 4.6 Hz, 1H), 4.39 (s, 2H), 3.98 (ddd, J = 11.9, 4.6, 0.8 Hz, 1H), 3.94 (dd, J = 11.7, 9.1 Hz, 1H), 3.92 (dd, J -= 11.9, 9.1 Hz, 1H), 3.79 (ddd, J = 11.7, 4.6, 0.8 Hz, 1H), 2.62 (d, J = 8.9 Hz, 1H, OH), 1.92 (ddddd, J = 9.1, 9.1, 4.6, 4.6, 4.6 Hz, 1H), 1.82 (s, 3H), 1.59 (s, 3H), 1.41 (s, 3H), 1.36 (s, 3H), 0.99 (s, 3H); 13H NMR (150 MHz, CDCl3) δ173.3, 151.9, 137.9, 136.2, 128.9, 128.8, 128.4, 127.7, 127.6, 97.7, 86.4, 82.4, 72.4, 69.1, 67.0, 62.9, 60.9, 37.4, 28.8, 26.7, 23.9, 21.4, 16.7; IR (ATR) νmax 3510, 2990, 1781, 1697, 1456, 1369, 831 ; HR ESIMS m/z 520.2326 (M+Na+)(calcd for 520.2305)。 Various properties and spectral data of the precursor 2 are as follows. Clear oil; [α] D 22 +54.8 (c 0.085, CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ) δ 7.29-7.39 (m, 8H), 7.18 (d, J = 8.7 Hz, 2H), 5.21 (s, 1H), 4.67 (dd, J = 8.9, 4.6 Hz, 1H), 4.39 (s, 2H), 3.98 (ddd, J = 11.9, 4.6, 0.8 Hz, 1H), 3.94 (dd, J = 11.7, 9.1 Hz, 1H), 3.92 (dd, J-= 11.9, 9.1 Hz, 1H), 3.79 (ddd, J = 11.7, 4.6, 0.8 Hz, 1H), 2.62 (d, J = 8.9 Hz, 1H, OH), 1.92 (ddddd, J = 9.1, 9.1, 4.6, 4.6, 4.6 Hz, 1H), 1.82 (s, 3H), 1.59 (s, 3H), 1.41 (s, 3H), 1.36 (s, 3H) , 0.99 (s, 3H); 13 H NMR (150 MHz, CDCl 3 ) δ173.3, 151.9, 137.9, 136.2, 128.9, 128.8, 128.4, 127.7, 127.6, 97.7, 86.4, 82.4, 72.4, 69.1, 67.0, 62.9, 60.9, 37.4, 28.8, 26.7, 23.9, 21.4, 16.7; IR (ATR) ν max 3510, 2990, 1781, 1697, 1456, 1369, 831 HR ESIMS m / z 520.2326 (M + Na + ) (calcd for 520.2305).

前駆体3の合成:前駆体2(5.71g)のアセトニトリル溶液(100 ml)に硝酸亜鉛六水和物(13.7g)を加え60℃で30分攪拌した。0℃に冷却した後、反応液に飽和重曹水を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し2.55gを得た。   Synthesis of Precursor 3: Zinc nitrate hexahydrate (13.7 g) was added to an acetonitrile solution (100 ml) of Precursor 2 (5.71 g), and the mixture was stirred at 60 ° C. for 30 minutes. After cooling to 0 ° C., saturated aqueous sodium hydrogen carbonate was added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain 2.55 g.

前駆体4及び5の合成:前駆体3(309mg)のジクロロメタン溶液に、ジメトキシプロパン(610μl)とカンファースルホン酸(29mg)を順に加え一晩攪拌した。反応液に飽和重曹水を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し前駆体4(266.3mg)と前駆体5(68.1mg)を得た。   Synthesis of Precursors 4 and 5: Dimethoxypropane (610 μl) and camphorsulfonic acid (29 mg) were sequentially added to a dichloromethane solution of Precursor 3 (309 mg) and stirred overnight. Saturated sodium hydrogen carbonate solution was added to the reaction liquid, and the organic layer was fractionated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain Precursor 4 (266.3 mg) and Precursor 5 (68.1 mg).

前駆体4の諸性質及びスペクトルデータは次の通りである。透明油状;[α]D 23 -6.14 (c 0.12, CHCl3) ; 1H NMR (600 MHz, CDCl3) δ 7.30 - 7.35 (m, 5H), 4.70 (d, J = 11.7 Hz, 1H), 4.50 (d, J = 11.7 Hz, 1H), 4.30 (dd, J = 11.5, 5.5 Hz, 1H), 3.89 (dd, J = 11.5, 5.5 Hz, 1H), 3.88 (dd, J = 11.5, 11.5 Hz, 1H), 3.77 (d, J = 11.5 Hz, 1H), 3.65 (dd, J = 11.5, 11.5 Hz, 1H), 2.99 (ddddd, J = 11.5, 11.5, 11.5, 5.5, 5.5 Hz, 1H), 1.58 (s, 3H), 1.49 (s, 3H), 1.49 (s, 3H); 13H NMR (150 MHz, CDCl3) δ 169.1, 138.5, 128.2, 127.4, 127.2, 99.3, 77.1, 74.4, 67.9, 66.4, 60.8, 29.9, 29.5, 18.9, 16.1; IR (ATR) νmax 3483, 2992, 2947, 1740, 1455, 1382, 1143, 876; HR ESIMS m/z 329.1347 (M+Na+)(calcd for 329.1359)。 Various properties and spectral data of the precursor 4 are as follows. Clear oil; [α] D 23 -6.14 (c 0.12, CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ) δ 7.30-7.35 (m, 5H), 4.70 (d, J = 11.7 Hz, 1H), 4.50 (d, J = 11.7 Hz, 1H), 4.30 (dd, J = 11.5, 5.5 Hz, 1H), 3.89 (dd, J = 11.5, 5.5 Hz, 1H), 3.88 (dd, J = 11.5, 11.5 Hz , 1H), 3.77 (d, J = 11.5 Hz, 1H), 3.65 (dd, J = 11.5, 11.5 Hz, 1H), 2.99 (ddddd, J = 11.5, 11.5, 11.5, 5.5, 5.5 Hz, 1H), 1.58 (s, 3H), 1.49 (s, 3H), 1.49 (s, 3H); 13 H NMR (150 MHz, CDCl 3 ) δ 169.1, 138.5, 128.2, 127.4, 127.2, 99.3, 77.1, 74.4, 67.9, 66.4, 60.8, 29.9, 29.5, 18.9, 16.1; IR (ATR) ν max 3483, 2992, 2947, 1740, 1455, 1382, 1143, 876; HR ESIMS m / z 329.1347 (M + Na + ) (calcd for 329.1359 ).

前駆体5の諸性質及びスペクトルデータは次の通りである。透明油状;[α]D 25 +34.9 (c 0.24, CHCl3) ; 1H NMR (600 MHz, CDCl3) δ 7.40 (d, J= 7.6 Hz, 1H), 7.32 (dd, J = 7.6, 7.6 Hz, 1H), 7.25 (d, J = 7.6 Hz), 4.87 (d, J = 11.0, 11.0 Hz, 1H), 4.83 (d, J = 11.7 Hz, 1H), 4.80 (d, J = 11.7 Hz, 1H), 4.36 (dd, J = 11.0, 7.0 Hz, 1H), 4.35 (d, J = 2.4 Hz, 1H), 4.10 (dd, J = 12.3, 2.4 Hz, 1H), 3.62 (dd, J = 12.3, 2.4 Hz, 1H), 2.27 (ddddd, J = 11.0, 7.0, 2.4, 2.4, 2.4 Hz, 1H), 1.56 (s, 3H), 1.40 (s, 3H), 1.39 (s, 3H); 13C NMR (150 MHz, CDCl3) 139.5, 171.7, 128.2, 127.3, 127.2, 99.6, 76.9, 74.9, 74.2, 69.5, 67.2, 60.1, 32.1, 29.2, 24.1, 18.7; IR (ATR) νmax 3503, 2991, 2941, 1746, 1455, 1382, 1142, 851; HR ESIMS m/z 329.1351 (M+Na+)(calcd for 329.1359)。 Various properties and spectral data of the precursor 5 are as follows. Clear oil; [α] D 25 +34.9 (c 0.24, CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ) δ 7.40 (d, J = 7.6 Hz, 1H), 7.32 (dd, J = 7.6, 7.6 Hz, 1H), 7.25 (d, J = 7.6 Hz), 4.87 (d, J = 11.0, 11.0 Hz, 1H), 4.83 (d, J = 11.7 Hz, 1H), 4.80 (d, J = 11.7 Hz, 1H), 4.36 (dd, J = 11.0, 7.0 Hz, 1H), 4.35 (d, J = 2.4 Hz, 1H), 4.10 (dd, J = 12.3, 2.4 Hz, 1H), 3.62 (dd, J = 12.3 , 2.4 Hz, 1H), 2.27 (ddddd, J = 11.0, 7.0, 2.4, 2.4, 2.4 Hz, 1H), 1.56 (s, 3H), 1.40 (s, 3H), 1.39 (s, 3H); 13 C NMR (150 MHz, CDCl 3 ) 139.5, 171.7, 128.2, 127.3, 127.2, 99.6, 76.9, 74.9, 74.2, 69.5, 67.2, 60.1, 32.1, 29.2, 24.1, 18.7; IR (ATR) ν max 3503, 2991, 2941, 1746, 1455, 1382, 1142, 851; HR ESIMS m / z 329.1351 (M + Na + ) (calcd for 329.1359).

前駆体6の合成(前駆体4から):前駆体4(343mg)のテトラヒドロフラン溶液(10ml)を0℃に冷却し、N,O-ジメチルヒドロキシアミン 塩酸塩(328mg)と臭化イソプロピルマグネシウムのテトラヒドロフラン溶液(0.75 M, 9ml)を順に加えた。0℃で30分攪拌した後、反応液に飽和塩化アンモニウム水溶液を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮した。得られたアルコールを次の反応にそのまま用いた。得られたアルコールのジクロロメタン溶液に、モレキュラーシーブス4A(750mg)とクロロクロム酸ピリジニウム(362mg)を室温で順に加えた後、一晩攪拌した。反応液をフロリジル層を通してろ過し、ろ液を減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し、前駆体6(266mg)を得た。   Synthesis of Precursor 6 (From Precursor 4): A tetrahydrofuran solution (10 ml) of Precursor 4 (343 mg) was cooled to 0 ° C., and N, O-dimethylhydroxyamine hydrochloride (328 mg) and isopropylmagnesium bromide in tetrahydrofuran Solution (0.75 M, 9 ml) was added in order. After stirring at 0 ° C. for 30 minutes, a saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated under reduced pressure. The obtained alcohol was directly used in the next reaction. Molecular sieves 4A (750 mg) and pyridinium chlorochromate (362 mg) were sequentially added to the obtained alcohol solution in dichloromethane at room temperature, and the mixture was stirred overnight. The reaction solution was filtered through a Florisil layer, and the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography to obtain Precursor 6 (266 mg).

前駆体6の諸性質及びスペクトルデータは次の通りである。透明油状;[α]D 24 +22.2 (c 2.9, CHCl3) ; 1H NMR (600 MHz, CDCl3) δ 9.7 (d, J = 3.4 Hz, 1H), 7.22 - 7.35 (m, 5H), 5.02 (d, J = 9.5 Hz, 1H), 4.69 (d, J= 11.1 Hz, 1H), 4.31 (d, J = 11.1 Hz, 1H), 4.08 (dd, J = 11.7, 9.5 Hz, 1H), 3.88 (dd, J = 11.7, 5.4 Hz, 1H), 3.55 (s, 3H), 3.25 (s, 3H), 2.99 (dddd, J= 9.5, 9.5, 5.4, 3.4 Hz, 1H), 1.66 (s, 3H), 1.44 (s, 3H), 1.36 (s, 3H); 13H NMR (150 MHz, CDCl3) δ 200.1, 171.3, 137.4, 128.4, 127.5, 127.2, 99.2, 83.4, 71.9, 66.4, 60.8, 58.9, 49.5, 34.9, 29.3, 19.9, 16.6; IR (ATR) νmax 2993, 2940, 2877, 2738, 1719, 1657, 1455, 1381, 1103, 858; HR ESIMS m/z 388.1715 (M+Na+)(calcd for 329.1730)。 Various properties and spectral data of the precursor 6 are as follows. Clear oil; [α] D 24 +22.2 (c 2.9, CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ) δ 9.7 (d, J = 3.4 Hz, 1H), 7.22-7.35 (m, 5H), 5.02 (d, J = 9.5 Hz, 1H), 4.69 (d, J = 11.1 Hz, 1H), 4.31 (d, J = 11.1 Hz, 1H), 4.08 (dd, J = 11.7, 9.5 Hz, 1H), 3.88 (dd, J = 11.7, 5.4 Hz, 1H), 3.55 (s, 3H), 3.25 (s, 3H), 2.99 (dddd, J = 9.5, 9.5, 5.4, 3.4 Hz, 1H), 1.66 (s, 3H), 1.44 (s, 3H), 1.36 (s, 3H); 13 H NMR (150 MHz, CDCl 3 ) δ 200.1, 171.3, 137.4, 128.4, 127.5, 127.2, 99.2, 83.4, 71.9, 66.4, 60.8, 58.9, 49.5, 34.9, 29.3, 19.9, 16.6; IR (ATR) ν max 2993, 2940, 2877, 2738, 1719, 1657, 1455, 1381, 1103, 858; HR ESIMS m / z 388.1715 (M + Na + ) (calcd for 329.1730).

前駆体7の合成:前駆体5(614mg)のテトラヒドロフラン溶液(20ml)を0℃に冷却し、N,O-ジメチルヒドロキシアミン 塩酸塩(590mg)と臭化イソプロピルマグネシウムのテトラヒドロフラン溶液(0.75 M, 16ml)を順に加えた。0℃で30分攪拌した後、反応液に飽和塩化アンモニウム水溶液を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮した。得られたアルコールを次の反応にそのまま用いた。得られたアルコールのジクロロメタン溶液(40ml)に、モレキュラーシーブス4A(1.5g)とクロロクロム酸ピリジニウム(862mg)を室温で順に加えた後、2時間攪拌した。反応液をフロリジル層を通してろ過し、ろ液を減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し、前駆体7(498mg)を得た。   Synthesis of Precursor 7: A tetrahydrofuran solution (20 ml) of Precursor 5 (614 mg) was cooled to 0 ° C., and a tetrahydrofuran solution (0.75 M, 16 ml) of N, O-dimethylhydroxyamine hydrochloride (590 mg) and isopropylmagnesium bromide. ) In order. After stirring at 0 ° C. for 30 minutes, a saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated under reduced pressure. The obtained alcohol was directly used in the next reaction. Molecular sieves 4A (1.5 g) and pyridinium chlorochromate (862 mg) were successively added at room temperature to the obtained alcohol solution in dichloromethane (40 ml), followed by stirring for 2 hours. The reaction solution was filtered through a Florisil layer, and the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography to obtain Precursor 7 (498 mg).

前駆体7の諸性質及びスペクトルデータは次の通りである。透明油状;[α]D 24 -75.4 (c 0.85, CHCl3); 1H NMR (600 MHz, CDCl3) δ 10.9 (d, J = 4.9 Hz, 1H), 7.25 - 7.36 (m, 5H), 4.88 (d, J = 11.0 Hz, 1H), 4.68 (d, J= 2.6 Hz, 1H), 4.61 (d, J = 11.0 Hz, 1H), 4.20 (dd, J = 12.1, 2.6 Hz, 1H), 4.04 (dd, J = 12.1, 2.6 Hz, 1H), 3.50 (s, 3H), 3.20 (s, 3H), 2.54 (dddd, J= 4.9, 2.6, 2.6, 2.6 Hz, 1H), 1.70 (s, 3H), 1.53 (s, 3H), 1.50 (s, 3H); 13H NMR (150 MHz, CDCl3) δ 204.1, 172.2, 137.9, 128.4, 127.6, 127.5, 100.37, 82.5, 77.1, 67.3, 62.4, 61.1, 48.3, 34.9, 29.2, 19.0, 17.4; IR (ATR) νmax 2991, 2940, 2873, 1713, 1650, 1454, 1381, 1195, 1097, 987, 865; HR ESIMS m/z 388.1741 (M+Na+)(calcd for 329.1730)。 Various properties and spectral data of the precursor 7 are as follows. Clear oil; [α] D 24 -75.4 (c 0.85, CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ) δ 10.9 (d, J = 4.9 Hz, 1H), 7.25-7.36 (m, 5H), 4.88 (d, J = 11.0 Hz, 1H), 4.68 (d, J = 2.6 Hz, 1H), 4.61 (d, J = 11.0 Hz, 1H), 4.20 (dd, J = 12.1, 2.6 Hz, 1H), 4.04 (dd, J = 12.1, 2.6 Hz, 1H), 3.50 (s, 3H), 3.20 (s, 3H), 2.54 (dddd, J = 4.9, 2.6, 2.6, 2.6 Hz, 1H), 1.70 (s, 3H), 1.53 (s, 3H), 1.50 (s, 3H); 13 H NMR (150 MHz, CDCl 3 ) δ 204.1, 172.2, 137.9, 128.4, 127.6, 127.5, 100.37, 82.5, 77.1, 67.3, 62.4, 61.1, 48.3, 34.9, 29.2, 19.0, 17.4; IR (ATR) ν max 2991, 2940, 2873, 1713, 1650, 1454, 1381, 1195, 1097, 987, 865; HR ESIMS m / z 388.1741 (M + Na + ) (calcd for 329.1730).

前駆体6の合成(前駆体7から):前駆体7(10.3mg)のテトラヒドロフラン溶液(500μl)に1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(50μl)を室温で加え2時間攪拌した。反応液を濃縮した後、シリカゲルカラムクロマトグラフィーで精製し、前駆体6(9.8mg)を得た。   Synthesis of precursor 6 (from precursor 7): 1,8-diazabicyclo [5.4.0] -7-undecene (50 μl) was added to a tetrahydrofuran solution (500 μl) of precursor 7 (10.3 mg) at room temperature and stirred for 2 hours. did. The reaction solution was concentrated and then purified by silica gel column chromatography to obtain precursor 6 (9.8 mg).

前駆体8の合成:前駆体6 (81.1mg)のテトラヒドロフラン溶液を-78℃に冷却した後、(3E)-1,1-ジブロモ-1,3-ペンタジエンから調製した既知のアルキニルリチウムのテトラヒドロフラン溶液(約0.2M, 1.65ml)を-78℃で加え、5分間攪拌した。0℃に昇温し15分間攪拌した後、再び-78℃に冷却した。メチルリチウム(1.07M, 1.0ml)を加えた後、再び0℃に昇温し、2時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮した。得られたアルコールは次の反応にそのまま用いた。得られたアルコールのジクロロメタン溶液にモレキュラーシーブス4A(380mg)とクロロクロム酸ピリジニウム(190mg)を室温で順に加え、一晩攪拌した。反応液をフロリジル層を通してろ過し、ろ液を減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し、前駆体8(77mg)を得た。   Synthesis of Precursor 8: A tetrahydrofuran solution of precursor alkynyllithium prepared from (3E) -1,1-dibromo-1,3-pentadiene after cooling a tetrahydrofuran solution of precursor 6 (81.1 mg) to −78 ° C. (About 0.2M, 1.65ml) was added at -78 ° C and stirred for 5 minutes. The temperature was raised to 0 ° C. and stirred for 15 minutes, and then cooled again to −78 ° C. After adding methyllithium (1.07M, 1.0 ml), the temperature was raised again to 0 ° C. and stirred for 2 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried and concentrated under reduced pressure. The obtained alcohol was directly used in the next reaction. Molecular sieves 4A (380 mg) and pyridinium chlorochromate (190 mg) were sequentially added to the obtained alcohol solution in dichloromethane at room temperature, and the mixture was stirred overnight. The reaction solution was filtered through a Florisil layer, and the filtrate was concentrated under reduced pressure and purified by silica gel column chromatography to obtain Precursor 8 (77 mg).

前駆体8の諸性質及びスペクトルデータは次の通りである。透明油状;1H NMR (400 MHz, CDCl3) δ 7.23-7.35 (m, 5H), 6.41 (dq, J = 15.9, 6.8 Hz, 1H), 5.60 (dq, J = 15.9, 1.7 Hz, 1H), 4.65 (d, J = 9.9 Hz, 1H), 4.52 (d, J = 11.5 Hz, 1H), 4.14 (dd, J = 11.6, 9.9 Hz, 1H), 4.11 (d, J = 11.5 Hz, 1H), 3.94 (dd, J = 11.6, 5.2 Hz, 1H), 3.20 (ddd, J = 9.9, 9.9, 5.2 Hz, 1H), 2.17 (s, 3H), 1.87 (dd, J = 6.8, 1.7 Hz, 3H), 1.49 (s, 3H), 1.47 (s, 3H), 1.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 208.8, 185.0, 147.9, 137.5, 128.2, 127.4, 127.1, 108.7, 98.8, 91.8, 87.2, 84.8, 73.3, 66.1, 61.1, 50.8, 28.7, 24.1, 19.3, 19.2, 13.2; IR (ATR) νmax 3419, 2992, 2924, 1719, 1383, 1092; HR ESIMS m/z 407.1817 (M+Na+)(calcd for 407.1828)。 Various properties and spectral data of the precursor 8 are as follows. Clear oil; 1 H NMR (400 MHz, CDCl 3 ) δ 7.23-7.35 (m, 5H), 6.41 (dq, J = 15.9, 6.8 Hz, 1H), 5.60 (dq, J = 15.9, 1.7 Hz, 1H) , 4.65 (d, J = 9.9 Hz, 1H), 4.52 (d, J = 11.5 Hz, 1H), 4.14 (dd, J = 11.6, 9.9 Hz, 1H), 4.11 (d, J = 11.5 Hz, 1H) , 3.94 (dd, J = 11.6, 5.2 Hz, 1H), 3.20 (ddd, J = 9.9, 9.9, 5.2 Hz, 1H), 2.17 (s, 3H), 1.87 (dd, J = 6.8, 1.7 Hz, 3H ), 1.49 (s, 3H), 1.47 (s, 3H), 1.34 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ 208.8, 185.0, 147.9, 137.5, 128.2, 127.4, 127.1, 108.7, 98.8, 91.8, 87.2, 84.8, 73.3, 66.1, 61.1, 50.8, 28.7, 24.1, 19.3, 19.2, 13.2; IR (ATR) ν max 3419, 2992, 2924, 1719, 1383, 1092; HR ESIMS m / z 407.1817 (M + Na + ) (calcd for 407.1828).

前駆体9及び10の合成:前駆体8(209mg)のテトラヒドロフラン溶液を0℃に冷却した後、フッ化テトラブチルアンモニウムのテトラヒドロフラン溶液(1M, 160μl)を加え、0℃で50分間攪拌した。さらに、フッ化テトラブチルアンモニウムのテトラヒドロフラン溶液(1M, 380μl)を加え、さらに一時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し前駆体9(144mg)と前駆体10(22.2mg)を得た。   Synthesis of Precursors 9 and 10: A tetrahydrofuran solution of Precursor 8 (209 mg) was cooled to 0 ° C., then a tetrahydrofuran solution of tetrabutylammonium fluoride (1M, 160 μl) was added, and the mixture was stirred at 0 ° C. for 50 minutes. Further, a tetrahydrofuran solution (1M, 380 μl) of tetrabutylammonium fluoride was added and further stirred for 1 hour. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain Precursor 9 (144 mg) and Precursor 10 (22.2 mg).

前駆体9の諸性質及びスペクトルデータは次の通りである。主に占めるE体のデータ。透明油状;1H NMR (600 MHz, CDCl3) δ7.33-7.35 (m, 4H), 7.26-7.30 (m, 1H), 6.15 (dq, J = 15.9, 6.8 Hz, 1H), 5.46 (dq, J = 15.9, 1.9 Hz, 1H), 4.75 (d, J= 11.7 Hz, 1H), 4.30 (d, J = 11.7 Hz, 1H), 4.19 (dd, J = 11.1, 4.9 Hz, 1H), 4.10 (dd, J = 11.1, 11.1 Hz, 1H), 3.92 (d, J = 11.1 Hz, 1H), 3.34 (d, J = 13.6 Hz, 1H), 2.78 (ddd, J = 11.1, 11.1, 5.3 Hz, 1H), 2.56 (d, J = 13.6 Hz, 1H), 1.92 (s, 1H, OH), 1.79 (dd, J = 6.8, 1.9 Hz, 3H), 1.48 (s, 3H), 1.45 (s, 3H), 1.42 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 204.3, 141.5, 138.7, 128.3, 127.4, 127.1, 109.4, 99.1, 86.4, 84.6, 82.2, 73.9, 68.3, 66.6, 60.3, 52.2, 41.0, 29.5, 19.1, 18.6, 13.3; IR (ATR) νmax 3419, 2924, 2854, 1723, 1675, 1455, 1382, 1198, 1089, 876; HR ESIMS m/z 407.1846 (M+Na+)(calcd for 407.1828)。 Various properties and spectral data of the precursor 9 are as follows. Data of E body which occupies mainly. Clear oil; 1 H NMR (600 MHz, CDCl 3 ) δ7.33-7.35 (m, 4H), 7.26-7.30 (m, 1H), 6.15 (dq, J = 15.9, 6.8 Hz, 1H), 5.46 (dq , J = 15.9, 1.9 Hz, 1H), 4.75 (d, J = 11.7 Hz, 1H), 4.30 (d, J = 11.7 Hz, 1H), 4.19 (dd, J = 11.1, 4.9 Hz, 1H), 4.10 (dd, J = 11.1, 11.1 Hz, 1H), 3.92 (d, J = 11.1 Hz, 1H), 3.34 (d, J = 13.6 Hz, 1H), 2.78 (ddd, J = 11.1, 11.1, 5.3 Hz, 1H), 2.56 (d, J = 13.6 Hz, 1H), 1.92 (s, 1H, OH), 1.79 (dd, J = 6.8, 1.9 Hz, 3H), 1.48 (s, 3H), 1.45 (s, 3H ), 1.42 (s, 3H); 13 C NMR (150 MHz, CDCl 3 ) δ 204.3, 141.5, 138.7, 128.3, 127.4, 127.1, 109.4, 99.1, 86.4, 84.6, 82.2, 73.9, 68.3, 66.6, 60.3, 52.2, 41.0, 29.5, 19.1, 18.6, 13.3; IR (ATR) ν max 3419, 2924, 2854, 1723, 1675, 1455, 1382, 1198, 1089, 876; HR ESIMS m / z 407.1846 (M + Na + ) (calcd for 407.1828).

前駆体10の諸性質及びスペクトルデータは次の通りである。主に占めるE体のデータ。透明油状;1H NMR (600 MHz, CDCl3) δ7.22-7.38 (m, 5H), 6.32 (dq, J = 15.5, 6.8 Hz, 1H), 6.10 (d, J = 2.6 Hz, 1H), 5.69 (dq, J = 15.5, 1.9 Hz, 1H), 4.63 (d, J = 11.7 Hz, 1H), 4.34 (d, J = 11.7 Hz, 1H), 4.24 (dd, J = 11.7, 5.3 Hz, 1H), 3.80 (d, J = 9.1 Hz, 1H), 3.79 (dd, J = 11.7, 11.7 Hz, 1H), 3.24 (dddd, J = 11.7, 9.1, 5.3, 2.6 Hz, 1H), 1.87 (dd, J = 6.8, 1.9 Hz, 3H), 1.49 (s, 3H), 1.46 (s, 3H), 1.44 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 194.8, 144.0, 140.1, 138.8, 130.5, 128.2, 127.2, 127.2, 110.1, 102.1, 99.4, 83.8, 78.3, 77.3, 66.1, 62.2, 36.2, 29.6, 19.0, 18.8, 13.3; IR (ATR) νmax 3421, 2992, 2924, 2854, 1724, 1381, 1197, 1091, 754; HR ESIMS m/z 389.1712 (M+Na+)(calcd for 389.1723)。 Various properties and spectral data of the precursor 10 are as follows. Data of E body which occupies mainly. Clear oil; 1 H NMR (600 MHz, CDCl 3 ) δ7.22-7.38 (m, 5H), 6.32 (dq, J = 15.5, 6.8 Hz, 1H), 6.10 (d, J = 2.6 Hz, 1H), 5.69 (dq, J = 15.5, 1.9 Hz, 1H), 4.63 (d, J = 11.7 Hz, 1H), 4.34 (d, J = 11.7 Hz, 1H), 4.24 (dd, J = 11.7, 5.3 Hz, 1H ), 3.80 (d, J = 9.1 Hz, 1H), 3.79 (dd, J = 11.7, 11.7 Hz, 1H), 3.24 (dddd, J = 11.7, 9.1, 5.3, 2.6 Hz, 1H), 1.87 (dd, J = 6.8, 1.9 Hz, 3H), 1.49 (s, 3H), 1.46 (s, 3H), 1.44 (s, 3H); 13 C NMR (150 MHz, CDCl 3 ) δ 194.8, 144.0, 140.1, 138.8, 130.5, 128.2, 127.2, 127.2, 110.1, 102.1, 99.4, 83.8, 78.3, 77.3, 66.1, 62.2, 36.2, 29.6, 19.0, 18.8, 13.3; IR (ATR) ν max 3421, 2992, 2924, 2854, 1724, 1381, 1197, 1091, 754; HR ESIMS m / z 389.1712 (M + Na + ) (calcd for 389.1723).

前駆体10の合成(前駆体9から):前駆体9 (60mg)のトルエン溶液にカルバミン酸メチル-N-(トリエチルアンモニウムスルホニル(37mg)を室温で加えた後、100℃で1時間攪拌した。室温に冷却した後、反応液に飽和塩化アンモニウム水溶液を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し前駆体10 (55mg)を得た
前駆体11の合成:前駆体10 (53mg)のメタノール溶液にカンファースルホン酸(3.0mg)を加え一晩室温で攪拌した。反応液に飽和重曹水を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し前駆体11 (36.1mg)を得た。
Synthesis of Precursor 10 (From Precursor 9): Methyl-N- (triethylammoniumsulfonyl carbamate (37 mg) carbamate was added to a toluene solution of precursor 9 (60 mg) at room temperature, followed by stirring at 100 ° C. for 1 hour. After cooling to room temperature, a saturated aqueous ammonium chloride solution was added to the reaction mixture, and the organic layer was separated, the aqueous layer was extracted twice with ethyl acetate, washed with saturated brine together with the organic layer, dried and concentrated under reduced pressure. Purification by silica gel column chromatography gave precursor 10 (55 mg) Synthesis of precursor 11: Camphorsulfonic acid (3.0 mg) was added to a methanol solution of precursor 10 (53 mg) and stirred overnight at room temperature. Saturated aqueous sodium bicarbonate was added to the solution, and the organic layer was separated, and the aqueous layer was extracted twice with ethyl acetate, combined with the organic layer, washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography. Precursor 11 (36.1m g) was obtained.

前駆体11の諸性質及びスペクトルデータは次の通りである。1H NMR (600 MHz, CDCl3) Z体: δ7.20-7.34 (m, 5H), 6.31 (d, J = 3.0 Hz, 1H), 6.23 (dq, J = 11.0, 6.8 Hz, 1H), 5.73 (dq, J = 11.0, 1.9 Hz, 1H), 4.49 (d, J = 11.3 Hz, 1H), 4.28 (d, J = 11.3 Hz, 1H), 4.20-4.25 (m, 2H), 3.92 (dd, J = 10.6, 8.9 Hz, 1H), 2.87 (dddd, J = 8.9, 4.4, 3.0, 3.0 Hz, 1H), 2.49 (d, J = 10.6 Hz, 1H), 2.08-2.13 (br s, 1H, OH), 1.95 (dd, J= 6.8, 1.9 Hz, 3H), 1.55 (s, 3H); E体; δ7.20-7.34 (m, 5H), 6.37 (dq, J = 15.9, 6.8 Hz, 1H), 6.27 (d, J = 3.0 Hz, 1H), 5.73 (dq, J = 15.9, 1.9 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.27 (d, J = 11.3 Hz, 1H), 4.14-4.24 (m, 1H), 3.89 (dd, J = 10.6, 8.9 Hz, 1H), 2.84 (dddd, J = 8.9, 4.4, 3.0, 3.0 Hz, 1H), 2.48 (d, J = 10.6 Hz, 1H), 2.08-2.13 (m, 1H), 1.88 (dd, J = 6.8, 1.9 Hz, 3H), 1.55 (s, 3H); 13C NMR (150 MHz, CDCl3) Z体: δ 195.1, 142.7, 138.3, 138.0, 131.7, 128.4, 127.7, 127.6, 109.4, 101.7, 91.1, 79.2, 75.4, 66.1, 61.6, 45.4, 16.5, 14.7; E体; δ 193.9, 144.2, 138.3, 138.2, 131.5, 128.4, 127.7, 127.6, 110.1, 101.5, 85.0, 79.2, 75.4, 66.1, 61.6, 45.5, 19.0, 14.7; IR (ATR) νmax 2924, 2953, 1464, 1121; HR ESIMS m/z 349.1420 (M+Na+)(calcd for 349.1410)。 Various properties and spectral data of the precursor 11 are as follows. 1 H NMR (600 MHz, CDCl 3 ) Z: δ7.20-7.34 (m, 5H), 6.31 (d, J = 3.0 Hz, 1H), 6.23 (dq, J = 11.0, 6.8 Hz, 1H), 5.73 (dq, J = 11.0, 1.9 Hz, 1H), 4.49 (d, J = 11.3 Hz, 1H), 4.28 (d, J = 11.3 Hz, 1H), 4.20-4.25 (m, 2H), 3.92 (dd , J = 10.6, 8.9 Hz, 1H), 2.87 (dddd, J = 8.9, 4.4, 3.0, 3.0 Hz, 1H), 2.49 (d, J = 10.6 Hz, 1H), 2.08-2.13 (br s, 1H, OH), 1.95 (dd, J = 6.8, 1.9 Hz, 3H), 1.55 (s, 3H); E form; δ7.20-7.34 (m, 5H), 6.37 (dq, J = 15.9, 6.8 Hz, 1H ), 6.27 (d, J = 3.0 Hz, 1H), 5.73 (dq, J = 15.9, 1.9 Hz, 1H), 4.48 (d, J = 11.3 Hz, 1H), 4.27 (d, J = 11.3 Hz, 1H ), 4.14-4.24 (m, 1H), 3.89 (dd, J = 10.6, 8.9 Hz, 1H), 2.84 (dddd, J = 8.9, 4.4, 3.0, 3.0 Hz, 1H), 2.48 (d, J = 10.6 Hz, 1H), 2.08-2.13 (m, 1H), 1.88 (dd, J = 6.8, 1.9 Hz, 3H), 1.55 (s, 3H); 13 C NMR (150 MHz, CDCl 3 ) Z form: δ 195.1 , 142.7, 138.3, 138.0, 131.7, 128.4, 127.7, 127.6, 109.4, 101.7, 91.1, 79.2, 75.4, 66.1, 61.6, 45.4, 16.5, 14.7; E form; δ 193.9, 144.2, 138.3, 138.2, 131.5, 128.4 , 127.7, 127.6, 110.1, 101.5, 85.0, 79.2, 75.4, 66.1, 61.6, 45.5, 19.0, 14.7; IR (ATR) ν max 2924, 2953, 1464, 1121; HR ESIMS m / z 349.1420 (M + Na + ) (calcd for 349.1410).

前駆体12の合成:前駆体11のジクロロメタン溶液に、トリフルオロメタンスルホン酸銀(12.3mg)を室温で加えた後、8時間暗所で加熱還流した。反応液に飽和塩化アンモニウム水溶液を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し前駆体12(25.1mg)を得た。   Synthesis of Precursor 12: To a dichloromethane solution of Precursor 11, silver trifluoromethanesulfonate (12.3 mg) was added at room temperature, and then heated to reflux in the dark for 8 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain Precursor 12 (25.1 mg).

前駆体12の諸性質及びスペクトルデータは次の通りである。透明油状;[α]D 21 -81 (c 0.09, CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.20-7.32 (m, 5H), 6.45 (dq, J = 15.5, 7.0 Hz, 1H), 5.90 (dq, J = 15.5, 1.5 Hz, 1H), 5.73 (d, J= 1.9 Hz, 1H), 5.53 (s, 1H), 4.78 (dd, J= 11.0, 5.3 Hz, 1H), 4.50 (d, J = 11.0 Hz, 1H), 4.35 (d, J = 11.0 Hz, 1H), 3.76 (dd, J = 14.0, 11.0 Hz, 1H), 3.47 (dd, J = 11.7, 9.8 Hz, 1H), 3.13 (dddd, J = 14.0, 9.8, 5.3,1.9 Hz,1H), 2.37 (d, J = 11.7 Hz, 1H, OH), 1.87 (dd, J = 7.0, 1.5 Hz, 1H), 1.55 (s, 1H); 13C NMR (150 MHz, CDCl3) δ 194.4, 160.7, 151.8, 138.4, 133.7, 128.3, 127.6, 127.0, 125.5, 116.2, 102.8, 79.1, 76.1, 68.9, 65.9, 36.9, 183, 15.1; IR (ATR) νmax 3390, 2924, 2854, 1726, 1644, 1584, 1455, 1386, 1276, 1120; HR ESIMS m/z 349.1401 (M+Na+)(calcd for 349.1410)。 Various properties and spectral data of the precursor 12 are as follows. Clear oil; [α] D 21 -81 (c 0.09, CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ) δ 7.20-7.32 (m, 5H), 6.45 (dq, J = 15.5, 7.0 Hz, 1H ), 5.90 (dq, J = 15.5, 1.5 Hz, 1H), 5.73 (d, J = 1.9 Hz, 1H), 5.53 (s, 1H), 4.78 (dd, J = 11.0, 5.3 Hz, 1H), 4.50 (d, J = 11.0 Hz, 1H), 4.35 (d, J = 11.0 Hz, 1H), 3.76 (dd, J = 14.0, 11.0 Hz, 1H), 3.47 (dd, J = 11.7, 9.8 Hz, 1H) , 3.13 (dddd, J = 14.0, 9.8, 5.3, 1.9 Hz, 1H), 2.37 (d, J = 11.7 Hz, 1H, OH), 1.87 (dd, J = 7.0, 1.5 Hz, 1H), 1.55 (s , 1H); 13 C NMR (150 MHz, CDCl 3 ) δ 194.4, 160.7, 151.8, 138.4, 133.7, 128.3, 127.6, 127.0, 125.5, 116.2, 102.8, 79.1, 76.1, 68.9, 65.9, 36.9, 183, 15.1 IR (ATR) ν max 3390, 2924, 2854, 1726, 1644, 1584, 1455, 1386, 1276, 1120; HR ESIMS m / z 349.1401 (M + Na + ) (calcd for 349.1410).

前駆体13の合成:前駆体12(20mg)のジクロロメタン溶液を0℃に冷却した後、三塩化ホウ素のヘキサン溶液(1 M, 180 μl)を0℃加え、2時間攪拌した。反応液に飽和重曹水を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し前駆体13(9.8mg)を得た。   Synthesis of Precursor 13: After cooling a dichloromethane solution of precursor 12 (20 mg) to 0 ° C., a hexane solution of boron trichloride (1 M, 180 μl) was added at 0 ° C. and stirred for 2 hours. Saturated sodium hydrogen carbonate solution was added to the reaction liquid, and the organic layer was fractionated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain precursor 13 (9.8 mg).

前駆体13の諸性質及びスペクトルデータは次の通りである。アモルファス状の固体;[α]D 21 -75 (c 0.02, CHCl3); 1H NMR (600 MHz, CDCl3) δ 6.46 (dq, J= 15.5, 7.0 Hz, 1H), 6.90 (dq, 15.5, 1.5 Hz, 1H), 5.70 (d, J = 1.9 Hz, 1H), 5.52 (s, 1H), 4.78 (dd, J = 10.2, 5.5 Hz, 1H), 3.76 (dd, J = 13.4, 10.2 Hz, 1H), 3.30 (dd, J = 11.7, 9.1 Hz, 1H), 2.89 (dddd, J = 13.4, 9.1, 5.5, 1.9 Hz, 1H), 2.30 (d, J = 11.7 Hz, 1H, OH), 1.87 (dddd, J = 7.0, 1.5 Hz, 3H), 1.55 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 196.3, 160.9, 152.1, 134.0, 125.5, 115.6, 102.9, 74.4, 74.3, 66.6, 36.7, 20.6, 16.4; IR (ATR) νmax 3415, 2929, 1584, 1276; HR ESIMS m/z 259.0929 (M+Na+)(calcd for 259.0940)。 Various properties and spectral data of the precursor 13 are as follows. Amorphous solid; [α] D 21 -75 (c 0.02, CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ) δ 6.46 (dq, J = 15.5, 7.0 Hz, 1H), 6.90 (dq, 15.5 , 1.5 Hz, 1H), 5.70 (d, J = 1.9 Hz, 1H), 5.52 (s, 1H), 4.78 (dd, J = 10.2, 5.5 Hz, 1H), 3.76 (dd, J = 13.4, 10.2 Hz , 1H), 3.30 (dd, J = 11.7, 9.1 Hz, 1H), 2.89 (dddd, J = 13.4, 9.1, 5.5, 1.9 Hz, 1H), 2.30 (d, J = 11.7 Hz, 1H, OH), 1.87 (dddd, J = 7.0, 1.5 Hz, 3H), 1.55 (s, 3H); 13 C NMR (150 MHz, CDCl 3 ) δ 196.3, 160.9, 152.1, 134.0, 125.5, 115.6, 102.9, 74.4, 74.3, 66.6, 36.7, 20.6, 16.4; IR (ATR) ν max 3415, 2929, 1584, 1276; HR ESIMS m / z 259.0929 (M + Na + ) (calcd for 259.0940).

前駆体14の合成:前駆体13(5.4 mg)、ジイソプロピルエチルアミン(12 μl)、N,N-ジメチルアミノピリジン(2.4 mg)のジクロロメタン溶液を0℃に冷却した後、既知の4-ベンジルオキシ-2-メトキシ-6-メチル安息香酸(68mg)から既知の方法で調製した酸クロリド(約0.25 M、140 μl)を0℃で加え、室温で一時間攪拌した。さらに酸クロリド(約0.25 M、140 μl)を加え2時間攪拌した後、反応液に1 N塩酸を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し前駆体14(6.0 mg)を得た。   Synthesis of precursor 14: After cooling a solution of precursor 13 (5.4 mg), diisopropylethylamine (12 μl) and N, N-dimethylaminopyridine (2.4 mg) to 0 ° C., the known 4-benzyloxy- Acid chloride (about 0.25 M, 140 μl) prepared from 2-methoxy-6-methylbenzoic acid (68 mg) by a known method was added at 0 ° C. and stirred at room temperature for 1 hour. Further, acid chloride (about 0.25 M, 140 μl) was added and stirred for 2 hours, and then 1 N hydrochloric acid was added to the reaction solution to separate the organic layer. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain precursor 14 (6.0 mg).

化合物1c(Sch 725680)の合成:前駆体14(4.0 mg)のジクロロメタン溶液を0℃に冷却した後、三塩化ホウ素のヘキサン溶液(1M, 10 μl)を0℃加え、 30分攪拌した。反応液に1N塩酸を加え有機層を分取した。水層を酢酸エチルで2回抽出した。有機層と一緒にして飽和食塩水で洗い、乾燥、減圧濃縮し、シリカゲルカラムクロマトグラフィーで精製し化合物1c(2.0 mg)を得た。   Synthesis of Compound 1c (Sch 725680): A dichloromethane solution of precursor 14 (4.0 mg) was cooled to 0 ° C., then a hexane solution of boron trichloride (1M, 10 μl) was added at 0 ° C., and the mixture was stirred for 30 minutes. 1N hydrochloric acid was added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain compound 1c (2.0 mg).

化合物1c(合成品)の諸性質及びスペクトルデータは次の通りである。黄色固体;[α]D 22+103 (c 0.1, MeOH); 1H NMR (600 MHz, CDCl3) δ 6.46 (dq, J = 15.5, 7.0 Hz, 1H), 6.26 (d, J= 2.5 Hz, 1H), 6.20 (d, J = 2.5 Hz, 1H), 6.01 (dd, J = 15.5, 1.7 Hz, 1H), 5.76 (d, J = 1.9 Hz, 1H), 5.72 (s, 1H), 5.29 (d, J = 9.8 Hz, 1H), 4.46 (dd, J = 11.0, 4.9 Hz, 1H), 3.84 (dd, J = 13.6, 11.0 Hz, 1H), 3.42 (dddd, J = 13.6, 9.8, 4.9, 1.9 Hz, 1H), 2.58 (s, 3H), 1.85 (dd, J = 7.0, 1.7 Hz, 3H), 1.31 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 197.3, 172.0, 166.1, 164.3, 162.1, 153.6, 145.0, 134.9, 126.6, 116.8, 112.8, 105.5, 103.8, 101.9, 76.6, 75.0, 69.3, 36.3, 24.7, 19.7, 18.4; UV λmax -MeOH nm (log ε): 345 (0.19); CD (c 1.0 ×10-4 M, MeOH) Δε (nm): +8.7(378), -3.2 (308); IR (ATR) νmax 3370, 2926, 2855, 1720, 1649, 1579, 1445, 1255; HR ESIMS m/z 409.1251 (M+Na+)(calcd for 409.1257)。 Various properties and spectrum data of Compound 1c (synthetic product) are as follows. Yellow solid; [α] D 22 +103 (c 0.1, MeOH); 1 H NMR (600 MHz, CDCl 3 ) δ 6.46 (dq, J = 15.5, 7.0 Hz, 1H), 6.26 (d, J = 2.5 Hz , 1H), 6.20 (d, J = 2.5 Hz, 1H), 6.01 (dd, J = 15.5, 1.7 Hz, 1H), 5.76 (d, J = 1.9 Hz, 1H), 5.72 (s, 1H), 5.29 (d, J = 9.8 Hz, 1H), 4.46 (dd, J = 11.0, 4.9 Hz, 1H), 3.84 (dd, J = 13.6, 11.0 Hz, 1H), 3.42 (dddd, J = 13.6, 9.8, 4.9 , 1.9 Hz, 1H), 2.58 (s, 3H), 1.85 (dd, J = 7.0, 1.7 Hz, 3H), 1.31 (s, 3H); 13 C NMR (150 MHz, CDCl 3 ) δ 197.3, 172.0, 166.1, 164.3, 162.1, 153.6, 145.0, 134.9, 126.6, 116.8, 112.8, 105.5, 103.8, 101.9, 76.6, 75.0, 69.3, 36.3, 24.7, 19.7, 18.4; UV λ max -MeOH nm (log ε): 345 (0.19); CD (c 1.0 × 10-4 M, MeOH) Δε (nm): +8.7 (378), -3.2 (308); IR (ATR) ν max 3370, 2926, 2855, 1720, 1649, 1579 , 1445, 1255; HR ESIMS m / z 409.1251 (M + Na + ) (calcd for 409.1257).

試験例1.DNA合成酵素に対する阻害活性の評価(in vitro)
DNA合成酵素は鋳型となるDNAが存在している場合のみ、4種の前駆体すなわち4種のデオキシヌクレオシド3リン酸〔デオキシアデノシン3リン酸(以下dATPと略)、デオキシグアノシン3リン酸(以下dGTPと略)、デオキシシチジン3リン酸(以下dCTPと略)、デオキシチミジン3リン酸(以下dTTPと略)〕を基質としてDNAを合成する。このことを利用してDNA合成酵素活性は合成DNA(poly(dA)/oligo(dT)18)を鋳型プライマーとし、基質中のdTTPを3Hラベルしておくとポリメラーゼの重合反応により3H-dTTPがDNA鎖のチミン残基として取り込まれる。このDNA鎖をDEAE-セルロース(ジエチルアミノエチル−セルロース)濾紙に吸着させる。この吸着されたDNA鎖の放射比活性がDNA合成酵素活性となる。このとき、阻害の有無は試験物質によりDNA合成酵素の重合反応が阻害された時、DNA鎖への基質の取り込みが少なくなったり全くなくなるため、放射能活性が低下することから判断される。
Test Example 1 Evaluation of inhibitory activity against DNA synthase (in vitro)
The DNA synthase is only used when the template DNA is present, and only four precursors, that is, four deoxynucleoside triphosphates (deoxyadenosine triphosphate (hereinafter abbreviated as dATP), deoxyguanosine triphosphate (hereinafter referred to as “deoxyguanosine triphosphate”). DNA is synthesized using deoxycytidine triphosphate (hereinafter abbreviated as dCTP) and deoxythymidine triphosphate (hereinafter abbreviated as dTTP)] as substrates. This fact by utilizing the DNA polymerase activity of the synthetic DNA (poly (dA) / oligo (dT) 18) as a template primer, when the dTTP in the substrate 3 H previously labeled by a polymerization reaction of the polymerase 3 H- dTTP is incorporated as a thymine residue in the DNA strand. This DNA strand is adsorbed on DEAE-cellulose (diethylaminoethyl-cellulose) filter paper. The specific activity of the adsorbed DNA strand becomes the DNA synthase activity. At this time, the presence or absence of inhibition is judged from the fact that when the test substance inhibits the polymerization reaction of the DNA synthase, the incorporation of the substrate into the DNA strand is reduced or eliminated, and the radioactivity decreases.

このことを利用して、実施例1で得た化合物1a、1b、及び1cの各種DNA合成酵素群に対する活性を以下の方法で測定した。   Utilizing this fact, the activities of the compounds 1a, 1b and 1c obtained in Example 1 against various DNA synthase groups were measured by the following method.

(1)材料の調製
試験化合物として、化合物1a、1b、又は1cを使用した。NMR解析の結果より、化合物1a、1b、及び1cの精製度は98%以上であった。
(1) Preparation of material Compound 1a, 1b, or 1c was used as a test compound. From the results of NMR analysis, the degree of purification of compounds 1a, 1b, and 1c was 98% or more.

DNA合成酵素として、哺乳類のDNA合成酵素{A-Family(Human polγ)、B-Family(Calf polα,Human polδ,Human polε)、X-Family(Rat polβ,Human polλ,Calf TdT)、Y-Family(Human polη,Mouse polι,Human polκ)}、植物のDNA合成酵素{Cauliflower polα}、及び原核生物のDNA合成酵素{E.coli pol I,Taq pol,T4 pol}を使用した。他のDNA代謝酵素として、Calf primase of polα、HIV-1 reverse transcriptase、T7 RNA polymerase、T4 polynucleotide kinase、及びBovine deoxyribonuclease Iを使用した。   As the DNA synthase, mammalian DNA synthase {A-Family (Human polγ), B-Family (Calf polα, Human polδ, Human polε), X-Family (Rat polβ, Human polλ, Calf TdT), Y-Family (Human pol η, Mouse pol ι, Human pol κ)}, plant DNA synthase {Cauliflower pol α}, and prokaryotic DNA synthase {E. coli pol I, Taq pol, T4 pol} were used. As other DNA metabolic enzymes, Calf primase of polα, HIV-1 reverse transcriptase, T7 RNA polymerase, T4 polynucleotide kinase, and Bovine deoxyribonuclease I were used.

Calf polαは、公知文献(tamai et al., Biochim.Biophys.Acta, 1988, 950, 263)に記載の方法に従って、牛胸腺から免疫アフィニティーカラムクロマトグラフィーによって精製した。Rat polβは、公知文献(Date et al., Biochemistry 1988, 27, 2983)に記載の方法に従って、組換えタンパクとしてE.coli JMpβ5から精製した。Human polγは、コーディング領域をpFastBac(Invitrogen Japan K.K., Tokyo Japan)に組み込み、ヒスチジンタグを連結したリコンビナントタンパクとして、BAC-TO-BAC HT Baculovirus Expression System(Life Technologies, MD, USA)を使用して発現させ、公知文献(Umeda et al., Eur.J.Biochem. 2000, 267, 200)に記載の方法に従って、ProBoundresin(Invitrogen Japan K.K., Tokyo Japan)を使用して精製した。Human polδ及びHuman polεは、抹消血癌細胞(Molt-4)の核画分を、polδの2番目のサブユニット又はpolεのアフィニティーカラムクロマトグラフィーによって、公知文献(Ohige et al., Protein Expr.Purif. 2004, 35, 248)に記載の方法に従って精製した。Human polηは、C末端にHis6タグを連結したリコンビナントタンパク(アミノ酸番号1〜511)としてE.coli細胞中で発現させ、公知文献(Kusumoto et al., Genes Cells 2004, 9, 1139)に記載の方法に従って精製した。Mouse polιは、C末端にHis6タグを連結したリコンビナントタンパクとして、Ni-NTAカラムクロマトグラフィーによって、公知文献(McDonald et al., J. Exp. Med. 2003, 198, 635)に記載の方法に従って精製した。Human polκは、C末端にHis6タグを連結したリコンビナントタンパク(アミノ酸番号1〜560)として、E.coli細胞中で発現させ、公知文献(Ohashi et al., Genes Cells 2004, 9, 523)に記載の方法に従って精製した。Human polλは、ヒスチジンタグを連結したリコンビナントタンパクとして、公知文献(Shimazaki et al., Genes Cells 2000, 7, 639)に記載の方法に従って過剰発現させ、精製した。Cauliflower polαは、公知文献(Sakaguchi et al., 1980, 5, 323)に記載の方法に従って精製した。Calf primase of polα及びBovine deoxyribonuclease Iは、Stratagene Cloning Systems(La Jolla, CA, USA)から得た。E.coli pol I及びHIV-1 reverse transcriptaseは、Worthington Biochemical Corp.(Freehold, NJ, USA)から購入した。Taq pol、T4 pol、T7 RNA polymerase、及びT4 polynucleotide kinaseは、タカラバイオから購入した。 Calf polα was purified from bovine thymus by immunoaffinity column chromatography according to the method described in known literature (tamai et al., Biochim. Biophys. Acta, 1988, 950, 263). Rat polβ was purified from E. coli JMpβ5 as a recombinant protein according to the method described in known literature (Date et al., Biochemistry 1988, 27, 2983). Human polγ is expressed using BAC-TO-BAC HT Baculovirus Expression System (Life Technologies, MD, USA) as a recombinant protein with a coding region incorporated into pFastBac (Invitrogen Japan KK, Tokyo Japan) and a histidine tag linked. And purified using ProBoundresin (Invitrogen Japan KK, Tokyo Japan) according to the method described in known literature (Umeda et al., Eur. J. Biochem. 2000, 267, 200). Human pol δ and Human pol ε were obtained by analyzing the nuclear fraction of peripheral blood cancer cells (Molt-4) by affinity column chromatography of the second subunit of pol δ or pol ε (Ohige et al., Protein Expr. Purif. 2004, 35, 248). Human polη is expressed in E. coli cells as a recombinant protein (amino acid numbers 1 to 511) with a His 6 tag linked to the C-terminus and described in known literature (Kusumoto et al., Genes Cells 2004, 9, 1139). Purified according to the method of Mouse polι is a recombinant protein in which a His 6 tag is linked to the C terminus, by Ni-NTA column chromatography according to the method described in known literature (McDonald et al., J. Exp. Med. 2003, 198, 635). Purified. Human pol kappa is expressed in E. coli cells as a recombinant protein (amino acid number 1 to 560) with a His 6 tag linked to the C terminus, and is described in known literature (Ohashi et al., Genes Cells 2004, 9, 523). Purified according to the method described. Human polλ was overexpressed and purified as a recombinant protein linked with a histidine tag according to the method described in the known literature (Shimazaki et al., Genes Cells 2000, 7, 639). Cauliflower polα was purified according to the method described in known literature (Sakaguchi et al., 1980, 5, 323). Calf primase of polα and Bovine deoxyribonuclease I were obtained from Stratagene Cloning Systems (La Jolla, CA, USA). E. coli pol I and HIV-1 reverse transcriptase were purchased from Worthington Biochemical Corp. (Freehold, NJ, USA). Taq pol, T4 pol, T7 RNA polymerase, and T4 polynucleotide kinase were purchased from Takara Bio.

(2)酵素阻害活性の測定
(2‐1)DNA合成酵素阻害活性の測定
反応液の調製
Calf polα、Rat polβ、Human polη、Mouse polι、Human polκ、Cauliflower polα、E.coli pol I、Taq pol、及びT4 polについては、公知文献(Mizushina et al., Biochim.Biophys.Acta 1996, 1308, 256、及びMizushina et al., Biochim. Biophys. Acta 1997, 1336, 509)の記載に従って、反応液を調製した。Human polγ、Human polδ、Human polε、及びHuman polλについては、公知文献(Umeda et al., Eur.J.Biochem. 2000, 267, 200、及びOgawa et al. Jpn.J.Cancer Res. 1998, 89, 1154)の記載に従って、反応液を調製した。HIV-1 reverse transcriptase についても公知文献の記載に従って反応液を調製した。Calf polα用反応液を一例として下記に示す。
<Calf polα用反応液>
トリス塩酸緩衝液(pH7.5):50mM
ジチオスレイトール(DTT):1mM
塩化マグネシウム:5mM
グリセリン:15%(v/v)
poly(dA)/:10μg/ml
oligo18(dT):5μg/ml
トリチウムでラベルしたデオキシチミジン3リン酸(3H-dTTP)を含むdTTP:10μM(100cpm/pmol)
阻害活性の測定
16μlの酵素含有溶液(酵素量:0.05 unit)と、試験化合物(化合物1a、1b、又は1c)をDMSOに溶解した液4μl(試験化合物の最終濃度が0〜200μM)を混合したもの8μlを、上記「反応液の調製」に記載の反応液16μlに加えた。該混合液を37℃で60分間(Taq polについては74℃で60分間)でインキュベートした。インキュベート後各試験液18μlをDEAE-セルロースろ紙に吸着させ、このろ紙を5%(w/v)Na2HPO4、水、エタノールで洗浄した。この洗浄条件では10ヌクレオチド以上のポリマーはろ紙に吸着される。次いで、風乾してトルエンシンチレータを入れたバイアルに沈め、液体シンチレーションカウンタで放射線量を測定した。その測定結果により酵素反応の阻害率を以下の式で求めた。
(2) Measurement of enzyme inhibitory activity
(2-1) Measurement of DNA synthase inhibitory activity
Preparation of reaction solution
Calf pol α, Rat pol β, Human pol η, Mouse pol ι, Human pol κ, Cauliflower pol α, E. coli pol I, Taq pol, and T4 pol are known (Mizushina et al., Biochim. Biophys. Acta 1996, 1308, 256, and Mizushina et al., Biochim. Biophys. Acta 1997, 1336, 509). For human polγ, human polδ, human polε, and human polλ, publicly known literature (Umeda et al., Eur. J. Biochem. 2000, 267, 200, and Ogawa et al. Jpn. J. Cancer Res. 1998, 89 , 1154) to prepare a reaction solution. For HIV-1 reverse transcriptase, a reaction solution was prepared according to the description in the known literature. The reaction solution for Calf polα is shown below as an example.
<Reaction solution for Calf polα>
Tris-HCl buffer (pH 7.5): 50 mM
Dithiothreitol (DTT): 1mM
Magnesium chloride: 5mM
Glycerin: 15% (v / v)
poly (dA) /: 10μg / ml
oligo 18 (dT): 5μg / ml
DTTP containing tritium-labeled deoxythymidine triphosphate ( 3 H-dTTP): 10 μM (100 cpm / pmol)
Measurement of inhibitory activity
8 μl of a mixture of 16 μl of enzyme-containing solution (enzyme amount: 0.05 unit) and 4 μl of a test compound (compound 1a, 1b, or 1c) dissolved in DMSO (the final concentration of the test compound is 0 to 200 μM) The reaction solution was added to 16 μl of the reaction solution described in “Preparation of reaction solution” above. The mixture was incubated at 37 ° C. for 60 minutes (74 ° C. for 60 minutes for Taq pol). After incubation, 18 μl of each test solution was adsorbed on DEAE-cellulose filter paper, and the filter paper was washed with 5% (w / v) Na 2 HPO 4 , water, and ethanol. Under this washing condition, polymers of 10 nucleotides or more are adsorbed on the filter paper. Subsequently, it was air-dried and submerged in a vial containing a toluene scintillator, and the radiation dose was measured with a liquid scintillation counter. From the measurement results, the inhibition rate of the enzyme reaction was determined by the following formula.

阻害率(%)=(1−試験溶液の比活性(cpm)/対照溶液の比活性(cpm))×100
試験化合物の各種濃度における阻害率を基に、50%阻害濃度(IC50)(μM)を求めた。
Inhibition rate (%) = (1−specific activity of test solution (cpm) / specific activity of control solution (cpm)) × 100
Based on the inhibition rates at various concentrations of the test compound, the 50% inhibitory concentration (IC 50 ) (μM) was determined.

(2‐2)その他のDNA代謝酵素阻害活性の測定
その他のDNA代謝酵素(Calf primase of polα、T7 RNA polymerase、T4 polynucleotide kinase、及びBovine deoxyribonuclease I)の活性の測定は、公知文献(Tamiya et al., Biochem.Mol.Biol.Int. 1997, 41, 1179、Nakayama et al., J.Biochem.(Tokyo)1985, 97, 1385、Mizushina et al., Biochimie 2007, 89, 581、Soltis et al., J.Biol.Chem.1982, 257, 11332、及びLu et al., J.Biol.Chem. 1991, 266, 21060)に記載の方法により行い、試験化合物(化合物1a、1b、又は1c)のこれらの酵素に対する阻害率を測定し、50%阻害濃度(IC50)(μM)を求めた。
(2-2) Measurement of Other DNA Metabolizing Enzyme Inhibitory Activities The activity of other DNA metabolizing enzymes (Calf primase of polα, T7 RNA polymerase, T4 polynucleotide kinase, and Bovine deoxyribonuclease I) can be measured using known literature (Tamiya et al. Biochem. Mol. Biol. Int. 1997, 41, 1179, Nakayama et al., J. Biochem. (Tokyo) 1985, 97, 1385, Mizushina et al., Biochimie 2007, 89, 581, Soltis et al. , J. Biol. Chem. 1982, 257, 11332, and Lu et al., J. Biol. Chem. 1991, 266, 21060), and the test compound (compound 1a, 1b, or 1c) Inhibition rates for these enzymes were measured to determine 50% inhibitory concentration (IC 50 ) (μM).

(2‐3)結果
結果を図5に示す。図5より、化合物1a、1b、又は1cの、哺乳類のDNA合成酵素{A-Family pol(Human polγ)、B-Family pol(Calf polα,Human polδ,Human polε)、及びY-Family pol(Human polη,Mouse polι,Human polκ)}に対する50%阻害濃度は、約45〜100μMであった。化合物1a、1b、及び1cの阻害活性の強さは、阻害活性が強い順に、化合物1a>化合物1c>化合物1bであった。一方、化合物1a、1b、及び1cは、哺乳類のDNA合成酵素{X-Family(Rat polβ,Human polλ,Calf TdT)}、植物のDNA合成酵素{Cauliflower polα}、原核生物のDNA合成酵素{E.coli pol I,Taq pol,T4 pol}、及び他のDNA代謝酵素{Calf primase of polα,HIV-1 reverse transcriptase,T7 RNA polymerase,T4 polynucleotide kinase,Bovine deoxyribonuclease I}に対しては阻害活性を示さなかった。
(2-3) Results The results are shown in FIG. From FIG. 5, mammalian DNA synthase {A-Family pol (Human pol γ), B-Family pol (Calf pol α, Human pol δ, Human pol ε), and Y-Family pol (Human pol) polη, Mouse polι, Human polκ)} was about 45-100 μM. The strength of the inhibitory activity of compounds 1a, 1b, and 1c was compound 1a> compound 1c> compound 1b in the order of increasing inhibitory activity. On the other hand, the compounds 1a, 1b, and 1c include mammalian DNA synthase {X-Family (Rat pol β, Human pol λ, Calf TdT)}, plant DNA synthase {Cauliflower pol α}, prokaryotic DNA synthase {E Inhibitory activity against .coli pol I, Taq pol, T4 pol} and other DNA metabolizing enzymes {Calf primase of polα, HIV-1 reverse transcriptase, T7 RNA polymerase, T4 polynucleotide kinase, Bovine deoxyribonuclease I} There wasn't.

試験例2.DNA合成酵素の阻害様式の判定
Calf polαおよびHuman polκに対する化合物1aの阻害様式は、化合物1aを0〜30μM添加することによるpol活性の変化を両逆数プロットで解析した。2つの基質のうち、鋳型DNA(DNA template-primer)の阻害様式は、鋳型DNA濃度を0〜40μMに振ってのpol阻害活性を測定することで算出した。また、ヌクレオチド(dNTP substrate)の阻害様式は、ヌクレオチド濃度を0〜10μMに振ってのpol阻害活性を測定することで検討した。得られたデータをDixonプロット法で解析することにより阻害定数(Ki)を算出した。
Test Example 2 Determination of inhibition pattern of DNA synthase
Regarding the mode of inhibition of Compound 1a against Calf polα and Human polκ, changes in pol activity by adding 0-30 μM of Compound 1a were analyzed by a reciprocal plot. Among the two substrates, the template DNA (DNA template-primer) inhibition mode was calculated by measuring the pol inhibitory activity by changing the template DNA concentration to 0 to 40 μM. The inhibition mode of nucleotide (dNTP substrate) was examined by measuring the pol inhibitory activity by changing the nucleotide concentration to 0 to 10 μM. The inhibition constant (Ki) was calculated by analyzing the obtained data by the Dixon plot method.

結果を図6に示す。化合物1aは、polα、polκともに鋳型DNAに対して非拮抗阻害、ヌクレオチドに対して拮抗阻害であった。またヌクレオチドにおけるKi値は、鋳型DNAにおけるKi値よりも小さかったことから、化合物1aは鋳型DNAよりもヌクレオチドの方に親和性があると考えられる。   The results are shown in FIG. Compound 1a had non-competitive inhibition against the template DNA and antagonistic inhibition against the nucleotide for both polα and polκ. Moreover, since the Ki value in nucleotide was smaller than the Ki value in template DNA, it is considered that compound 1a has affinity for nucleotide rather than template DNA.

試験例3.ヒト癌細胞及びヒト正常細胞の増殖への影響の評価(in vitro)
化合物1a、1b、又は1cの癌細胞増殖阻害活性を次の方法を用いて評価した。
本実験においては、ヒト癌細胞として、A549(肺癌細胞)、BALL-1(白血病性B細胞)、HCT116(大腸癌細胞)、Hela(子宮頸癌細胞)、及びNUGC-3(胃癌細胞)を用い、ヒト正常細胞として、HDF(皮膚繊維芽細胞)、及びHUVEC(臍帯静脈内皮細胞)を用いた。これらのヒト細胞は、ATCC(American Type Culture Collection)から入手した。ヒト癌細胞は、牛胎児血清(最終濃度10%)、ペニシリン(最終濃度100 units/mL)、及びストレプトマイシン(最終濃度100 mg/mL)を添加したMcCoy’s 5A培地中で培養した。ヒト正常細胞は、グルコース(最終濃度4.5 g/L)、牛胎児血清(最終濃度10%)、L-グルタミン(最終濃度5 mM)、ペニシリン(最終濃度50 units/mL)、及びストレプトマイシン(最終濃度50 mg/mL)を添加したEagle’s Minimum Essential Medium(MEM)培地中で培養した。培養は、37℃、5%二酸化炭素/95%大気の湿環境で行った。
本試験の培養は、96ウェルマイクロプレートで実施した。各ウェルに1.0×104個の細胞を、試験化合物(化合物1a、1b、又は1c)と共に播種した。試験化合物は、培地中の最終濃度が、0〜200μMとなるように添加した。なお、試験化合物は、培地への添加前に各種濃度でDMSOに溶解しておき、培地中のDMSO濃度が1%になるように添加した。またポジティブコントロールとして、培地に1%のDMSO(試験物質が存在しない)を含むものを用いた。試験化合物の添加後、5% CO2インキュベーター内、37℃で24時間培養した。そして、各試験区の細胞生存率をWST-1法で判定した。すなわち、上記24時間後テトラゾリウム塩WST-1を添加し、さらに4時間培養した。生細胞による還元を経て生産するホルマザン量が生細胞数に比例するとみなし、450 nmの光学密度(O.D.)で定量した。細胞生存率は次の式により算出した。
Test Example 3 Evaluation of the effects on proliferation of human cancer cells and normal human cells (in vitro)
The cancer cell growth inhibitory activity of compound 1a, 1b, or 1c was evaluated using the following method.
In this experiment, A549 (lung cancer cells), BALL-1 (leukemia B cells), HCT116 (colon cancer cells), Hela (cervical cancer cells), and NUGC-3 (gastric cancer cells) are used as human cancer cells. Used as human normal cells were HDF (skin fibroblasts) and HUVEC (umbilical vein endothelial cells). These human cells were obtained from ATCC (American Type Culture Collection). Human cancer cells were cultured in McCoy's 5A medium supplemented with fetal bovine serum (final concentration 10%), penicillin (final concentration 100 units / mL), and streptomycin (final concentration 100 mg / mL). Normal human cells consist of glucose (final concentration 4.5 g / L), fetal bovine serum (final concentration 10%), L-glutamine (final concentration 5 mM), penicillin (final concentration 50 units / mL), and streptomycin (final concentration). The cells were cultured in Eagle's Minimum Essential Medium (MEM) medium supplemented with 50 mg / mL. The culture was performed in a humid environment of 37 ° C., 5% carbon dioxide / 95% air.
The culture of this test was performed in a 96-well microplate. 1.0 × 10 4 cells were seeded with each test compound (Compound 1a, 1b, or 1c) in each well. The test compound was added so that the final concentration in the medium was 0 to 200 μM. The test compound was dissolved in DMSO at various concentrations before addition to the medium, and added so that the DMSO concentration in the medium was 1%. As a positive control, a medium containing 1% DMSO (no test substance) was used. After addition of the test compound, the cells were cultured at 37 ° C. for 24 hours in a 5% CO 2 incubator. Then, the cell viability of each test group was determined by the WST-1 method. That is, after 24 hours, the tetrazolium salt WST-1 was added and further cultured for 4 hours. The amount of formazan produced through reduction by viable cells was considered to be proportional to the number of viable cells, and quantified with an optical density (OD) of 450 nm. Cell viability was calculated by the following formula.

細胞生存率(%)=(試験区のO.D.[450 nm]−培地のみのウェルのO.D.[450 nm])/(対照区のO.D.[450 nm]−培地のみのウェルのO.D.[450 nm])。   Cell viability (%) = (OD of test group [450 nm] −OD of medium-only well [450 nm]) / (OD of control group [450 nm] −OD of well of medium only] [450 nm]) .

試験化合物の各種濃度における細胞生存率を基に、50%増殖阻害濃度(LD50)(μM)を求めた。結果を図7に示す。 Based on the cell viability at various concentrations of the test compound, the 50% growth inhibitory concentration (LD 50 ) (μM) was determined. The results are shown in FIG.

図7より、化合物1a、1b、又は1cのヒト癌細胞に対する50%増殖阻害濃度は、約50〜100μMであった。化合物1a、1b、又は1cの阻害活性の強さは、阻害活性の強さの順に、化合物1a>化合物1c>化合物1bであった。一方、化合物1a、1b、及び1cは、ヒト正常細胞に対しては増殖阻害活性を示さなかった。   From FIG. 7, the 50% growth inhibitory concentration of compound 1a, 1b, or 1c on human cancer cells was about 50-100 μM. The intensity of the inhibitory activity of compound 1a, 1b, or 1c was compound 1a> compound 1c> compound 1b in the order of the inhibitory activity. On the other hand, compounds 1a, 1b, and 1c did not show growth inhibitory activity against human normal cells.

Claims (8)

一般式(1):
Figure 2013014546
[式中、RとRは異なって、水素、又は一般式(2):
Figure 2013014546
(式中、R及びRは同一又は異なって水素、低級アルキル基、又はアルカノイル基を示す。)
で表される基を示し、Rは水酸基を有していてもよいアルケニル基を示す。]
で表される化合物を有効成分として含有するDNA合成酵素阻害剤。
General formula (1):
Figure 2013014546
[Wherein R 1 and R 2 are different from each other, hydrogen, or general formula (2):
Figure 2013014546
(In the formula, R 4 and R 5 are the same or different and each represents hydrogen, a lower alkyl group, or an alkanoyl group.)
R 3 represents an alkenyl group which may have a hydroxyl group. ]
A DNA synthase inhibitor comprising a compound represented by the formula:
が水酸基を有していてもよいC3〜5のアルケニル基であり、R及びRが水素である請求項1に記載のDNA合成酵素阻害剤。 The DNA synthase inhibitor according to claim 1, wherein R 3 is a C3-5 alkenyl group which may have a hydroxyl group, and R 4 and R 5 are hydrogen. 請求項1に記載の一般式(1)で表される化合物を有効成分として含有する抗癌剤。   The anticancer agent which contains the compound represented by General formula (1) of Claim 1 as an active ingredient. 一般式(3):
Figure 2013014546
[式中、RとRは異なって、水素、又は一般式(2):
Figure 2013014546
(式中、R及びRは同一又は異なって水素、低級アルキル基、又はアルカノイル基を示す。)
で表される基を示し、Rが一般式(2)で表される基であり且つRが水素である場合は、Rはアルケニル基を示し、Rが水素であり且つRが一般式(2)で表される基である場合は、Rは水酸基を有するアルケニル基を示す。]
で表される化合物。
General formula (3):
Figure 2013014546
[Wherein R 6 and R 7 are different from each other, hydrogen or general formula (2):
Figure 2013014546
(In the formula, R 4 and R 5 are the same or different and each represents hydrogen, a lower alkyl group, or an alkanoyl group.)
When R 6 is a group represented by the general formula (2) and R 7 is hydrogen, R 8 represents an alkenyl group, R 6 is hydrogen and R 7 Is a group represented by the general formula (2), R 8 represents an alkenyl group having a hydroxyl group. ]
A compound represented by
請求項4に記載の一般式(3)で表される化合物を有効成分として含有する医薬組成物。   The pharmaceutical composition which contains the compound represented by General formula (3) of Claim 4 as an active ingredient. 請求項4に記載の一般式(3)で表される化合物を食品に配合してなる食品組成物。   The food composition formed by mix | blending the compound represented with General formula (3) of Claim 4 with foodstuffs. 一般式(1)で表される化合物の製造方法であって、penicillium pinofhilum Hedgcockの培養物を精製する工程を含むことを特徴とする製造方法。   A method for producing a compound represented by the general formula (1), comprising a step of purifying a culture of penicillium pinofhilum Hedgcock. 一般式(4):
Figure 2013014546
(式中、R及びRは前記に同じ。)
で表される化合物の製造方法であって、一般式(5):
Figure 2013014546
で表される化合物と、一般式(6):
Figure 2013014546
(式中、R及びR10は同一又は異なって保護基を示す。)
で表される化合物を反応させることを特徴とする製造方法。
General formula (4):
Figure 2013014546
(In the formula, R 4 and R 5 are the same as above.)
A process for producing a compound represented by the general formula (5):
Figure 2013014546
A compound represented by formula (6):
Figure 2013014546
(In the formula, R 9 and R 10 are the same or different and each represents a protecting group.)
The manufacturing method characterized by making the compound represented by these react.
JP2011148800A 2011-07-05 2011-07-05 Dna synthase inhibitor Withdrawn JP2013014546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011148800A JP2013014546A (en) 2011-07-05 2011-07-05 Dna synthase inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011148800A JP2013014546A (en) 2011-07-05 2011-07-05 Dna synthase inhibitor

Publications (1)

Publication Number Publication Date
JP2013014546A true JP2013014546A (en) 2013-01-24

Family

ID=47687577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011148800A Withdrawn JP2013014546A (en) 2011-07-05 2011-07-05 Dna synthase inhibitor

Country Status (1)

Country Link
JP (1) JP2013014546A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017203A (en) * 2015-07-28 2015-11-04 海南医学院 Azaphilones derivative compound from marine fungi as well as preparation method and application of azaphilones derivate compound
CN113861029A (en) * 2021-10-26 2021-12-31 广西师范大学 Polyketide derived from marine fungi as well as preparation method and application thereof
WO2023123917A1 (en) * 2021-12-30 2023-07-06 广州达安基因股份有限公司 Taq enzyme reversible modifier, chemically modified taq enzyme, and preparation method therefor and pcr kit thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105017203A (en) * 2015-07-28 2015-11-04 海南医学院 Azaphilones derivative compound from marine fungi as well as preparation method and application of azaphilones derivate compound
CN113861029A (en) * 2021-10-26 2021-12-31 广西师范大学 Polyketide derived from marine fungi as well as preparation method and application thereof
CN113861029B (en) * 2021-10-26 2023-11-10 广西师范大学 A polyketide compound derived from marine fungi and its preparation method and application
WO2023123917A1 (en) * 2021-12-30 2023-07-06 广州达安基因股份有限公司 Taq enzyme reversible modifier, chemically modified taq enzyme, and preparation method therefor and pcr kit thereof
CN116425665A (en) * 2021-12-30 2023-07-14 广州达安基因股份有限公司 Taq enzyme reversible modifier, chemically modified Taq enzyme, preparation method thereof, and PCR kit

Similar Documents

Publication Publication Date Title
CN110872289A (en) Novel 8-substituted imidazo [1,5-a ] pyridines as IDO1 and/or TDO inhibitors
WO2007119815A1 (en) Toll-like receptor 9 agonists
JP2007291075A (en) New compound sterenin and method for producing the same
JPH08176070A (en) Didepside derivative and PI3 kinase inhibitor
Yu et al. Two new alkaloid metabolites produced by endophytic fungus Stagonosporopsis oculihominis isolated from Dendrobium huoshanense
Liu et al. Bistachybotrysins L–V, bioactive phenylspirodrimane dimers from the fungus Stachybotrys chartarum
JP2016040318A (en) Process for producing reveromycin a or synthetic intermediate thereof, process for producing compounds containing spiroketal ring, as well as novel anticancer agent, antifungal agent, and therapeutic agents for bone disorders
JP2013014546A (en) Dna synthase inhibitor
Baraldi et al. Geiparvarin Analogs. 3. Synthesis and cytostatic activity of 3 (2H)-furanone and 4, 5-dihydro-3 (2H)-furanone congeners of geiparvarin, containing a geraniol-like fragment in the side chain.
TW411337B (en) Hexahydronaphthalene ester derivatives
CN109734561B (en) A kind of farnesyl phenolic compound and its pharmaceutical composition and its application
Wang et al. Identification, synthesis and biological evaluation of pyrazine ring compounds from Talaromyces minioluteus (Penicillium minioluteum)
JPWO2013157555A1 (en) Novel aplysiatoxin derivative and anticancer agent containing the same
US9956198B2 (en) Furo[3,4-b]pyran compounds and pharmaceutical uses
Matsumoto et al. Fasciospyrinadinone and fasciospyrinadinol, novel 3-alkylpyridine sesquiterpenoids from an indonesian marine sponge, as selective growth inhibitors of the cancer cells under nutrient starvation
CN101050179B (en) 2,3,4,5-tetrasubstituted derivatives of benzyl ethylene class, preparation method and application
Kim et al. 5-demethoxyfumagillol, a potent angiogenesis inhibitor isolated from Aspergillus fumigatus
WO2021215522A1 (en) Linderapyrone, and analogue thereof
Arnautova et al. 2-Fluorocordycepin: Chemoenzymatic Synthesis and Study of Anticancer Activities In Vitro
JP2007223902A (en) New isochroman compound and utilization thereof for anti-cancer agent or the like
JP2010120882A (en) New compound
US20250197416A1 (en) Parthenolide derivatives and use thereof
JP3942422B2 (en) New substance with antitumor and anti-inflammatory activity
HU208019B (en) Process for producing alkoxy-methyliden-epi-podofillotoxin-glucosides and pharmaceutical compositions containing them
JP2013194044A (en) New compound having dna polymerase inhibitory activity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007