JP2013007728A - Real time estimation method of hypocentral region of giant earthquake - Google Patents
Real time estimation method of hypocentral region of giant earthquake Download PDFInfo
- Publication number
- JP2013007728A JP2013007728A JP2011151258A JP2011151258A JP2013007728A JP 2013007728 A JP2013007728 A JP 2013007728A JP 2011151258 A JP2011151258 A JP 2011151258A JP 2011151258 A JP2011151258 A JP 2011151258A JP 2013007728 A JP2013007728 A JP 2013007728A
- Authority
- JP
- Japan
- Prior art keywords
- earthquake
- magnitude
- fault
- seismic intensity
- epicenter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000006378 damage Effects 0.000 abstract description 4
- 230000002123 temporal effect Effects 0.000 abstract description 2
- 206010044565 Tremor Diseases 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
本発明は巨大地震が発生した場合にその震源域の空間的分布をリアルタイムで推定する方法に関する。 The present invention relates to a method for estimating in real time the spatial distribution of an epicenter when a large earthquake occurs.
モーメントマグニチュードを除く、気象庁定義やRichter等によるマグニチュードは、8を超える巨大地震の場合、地震の規模が大きくなっても、マグニチュードが大きくならない、いわいる、マグニチュードの飽和の問題があることが知られている。このため、巨大地震が発生しても、気象庁等によるマグニチュードから、どの程度の規模の地震が発生したかを知ることは困難である。例えば、2011年3月11日の東日本大震災では、地震発生直後に決定されたマグニチュードは7.9であったが、その2日後に、モーメントマグニチュードの結果から、マグニチュードを9.0に変更した。マグニチュードの過小評価が原因で、気象庁による津波の波高予測は、実際の津波に比べ一桁近く過小評価となり、このため、避難が遅れ、多くの尊い人命が奪われた。本発明は、巨大地震の震源域の空間的広がりをリアルタイムで求める手法を提供することにより、津波予測システム、緊急地震速報配信システム、緊急地震速報受信端末装置等の高精度化を行うものである。 Magnitude by the Japan Meteorological Agency definition and Richter, etc., excluding moment magnitude, is known to have a problem of magnitude saturation when the magnitude of the earthquake is larger than 8, even if the magnitude of the earthquake is larger than 8 ing. For this reason, even if a huge earthquake occurs, it is difficult to know how much the earthquake has occurred from the magnitude of the Japan Meteorological Agency. For example, in the Great East Japan Earthquake of March 11, 2011, the magnitude determined immediately after the occurrence of the earthquake was 7.9, but two days later, the magnitude was changed to 9.0 from the result of the moment magnitude. Due to the underestimation of magnitude, the Japan Meteorological Agency's tsunami wave height prediction was underestimated by an order of magnitude compared to the actual tsunami, resulting in delayed evacuation and the loss of many precious lives. The present invention improves the accuracy of a tsunami prediction system, an earthquake early warning distribution system, an earthquake early warning receiving terminal device, etc. by providing a method for obtaining the spatial extent of the source area of a huge earthquake in real time. .
津波の波高予測では、地震の規模を正確に求める必要がある。現在の津波予測波高は、気象庁マグニチュードを用いて計算されている。非特許文献1に書かれているように、気象庁マグニチュード(Mj)は固有周期5秒のWiechert式地震計の振幅(A)を用いて、
非特許文献1には、この他、大きい地震では、規模が大きくてもマグニチュードの値はその割に大きくならない現象、いわゆるマグニチュードの飽和が起こることも示されている。地震モーメント(MO)は、断層運動の大きさに対応する量であり、地震波スペクトルの長周期側の極限での振幅で定義されている。非特許文献1に示されているように、モーメントマグニチュード(Mw)は、地震モーメントから定義されるマグニチュードで、以下の定義となっている。
2011年東日本大震災では、Mjは7.9であった。気象庁は、地震発生から2日後に、外国のデータを用いてMwを決定し、マグニチュードが9.0に変更した。Mwは、地震の正確な規模を表すパラメータであるが、欠点は、決定に数10分かかり、津波警報等に間に合わないことである。2004年スマトラ沖地震でも、同様に、地震発生直後のマグニチュードは8.0であったが、その後9.1に変更された。マグニチュードが1違うと、地震波のエネルギーは32倍違うことから、地震発生直後に推定された地震の規模は、実際の規模に比べ、著しく小さい。東日本大震災での津波警報や緊急地震速報は、地震発生直後に求められるマグニチュード7.9が用いられたため、津波警報は一桁近く過小評価となり、その結果、多くの住民の避難が遅れ、津波被害が拡大した。 In the 2011 Great East Japan Earthquake, Mj was 7.9. The Japan Meteorological Agency decided Mw using foreign data two days after the earthquake and changed the magnitude to 9.0. Mw is a parameter that represents the exact magnitude of an earthquake, but the drawback is that it takes tens of minutes to make a decision and is not in time for a tsunami warning or the like. Similarly, the magnitude immediately after the occurrence of the 2004 Sumatra Earthquake was 8.0, but it was changed to 9.1. If the magnitude is different by one, the energy of the seismic wave is different by 32 times, so the magnitude of the earthquake estimated immediately after the occurrence of the earthquake is significantly smaller than the actual magnitude. Because the magnitude 7.9 required immediately after the earthquake occurred was used for the tsunami warning and the emergency earthquake warning for the Great East Japan Earthquake, the tsunami warning was underestimated by an order of magnitude, resulting in delays in the evacuation of many residents and tsunami damage. Expanded.
津波の高精度予測の方法としては、沖合での津波の波高を海底津波計やGPSを用いて測定し、伝達する方法がある。2011年東日本大震災では、気象庁は、津波計のデータを用いて警報の訂正を行っているが、測定に時間がかかり、警報を出すタイミングが遅れた。また、航空機で、SAR技術を用いて津波を測定する方法(例えば、特許文献1)も提案されている。 As a method for highly accurate prediction of tsunami, there is a method of measuring and transmitting the tsunami wave height offshore using a submarine tsunami meter or GPS. In the 2011 Great East Japan Earthquake, the Japan Meteorological Agency corrected the warning using data from the tsunami meter, but it took time to measure and the timing for issuing the warning was delayed. In addition, a method (for example, Patent Document 1) for measuring a tsunami using SAR technology in an aircraft has been proposed.
マグニチュード9.0の東日本大震災では、震源域の南北の広がりは500kmであった。従来技術では、断層運動を開始した点(震源)の位置を決定し、震度予測を行うものである。震源域が広い巨大地震の場合には、震源から遠く離れた場所では、予測震度が著しく小さくなるという課題がある。津波予測では、式(2)に示すマグニチュードと断層長の関係を考慮し、行っている。しかし、気象庁マグニチュードには、飽和の問題があることから、地震の規模が大きくなっても、マグニチュードが大きくならない。この結果、地震の規模を小さめに評価し、津波の波高を過小評価するという課題がある。 In the Great East Japan Earthquake with a magnitude of 9.0, the north-south extent of the epicenter was 500 km. In the prior art, the position of the point (seismic source) where the fault motion is started is determined and the seismic intensity is predicted. In the case of a huge earthquake with a large epicenter, there is a problem that the predicted seismic intensity is significantly reduced at locations far from the epicenter. Tsunami prediction is performed in consideration of the relationship between magnitude and fault length shown in Equation (2). However, since the JMA magnitude has a problem of saturation, the magnitude will not increase even if the magnitude of the earthquake increases. As a result, there is a problem that the magnitude of the earthquake is evaluated to be small and the tsunami wave height is underestimated.
本発明は、巨大地震の震源域の広がりをリアルタイムで推定する手法を提供することにより、津波予測や緊急地震速報の高度化に資し、地震被害の軽減を目指すものである。 The present invention aims at reducing earthquake damage by contributing to the advancement of tsunami prediction and emergency earthquake warning by providing a method for estimating the extent of the epicenter of a huge earthquake in real time.
地震が発生し、リアルタイムで求められるマグニチュードが、時間とともに大きくなり、約8.0程度まで大きくなったとする。この場合、前述のマグニチュードの飽和の問題で、更に大きな巨大地震の発生が進行しても、マグニチュードから、それを知ることはできない。 Suppose that an earthquake occurred and the magnitude required in real time increased with time and increased to about 8.0. In this case, even if a larger earthquake occurs due to the above-described saturation problem, it cannot be known from the magnitude.
緊急地震速報を用いた震度予測では、司・翠川(非特許文献3)による震度の予測式の利用が推奨されている。この予測式は、過去に発生した地震の震度と、断層最短距離、気象庁マグニチュードとの関係に関する経験的である。緊急地震速報では、断層の空間分布の情報が得られないことから、断層最短距離の替わりに、断層等価震源距離が用いられている。松崎他(非特許文献3)では、過去に発生した地震で、断層の空間分布が求められている地震について、断層最短距離と、震度、気象庁マグニチュードとの関係から、断層近傍まで適用できる震度の距離減衰式を求めている。従来研究は、震度が断層最短距離の関数で表されることを示している。 In seismic intensity prediction using emergency earthquake bulletin, the use of seismic intensity prediction formulas by Tsukasa Yodogawa (Non-Patent Document 3) is recommended. This prediction formula is empirical about the relationship between the seismic intensity of earthquakes that occurred in the past, the shortest fault distance, and the JMA magnitude. In the earthquake early warning, since the fault spatial distribution information cannot be obtained, the fault equivalent seismic source distance is used instead of the fault shortest distance. Matsuzaki et al. (Non-patent Document 3), for earthquakes that have occurred in the past and whose spatial distribution of the fault is required, the seismic intensity applicable to the fault is calculated based on the relationship between the shortest fault distance, seismic intensity, and JMA magnitude. The distance attenuation formula is obtained. Previous studies have shown that seismic intensity is expressed as a function of fault shortest distance.
上述のように、震度が断層最短距離の関数で表せることを示している。本発明では、従来研究を利用して、リアルタイム震度から、観測点毎に断層最短距離を求め、それを、図1に示す位置に投影することにより、震源域の端の位置を決定する。多くの観測点について、震源と震源域の端までの長さが求められると、震源域の端までの距離の方位分布が得られ、震源域の空間的広がりが求められることになる。また、その時間変化から、巨大地震の震源域が拡大する様子を時間、空間的に推定するものである。以下に詳細な方法を記す。 As described above, the seismic intensity can be expressed as a function of the fault shortest distance. In the present invention, the shortest fault distance is obtained for each observation point from the real-time seismic intensity using the conventional research, and it is projected onto the position shown in FIG. When the length from the epicenter to the end of the epicenter is obtained for many observation points, the orientation distribution of the distance to the end of the epicenter is obtained, and the spatial extent of the epicenter is required. In addition, it is estimated temporally and spatially how the epicenter of a huge earthquake expands from the time change. The detailed method is described below.
j番目の観測点で、マグニチュードから推定される震度に比べ、より大きな震度が観測されたとし、非特許文献2や非特許文献3等の関係式を用いて、逆に観測点から断層までの最短距離の時間変化を求めることは可能である。そこで、j観測点による、時刻tにおける断層最短距離、Rj(t)を、
ここに、M(t)は、時刻tにおける緊急地震速報によるマグニチュード、Δjは、震央距離、hは、震源の深さ、Sj(t)は、時刻tにおける観測点jでのリアルタイム震度である。断層最短距離を、速度、あるいは、加速度等の最大値のデータを用いて求める場合には、Sj(t)は、速度、あるいは、加速度の最大値である。 Here, M (t) is the magnitude of the emergency earthquake bulletin at time t, Δj is the epicenter distance, h is the depth of the epicenter, and Sj (t) is the real-time seismic intensity at observation point j at time t. . When the shortest tomographic distance is obtained using maximum value data such as speed or acceleration, Sj (t) is the maximum value of speed or acceleration.
時刻tにおける、震源域の端の位置は、図1に示すように、震源と観測点とを結ぶ直線上で、観測点jからRj(t)離れた位置であるとし、その水平方向の座標を(Xj(t),Yj(t))とする。観測点iでも同様に、断層最短距離Ri(t)が求められ、震源域の端の位置の座標、(Xi(t),Yi(t))が求められる。簡単のため、断層が水平であると仮定すると、震央から、震源域の端までの距離、すなわち、震央からの断層の長さ、Djは
多くの観測点での、震央と、震源域の端とを結ぶ直線の分布から、図1の点線で示す領域の内部が震源域として求められる。これを時間的に調べることにより、震源域の空間、時間的分布を推定することが可能である。 From the distribution of straight lines connecting the epicenter and the end of the epicenter at many observation points, the interior of the region indicated by the dotted line in FIG. By examining this temporally, it is possible to estimate the spatial and temporal distribution of the epicenter region.
大きな揺れが到着する前の震度予測は、断層の端が、(Xj(t),Yj(t))まで拡大しているとして、観測点毎に断層最短距離を求めることにより行うことができる。断層最短距離は、S波振幅を用いて求められる量であることから、解析に用いた観測点では、大きな揺れが既に到着しており、揺れる前の予測を行うことはできない。しかし、解析に用いた観測点より遠方に位置する観測点には、大きな揺れの前の警報伝達が可能である。 Seismic intensity prediction before the arrival of a large shake can be performed by determining the shortest fault distance for each observation point, assuming that the end of the fault has expanded to (Xj (t), Yj (t)). Since the shortest fault distance is an amount obtained using the S-wave amplitude, a large shake has already arrived at the observation point used for the analysis, and prediction before the shake cannot be performed. However, it is possible to transmit a warning before a large shake to an observation point located far from the observation point used for the analysis.
断層がどこまで拡大するかについては、断層運動が終了しないと予測することは難しい。ある時刻に推定された震源域に対し、ある方向では、さらに、震源域が50kmとか、100km拡大を続ける可能性がある。巨大地震の場合には、ある時刻で求められた断層が、更にある特定の距離だけ拡大するというモデルを用いて震度を予測するようにする。 It is difficult to predict how far the fault will expand without completing the fault movement. There is a possibility that the epicenter area will continue to expand by 50 km or 100 km in a certain direction with respect to the hypocenter area estimated at a certain time. In the case of a huge earthquake, the seismic intensity is predicted using a model in which a fault obtained at a certain time is further expanded by a specific distance.
図2に本発明の方法を用いた東日本大震災の震源域のリアルタイム推定結果の例を示す。図は、緊急地震速報が配信されてから、171秒後の結果である。余震分布から推定された震源域の分布とよく一致している。図3は、本発明による震度の推定法を示す図である。方位毎に、断層最短距離を求め、震度を予測することにより、リアルタイムでの正確な震度予測が可能になる。この結果は、本発明により、震源域の広がりをリアルタイムで精度よく決定でき、リアルタイムでの高精度震度予測が可能となることを示すものである。 FIG. 2 shows an example of real-time estimation results of the epicenter area of the Great East Japan Earthquake using the method of the present invention. The figure shows the result 171 seconds after the earthquake early warning was distributed. It is in good agreement with the hypocenter distribution estimated from the aftershock distribution. FIG. 3 is a diagram showing a seismic intensity estimation method according to the present invention. By calculating the shortest fault distance and predicting seismic intensity for each direction, accurate seismic intensity prediction in real time becomes possible. This result shows that according to the present invention, the spread of the epicenter region can be accurately determined in real time, and high-precision seismic intensity prediction in real time becomes possible.
地震計を内蔵した緊急地震速報受信端末を普及させる。地震が発生すると、受信端末は、リアルタイム震度等の情報を約1秒間に一回、センターサーバーに送信する。センターサーバーは、気象庁によるマグニチュードが8.0前後の閾値、Mkより大きければ、マグニチュードが飽和し、巨大地震である可能性がある地震が発生中であるとして、巨大地震発生モードに入る。 Disseminate emergency earthquake warning receiving terminals with built-in seismometers. When an earthquake occurs, the receiving terminal transmits information such as real-time seismic intensity to the center server about once every second. The center server enters the giant earthquake occurrence mode, assuming that if the magnitude by the Japan Meteorological Agency is greater than a threshold value of around 8.0, Mk, the magnitude is saturated and an earthquake that may be a giant earthquake is occurring.
巨大地震発生モードでは、気象庁によるマグニチュードを用いて、(2)式の断層の長さとマグニチュードの関係から断層の半径を求め、震央を中心に円を描き、断層域であるとする。 In the huge earthquake occurrence mode, the magnitude of the meteorological agency is used to determine the radius of the fault from the relationship between the fault length and the magnitude in equation (2), and a circle is drawn around the epicenter, assuming that it is a fault area.
次に、観測点毎に、マグニチュードから予測される震度と、観測震度とを比較し、マグニチュードから予測される震度に比べ、測定震度が大きい場合は、(5)式から断層長を求め、震源から、観測点の方位の方向に、長さDj(t)の線分をプロットする。このプロットの分布から、震源域の分布を推定する。津波予測は、震源域の広さから、マグニチュードの飽和の問題が発生したか判断し、行う。 Next, for each observation point, the seismic intensity predicted from the magnitude is compared with the observed seismic intensity. If the measured seismic intensity is larger than the seismic intensity predicted from the magnitude, the fault length is calculated from the equation (5). To plot a line segment of length Dj (t) in the direction of the azimuth of the observation point. The distribution of the epicenter is estimated from the distribution of this plot. Tsunami predictions are made based on the size of the epicenter and whether or not a magnitude saturation problem has occurred.
震度予測は、先ず、震央から見た観測点の方位を求め、10度〜20度の方位間隔を設定し、観測点毎に、どの方位ブロックに入るか決める。次に、方位ブロック毎に、断層長の平均値を求める。震央から近い観測点では、大きな揺れは早く到着するが、遠方の観測点では、揺れが届くまでに時間がかかる。方位ブロック毎に平均値を決定する際には、遠く離れた観測点のデータを含めないようにする必要がある。そこで、平均値は、震度の大きい順、あるいは、震央からの距離の近い順に、複数個の観測点の平均とする。 In the seismic intensity prediction, first, the azimuth of the observation point viewed from the epicenter is obtained, the azimuth interval of 10 degrees to 20 degrees is set, and which azimuth block is entered for each observation point. Next, the average value of the fault length is obtained for each orientation block. At stations near the epicenter, large tremors arrive early, but at distant stations it takes time to reach the tremors. When determining the average value for each azimuth block, it is necessary not to include data of observation points far away. Therefore, the average value is the average of a plurality of observation points in descending order of seismic intensity or in order of increasing distance from the epicenter.
一般に、地球内部の不均質性や、地盤増幅特性の影響等の理由で、予測震度と、観測震度とには、大きなばらつきがある。本発明の方法では、ばらつきが原因で、巨大地震でないのに、巨大地震であると判断する可能性がある。 In general, there are large variations in predicted seismic intensity and observed seismic intensity due to inhomogeneities within the earth and the influence of ground amplification characteristics. In the method of the present invention, there is a possibility that it is determined that the earthquake is a huge earthquake because it is not a huge earthquake due to the variation.
従来研究から、断層の破壊が伝播する速度は、最大でも2.8km/秒程度であることが知られている。マグニチュードの飽和の問題で、マグニチュードから推定される震源域の広さより大きい震源域となる地震、すなわち、巨大地震が発生したとする。マグニチュードから想定される断層半径をDeとする。この場合、巨大地震に対応する断層運動は、断層が、距離Deだけ進んだ後から、すなわち、De/Vr秒後から開始する。ここに、Vrは破壊伝播速度である。巨大地震に対応するS波が観測点に到着する時刻Tfは、
時刻Tf迄に測定されるリアルタイム震度は、巨大地震になる前の揺れによるものであることから、この値が大きくなっても、断層が特定の方向に拡大したとしないようにする必要がある。断層最短距離の決定では、時刻Tfまでの区間での震度を、地球内部の不均質性や、地盤増幅特性による補正項とみなし、時刻Tf以降の震度を補正することにより、より精度の高い断層の広がりが推定できると思われる。 Since the real-time seismic intensity measured by the time Tf is due to the shaking before a huge earthquake, even if this value increases, it is necessary not to assume that the fault has expanded in a specific direction. In determining the shortest fault distance, the seismic intensity in the section up to the time Tf is regarded as a correction term due to inhomogeneity in the earth and ground amplification characteristics, and the seismic intensity after the time Tf is corrected, so that a more accurate fault It seems that the spread of can be estimated.
巨大地震に対応した緊急地震速報装置、津波警報装置としての利用が考えられる。 It can be used as an emergency earthquake warning device and tsunami warning device corresponding to a huge earthquake.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011151258A JP2013007728A (en) | 2011-06-22 | 2011-06-22 | Real time estimation method of hypocentral region of giant earthquake |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011151258A JP2013007728A (en) | 2011-06-22 | 2011-06-22 | Real time estimation method of hypocentral region of giant earthquake |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013007728A true JP2013007728A (en) | 2013-01-10 |
Family
ID=47675182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011151258A Withdrawn JP2013007728A (en) | 2011-06-22 | 2011-06-22 | Real time estimation method of hypocentral region of giant earthquake |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013007728A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013047008A1 (en) * | 2011-09-26 | 2015-03-26 | 日本電気株式会社 | Seismic intensity estimation device, seismic intensity estimation method, and program |
CN110727026A (en) * | 2019-10-10 | 2020-01-24 | 太原理工大学 | An Inelastic Displacement Ratio Spectral Model Based on Earthquake-Tsunami Continuous Action |
CN116184497A (en) * | 2023-02-27 | 2023-05-30 | 国家海洋环境预报中心 | Quick estimation method for characteristic parameters of earthquake tsunami initial field |
CN118377057A (en) * | 2024-04-26 | 2024-07-23 | 国家海洋环境预报中心 | Worldwide earthquake and tsunami refinement numerical forecasting method |
CN119414453A (en) * | 2025-01-07 | 2025-02-11 | 厦门帝嘉科技股份有限公司 | Earthquake early warning system based on Haizhengtong platform |
-
2011
- 2011-06-22 JP JP2011151258A patent/JP2013007728A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013047008A1 (en) * | 2011-09-26 | 2015-03-26 | 日本電気株式会社 | Seismic intensity estimation device, seismic intensity estimation method, and program |
CN110727026A (en) * | 2019-10-10 | 2020-01-24 | 太原理工大学 | An Inelastic Displacement Ratio Spectral Model Based on Earthquake-Tsunami Continuous Action |
CN110727026B (en) * | 2019-10-10 | 2021-05-28 | 太原理工大学 | An Inelastic Displacement Ratio Spectral Model Based on Earthquake-Tsunami Continuous Action |
CN116184497A (en) * | 2023-02-27 | 2023-05-30 | 国家海洋环境预报中心 | Quick estimation method for characteristic parameters of earthquake tsunami initial field |
CN116184497B (en) * | 2023-02-27 | 2023-09-08 | 国家海洋环境预报中心 | Quick estimation method for characteristic parameters of earthquake tsunami initial field |
CN118377057A (en) * | 2024-04-26 | 2024-07-23 | 国家海洋环境预报中心 | Worldwide earthquake and tsunami refinement numerical forecasting method |
CN119414453A (en) * | 2025-01-07 | 2025-02-11 | 厦门帝嘉科技股份有限公司 | Earthquake early warning system based on Haizhengtong platform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Satriano et al. | Earthquake early warning: Concepts, methods and physical grounds | |
Lancieri et al. | A Bayesian approach to the real‐time estimation of magnitude from the early P and S wave displacement peaks | |
Khedo et al. | An inland Wireless Sensor Network system for monitoring seismic activity | |
JP5905646B2 (en) | Tsunami monitoring system | |
US11885921B2 (en) | Real-time array-based seismic source location | |
JP2013007728A (en) | Real time estimation method of hypocentral region of giant earthquake | |
Liu et al. | Visualized localization and tracking of debris flow movement based on infrasound monitoring | |
JP5007391B2 (en) | Tsunami source estimation method, tsunami height prediction method, and related technologies | |
JP5126143B2 (en) | Earthquake motion prediction system | |
JP2016085206A (en) | Tsunami monitoring system | |
JP2014169960A (en) | Method of predicting arrival time of principal shock of earthquake | |
Li et al. | Estimating rupture dimensions of three major earthquakes in Sichuan, China, for early warning and rapid loss estimates | |
RU2464594C2 (en) | Method of estimating main characteristics of anticipated strong tsunamigenic earthquake and system for realising said method | |
Fang et al. | Epicenter and magnitude of large earthquake determined from high-rate GPS observations: A case study of the 2008 M 8.0 Wenchuan earthquake | |
KR20220036608A (en) | System and Method for predicting functional stop of power facility based on earthquake early warning | |
JP2019086480A (en) | Earthquake warning system | |
JP4868471B2 (en) | Real-time earthquake risk prediction method | |
JP4506625B2 (en) | Earthquake motion prediction system using real-time earthquake information | |
Zollo et al. | Earthquake early warning system in southern Italy | |
JP4518551B2 (en) | Real-time earthquake risk prediction method | |
Cannavò et al. | Modeling ground deformation associated with the destructive earthquakes occurring on Mt. Etna's southeastern flank in 1984 | |
Peng et al. | A τ c magnitude estimation of the 20 April 2013 Lushan earthquake, Sichuan, China | |
JP2006105862A5 (en) | ||
Kawamoto et al. | Real-time GNSS analysis system REGARD: An overview and recent results | |
Jin et al. | Progress of the earthquake early warning system in Fujian, China |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140902 |