[go: up one dir, main page]

JP2013006218A - Manufacturing method for bearing outer ring - Google Patents

Manufacturing method for bearing outer ring Download PDF

Info

Publication number
JP2013006218A
JP2013006218A JP2012184983A JP2012184983A JP2013006218A JP 2013006218 A JP2013006218 A JP 2013006218A JP 2012184983 A JP2012184983 A JP 2012184983A JP 2012184983 A JP2012184983 A JP 2012184983A JP 2013006218 A JP2013006218 A JP 2013006218A
Authority
JP
Japan
Prior art keywords
peripheral surface
intermediate material
outer ring
inner peripheral
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012184983A
Other languages
Japanese (ja)
Inventor
Kazuto Kobayashi
一登 小林
Hiroshi Koyama
寛 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012184983A priority Critical patent/JP2013006218A/en
Publication of JP2013006218A publication Critical patent/JP2013006218A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • B21H1/12Making articles shaped as bodies of revolution rings of restricted axial length rings for ball or roller bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/04Making machine elements ball-races or sliding bearing races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/48Shaping by deformation without removing material by extrusion, e.g. of metallic profiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49679Anti-friction bearing or component thereof
    • Y10T29/49689Race making

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Abstract

【課題】背面組み合わせ型の複列アンギュラ型玉軸受を構成する外輪3を、円柱状の素材10を塑性変形させる事により造る場合に、両外輪軌道2、2に、この素材10のうちで清浄度の高い中間部金属材料29を露出させられる製造方法を実現する。
【解決手段】上記素材10に、(A)→(B)の据え込み加工と、(C)→(D)の後方押出加工と、(D)→(E)の打ち抜き加工と、(E)→(F)のローリング加工と、仕上加工とを順次施す事により、上記外輪3とする。上記据え込み加工で造る第一中間素材11aの外径を、後方押出加工に使用するダイス13の内周面の内周面側大径部18の内径以下で内周面側小径部19の内径よりも大きくする。そして、上記後方押出加工で、上記第一中間素材11aの外径寄り部分を内周面側傾斜部20に全周に亙り引っ掛けた状態で、この第一中間素材11aをパンチ14の先端面により上記ダイス13の底部に向けて押し込む。
【選択図】図1
When an outer ring 3 constituting a back-row combined double-row angular ball bearing is manufactured by plastic deformation of a cylindrical material 10, both outer ring raceways 2 and 2 are cleaned by the material 10 A manufacturing method capable of exposing the intermediate metal material 29 having a high degree is realized.
(A) → (B) upsetting process, (C) → (D) backward extrusion process, (D) → (E) punching process, (E) → The outer ring 3 is formed by sequentially performing the rolling process and finishing process of (F). The outer diameter of the first intermediate material 11a produced by the upsetting process is equal to or smaller than the inner diameter of the inner peripheral surface side large diameter portion 18 of the inner peripheral surface of the die 13 used for the backward extrusion process. Larger than. In the rear extrusion process, the first intermediate material 11a is pushed by the tip end surface of the punch 14 in a state in which the outer diameter portion of the first intermediate material 11a is hooked on the inner peripheral surface side inclined portion 20 over the entire circumference. Push toward the bottom of the die 13.
[Selection] Figure 1

Description

この発明は、自動車、工作機械、産業機械等、各種機械装置の回転支持部に組み込む複列アンギュラ型の転がり軸受を構成する軸受外輪の製造方法の改良に関する。本発明の製造方法の対象となる軸受外輪は、内周面の軸方向2個所位置に複列の背面組み合わせ型の外輪軌道を備えたものである。この様な軸受外輪は、外周面が、軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が、軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である。尚、軸方向に関して外径が実質的に変化しない円筒面とは、軸方向両端縁部に設けた面取り部を除き、外径が変化しない形状を言う。又、本発明の製造方法の対象となる軸受外輪は、複列アンギュラ型であれば、玉軸受用の外輪に限らず、円すいころ軸受用の外輪も含まれる。   The present invention relates to an improvement in a manufacturing method of a bearing outer ring constituting a double-row angular type rolling bearing incorporated in a rotation support portion of various machines such as automobiles, machine tools, industrial machines, and the like. The bearing outer ring which is the object of the manufacturing method of the present invention is provided with double-row rear combination type outer ring raceways at two axial positions on the inner peripheral surface. In such a bearing outer ring, the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface has the smallest inner diameter in the axial direction intermediate portion. However, the shape is inclined in a direction in which the inner diameter gradually increases as it goes toward both ends in the axial direction. The cylindrical surface whose outer diameter does not substantially change in the axial direction refers to a shape in which the outer diameter does not change except for chamfered portions provided at both end edges in the axial direction. Moreover, if the bearing outer ring | wheel used as the object of the manufacturing method of this invention is a double row angular type, it will not be restricted to the outer ring | wheel for ball bearings, but the outer ring | wheel for tapered roller bearings is also included.

各種機械装置の回転支持部分を構成する為に、図7に示す様な、背面組み合わせ型の複列アンギュラ型玉軸受1が、広く使用されている。この複列アンギュラ型玉軸受1は、内周面に複列の外輪軌道2、2を備えた外輪3と、それぞれの外周面に内輪軌道4を形成した1対の内輪5、5と、これら両外輪軌道2、2と両内輪5、5の内輪軌道4、4との間にそれぞれ複数個ずつ転動自在に設けられた玉6、6と、これら各玉6、6を保持する為の1対の保持器7、7とを備える。この様な複列アンギュラ型玉軸受1は、例えば、上記外輪3をハウジング8に内嵌固定すると共に、上記両内輪5、5を回転軸9に外嵌固定する。そして、このハウジング8の内側にこの回転軸9を、回転自在に支持する。   In order to constitute the rotation support part of various mechanical devices, a double-row angular ball bearing 1 of a rear combination type as shown in FIG. 7 is widely used. This double-row angular ball bearing 1 includes an outer ring 3 having double-row outer ring raceways 2 and 2 on its inner peripheral surface, a pair of inner rings 5 and 5 having inner ring raceways 4 formed on their outer peripheral surfaces, A plurality of balls 6, 6 are provided between the outer ring raceways 2, 2 and the inner ring raceways 4, 4 of the inner races 5, 5, respectively, for holding these balls 6, 6. A pair of cages 7 and 7 are provided. In such a double-row angular ball bearing 1, for example, the outer ring 3 is fitted and fixed to the housing 8, and the inner rings 5 and 5 are fitted and fixed to the rotary shaft 9. The rotating shaft 9 is rotatably supported inside the housing 8.

この様な複列アンギュラ型玉軸受1を構成する、上記外輪3及び上記両内輪5、5は、例えば特許文献1〜5等に記載されて周知の様に、鍛造加工、ローリング加工、切削乃至研削加工を施す事により、所定の形状及び寸法に加工している。例えば、上記外輪3に関しては、従来から、図8に示す様な工程で造っていた。先ず、この従来の軸受外輪の製造方法に就いて説明する。   The outer ring 3 and the both inner rings 5 and 5 constituting such a double-row angular ball bearing 1 are described in, for example, Patent Documents 1 to 5, etc., forging, rolling, cutting or cutting. By grinding, it is processed into a predetermined shape and size. For example, the outer ring 3 has been conventionally manufactured by a process as shown in FIG. First, the conventional method for manufacturing a bearing outer ring will be described.

この図8に示した、従来から知られている軸受外輪の製造方法では、先ず、(A)に示した様な円柱状の素材10を、長尺な原材料を所定長さに切断する事により得る。
次いで、この素材10に、1対の金型の互いに対向する押圧面同士の間で軸方向に押し潰す、据え込み加工を施す事により、(B)に示す様な、外周面が凸円弧面である第一中間素材11とする。
次いで、この第一中間素材11に、(C)→(D)に示した後方押出加工を施す事により、(D)に示した第二中間素材12とする。
In the conventionally known method for manufacturing a bearing outer ring shown in FIG. 8, first, a cylindrical material 10 as shown in (A) is cut into a predetermined length from a long raw material. obtain.
Next, the material 10 is subjected to upsetting by crushing in the axial direction between the pressing surfaces facing each other in a pair of molds, so that the outer peripheral surface is a convex arc surface as shown in FIG. The first intermediate material 11 is
Next, the second intermediate material 12 shown in (D) is obtained by subjecting the first intermediate material 11 to backward extrusion shown in (C) → (D).

上記後方押出加工は、ダイス13とパンチ14との間で上記第一中間素材11の径方向中央部分を軸方向に押し潰すと共に、径方向外寄り部分を上記パンチ14の押し込み方向後方に塑性変形させる事により行う。上記ダイス13は有底円筒状で、円形の底板部15と、この底板部15の外周縁部から上方に立上った周壁部16とを備える。このうちの底板部15の外形寄り部分には環状凹溝17を、全周に亙って形成している。又、上記周壁部16の内周面は、開口部寄り(中間部乃至上端部)の内周面側大径部18と、上記底板部15寄り(下端部)の内周面側小径部19とを、軸方向中間部底板部寄り部分の内周面側傾斜部20により連続させた、段付形状としている。このうちの内周面側小径部19は、上記環状凹溝17の外径寄り内周面と単一円筒面上に位置している。又、上記パンチ14は、外周面を、先端寄り(下半部)の外周面側小径部21と、基端寄り(上半部)の外周面側大径部22とを、軸方向中間部の外周面側傾斜部23により連続させた、段付形状としている。それぞれが上述の様に構成される上記ダイス13とパンチ14とは、プレス加工機のテーブルとラムとに、互いに同心に支持固定する。即ち、上記ダイス13をこのテーブルの上面に、上記パンチ14を上記ラムの下端面に、それぞれ固定する。   In the backward extrusion process, the radially central portion of the first intermediate material 11 is crushed in the axial direction between the die 13 and the punch 14, and the radially outward portion is plastically deformed backward in the pushing direction of the punch 14. To do. The die 13 has a bottomed cylindrical shape, and includes a circular bottom plate portion 15 and a peripheral wall portion 16 rising upward from an outer peripheral edge portion of the bottom plate portion 15. An annular groove 17 is formed over the entire circumference of the bottom plate 15 near the outer shape. Further, the inner peripheral surface of the peripheral wall portion 16 has an inner peripheral surface side large diameter portion 18 near the opening (intermediate portion or upper end portion) and an inner peripheral surface side small diameter portion 19 near the bottom plate portion 15 (lower end portion). Are made into a stepped shape that is made continuous by the inner peripheral surface side inclined portion 20 in the portion near the bottom plate portion in the axial direction. Of these, the inner peripheral surface side small-diameter portion 19 is located on the inner peripheral surface near the outer diameter of the annular groove 17 and on a single cylindrical surface. Further, the punch 14 has an outer peripheral surface of an outer peripheral surface side small-diameter portion 21 near the distal end (lower half portion) and an outer peripheral surface-side large diameter portion 22 near the base end (upper half portion). The stepped shape is made continuous by the outer peripheral surface side inclined portion 23. The die 13 and the punch 14 each configured as described above are supported and fixed concentrically with each other on a table and a ram of a press machine. That is, the die 13 is fixed to the upper surface of the table, and the punch 14 is fixed to the lower end surface of the ram.

上記後方押出加工を行う際には、上記ラムと共に上記パンチ14を上昇させた状態で、上記第一中間素材11を上記ダイス13内にセットする。従来の製造方法の場合、この第一中間素材11の外径は、少なくとも下端寄り部分で上記内周面側小径部19内に入り込む部分で、この内周面側小径部19の内径よりも小さかった。従って、上記第一中間素材11を上記ダイス13内にセットした状態では、(C)に示す様に、この第一中間素材11の下面が上記底板部15の上面で上記環状凹溝17の内側部分に当接する。そこで、この状態から上記ラムにより上記パンチ14を下降させて、(D)に示す様に、このパンチ14の先端面と上記ダイス13の底板部15の上面との間で、上記第一中間素材11の中央部を軸方向に押し潰す。   When performing the backward extrusion process, the first intermediate material 11 is set in the die 13 with the punch 14 raised together with the ram. In the case of the conventional manufacturing method, the outer diameter of the first intermediate material 11 is smaller than the inner diameter of the inner peripheral surface side small-diameter portion 19 at least at a portion near the lower end and enters the inner peripheral surface-side small diameter portion 19. It was. Therefore, in a state where the first intermediate material 11 is set in the die 13, the lower surface of the first intermediate material 11 is the upper surface of the bottom plate portion 15 and the inner side of the annular groove 17 as shown in FIG. Abuts the part. Therefore, the punch 14 is lowered by the ram from this state, and the first intermediate material is placed between the tip surface of the punch 14 and the upper surface of the bottom plate portion 15 of the die 13 as shown in FIG. 11 is crushed in the axial direction.

この押し潰しにより、この底板部15の上面と上記パンチ14の先端面との間から径方向外方に押し出された金属材料は、上記第一中間素材11の径方向外寄り部分に存在する金属材料と共に、上記パンチ14の押し込み方向後方(上方)に移動する。この様にしてこのパンチ14の押し込み方向後方に移動した金属材料は、このパンチ14の外周面と前記周壁部16の内周面との形状に倣って、内外両周面が段付円筒面である、段付円筒状となる。又、上記金属材料の一部は、上記環状凹溝17内に入り込んで、当該部分の形状を糸底状とする。この様にして行う上記後方押出加工により、(D)に示す様な、内外両周面が段付円筒面で全体が有底円筒状の、前記第二中間素材12を得られる。   By this crushing, the metal material pushed radially outward from between the upper surface of the bottom plate portion 15 and the tip end surface of the punch 14 is a metal present in the radially outward portion of the first intermediate material 11. It moves to the rear (upward) in the pushing direction of the punch 14 together with the material. In this way, the metal material that has moved rearward in the pressing direction of the punch 14 follows the shape of the outer peripheral surface of the punch 14 and the inner peripheral surface of the peripheral wall portion 16, and both the inner and outer peripheral surfaces are stepped cylindrical surfaces. It becomes a stepped cylindrical shape. A part of the metal material enters the annular groove 17 and the shape of the part is a thread bottom. As a result of the backward extrusion performed in this way, the second intermediate material 12 having both a cylindrical inner surface and a bottomed cylindrical surface as shown in FIG.

次いで、この様な第二中間素材12に、この第二中間素材12の底部24を打ち抜き除去する打ち抜き加工を施す事により、(E)に示す様な、段付円筒状の第三中間素材25とする。この打ち抜き加工は、プラス加工機により打ち抜きパンチを、上記第二中間素材12に突き通す事により行う。   Next, the second intermediate material 12 is subjected to a punching process for punching and removing the bottom portion 24 of the second intermediate material 12 to thereby form a stepped cylindrical third intermediate material 25 as shown in FIG. And This punching is performed by piercing the second intermediate material 12 with a punching punch using a plus processing machine.

この様にして、上記第三中間素材25を造った後、この第三中間素材25に冷間でローリング加工(CRF)を施して、(F)に示す様な第四中間素材26とする。この冷間ローリング加工では、例えば上記第三中間素材25を、この第三中間素材25の(大径側の)外径と一致する内径を有し、内周面を円筒面とした外径側ローラに内嵌する。そして、上記第三中間素材25の内径よりも十分に小さな外径を有し、外周面の母線形状を上記第四中間素材26の内周面の母線形状に見合う(凹凸が逆になった)形状とした内径側ローラを、上記第三中間素材25の内周面に押し付ける。そして、この内径側ローラを回転させつつ、この第三中間素材25の内周面に押し付ける。上記外径側ローラは、回転のみ自在に(径方向の変位を阻止された状態で)支持されているので、上記内径側ローラの回転に伴って上記第三中間素材25が、上記外径側ローラと共に回転する。この為、この第三中間素材25の内周面に上記内径側ローラの外周面の母線形状が全周に亙って転写されると共に、この第三中間素材25の外周面が円筒面に加工される。   After the third intermediate material 25 is made in this way, the third intermediate material 25 is cold rolled (CRF) to form a fourth intermediate material 26 as shown in FIG. In this cold rolling process, for example, the third intermediate material 25 has an inner diameter that matches the outer diameter of the third intermediate material 25 (on the large diameter side), and the outer peripheral side has an inner peripheral surface as a cylindrical surface. Fits into the roller. The outer diameter of the third intermediate material 25 is sufficiently smaller than the inner diameter of the third intermediate material 25, and the bus bar shape of the outer peripheral surface matches the bus bar shape of the inner peripheral surface of the fourth intermediate material 26 (unevenness is reversed). The shaped inner diameter side roller is pressed against the inner peripheral surface of the third intermediate material 25. Then, the inner diameter side roller is pressed against the inner peripheral surface of the third intermediate material 25 while rotating. Since the outer diameter side roller is supported for rotation only (in a state where radial displacement is prevented), the third intermediate material 25 is moved to the outer diameter side as the inner diameter side roller rotates. Rotates with the roller. For this reason, the bus bar shape of the outer peripheral surface of the inner diameter side roller is transferred to the inner peripheral surface of the third intermediate material 25 over the entire periphery, and the outer peripheral surface of the third intermediate material 25 is processed into a cylindrical surface. Is done.

尚、上記ローリング加工は、互いに反対方向に回転する1対のローラ同士の間に上記第三中間素材25の一部を挟持し、これら両ローラを互いに近付く方向に押圧しつつ、これら両ローラの外周面の形状を上記第三中間素材25の内外両周面に転写する状態で行う場合もある。何れにしても、上記(F)に示す様な第四中間素材26を得られる。この第四中間素材26は、外周面が軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である。   In the rolling process, a part of the third intermediate material 25 is sandwiched between a pair of rollers rotating in opposite directions, and the two rollers are pressed in a direction approaching each other. In some cases, the shape of the outer peripheral surface is transferred to both the inner and outer peripheral surfaces of the third intermediate material 25. In any case, the fourth intermediate material 26 as shown in the above (F) can be obtained. In the fourth intermediate material 26, the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface has the smallest inner diameter in the axial intermediate portion, and the inner diameter increases toward both axial end portions. Is a shape inclined in the direction of gradually increasing.

この様にして得られた、上記第四中間素材26には、必要な仕上加工を施す事により、前述の図7に示した様な、複列アンギュラ型玉軸受1を構成する外輪3として完成する。即ち、上記第四中間素材26のうちの余肉部を削り取る事で、図8の(F)及び図9に鎖線で示した形状の外輪3とする。又、この外輪3の内周面に形成した1対の外輪軌道2、2部分に、研削加工や超仕上加工等、これら両外輪軌道2、2の表面の性状を整える加工を施す。   The fourth intermediate material 26 thus obtained is finished as the outer ring 3 constituting the double-row angular ball bearing 1 as shown in FIG. To do. That is, by cutting off the surplus portion of the fourth intermediate material 26, the outer ring 3 having the shape shown by the chain line in FIG. Further, the pair of outer ring raceways 2 and 2 formed on the inner peripheral surface of the outer ring 3 is subjected to processing for adjusting the surface properties of both the outer ring raceways 2 and 2 such as grinding and super finishing.

ところで、上記外輪3を造る為の、前記素材10は、鉄鋼メーカーで押し出し成形された、断面円形の長尺材を所定長さに切断する事で造られた、円柱状のものを使用する。この様にして得られる円柱状の素材10の組成(清浄度)は均一でない事が、特許文献6に記載される等により、従来から知られている。即ち、上記素材10の中央部40%の範囲(中心から半径の40%までの中央寄り円柱状部分)は、非金属介在物が存在し易い事が、上記特許文献6に記載される等により、従来から知られている。又、上記素材10の外径寄り20%の範囲(中心から半径の80%よりも外周面側に存在する円筒状部分)に関しても、酸化物や非金属介在物が存在し易い等により、清浄度が低い事が知られている。そして、中心寄り、外周面寄り、何れの部分に存在する金属材料にしても、清浄度が低い金属材料が、上記外輪3の内周面に設けた外輪軌道2、2のうちで、特に玉6、6(図7)の転動面が転がり接触する部分に露出すると、この部分の転がり疲れ寿命の確保が難しくなる。   By the way, the said raw material 10 for making the said outer ring | wheel 3 uses the column-shaped thing produced by cut | disconnecting the elongate material of the cross-sectional circular shape extruded by the steel manufacturer to predetermined length. It has been conventionally known that the composition (cleanliness) of the columnar material 10 obtained in this way is not uniform, as described in Patent Document 6. That is, in the range of 40% of the central portion of the material 10 (a columnar portion near the center from the center to 40% of the radius), non-metallic inclusions are likely to be present, as described in Patent Document 6 above. Conventionally known. In addition, the range of 20% closer to the outer diameter of the material 10 (cylindrical portion existing on the outer peripheral surface side than 80% of the radius from the center) is also clean due to the presence of oxides and non-metallic inclusions. It is known that the degree is low. Of the outer ring raceways 2, 2 provided on the inner peripheral surface of the outer ring 3, the metal material having a low cleanliness is a metal material that is present in any part of the outer ring 3, particularly the ball. When the rolling surfaces of 6 and 6 (FIG. 7) are exposed to the portion that comes into contact with rolling, it becomes difficult to ensure the rolling fatigue life of this portion.

これらの事を考慮し、且つ、素材中の酸化物や非金属介在物の分布のばらつきや、製造作業時に発生する(押圧力等の)各種ばらつきを考慮した場合、上記素材10の中央部50%の範囲、及び、上記素材10の外径寄り30%の範囲に存在する金属材料が、上記両外輪軌道2、2のうちで、少なくとも転動面が転がり接触する部分に露出しない様にする事が好ましい。言い換えれば、上記両外輪軌道3、3のうちの少なくとも転動面が転がり接触する部分には、上記素材10のうちで、中心からの半径が50〜70%の範囲である、中間円筒状部分27{図8の(A)に斜格子を付した部分。他の、図1〜6、図8の(B)〜(F)、図9に関しても、斜格子を付した部分は、上記中間円筒状部分27に存在した金属材料(中間部金属材料29)により構成されている事を表している。}に存在する金属材料を露出させる事が好ましい。   In consideration of these matters, and taking into account variations in the distribution of oxides and non-metallic inclusions in the material and various variations (such as pressing force) that occur during manufacturing operations, the central portion 50 of the material 10 is used. %, And the metal material existing in the range of 30% of the outer diameter of the material 10 is not exposed to at least the portion of the outer ring races 2 and 2 where the rolling contact surface is in rolling contact. Things are preferable. In other words, an intermediate cylindrical portion having a radius from the center in the range of 50 to 70% in the material 10 is a portion of the outer ring raceways 3 and 3 where at least the rolling contact surface is in rolling contact. 27 {A portion in FIG. 1 to 6 and FIGS. 8B to 8F and FIG. 9 also, the portion with the oblique lattice is the metal material (intermediate metal material 29) existing in the intermediate cylindrical portion 27. It represents that it is composed. } Is preferably exposed.

ところが、本発明の製造方法の対象となる様な、軸方向中間部の内径が小さく、内周面の軸方向2個所位置でこの内径が小さくなった部分の両側に複列の外輪軌道を備えた外輪3を鍛造加工により造る場合、上記中間円筒状部分27に存在する金属材料を上記両軌道面に露出させる事が難しい。例えば、前述の図8に示した様な方法で、上記図9に鎖線で示した外輪3を造ると、上記素材10中の各部の金属材料、即ち、中心から半径の50%までの中央寄り円柱状部分に存在する中心側金属材料28と、中心からの半径が50〜70%の範囲である、上記中間円筒状部分27に存在する中間部金属材料29と、外径寄り30%の範囲の外径寄り円筒状部分に存在する外径側金属材料30とは、上記図9に示す様に、上記外輪3中に分布する。この外輪3は、前述の様に、鍛造加工により図9に実線で示した第四中間素材26を造った後、切削加工及び研削加工により、この図9に鎖線で示す状態にまで上記第四中間素材26を削り取り、上記外輪3として完成する。   However, the inner diameter of the intermediate portion in the axial direction, which is the object of the manufacturing method of the present invention, is small, and two rows of outer ring raceways are provided on both sides of the portion where the inner diameter is reduced at two axial positions on the inner peripheral surface. When the outer ring 3 is made by forging, it is difficult to expose the metal material present in the intermediate cylindrical portion 27 on the both raceway surfaces. For example, when the outer ring 3 shown by the chain line in FIG. 9 is made by the method shown in FIG. 8, the metal material of each part in the material 10, that is, near the center from the center to 50% of the radius. The center side metallic material 28 present in the cylindrical part, the intermediate part metallic material 29 present in the intermediate cylindrical part 27 having a radius from the center in the range of 50 to 70%, and the range closer to the outer diameter 30%. The outer diameter side metallic material 30 existing in the cylindrical portion near the outer diameter is distributed in the outer ring 3 as shown in FIG. As described above, after the fourth intermediate material 26 shown by the solid line in FIG. 9 is formed by forging, the outer ring 3 is cut into the state shown by the chain line in FIG. 9 by cutting and grinding. The intermediate material 26 is scraped off to complete the outer ring 3.

この様な第四中間素材26と外輪3とを示した図9中、斜格子で示した、上記中間円筒状部分27に存在する中間部金属材料29が、1対の外輪軌道2、2のうちで、少なくとも玉の転動面が転がり接触する部分に露出すれば、これら両外輪軌道2、2の転がり疲れ寿命を確保し、上記外輪3を含む、前記複列アンギュラ型玉軸受1の耐久性確保を図り易くなる。ところが、上記図9から明らかな通り、従来の製造方法により上記外輪3を造ると、上記中央寄り円柱状部分の中心側金属材料28が、上記両外輪軌道2、2のうちの一方(図9の下方)の外輪軌道2の表面全体に露出する。例えば、図9の矢印α、αは、各玉6、6(図7参照)の接触角を40度(接触角の余角である中心軸に対する角度=50度)とした場合に、上記各玉6、6から上記両外輪軌道2、2に加わる荷重の作用方向を示している。上記外輪3の断面形状を表す上記図9の鎖線上で、上記各矢印α、αが指している部分に上記中間部金属材料29が存在すれば、上記両外輪軌道2、2の転がり疲れ寿命を確保し易いが、図9の下方の内輪軌道2に関しては、上記図9の鎖線上で上記各矢印α、αが指している部分に、中心側金属材料28が存在する。この為、従来から知られている軸受外輪の製造方法では、上記複列アンギュラ型玉軸受1の耐久性確保を図る為の設計の自由度が限られる。   In FIG. 9 showing such a fourth intermediate material 26 and the outer ring 3, the intermediate metal material 29 present in the intermediate cylindrical portion 27, which is indicated by a diagonal lattice, is formed by a pair of outer ring raceways 2, 2. Among these, if at least the rolling surface of the ball is exposed to the rolling contact portion, the rolling fatigue life of both the outer ring raceways 2 and 2 is secured, and the durability of the double row angular ball bearing 1 including the outer ring 3 is ensured. It is easy to ensure the performance. However, as apparent from FIG. 9, when the outer ring 3 is manufactured by the conventional manufacturing method, the center-side metal material 28 of the central cylindrical portion is one of the outer ring raceways 2 and 2 (FIG. 9). Exposed to the entire surface of the outer ring raceway 2. For example, the arrows α and α in FIG. 9 indicate that the contact angles of the balls 6 and 6 (see FIG. 7) are 40 degrees (the angle with respect to the central axis that is the remainder of the contact angle = 50 degrees). The direction of action of the load applied from the balls 6 and 6 to the outer ring races 2 and 2 is shown. If the intermediate metal material 29 is present in the portion indicated by the arrows α and α on the chain line in FIG. 9 representing the cross-sectional shape of the outer ring 3, the rolling fatigue life of the outer ring raceways 2 and 2 is achieved. However, with respect to the inner ring raceway 2 in the lower part of FIG. 9, the center side metal material 28 exists in the part indicated by the arrows α and α on the chain line in FIG. 9. For this reason, the conventionally known methods for manufacturing a bearing outer ring limit the degree of freedom in design for ensuring the durability of the double-row angular ball bearing 1.

特開平9−176740号公報JP-A-9-176740 特開平9−280255号公報JP-A-9-280255 特開平11−140543号公報JP-A-11-140543 特開2002−79347号公報JP 2002-79347 A 特開2003−230927号公報JP 2003-230927 A 特開2006−250317号公報JP 2006-250317 A

本発明は、上述の様な事情に鑑みて、内周面の軸方向中間部の内径が両側部分の内径よりも小さく、且つ、この内径が小さくなった部分を挟む軸方向2個所位置に複列の外輪軌道を備えた軸受外輪を、円柱状の素材を塑性変形させる事により造る場合に、上記両外輪軌道のうち、少なくとも転動体荷重が作用する部分に、素材のうちで清浄度の高い中間円筒状部分の金属材料を露出させられる軸受外輪の製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has an inner diameter in the axial direction intermediate portion of the inner peripheral surface that is smaller than the inner diameters of both side portions, and is positioned at two positions in the axial direction across the portion where the inner diameter is reduced. When a bearing outer ring having an outer ring raceway in a row is made by plastically deforming a cylindrical material, at least a portion where the rolling element load acts on both outer ring raceways, the cleanliness is high among the materials. The invention was invented to realize a method of manufacturing a bearing outer ring that can expose the metal material of the intermediate cylindrical portion.

本発明の軸受外輪の製造方法のうち、請求項1に記載した製造方法は、前述の図8に示した従来から知られている軸受外輪の製造方法と同様に、円柱状の素材に、据え込み加工と、後方押出加工と、打ち抜き加工と、ローリング加工と、仕上加工とを順次施す事により、内周面の軸方向2個所位置に複列の背面組み合わせ型の外輪軌道を備えた軸受外輪とする。
そして、上記据え込み加工では、上記素材を、1対の金型の互いに対向する押圧面同士の間で軸方向に押し潰して、第一中間素材とする。
又、上記後方押出加工では、ダイスとパンチとの間で上記第一中間素材の中央部を軸方向に押し潰す。このうちのダイスは、有底円筒状で、内周面を、開口部寄りの内周面側大径部と底部寄りの内周面側小径部とを軸方向中間部の内周面側傾斜部により連続させた段付形状としている。又、上記パンチは、外周面を、先端寄りの外周面側小径部と基端寄りの外周面側大径部とを軸方向中間部の外周面側傾斜部により連続させた段付形状としている。上記後方押出加工では、この様なパンチの先端面と上記ダイスの底板部との間で上記第一中間素材の中央部を軸方向に押し潰す。そして、この押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材の径方向外寄り部分に存在する金属材料と共に、上記パンチの押し込み方向後方に移動させて、内外両周面が段付円筒面で全体が有底円筒状の第二中間素材とする。
又、上記打ち抜き加工では、上記第二中間素材の底部を打ち抜き除去する事で、内外両周面が段付円筒面で全体が円筒状の第三中間素材とする。
又、上記ローリング加工では、この第三中間素材の内外両周面を塑性変形させて、外周面が軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である第四中間素材とする。軸方向に関して外径が実質的に変化しない事の意味は、前述した通りである。
更に、前記仕上加工では、上記第四中間素材の内周面を削り取る事により、この内周面に上記両外輪軌道を形成する。
Among the methods for manufacturing a bearing outer ring according to the present invention, the manufacturing method described in claim 1 is installed on a cylindrical material in the same manner as the conventionally known method for manufacturing a bearing outer ring shown in FIG. Bearing outer ring with double-row rear combination type outer ring raceway in two axial positions on the inner peripheral surface by sequentially carrying out indentation, backward extrusion, punching, rolling and finishing And
In the upsetting process, the material is crushed in the axial direction between the pressing surfaces of the pair of molds facing each other to obtain a first intermediate material.
In the backward extrusion process, the central portion of the first intermediate material is crushed in the axial direction between the die and the punch. Of these, the die has a bottomed cylindrical shape, and the inner peripheral surface is inclined with the inner peripheral surface side large-diameter portion near the opening and the inner peripheral surface-side small diameter portion near the bottom portion on the inner peripheral surface side in the axial intermediate portion. It is a stepped shape made continuous by the part. In the punch, the outer peripheral surface has a stepped shape in which the outer peripheral surface side small-diameter portion near the distal end and the outer peripheral surface-side large diameter portion near the base end are continuously connected by the outer peripheral surface-side inclined portion in the intermediate portion in the axial direction. . In the backward extrusion process, the central portion of the first intermediate material is crushed in the axial direction between the tip end face of such a punch and the bottom plate portion of the die. Then, the metal material pushed outward in the radial direction along with the crushing is moved rearward in the pushing direction of the punch together with the metal material present in the radially outward portion of the first intermediate material, Both circumferential surfaces are stepped cylindrical surfaces and the whole is a second intermediate material having a bottomed cylindrical shape.
In the punching process, the bottom portion of the second intermediate material is punched and removed, so that the inner and outer peripheral surfaces are stepped cylindrical surfaces and the whole is a cylindrical third intermediate material.
In the rolling process, both the inner and outer peripheral surfaces of the third intermediate material are plastically deformed, and the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface is the intermediate in the axial direction. The fourth intermediate material has the smallest inner diameter and is inclined in a direction in which the inner diameter gradually increases as both side portions of the axial intermediate portion move toward both axial end portions. The meaning that the outer diameter does not substantially change in the axial direction is as described above.
Further, in the finishing process, the outer peripheral raceway is formed on the inner peripheral surface by scraping the inner peripheral surface of the fourth intermediate material.

特に、本発明のうち、請求項1に記載した軸受外輪の製造方法に於いては、前記据え込み加工で造る上記第一中間素材の外径を、上記ダイスの内周面側大径部の内径以下で上記内周面側小径部の内径よりも大きくする。即ち、上記据え込み加工での、前記素材の加工量(押し潰し量)を前述した従来の製造方法の場合よりも多くして、上記第一中間素材の外径を、この従来の方法を実施する場合に造る第一中間素材の外径よりも大きくする。
又、上記後方押出加工では、上記第一中間素材の外径寄り部分を上記ダイスの前記内周面側傾斜部に全周に亙り引っ掛けた状態で、この第一中間素材を上記パンチの先端面により上記ダイスの底部に向けて押し込む。そして、この第一中間素材を外径寄り部分程このダイスの開口部に向かう方向に傾斜した形状に塑性変形させてから、この第一中間素材の中央部を軸方向に押し潰すと共に、この第一中間素材の外径寄り部分を上記パンチの押し込み方向後方に移動させて、上記第二中間素材とする。
In particular, in the bearing outer ring manufacturing method according to the present invention, the outer diameter of the first intermediate material produced by the upsetting process is set so that the inner peripheral surface side large-diameter portion of the die is the outer diameter. The inner diameter is less than the inner diameter and larger than the inner diameter of the inner peripheral surface side small diameter portion. That is, the amount of processing (crushing amount) of the material in the upsetting process is made larger than in the case of the conventional manufacturing method described above, and the outer diameter of the first intermediate material is set to the conventional method. To make it larger than the outer diameter of the first intermediate material.
Further, in the backward extrusion processing, the first intermediate material is placed on the tip end surface of the punch in a state in which the portion near the outer diameter of the first intermediate material is hooked on the inner peripheral surface side inclined portion of the die over the entire circumference. To push toward the bottom of the die. Then, the first intermediate material is plastically deformed into a shape inclined in the direction toward the opening of the die as the portion closer to the outer diameter, and then the central portion of the first intermediate material is crushed in the axial direction, A portion closer to the outer diameter of the one intermediate material is moved rearward in the pressing direction of the punch to obtain the second intermediate material.

又、請求項2に記載した軸受外輪の製造方法の場合には、上記据え込み加工で使用する1対の金型のうちの一方の金型の押圧面を平坦面とすると共に、他方の金型の押圧面の少なくとも外径寄り部分を、外周縁に向かうに従って上記一方の金型の押圧面から遠ざかる方向に傾斜した傾斜面とする。そして、上記据え込み加工で造る第一の中間素材は、その軸方向片面が径方向中央部が外周縁部に対し凹み、軸方向他面が平坦面である形状とする。そして、後方押出加工の際に、この凹んだ面をダイスの底部に対向させる。   In the case of the method for manufacturing a bearing outer ring according to claim 2, the pressing surface of one of the pair of molds used in the upsetting process is made flat and the other mold is used. At least a portion near the outer diameter of the pressing surface of the mold is an inclined surface that is inclined in a direction away from the pressing surface of the one mold as it goes to the outer peripheral edge. And the 1st intermediate material produced by the said upsetting process makes it the shape where the axial direction one side is dented with respect to an outer-periphery edge part in the radial direction, and an other axial direction surface is a flat surface. And in the case of back extrusion, this recessed surface is made to oppose the bottom part of die | dye.

一方、請求項3に記載した軸受外輪の製造方法の場合には、円柱状の素材に、据え込み加工と、前後方同時押出加工と、打ち抜き加工と、ローリング加工と、仕上加工とを順次施す事により、内周面の軸方向2個所位置に複列の背面組み合わせ型の外輪軌道を備えた軸受外輪とする。即ち、上述した請求項1〜2に記載した軸受外輪の製造方法での後方押出加工に代えて、前後方同時押出加工を採用する。上記請求項3に記載した軸受外輪の製造方法の構成は、この前後方同時押出加工を採用している点以外は、上記請求項1に記載した発明と同様である。
上記前後方同時押出加工では、有底円筒状で、底面中央部に深さ寸法の1/2未満の高さ寸法を有する円形凸部を設け、この円形凸部の外周面と内周面との間を円筒状成形空間としたダイスと、このダイスの内径よりも小さな外径を有するパンチとの間で上記第一中間素材の中央部を軸方向に押し潰す。そして、この押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材の径方向外寄り部分に存在する金属材料と共に、上記円筒状成形用空間及び上記パンチの押し込み方向後方でこのパンチの外周面と上記ダイスの内周面との間に存在する円筒状の空間に(同時に)移動させて、円筒部の軸方向中間部内径側に隔壁部を設けた第二中間素材とする。そして、この第二中間素材を、上記請求項1に記載した製造方法の場合と同様にして、軸受外輪に加工する。
On the other hand, in the case of the method for manufacturing a bearing outer ring according to claim 3, an upsetting process, a front / rear coextrusion process, a punching process, a rolling process, and a finishing process are sequentially performed on a cylindrical material. Thus, the bearing outer ring is provided with a double-row rear combination type outer ring raceway at two axial positions on the inner peripheral surface. That is, instead of the backward extrusion process in the method for manufacturing a bearing outer ring described in claims 1 and 2 described above, a front-rear simultaneous extrusion process is employed. The structure of the bearing outer ring manufacturing method described in claim 3 is the same as that of the invention described in claim 1 except that this front-rear simultaneous extrusion is employed.
In the front-rear coextrusion process, a circular convex portion having a bottomed cylindrical shape and having a height dimension less than 1/2 of the depth dimension is provided at the center of the bottom surface, and an outer peripheral surface and an inner peripheral surface of the circular convex portion are provided. The central portion of the first intermediate material is crushed in the axial direction between a die having a cylindrical forming space between the die and a punch having an outer diameter smaller than the inner diameter of the die. Then, the metal material extruded radially outward along with this crushing, together with the metal material present in the radially outward portion of the first intermediate material, the pushing direction of the cylindrical molding space and the punch A second intermediate provided with a partition wall portion on the inner diameter side in the axial direction intermediate portion of the cylindrical portion by being moved (simultaneously) rearward to a cylindrical space existing between the outer peripheral surface of the punch and the inner peripheral surface of the die. The material. Then, the second intermediate material is processed into a bearing outer ring in the same manner as in the manufacturing method described in claim 1.

上述の様に構成する本発明の軸受外輪の製造方法によれば、内周面のうち、内径が最も小さくなった部分を挟んだ、軸方向に離隔した2個所位置に形成した両外輪軌道のうち、少なくとも転動体荷重が作用する部分に、素材のうちで清浄度の高い中間円筒状部分の金属材料を露出させられる。この為、上記両外輪軌道の転がり疲れ寿命を確保し、これら両外輪軌道を備えた軸受外輪を含む、複列転がり軸受の耐久性確保の為の設計の自由度向上を図れる。
又、請求項1に記載した発明を実施する場合に、必要に応じて、請求項2に記載した構成を採用する事で、上記中間円筒状部分の金属材料を上記両外輪軌道の表面部分のより広い範囲に、効果的に露出させられる。
更に、請求項3に記載した発明の軸受外輪の製造方法によれば、上記両外輪軌道に素材のうちで清浄度の高い中間円筒状部分の金属材料を、より十分に配置できて、複列転がり軸受の耐久性確保の為の設計の自由度をより向上させられる。
According to the bearing outer ring manufacturing method of the present invention configured as described above, both outer ring raceways formed at two axially spaced positions sandwiching a portion having the smallest inner diameter on the inner peripheral surface. Among them, the metal material of the intermediate cylindrical portion having a high cleanliness among the materials can be exposed to at least a portion where the rolling element load acts. For this reason, the rolling fatigue life of the both outer ring raceways can be secured, and the degree of freedom in design for ensuring the durability of the double row rolling bearing including the bearing outer ring provided with these outer ring raceways can be improved.
Further, when carrying out the invention described in claim 1, by adopting the configuration described in claim 2 as necessary, the metal material of the intermediate cylindrical portion is made to be the surface portion of the outer ring raceways. It can be effectively exposed to a wider range.
Furthermore, according to the method for manufacturing a bearing outer ring according to the third aspect of the present invention, the metal material of the intermediate cylindrical portion having high cleanliness among the raw materials can be more sufficiently disposed on the both outer ring raceways. The degree of freedom of design for ensuring the durability of the rolling bearing can be further improved.

本発明の軌道輪部材の製造方法の実施の形態の第1例を工程順に、中央寄り円柱状部分の金属材料と、中間円筒状部分の金属材料と、外径寄り円筒状部分の金属材料との分布状況が変化する状況と共に示す、素材乃至第四中間素材、並びに、ダイス及びパンチの断面図。A first example of an embodiment of a method for manufacturing a bearing ring member of the present invention, in the order of steps, a metal material of a cylindrical portion closer to the center, a metal material of an intermediate cylindrical portion, a metal material of a cylindrical portion closer to an outer diameter, Sectional drawing of a raw material thru | or a 4th intermediate material, and a die | dye and a punch shown with the condition where the distribution condition of [2] changes. 第四中間素材の段階での、中央寄り円柱状部分の金属材料と、中間円筒状部分の金属材料と、外径寄り円筒状部分の金属材料との分布状況を示す断面図。Sectional drawing which shows the distribution condition of the metal material of the cylindrical part near the center, the metal material of the intermediate cylindrical part, and the metal material of the cylindrical part near the outer diameter at the stage of the fourth intermediate material. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同じく図2と同様の図。The same figure as FIG. 本発明の実施の形態の第3例をダイス及びパンチを省略した状態で示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example of embodiment of this invention in the state which abbreviate | omitted the dice | dies and the punch. 同じく図2と同様の図。The same figure as FIG. 本発明の製造方法の対象となる軸受外輪を備えたアンギュラ型の複列玉軸受を備えた回転支持部の1例を示す断面図。Sectional drawing which shows an example of the rotation support part provided with the angular type double row ball bearing provided with the bearing outer ring used as the object of the manufacturing method of this invention. 従来から知られている軸受外輪の製造方法を示す、図1と同様の図。The figure similar to FIG. 1 which shows the manufacturing method of the bearing outer ring | wheel conventionally known. 同じく図2と同様の図。The same figure as FIG.

[実施の形態の第1例]
図1〜2は、請求項1にのみ対応する、本発明の実施の形態の第1例を示している。本例の製造方法は、図1の(A)に示した、中炭素鋼、軸受鋼、浸炭鋼の如き鉄系合金等の、塑性加工後に焼き入れ硬化可能な、金属製で円柱状の素材10に、順次、塑性加工或いは打ち抜き加工を施す。そして、(B)に示した第一中間素材11a、(D)に示した第二中間素材12a、(E)に示した第三中間素材25aを経て、(F)に示した第四中間素材26aを得る。更に、この第四中間素材26aに、必要とする切削加工及び研削加工を施して、前述の図7に示した様な複列アンギュラ型玉軸受1を構成する外輪3とする。以下、上記素材10を上記第四中間素材26aに加工する工程に就いて、順番に説明する。尚、以下の加工のうち、(A)→(E)に示した、据え込み加工と、後方押出加工と、打ち抜き加工とは、基本的には総て熱間若しくは温間で行い、(E)→(F)に示したローリング加工は冷間で行うが、小型の外輪3を形成し、しかも金属材料として優れた延性を有するものを使用する場合等、可能であれば、全工程を冷間で行っても良い。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention corresponding to only claim 1. The manufacturing method of this example is a metal cylindrical material that can be quenched and hardened after plastic working, such as an iron-based alloy such as medium carbon steel, bearing steel, and carburized steel, as shown in FIG. 10 is sequentially subjected to plastic working or punching. Then, after passing through the first intermediate material 11a shown in (B), the second intermediate material 12a shown in (D), and the third intermediate material 25a shown in (E), the fourth intermediate material shown in (F). 26a is obtained. Further, the fourth intermediate material 26a is subjected to necessary cutting and grinding to form the outer ring 3 constituting the double row angular ball bearing 1 as shown in FIG. Hereinafter, the process of processing the material 10 into the fourth intermediate material 26a will be described in order. Of the following processes, the upsetting process, the backward extrusion process, and the punching process shown in (A) → (E) are basically performed hot or warm. ) → The rolling process shown in (F) is performed cold, but if possible, the entire process can be cooled if a small outer ring 3 is formed and a metal material having excellent ductility is used. You may go between.

先ず、据え込み工程で、図1の(A)→(B)に示す様に、上記素材10を軸方向に押し潰しつつ外径を拡げ、この素材10を、軸方向中間部が膨らんだ、上記第一中間素材11aとする。この様な据え込み工程の基本的な実施状況に関しては、前述の図8に示した、従来の製造方法での据え込み工程と同様である。但し、本例の場合には、上記据え込み加工で、上記素材10を軸方向に押し潰す、1対の金型の押圧面同士の最接近距離を、上記従来の製造方法の場合よりも短くする。即ち、上記据え込み加工での、上記素材10の加工量(押し潰し量)を、上記従来の製造方法の場合よりも多くする。この為、上記第一中間素材11aの形状は、ビヤ樽型よりも、むしろ厚肉円板状に近くなる。そして、上記据え込み加工により造る上記第一中間素材11aの外径D11を、上記従来の製造方法の途中過程で造る第一中間素材11の外径d11{図8の(B)参照}よりも大きく(D11>d11)している。具体的には、次の後方押出加工に使用するダイス13{図1の(C)、(D)参照}の内周面に形成した内周面側大径部18の内径R18以下で、同じく内周面側小径部19の内径R19よりも大きく(R18≧D11>R19と)する。 First, in the upsetting process, as shown in FIG. 1 (A) → (B), the outer diameter is expanded while the material 10 is crushed in the axial direction, and the intermediate portion in the axial direction swells. The first intermediate material 11a is used. The basic implementation status of such an upsetting process is the same as the upsetting process in the conventional manufacturing method shown in FIG. However, in the case of this example, the closest approach distance between the pressing surfaces of a pair of molds that crush the material 10 in the axial direction in the upsetting process is shorter than in the case of the conventional manufacturing method. To do. That is, the amount of processing (crushing amount) of the material 10 in the upsetting process is made larger than that in the conventional manufacturing method. For this reason, the shape of the first intermediate material 11a is closer to a thick disk rather than a beer barrel. Then, the outer diameter D 11 of the first intermediate material 11a building by upsetting the outer diameter d 11 of the first intermediate material 11 to build in the middle course of the conventional manufacturing method {shown in FIG. 8 (B) see} (D 11 > d 11 ). Specifically, the inner diameter R 18 or less of the inner peripheral surface side large-diameter portion 18 formed on the inner peripheral surface of the die 13 {see (C) and (D) of FIG. 1} used for the subsequent backward extrusion, larger than the inner diameter R 19 of the inner peripheral surface side small-diameter portion 19 similarly (with R 18 ≧ D 11> R 19 ).

上述の様な、上記第一中間素材11aは、次の後方押出工程で、図1の(C)→(D)に示す様に、前記第二中間素材12aに塑性加工する。この様な後方押出工程では、前述した従来の製造方法の場合と同様のダイス13とパンチ14とを使用して、上記第一中間素材11aの径方向中央寄り部分を軸方向に圧縮し、金属材料を径方向外方に移動させつつ、軸方向両側(前後両方向、但し、主として後側)に移動させる。但し、本例の製造方法の場合には、上記第一中間素材11aの外径D11が大きい分だけ、次の様に、加工状況が上記従来の製造方法の場合とは異なる。 As described above, the first intermediate material 11a is plastically processed into the second intermediate material 12a as shown in (C) → (D) of FIG. In such a backward extrusion process, a die 13 and a punch 14 similar to those in the above-described conventional manufacturing method are used to compress the radially central portion of the first intermediate material 11a in the axial direction, While moving the material outward in the radial direction, the material is moved to both sides in the axial direction (both in the front-rear direction, but mainly the rear side). However, in the case of the manufacturing method of this example, only the amount the outer diameter D 11 is greater in the first intermediate material 11a, as follows, not the case processing conditions of the conventional manufacturing method.

即ち、本例の場合、上記後方押出加工では、先ず、図1の(C)に示す様に、上記第一中間素材11aの外径寄り部分を上記ダイス13の内周面の軸方向中間部に設けた内周面側傾斜部20に、全周に亙り引っ掛ける。そして、この状態から、上記パンチ14を下降させ、このパンチの先端面により、上記第一中間素材11aを上記ダイス13の底板部15の上面に向けて押し込む。この押し込みの初期段階、即ち、上記第一中間素材11aの下面中央部が上記底板部15の上面に当接する以前の状態に於いては、この第一中間素材11aが、外径寄り部分程上記ダイス13の開口部に向かう方向(上方)に塑性変形する。   That is, in the case of this example, in the backward extrusion process, first, as shown in FIG. 1C, the portion near the outer diameter of the first intermediate material 11a is set to the intermediate portion in the axial direction of the inner peripheral surface of the die 13. The inner peripheral surface side inclined portion 20 provided on the inner periphery is hooked over the entire periphery. Then, from this state, the punch 14 is lowered, and the first intermediate material 11a is pushed toward the upper surface of the bottom plate portion 15 of the die 13 by the front end surface of the punch. In the initial stage of the pushing, that is, in the state before the lower surface central portion of the first intermediate material 11a comes into contact with the upper surface of the bottom plate portion 15, the first intermediate material 11a has a portion closer to the outer diameter. Plastic deformation occurs in a direction (upward) toward the opening of the die 13.

そして、上記第一中間素材11aの下面中央部が上記底板部15の上面に当接した後、更に上記パンチ14を下降させると、上記第一中間素材11aの中央部を軸方向に押し潰すと共に、押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材11aの径方向外寄り部分に存在する金属材料と共に、主として、上記パンチ14の押し込み方向後方(上方)に移動させる。この様に、このパンチ14の押し込み方向後方に移動した金属材料の内外両周面は、このパンチ14の外周面と上記ダイス13を構成する周壁部16の内周面とに見合った段付形状となる。この結果、上記後方押出加工により、図1の(C)に示した上記第一中間素材11aが、同図の(D)に示した、内外両周面が段付円筒面で全体が有底円筒状の第二中間素材12aとなる。又、上記金属材料の一部を押し込み方向前方に移動させて、上記底板部15の外径寄り部分に形成した環状凹溝17内に進入させる。   Then, after the lower center portion of the first intermediate material 11a contacts the upper surface of the bottom plate portion 15, when the punch 14 is further lowered, the center portion of the first intermediate material 11a is crushed in the axial direction. The metal material pushed out in the radial direction along with the crushing is mainly rearward (upward) in the pushing direction of the punch 14 together with the metal material present in the radially outer portion of the first intermediate material 11a. Move. As described above, the inner and outer peripheral surfaces of the metal material moved rearward in the pressing direction of the punch 14 are stepped shapes corresponding to the outer peripheral surface of the punch 14 and the inner peripheral surface of the peripheral wall portion 16 constituting the die 13. It becomes. As a result, by the backward extrusion process, the first intermediate material 11a shown in FIG. 1 (C) is shown in (D) of FIG. It becomes the cylindrical second intermediate material 12a. Further, a part of the metal material is moved forward in the pushing direction to enter the annular groove 17 formed in a portion near the outer diameter of the bottom plate portion 15.

この様な第二中間素材12aは、図示しないカウンターパンチにより底部24を上方に押圧する等により、上記ダイス13から取り出した後、前述した従来の製造方法の場合と同様の打ち抜き加工とローリング加工とを施す事により、図1の(F)及び図2に示す様な、第四中間素材26aとする。このうちの打ち抜き加工では、上記第二中間素材12aを図示しない受型の内周面に保持した状態で、この第二中間素材12aの内径側に図示しない打ち抜きパンチを押し込み、上記底部24を打ち抜き除去する。この様な打ち抜き工程により、図1の(E)に示す様な、段付円筒状の、前記第三中間素材25aとする。次いで、上記ローリング加工では、図示しない1対のローラによりこの第三中間素材25aの内外両周面をこれら両ローラの周面に見合う形状に塑性変形させて、上記第四中間素材26aとする。   Such a second intermediate material 12a is removed from the die 13 by pressing the bottom 24 upward with a counter punch (not shown), and then punching and rolling as in the conventional manufacturing method described above. As a result, the fourth intermediate material 26a as shown in FIG. 1 (F) and FIG. 2 is obtained. In the punching process, a punching punch (not shown) is pushed into the inner diameter side of the second intermediate material 12a while the second intermediate material 12a is held on the inner peripheral surface of the receiving die (not shown), and the bottom 24 is punched out. Remove. By such a punching step, the third intermediate material 25a having a stepped cylindrical shape as shown in FIG. Next, in the rolling process, the inner and outer peripheral surfaces of the third intermediate material 25a are plastically deformed into a shape corresponding to the peripheral surfaces of both rollers by a pair of rollers (not shown) to obtain the fourth intermediate material 26a.

この第四中間素材26aは、完成後の外輪3{図1の(F)及び図2の鎖線参照}よりも厚肉である。そこで、この第四中間素材26aに、所定の切削(旋削)加工及び研削加工を施して、上記外輪3として完成する。上記図1の(A)〜(F)に、加工の進行に伴う、中心側、中間部、外径側各金属材料28〜30の分布状態の変化状況を、図1の(F)及び図2に、上記第四中間素材26aの段階での、上記各金属材料28〜30の分布状態と完成後の外輪3の断面形状とを示している。   The fourth intermediate material 26a is thicker than the completed outer ring 3 {see FIG. 1 (F) and the chain line in FIG. 2}. Therefore, the fourth intermediate material 26a is subjected to predetermined cutting (turning) processing and grinding processing to complete the outer ring 3. FIGS. 1A to 1F show the change in the distribution state of the metal materials 28 to 30 on the center side, the intermediate portion, and the outer diameter side as the processing proceeds. 2 shows the distribution state of the metal materials 28 to 30 and the cross-sectional shape of the outer ring 3 after completion at the stage of the fourth intermediate material 26a.

これら各図から明らかな通り、本例の外輪3の製造方法によれば、この外輪3の内周面の軸方向に離隔した2個所位置に形成した両外輪軌道2、2のうち、少なくとも転動体荷重が作用する部分に、各図に斜格子で示した、前記素材10のうちで清浄度の高い中間円筒状部分27の中間部金属材料29を露出させられる。この為、上記両外輪軌道2、2の転がり疲れ寿命を確保し、これら両外輪軌道2、2を備えた外輪3を含む車輪支持用転がり軸受ユニットの耐久性確保の為の設計の自由度向上を図れる。   As is apparent from these drawings, according to the method of manufacturing the outer ring 3 of this example, at least the rolling of the outer ring raceways 2 and 2 formed at two positions spaced apart in the axial direction of the inner peripheral surface of the outer ring 3. The intermediate metal material 29 of the intermediate cylindrical portion 27 having a high degree of cleanliness among the raw materials 10, which is indicated by a diagonal grid in each drawing, can be exposed to the portion where the moving body load acts. For this reason, the rolling fatigue life of both the outer ring raceways 2 and 2 is ensured, and the degree of freedom in design for ensuring the durability of the wheel bearing rolling bearing unit including the outer ring 3 provided with the both outer ring raceways 2 and 2 is improved. Can be planned.

[実施の形態の第2例]
図3〜4は、請求項1、2に対応する、本発明の実施の形態の第2例を示している。本例の場合には、図3の(A)→(B)の過程で行う据え込み加工で使用する1対の金型のうちの一方の金型の押圧面を平坦面とすると共に、他方の金型の押圧面の外径寄り部分を、外周縁に向かうに従って上記一方の金型の押圧面から遠ざかる方向に傾斜した傾斜面とする。そして、上記据え込み加工で造る第一中間素材11bの形状を、その軸方向片面を、径方向中央部が外周縁部に対し凹んだ形状とする。本例の場合、この軸方向片面の中央部を平坦面とし、外周寄り部分を部分円すい状凹面とする事で、この軸方向片面を逆円すい台状の凹面としている。これに対して、軸方向他面は平坦面としている。この様な形状を有する上記第一中間素材11bの場合、図3の(B)(C)と前述の図1の(B)(C)とを比較すれば明らかな通り、上記据え込み加工に伴って中心側金属材料28及び中間部金属材料29が径方向外方に変位する程度が、軸方向片面側で著しくなる。
[Second Example of Embodiment]
FIGS. 3-4 has shown the 2nd example of embodiment of this invention corresponding to Claim 1,2. In the case of this example, the pressing surface of one of the pair of dies used in the upsetting process in the process of (A) → (B) in FIG. A portion closer to the outer diameter of the pressing surface of the mold is an inclined surface inclined in a direction away from the pressing surface of the one mold as it goes toward the outer peripheral edge. And let the shape of the 1st intermediate raw material 11b produced by the said upsetting process be the shape where the radial direction center part was dented with respect to the outer-periphery edge part. In the case of this example, the central portion of this one axial surface is a flat surface, and the portion near the outer periphery is a partially conical concave surface, so that this one axial surface is an inverted conical concave surface. On the other hand, the other surface in the axial direction is a flat surface. In the case of the above-described first intermediate material 11b having such a shape, as apparent from comparing (B) and (C) of FIG. 3 with (B) and (C) of FIG. Along with this, the extent to which the central metal material 28 and the intermediate metal material 29 are displaced radially outward becomes significant on one axial side.

この様な、形状が軸方向に関して非対称な、上記第一中間素材11bは、図3の(C)→(D)に示した後方押出加工の際に、上記凹んだ軸方向片面をダイス13の底板部15の上面に対向させる。そして、上述した実施の形態の第1例の場合と同様にして、(C)→(D)に示した後方押出加工を施して第二中間素材12bとし、(D)→(E)に示した打ち抜き加工を施して第三中間素材25bとし、更に、(E)→(F)に示したローリング加工を施して、第四中間素材26bとする。この結果、図3の(F)及び図4と、前述の図1の(F)及び図2とを比較すれば明らかな通り、上記実施の形態の第1例の場合に比べて、清浄である、中間部金属材料29を1対の外輪軌道2、2の表面部分のより広い範囲に、効果的に露出させられる。
その他の部分の構成及び効果は、上記実施の形態の第1例の場合と同様であるから、同等部分には同一符号を付して、重複する説明は省略する。
The first intermediate material 11b having such an asymmetric shape with respect to the axial direction is formed so that the concave axial one surface of the die 13 is formed in the backward extrusion shown in FIG. 3 (C) → (D). It is made to oppose the upper surface of the baseplate part 15. As shown in FIG. Then, in the same manner as in the first example of the above-described embodiment, the rear extrusion process shown in (C) → (D) is performed to form the second intermediate material 12b, and (D) → (E). The third intermediate material 25b is formed by punching, and the rolling process shown in (E) → (F) is performed to obtain the fourth intermediate material 26b. As a result, as apparent from a comparison between FIG. 3F and FIG. 4 and the above-described FIG. 1F and FIG. 2, it is cleaner than the first example of the above embodiment. The intermediate metal material 29 can be effectively exposed to a wider range of the surface portion of the pair of outer ring raceways 2 and 2.
Since the configurations and effects of the other parts are the same as those in the first example of the above embodiment, the same parts are denoted by the same reference numerals, and redundant description is omitted.

[実施の形態の第3例]
図5〜6は、請求項3に対応する、本発明の実施の形態の第3例を示している。本例の場合には、前述の図1〜2に記載した実施の形態の第1例の場合に図1の(C)→(D)で行う、後方押出加工に代えて、図5の(B)→(C)に示した前後方同時押出加工を行う。本例の場合、この前後方同時押出加工を採用し、これに合わせて第一中間素材11を、前述した従来例と同様のビヤ樽型としている点以外は、上記実施の形態の第1例の製造方法と同様である。
本例の場合、上記前後方同時押出加工で、図5の(B)に示した第一中間素材11を、図5の(C)に示した第二中間素材12cに加工する。この様に、第一中間素材11を第二中間素材12cに加工する上記前後方同時押出加工には、この第二中間素材12cの表面形状に合致する内面形状を有するダイス及び外面形状を有するパンチを使用する。このうちのダイスの内面形状は、上記図5の(C)に示した上記第二中間素材12cの形状から分かる様に、有底円筒状で、底面中央部に深さ寸法の1/2未満の高さ寸法を有する円形凸部を設けている。そして、この円形凸部の外周面と内周面との間を、上記第二中間素材12cの下寄り部分を形成する為の、円筒状成形空間としている。又、上記パンチは、上記第二中間素材12cの上寄り部分に押し込まれて、この上寄り部分の内面形状を加工する為のもので、上記ダイスの内径よりも小さな外径を有する。
[Third example of embodiment]
5 to 6 show a third example of the embodiment of the invention corresponding to claim 3. FIG. In the case of this example, in the case of the first example of the embodiment described in FIGS. 1 and 2 described above, instead of the backward extrusion process performed in (C) → (D) of FIG. B) The front-rear simultaneous extrusion process shown in (C) is performed. In the case of this example, this front-rear coextrusion process is adopted, and the first intermediate material 11 according to this is the same as the beer barrel type as in the conventional example described above, except for the first example of the above embodiment. This is the same as the manufacturing method.
In the case of this example, the first intermediate material 11 shown in FIG. 5B is processed into the second intermediate material 12c shown in FIG. Thus, in the front-rear co-extrusion process for processing the first intermediate material 11 into the second intermediate material 12c, a die having an inner surface shape that matches the surface shape of the second intermediate material 12c and a punch having an outer surface shape are used. Is used. The inner surface shape of the die is a bottomed cylindrical shape as shown in the shape of the second intermediate material 12c shown in FIG. 5C, and is less than half of the depth dimension at the center of the bottom surface. The circular convex part which has the height dimension of is provided. A space between the outer peripheral surface and the inner peripheral surface of the circular convex portion is a cylindrical molding space for forming a lower portion of the second intermediate material 12c. The punch is pressed into the upper portion of the second intermediate material 12c to process the inner surface shape of the upper portion, and has an outer diameter smaller than the inner diameter of the die.

上記前後方同時押出加工で、上記第一中間素材11を上記第二中間素材12cに加工するには、上記ダイス内にこの第一中間素材11を、この第一中間素材11の軸方向片面(下面)の中央部を、上記円形凸部に当接させる(載置する)状態でセットする。次いで、上記パンチにより上記第一中間素材11の軸方向他面の中央部を強く押圧し、このパンチの先端面(下面)と上記円形凸部の先端面(上面)との間で、上記第一中間素材の中央部を軸方向に押し潰す。そして、この押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材11の径方向外寄り部分に存在する金属材料と共に、上記円筒状成形用空間及び上記パンチの押し込み方向後方でこのパンチの外周面と上記ダイスの内周面との間に存在する円筒状の空間に移動させる。そして、図5の(C)に示す様な、円筒部31の軸方向中間部内径側に隔壁部32とを設けた、上記第二中間素材12cとする。そして、この第二中間素材12cに、上記実施の形態の第1例の場合と同様、図5の(C)→(D)に示す打ち抜き加工、同じく(D)→(E)に示したローリング加工、更に仕上加工により、図5の(E)及び図6に鎖線で示す形状を削り出して、複列玉軸受用の外輪3に加工する。   In order to process the first intermediate material 11 into the second intermediate material 12c by the front-rear simultaneous extrusion process, the first intermediate material 11 is placed in the die on the one side surface in the axial direction of the first intermediate material 11 ( The center portion of the lower surface is set in a state of contacting (mounting) the circular convex portion. Then, the central portion of the other surface in the axial direction of the first intermediate material 11 is strongly pressed by the punch, and the first intermediate material 11 is moved between the tip surface (lower surface) of the punch and the tip surface (upper surface) of the circular convex portion. Crush the middle part of one intermediate material in the axial direction. Then, the metal material pushed out in the radial direction along with the crushing is pushed into the cylindrical forming space and the punch together with the metal material present in the radially outward portion of the first intermediate material 11. It moves to the cylindrical space which exists between the outer peripheral surface of this punch and the inner peripheral surface of the said die behind in the direction. And it is set as the said 2nd intermediate material 12c which provided the partition part 32 in the axial direction intermediate part internal diameter side of the cylindrical part 31 as shown to (C) of FIG. Then, the second intermediate material 12c is punched as shown in (C) → (D) of FIG. 5, and the rolling shown in (D) → (E) as in the case of the first example of the above embodiment. By machining and further finishing, the shape shown by the chain line in FIG. 5E and FIG. 6 is cut out and processed into an outer ring 3 for a double row ball bearing.

本例の場合、上記第一中間素材11から上記第二中間素材12cへの加工を、上記前後方同時押出加工により、これら両素材11、12cの軸方向に関してほぼ対称な状態で行う為、図5の(C)〜(E)及び図6から明らかな通り、清浄度の高い中間部金属材料29を、複列の外輪軌道2、2となる部分全体に亙り露出させられる。この為、上記両外輪軌道2、2の転がり疲れ寿命を十分に確保できる。そして、これら両外輪軌道2、2を備えた外輪3を含む、車輪支持用転がり軸受ユニットの耐久性確保の為の設計の自由度を、より向上させられる。   In the case of this example, the processing from the first intermediate material 11 to the second intermediate material 12c is performed in a substantially symmetric state with respect to the axial direction of both the materials 11, 12c by the front-rear simultaneous extrusion process. As shown in FIGS. 5C to 5E and FIG. 6, the intermediate metal material 29 having a high degree of cleanness is exposed over the entire portion that forms the double-row outer ring raceways 2 and 2. For this reason, the rolling fatigue life of both the outer ring raceways 2 and 2 can be sufficiently secured. And the freedom degree of the design for ensuring durability of the rolling bearing unit for wheel support including the outer ring 3 provided with both the outer ring raceways 2 and 2 can be further improved.

上述した実施の各例は、本発明の製造方法により、複列アンギュラ型玉軸受1を構成する外輪3を造る場合に就いて説明した。これに対して本発明の軸受外輪の製造方法は、複列アンギュラ型円すいころ軸受を構成する外輪を造る場合に利用する事もできる。この場合、請求項1、2に記載した発明を実施するには、外輪の内周面に形成する複列の外輪軌道の幅、仕上加工による削り代等を考慮して、後方押出加工に使用するダイスの中間部内周面に設けた内周面側傾斜部の軸方向位置を工夫し、素材中の中間部金属材料を、上記外輪軌道の表面に露出させる。   Each example mentioned above demonstrated about the case where the outer ring | wheel 3 which comprises the double row angular type ball bearing 1 was made with the manufacturing method of this invention. On the other hand, the method for manufacturing a bearing outer ring according to the present invention can also be used when an outer ring constituting a double-row angular tapered roller bearing is manufactured. In this case, in order to carry out the invention described in claims 1 and 2, it is used for backward extrusion in consideration of the width of the double row outer ring raceway formed on the inner peripheral surface of the outer ring, the machining allowance due to finishing, etc. The axial position of the inner peripheral surface side inclined portion provided on the inner peripheral surface of the intermediate portion of the die to be devised is exposed to expose the intermediate metal material in the material on the surface of the outer ring raceway.

1 複列アンギュラ型玉軸受
2 外輪軌道
3 外輪
4 内輪軌道
5 内輪
6 玉
7 保持器
8 ハウジング
9 回転軸
10 素材
11、11a、11b 第一中間素材
12、12a、12b、12c 第二中間素材
13 ダイス
14 パンチ
15 底板部
16 周壁部
17 環状凹溝
18 内周面側大径部
19 内周面側小径部
20 内周面側傾斜部
21 外周面側小径部
22 外周面側大径部
23 外周面側傾斜部
24 底部
25、25a、25b 第三中間素材
26、26a、26b 第四中間素材
27 中間円筒状部分
28 中心側金属材料
29 中間部金属材料
30 外径側金属材料
31 円筒部
32 隔壁部
DESCRIPTION OF SYMBOLS 1 Double row angular contact ball bearing 2 Outer ring raceway 3 Outer ring 4 Inner ring raceway 5 Inner ring 6 Ball 7 Cage 8 Housing 9 Rotating shaft 10 Material 11, 11a, 11b First intermediate material 12, 12a, 12b, 12c Second intermediate material 13 Die 14 Punch 15 Bottom plate portion 16 Peripheral wall portion 17 Annular groove 18 Inner peripheral surface side large diameter portion 19 Inner peripheral surface side small diameter portion 20 Inner peripheral surface side inclined portion 21 Outer peripheral surface side small diameter portion 22 Outer peripheral surface side large diameter portion 23 Outer periphery Surface side inclined portion 24 Bottom portion 25, 25a, 25b Third intermediate material 26, 26a, 26b Fourth intermediate material 27 Intermediate cylindrical portion 28 Center side metal material 29 Intermediate portion metal material 30 Outer diameter side metal material 31 Cylindrical portion 32 Partition Part

この発明は、自動車、工作機械、産業機械等、各種機械装置の回転支持部に組み込む複列アンギュラ型の転がり軸受を構成する軸受外輪の製造方法の改良に関する。本発明の製造方法の対象となる軸受外輪は、内周面の軸方向2個所位置に複列の背面組み合わせ型の外輪軌道を備えたものである。この様な軸受外輪は、外周面が、軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が、軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である。尚、軸方向に関して外径が実質的に変化しない円筒面とは、軸方向両端縁部に設けた面取り部を除き、外径が変化しない形状を言う。又、本発明の製造方法の対象となる軸受外輪は、複列アンギュラ型であれば、玉軸受用の外輪に限らず、円すいころ軸受用の外輪も含まれる。   The present invention relates to an improvement in a manufacturing method of a bearing outer ring constituting a double-row angular type rolling bearing incorporated in a rotation support portion of various machines such as automobiles, machine tools, industrial machines, and the like. The bearing outer ring which is the object of the manufacturing method of the present invention is provided with double-row rear combination type outer ring raceways at two axial positions on the inner peripheral surface. In such a bearing outer ring, the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface has the smallest inner diameter in the axial direction intermediate portion. However, the shape is inclined in a direction in which the inner diameter gradually increases as it goes toward both ends in the axial direction. The cylindrical surface whose outer diameter does not substantially change in the axial direction refers to a shape in which the outer diameter does not change except for chamfered portions provided at both end edges in the axial direction. Moreover, if the bearing outer ring | wheel used as the object of the manufacturing method of this invention is a double row angular type, it will not be restricted to the outer ring | wheel for ball bearings, but the outer ring | wheel for tapered roller bearings is also included.

各種機械装置の回転支持部分を構成する為に、図7に示す様な、背面組み合わせ型の複列アンギュラ型玉軸受1が、広く使用されている。この複列アンギュラ型玉軸受1は、内周面に複列の外輪軌道2、2を備えた外輪3と、それぞれの外周面に内輪軌道4を形成した1対の内輪5、5と、これら両外輪軌道2、2と両内輪5、5の内輪軌道4、4との間にそれぞれ複数個ずつ転動自在に設けられた玉6、6と、これら各玉6、6を保持する為の1対の保持器7、7とを備える。この様な複列アンギュラ型玉軸受1は、例えば、上記外輪3をハウジング8に内嵌固定すると共に、上記両内輪5、5を回転軸9に外嵌固定する。そして、このハウジング8の内側にこの回転軸9を、回転自在に支持する。   In order to constitute the rotation support part of various mechanical devices, a double-row angular ball bearing 1 of a rear combination type as shown in FIG. 7 is widely used. This double-row angular ball bearing 1 includes an outer ring 3 having double-row outer ring raceways 2 and 2 on its inner peripheral surface, a pair of inner rings 5 and 5 having inner ring raceways 4 formed on their outer peripheral surfaces, A plurality of balls 6, 6 are provided between the outer ring raceways 2, 2 and the inner ring raceways 4, 4 of the inner races 5, 5, respectively, for holding these balls 6, 6. A pair of cages 7 and 7 are provided. In such a double-row angular ball bearing 1, for example, the outer ring 3 is fitted and fixed to the housing 8, and the inner rings 5 and 5 are fitted and fixed to the rotary shaft 9. The rotating shaft 9 is rotatably supported inside the housing 8.

この様な複列アンギュラ型玉軸受1を構成する、上記外輪3及び上記両内輪5、5は、例えば特許文献1〜5等に記載されて周知の様に、鍛造加工、ローリング加工、切削乃至研削加工を施す事により、所定の形状及び寸法に加工している。例えば、上記外輪3に関しては、従来から、図8に示す様な工程で造っていた。先ず、この従来の軸受外輪の製造方法に就いて説明する。   The outer ring 3 and the both inner rings 5 and 5 constituting such a double-row angular ball bearing 1 are described in, for example, Patent Documents 1 to 5, etc., forging, rolling, cutting or cutting. By grinding, it is processed into a predetermined shape and size. For example, the outer ring 3 has been conventionally manufactured by a process as shown in FIG. First, the conventional method for manufacturing a bearing outer ring will be described.

この図8に示した、従来から知られている軸受外輪の製造方法では、先ず、(A)に示した様な円柱状の素材10を、長尺な原材料を所定長さに切断する事により得る。
次いで、この素材10に、1対の金型の互いに対向する押圧面同士の間で軸方向に押し潰す、据え込み加工を施す事により、(B)に示す様な、外周面が凸円弧面である第一中間素材11とする。
次いで、この第一中間素材11に、(C)→(D)に示した後方押出加工を施す事により、(D)に示した第二中間素材12とする。
In the conventionally known method for manufacturing a bearing outer ring shown in FIG. 8, first, a cylindrical material 10 as shown in (A) is cut into a predetermined length from a long raw material. obtain.
Next, the material 10 is subjected to upsetting by crushing in the axial direction between the pressing surfaces facing each other in a pair of molds, so that the outer peripheral surface is a convex arc surface as shown in FIG. The first intermediate material 11 is
Next, the second intermediate material 12 shown in (D) is obtained by subjecting the first intermediate material 11 to backward extrusion shown in (C) → (D).

上記後方押出加工は、ダイス13とパンチ14との間で上記第一中間素材11の径方向中央部分を軸方向に押し潰すと共に、径方向外寄り部分を上記パンチ14の押し込み方向後方に塑性変形させる事により行う。上記ダイス13は有底円筒状で、円形の底板部15と、この底板部15の外周縁部から上方に立上った周壁部16とを備える。このうちの底板部15の外形寄り部分には環状凹溝17を、全周に亙って形成している。又、上記周壁部16の内周面は、開口部寄り(中間部乃至上端部)の内周面側大径部18と、上記底板部15寄り(下端部)の内周面側小径部19とを、軸方向中間部底板部寄り部分の内周面側傾斜部20により連続させた、段付形状としている。このうちの内周面側小径部19は、上記環状凹溝17の外径寄り内周面と単一円筒面上に位置している。又、上記パンチ14は、外周面を、先端寄り(下半部)の外周面側小径部21と、基端寄り(上半部)の外周面側大径部22とを、軸方向中間部の外周面側傾斜部23により連続させた、段付形状としている。それぞれが上述の様に構成される上記ダイス13とパンチ14とは、プレス加工機のテーブルとラムとに、互いに同心に支持固定する。即ち、上記ダイス13をこのテーブルの上面に、上記パンチ14を上記ラムの下端面に、それぞれ固定する。   In the backward extrusion process, the radially central portion of the first intermediate material 11 is crushed in the axial direction between the die 13 and the punch 14, and the radially outward portion is plastically deformed backward in the pushing direction of the punch 14. To do. The die 13 has a bottomed cylindrical shape, and includes a circular bottom plate portion 15 and a peripheral wall portion 16 rising upward from an outer peripheral edge portion of the bottom plate portion 15. An annular groove 17 is formed over the entire circumference of the bottom plate 15 near the outer shape. Further, the inner peripheral surface of the peripheral wall portion 16 has an inner peripheral surface side large diameter portion 18 near the opening (intermediate portion or upper end portion) and an inner peripheral surface side small diameter portion 19 near the bottom plate portion 15 (lower end portion). Are made into a stepped shape that is made continuous by the inner peripheral surface side inclined portion 20 in the portion near the bottom plate portion in the axial direction. Of these, the inner peripheral surface side small-diameter portion 19 is located on the inner peripheral surface near the outer diameter of the annular groove 17 and on a single cylindrical surface. Further, the punch 14 has an outer peripheral surface of an outer peripheral surface side small-diameter portion 21 near the distal end (lower half portion) and an outer peripheral surface-side large diameter portion 22 near the base end (upper half portion). The stepped shape is made continuous by the outer peripheral surface side inclined portion 23. The die 13 and the punch 14 each configured as described above are supported and fixed concentrically with each other on a table and a ram of a press machine. That is, the die 13 is fixed to the upper surface of the table, and the punch 14 is fixed to the lower end surface of the ram.

上記後方押出加工を行う際には、上記ラムと共に上記パンチ14を上昇させた状態で、上記第一中間素材11を上記ダイス13内にセットする。従来の製造方法の場合、この第一中間素材11の外径は、少なくとも下端寄り部分で上記内周面側小径部19内に入り込む部分で、この内周面側小径部19の内径よりも小さかった。従って、上記第一中間素材11を上記ダイス13内にセットした状態では、(C)に示す様に、この第一中間素材11の下面が上記底板部15の上面で上記環状凹溝17の内側部分に当接する。そこで、この状態から上記ラムにより上記パンチ14を下降させて、(D)に示す様に、このパンチ14の先端面と上記ダイス13の底板部15の上面との間で、上記第一中間素材11の中央部を軸方向に押し潰す。   When performing the backward extrusion process, the first intermediate material 11 is set in the die 13 with the punch 14 raised together with the ram. In the case of the conventional manufacturing method, the outer diameter of the first intermediate material 11 is smaller than the inner diameter of the inner peripheral surface side small-diameter portion 19 at least at a portion near the lower end and enters the inner peripheral surface-side small diameter portion 19. It was. Therefore, in a state where the first intermediate material 11 is set in the die 13, the lower surface of the first intermediate material 11 is the upper surface of the bottom plate portion 15 and the inner side of the annular groove 17 as shown in FIG. Abuts the part. Therefore, the punch 14 is lowered by the ram from this state, and the first intermediate material is placed between the tip surface of the punch 14 and the upper surface of the bottom plate portion 15 of the die 13 as shown in FIG. 11 is crushed in the axial direction.

この押し潰しにより、この底板部15の上面と上記パンチ14の先端面との間から径方向外方に押し出された金属材料は、上記第一中間素材11の径方向外寄り部分に存在する金属材料と共に、上記パンチ14の押し込み方向後方(上方)に移動する。この様にしてこのパンチ14の押し込み方向後方に移動した金属材料は、このパンチ14の外周面と前記周壁部16の内周面との形状に倣って、内外両周面が段付円筒面である、段付円筒状となる。又、上記金属材料の一部は、上記環状凹溝17内に入り込んで、当該部分の形状を糸底状とする。この様にして行う上記後方押出加工により、(D)に示す様な、内外両周面が段付円筒面で全体が有底円筒状の、前記第二中間素材12を得られる。   By this crushing, the metal material pushed radially outward from between the upper surface of the bottom plate portion 15 and the tip end surface of the punch 14 is a metal present in the radially outward portion of the first intermediate material 11. It moves to the rear (upward) in the pushing direction of the punch 14 together with the material. In this way, the metal material that has moved rearward in the pressing direction of the punch 14 follows the shape of the outer peripheral surface of the punch 14 and the inner peripheral surface of the peripheral wall portion 16, and both the inner and outer peripheral surfaces are stepped cylindrical surfaces. It becomes a stepped cylindrical shape. A part of the metal material enters the annular groove 17 and the shape of the part is a thread bottom. As a result of the backward extrusion performed in this way, the second intermediate material 12 having both a cylindrical inner surface and a bottomed cylindrical surface as shown in FIG.

次いで、この様な第二中間素材12に、この第二中間素材12の底部24を打ち抜き除去する打ち抜き加工を施す事により、(E)に示す様な、段付円筒状の第三中間素材25とする。この打ち抜き加工は、プラス加工機により打ち抜きパンチを、上記第二中間素材12に突き通す事により行う。   Next, the second intermediate material 12 is subjected to a punching process for punching and removing the bottom portion 24 of the second intermediate material 12 to thereby form a stepped cylindrical third intermediate material 25 as shown in FIG. And This punching is performed by piercing the second intermediate material 12 with a punching punch using a plus processing machine.

この様にして、上記第三中間素材25を造った後、この第三中間素材25に冷間でローリング加工(CRF)を施して、(F)に示す様な第四中間素材26とする。この冷間ローリング加工では、例えば上記第三中間素材25を、この第三中間素材25の(大径側の)外径と一致する内径を有し、内周面を円筒面とした外径側ローラに内嵌する。そして、上記第三中間素材25の内径よりも十分に小さな外径を有し、外周面の母線形状を上記第四中間素材26の内周面の母線形状に見合う(凹凸が逆になった)形状とした内径側ローラを、上記第三中間素材25の内周面に押し付ける。そして、この内径側ローラを回転させつつ、この第三中間素材25の内周面に押し付ける。上記外径側ローラは、回転のみ自在に(径方向の変位を阻止された状態で)支持されているので、上記内径側ローラの回転に伴って上記第三中間素材25が、上記外径側ローラと共に回転する。この為、この第三中間素材25の内周面に上記内径側ローラの外周面の母線形状が全周に亙って転写されると共に、この第三中間素材25の外周面が円筒面に加工される。   After the third intermediate material 25 is made in this way, the third intermediate material 25 is cold rolled (CRF) to form a fourth intermediate material 26 as shown in FIG. In this cold rolling process, for example, the third intermediate material 25 has an inner diameter that matches the outer diameter of the third intermediate material 25 (on the large diameter side), and the outer peripheral side has an inner peripheral surface as a cylindrical surface. Fits into the roller. The outer diameter of the third intermediate material 25 is sufficiently smaller than the inner diameter of the third intermediate material 25, and the bus bar shape of the outer peripheral surface matches the bus bar shape of the inner peripheral surface of the fourth intermediate material 26 (unevenness is reversed). The shaped inner diameter side roller is pressed against the inner peripheral surface of the third intermediate material 25. Then, the inner diameter side roller is pressed against the inner peripheral surface of the third intermediate material 25 while rotating. Since the outer diameter side roller is supported for rotation only (in a state where radial displacement is prevented), the third intermediate material 25 is moved to the outer diameter side as the inner diameter side roller rotates. Rotates with the roller. For this reason, the bus bar shape of the outer peripheral surface of the inner diameter side roller is transferred to the inner peripheral surface of the third intermediate material 25 over the entire periphery, and the outer peripheral surface of the third intermediate material 25 is processed into a cylindrical surface. Is done.

尚、上記ローリング加工は、互いに反対方向に回転する1対のローラ同士の間に上記第三中間素材25の一部を挟持し、これら両ローラを互いに近付く方向に押圧しつつ、これら両ローラの外周面の形状を上記第三中間素材25の内外両周面に転写する状態で行う場合もある。何れにしても、上記(F)に示す様な第四中間素材26を得られる。この第四中間素材26は、外周面が軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である。   In the rolling process, a part of the third intermediate material 25 is sandwiched between a pair of rollers rotating in opposite directions, and the two rollers are pressed in a direction approaching each other. In some cases, the shape of the outer peripheral surface is transferred to both the inner and outer peripheral surfaces of the third intermediate material 25. In any case, the fourth intermediate material 26 as shown in the above (F) can be obtained. In the fourth intermediate material 26, the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface has the smallest inner diameter in the axial intermediate portion, and the inner diameter increases toward both axial end portions. Is a shape inclined in the direction of gradually increasing.

この様にして得られた、上記第四中間素材26には、必要な仕上加工を施す事により、前述の図7に示した様な、複列アンギュラ型玉軸受1を構成する外輪3として完成する。即ち、上記第四中間素材26のうちの余肉部を削り取る事で、図8の(F)及び図9に鎖線で示した形状の外輪3とする。又、この外輪3の内周面に形成した1対の外輪軌道2、2部分に、研削加工や超仕上加工等、これら両外輪軌道2、2の表面の性状を整える加工を施す。   The fourth intermediate material 26 thus obtained is finished as the outer ring 3 constituting the double-row angular ball bearing 1 as shown in FIG. To do. That is, by cutting off the surplus portion of the fourth intermediate material 26, the outer ring 3 having the shape shown by the chain line in FIG. Further, the pair of outer ring raceways 2 and 2 formed on the inner peripheral surface of the outer ring 3 is subjected to processing for adjusting the surface properties of both the outer ring raceways 2 and 2 such as grinding and super finishing.

ところで、上記外輪3を造る為の、前記素材10は、鉄鋼メーカーで押し出し成形された、断面円形の長尺材を所定長さに切断する事で造られた、円柱状のものを使用する。この様にして得られる円柱状の素材10の組成(清浄度)は均一でない事が、特許文献6に記載される等により、従来から知られている。即ち、上記素材10の中央部40%の範囲(中心から半径の40%までの中央寄り円柱状部分)は、非金属介在物が存在し易い事が、上記特許文献6に記載される等により、従来から知られている。又、上記素材10の外径寄り20%の範囲(中心から半径の80%よりも外周面側に存在する円筒状部分)に関しても、酸化物や非金属介在物が存在し易い等により、清浄度が低い事が知られている。そして、中心寄り、外周面寄り、何れの部分に存在する金属材料にしても、清浄度が低い金属材料が、上記外輪3の内周面に設けた外輪軌道2、2のうちで、特に玉6、6(図7)の転動面が転がり接触する部分に露出すると、この部分の転がり疲れ寿命の確保が難しくなる。   By the way, the said raw material 10 for making the said outer ring | wheel 3 uses the column-shaped thing produced by cut | disconnecting the elongate material of the cross-sectional circular shape extruded by the steel manufacturer to predetermined length. It has been conventionally known that the composition (cleanliness) of the columnar material 10 obtained in this way is not uniform, as described in Patent Document 6. That is, in the range of 40% of the central portion of the material 10 (a columnar portion near the center from the center to 40% of the radius), non-metallic inclusions are likely to be present, as described in Patent Document 6 above. Conventionally known. In addition, the range of 20% closer to the outer diameter of the material 10 (cylindrical portion existing on the outer peripheral surface side than 80% of the radius from the center) is also clean due to the presence of oxides and non-metallic inclusions. It is known that the degree is low. Of the outer ring raceways 2, 2 provided on the inner peripheral surface of the outer ring 3, the metal material having a low cleanliness is a metal material that is present in any part of the outer ring 3, particularly the ball. When the rolling surfaces of 6 and 6 (FIG. 7) are exposed to the portion that comes into contact with rolling, it becomes difficult to ensure the rolling fatigue life of this portion.

これらの事を考慮し、且つ、素材中の酸化物や非金属介在物の分布のばらつきや、製造作業時に発生する(押圧力等の)各種ばらつきを考慮した場合、上記素材10の中央部50%の範囲、及び、上記素材10の外径寄り30%の範囲に存在する金属材料が、上記両外輪軌道2、2のうちで、少なくとも転動面が転がり接触する部分に露出しない様にする事が好ましい。言い換えれば、上記両外輪軌道3、3のうちの少なくとも転動面が転がり接触する部分には、上記素材10のうちで、中心からの半径が50〜70%の範囲である、中間円筒状部分27{図8の(A)に斜格子を付した部分。他の、図1〜6、図8の(B)〜(F)、図9に関しても、斜格子を付した部分は、上記中間円筒状部分27に存在した金属材料(中間部金属材料29)により構成されている事を表している。}に存在する金属材料を露出させる事が好ましい。   In consideration of these matters, and taking into account variations in the distribution of oxides and non-metallic inclusions in the material and various variations (such as pressing force) that occur during manufacturing operations, the central portion 50 of the material 10 is used. %, And the metal material existing in the range of 30% of the outer diameter of the material 10 is not exposed to at least the portion of the outer ring races 2 and 2 where the rolling contact surface is in rolling contact. Things are preferable. In other words, an intermediate cylindrical portion having a radius from the center in the range of 50 to 70% in the material 10 is a portion of the outer ring raceways 3 and 3 where at least the rolling contact surface is in rolling contact. 27 {A portion in FIG. 1 to 6 and FIGS. 8B to 8F and FIG. 9 also, the portion with the oblique lattice is the metal material (intermediate metal material 29) existing in the intermediate cylindrical portion 27. It represents that it is composed. } Is preferably exposed.

ところが、本発明の製造方法の対象となる様な、軸方向中間部の内径が小さく、内周面の軸方向2個所位置でこの内径が小さくなった部分の両側に複列の外輪軌道を備えた外輪3を鍛造加工により造る場合、上記中間円筒状部分27に存在する金属材料を上記両軌道面に露出させる事が難しい。例えば、前述の図8に示した様な方法で、上記図9に鎖線で示した外輪3を造ると、上記素材10中の各部の金属材料、即ち、中心から半径の50%までの中央寄り円柱状部分に存在する中心側金属材料28と、中心からの半径が50〜70%の範囲である、上記中間円筒状部分27に存在する中間部金属材料29と、外径寄り30%の範囲の外径寄り円筒状部分に存在する外径側金属材料30とは、上記図9に示す様に、上記外輪3中に分布する。この外輪3は、前述の様に、鍛造加工により図9に実線で示した第四中間素材26を造った後、切削加工及び研削加工により、この図9に鎖線で示す状態にまで上記第四中間素材26を削り取り、上記外輪3として完成する。   However, the inner diameter of the intermediate portion in the axial direction, which is the object of the manufacturing method of the present invention, is small, and two rows of outer ring raceways are provided on both sides of the portion where the inner diameter is reduced at two axial positions on the inner peripheral surface. When the outer ring 3 is made by forging, it is difficult to expose the metal material present in the intermediate cylindrical portion 27 on the both raceway surfaces. For example, when the outer ring 3 shown by the chain line in FIG. 9 is made by the method shown in FIG. 8, the metal material of each part in the material 10, that is, near the center from the center to 50% of the radius. The center side metallic material 28 present in the cylindrical part, the intermediate part metallic material 29 present in the intermediate cylindrical part 27 having a radius from the center in the range of 50 to 70%, and the range closer to the outer diameter 30%. The outer diameter side metallic material 30 existing in the cylindrical portion near the outer diameter is distributed in the outer ring 3 as shown in FIG. As described above, after the fourth intermediate material 26 shown by the solid line in FIG. 9 is formed by forging, the outer ring 3 is cut into the state shown by the chain line in FIG. 9 by cutting and grinding. The intermediate material 26 is scraped off to complete the outer ring 3.

この様な第四中間素材26と外輪3とを示した図9中、斜格子で示した、上記中間円筒状部分27に存在する中間部金属材料29が、1対の外輪軌道2、2のうちで、少なくとも玉の転動面が転がり接触する部分に露出すれば、これら両外輪軌道2、2の転がり疲れ寿命を確保し、上記外輪3を含む、前記複列アンギュラ型玉軸受1の耐久性確保を図り易くなる。ところが、上記図9から明らかな通り、従来の製造方法により上記外輪3を造ると、上記中央寄り円柱状部分の中心側金属材料28が、上記両外輪軌道2、2のうちの一方(図9の下方)の外輪軌道2の表面全体に露出する。例えば、図9の矢印α、αは、各玉6、6(図7参照)の接触角を40度(接触角の余角である中心軸に対する角度=50度)とした場合に、上記各玉6、6から上記両外輪軌道2、2に加わる荷重の作用方向を示している。上記外輪3の断面形状を表す上記図9の鎖線上で、上記各矢印α、αが指している部分に上記中間部金属材料29が存在すれば、上記両外輪軌道2、2の転がり疲れ寿命を確保し易いが、図9の下方の内輪軌道2に関しては、上記図9の鎖線上で上記各矢印α、αが指している部分に、中心側金属材料28が存在する。この為、従来から知られている軸受外輪の製造方法では、上記複列アンギュラ型玉軸受1の耐久性確保を図る為の設計の自由度が限られる。   In FIG. 9 showing such a fourth intermediate material 26 and the outer ring 3, the intermediate metal material 29 present in the intermediate cylindrical portion 27, which is indicated by a diagonal lattice, is formed by a pair of outer ring raceways 2, 2. Among these, if at least the rolling surface of the ball is exposed to the rolling contact portion, the rolling fatigue life of both the outer ring raceways 2 and 2 is secured, and the durability of the double row angular ball bearing 1 including the outer ring 3 is ensured. It is easy to ensure the performance. However, as apparent from FIG. 9, when the outer ring 3 is manufactured by the conventional manufacturing method, the center-side metal material 28 of the central cylindrical portion is one of the outer ring raceways 2 and 2 (FIG. 9). Exposed to the entire surface of the outer ring raceway 2. For example, the arrows α and α in FIG. 9 indicate that the contact angles of the balls 6 and 6 (see FIG. 7) are 40 degrees (the angle with respect to the central axis that is the remainder of the contact angle = 50 degrees). The direction of action of the load applied from the balls 6 and 6 to the outer ring races 2 and 2 is shown. If the intermediate metal material 29 is present in the portion indicated by the arrows α and α on the chain line in FIG. 9 representing the cross-sectional shape of the outer ring 3, the rolling fatigue life of the outer ring raceways 2 and 2 is achieved. However, with respect to the inner ring raceway 2 in the lower part of FIG. 9, the center side metal material 28 exists in the part indicated by the arrows α and α on the chain line in FIG. 9. For this reason, the conventionally known methods for manufacturing a bearing outer ring limit the degree of freedom in design for ensuring the durability of the double-row angular ball bearing 1.

特開平9−176740号公報JP-A-9-176740 特開平9−280255号公報JP-A-9-280255 特開平11−140543号公報JP-A-11-140543 特開2002−79347号公報JP 2002-79347 A 特開2003−230927号公報JP 2003-230927 A 特開2006−250317号公報JP 2006-250317 A

本発明は、上述の様な事情に鑑みて、内周面の軸方向中間部の内径が両側部分の内径よりも小さく、且つ、この内径が小さくなった部分を挟む軸方向2個所位置に複列の外輪軌道を備えた軸受外輪を、円柱状の素材を塑性変形させる事により造る場合に、上記両外輪軌道のうち、少なくとも転動体荷重が作用する部分に、素材のうちで清浄度の高い中間円筒状部分の金属材料を露出させられる軸受外輪の製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has an inner diameter in the axial direction intermediate portion of the inner peripheral surface that is smaller than the inner diameters of both side portions, and is positioned at two positions in the axial direction across the portion where the inner diameter is reduced. When a bearing outer ring having an outer ring raceway in a row is made by plastically deforming a cylindrical material, at least a portion where the rolling element load acts on both outer ring raceways, the cleanliness is high among the materials. The invention was invented to realize a method of manufacturing a bearing outer ring that can expose the metal material of the intermediate cylindrical portion.

本発明の軸受外輪の製造方法は、円柱状の素材に、据え込み加工と、前後方同時押出加工と、打ち抜き加工と、ローリング加工と、仕上加工とを順次施す事により、内周面の軸方向2個所位置に複列の背面組み合わせ型の外輪軌道を備えた軸受外輪とする。
特に、本発明の軸受外輪の製造方法の場合には、上記素材として、中心からの半径が50〜70%の範囲に清浄度の高い中間円筒状部分が存在するものを使用する。
そして、上記据え込み加工では、上記素材を、1対の金型の互いに対向する押圧面同士の間で軸方向に押し潰して、第一中間素材とする。
又、上記前後方同時押出加工では、有底円筒状で、底面中央部に深さ寸法の1/2未満の高さ寸法を有する円形凸部を設け、この円形凸部の外周面と内周面との間を円筒状成形空間としたダイスと、このダイスの内径よりも小さな外径を有するパンチとの間で上記第一中間素材の中央部を軸方向に押し潰す。そして、この押し潰しに伴って上記中間部金属材料を、上記複列の外輪軌道となる部分全体に移動させると共に、径方向外方に押し出された金属材料を、上記第一中間素材の径方向外寄り部分に存在する金属材料と共に、上記円筒状成形用空間及び上記パンチの押し込み方向後方でこのパンチの外周面と上記ダイスの内周面との間に存在する円筒状の空間に(同時に)移動させて、円筒部の軸方向中間部内径側に隔壁部を設けた第二中間素材とする。
又、上記打ち抜き加工では、上記第二中間素材の隔壁部を打ち抜き除去する事で、全体が円筒状の第三中間素材とする。
又、上記ローリング加工では、この第三中間素材の内外両周面を塑性変形させて、外周面が軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である第四中間素材とする。軸方向に関して外径が実質的に変化しない事の意味は、前述した通りである。
更に、前記仕上加工では、上記第四中間素材の内周面を削り取る事により、この内周面に上記両外輪軌道を、上記中間部金属材料をこれら両外輪軌道全体に露出させた状態で形成する。
The method of manufacturing a bearing outer ring according to the present invention includes a cylindrical material that is subjected to upset processing, front-rear coextrusion processing , punching processing, rolling processing, and finishing processing in order, so as to The bearing outer ring is provided with a double-row rear combination type outer ring raceway at two positions in the direction.
In particular, in the case of the method for manufacturing a bearing outer ring according to the present invention, a material having an intermediate cylindrical portion having a high cleanliness within a radius of 50 to 70% from the center is used as the material.
In the upsetting process, the material is crushed in the axial direction between the pressing surfaces of the pair of molds facing each other to obtain a first intermediate material.
In the front-rear coextrusion process, a circular convex portion having a bottomed cylindrical shape and having a height dimension less than ½ of the depth dimension is provided at the center of the bottom surface, and the outer circumferential surface and inner circumference of the circular convex portion are provided. The central portion of the first intermediate material is crushed in the axial direction between a die having a cylindrical forming space between the surface and a punch having an outer diameter smaller than the inner diameter of the die. Then, along with this crushing, the intermediate metal material is moved to the entire portion that becomes the double-row outer ring raceway, and the metal material extruded radially outward is moved in the radial direction of the first intermediate material. Along with the metal material present in the outer portion, the cylindrical forming space and the cylindrical space existing between the outer peripheral surface of the punch and the inner peripheral surface of the die at the rear of the punch in the pushing direction (simultaneously) It is made to move and it is set as the 2nd intermediate material which provided the partition part in the axial direction intermediate part internal diameter side of the cylindrical part.
In the punching process, the partition wall portion of the second intermediate material is punched and removed, so that the third intermediate material is formed into a cylindrical shape as a whole .
In the rolling process, both the inner and outer peripheral surfaces of the third intermediate material are plastically deformed, and the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface is the intermediate in the axial direction. The fourth intermediate material has the smallest inner diameter and is inclined in a direction in which the inner diameter gradually increases as both side portions of the axial intermediate portion move toward both axial end portions. The meaning that the outer diameter does not substantially change in the axial direction is as described above.
Further, in the finishing process, the outer peripheral surface of the fourth intermediate material is scraped off to form the outer ring raceways on the inner peripheral surface and the intermediate metal material is exposed to the entire outer ring raceway. To do.

上述の様に構成する本発明の軸受外輪の製造方法によれば、軸受外輪の内周面のうち、内径が最も小さくなった部分を挟んだ、軸方向に離隔した2個所位置に形成した両外輪軌道全体に、素材のうちで清浄度の高い中間円筒状部分の金属材料を露出させられる。この為、上記両外輪軌道の転がり疲れ寿命を確保し、これら両外輪軌道を備えた軸受外輪を含む、複列転がり軸受の耐久性確保の為の設計の自由度向上を図れる。
即ち、本発明の軸受外輪の製造方法によれば、上記両外輪軌道全体に、素材のうちで清浄度の高い中間円筒状部分の金属材料を十分に配置できて、複列転がり軸受の耐久性確保の為の設計の自由度を十分に向上させられる。
According to the bearing outer ring manufacturing method of the present invention configured as described above, both of the inner peripheral surfaces of the bearing outer ring formed at two axially spaced positions sandwiching a portion having the smallest inner diameter. The metal material of the intermediate cylindrical portion having high cleanliness among the materials can be exposed on the entire outer ring raceway. For this reason, the rolling fatigue life of the both outer ring raceways can be secured, and the degree of freedom in design for ensuring the durability of the double row rolling bearing including the bearing outer ring provided with these outer ring raceways can be improved.
That is, according to the bearing outer ring manufacturing method of the present invention, it is possible to sufficiently arrange the metal material of the intermediate cylindrical portion having a high cleanliness among the raw materials on both the outer ring raceways , and the durability of the double row rolling bearing. The degree of freedom in design for securing can be sufficiently improved.

本発明の軌道輪部材の製造方法に関する参考例の第1例を工程順に、中央寄り円柱状部分の金属材料と、中間円筒状部分の金属材料と、外径寄り円筒状部分の金属材料との分布状況が変化する状況と共に示す、素材乃至第四中間素材、並びに、ダイス及びパンチの断面図。A first example of a reference example relating to a method of manufacturing a bearing ring member according to the present invention includes, in order of process, a metal material of a cylindrical portion near the center, a metal material of an intermediate cylindrical portion, and a metal material of a cylindrical portion near an outer diameter. Sectional drawing of a raw material thru | or a 4th intermediate raw material, a die | dye, and a punch shown with the condition where distribution conditions change. 第四中間素材の段階での、中央寄り円柱状部分の金属材料と、中間円筒状部分の金属材料と、外径寄り円筒状部分の金属材料との分布状況を示す断面図。Sectional drawing which shows the distribution condition of the metal material of the cylindrical part near the center, the metal material of the intermediate cylindrical part, and the metal material of the cylindrical part near the outer diameter at the stage of the fourth intermediate material. 本発明に関する参考例の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of the reference example regarding this invention. 同じく図2と同様の図。The same figure as FIG. 本発明の実施の形態の1例を、ダイス及びパンチを省略した状態で示す、図1と同様の図。The figure similar to FIG. 1 which shows one example of embodiment of this invention in the state which abbreviate | omitted the dice | dies and the punch. 同じく図2と同様の図。The same figure as FIG. 本発明の製造方法の対象となる軸受外輪を備えたアンギュラ型の複列玉軸受を備えた回転支持部の1例を示す断面図。Sectional drawing which shows an example of the rotation support part provided with the angular type double row ball bearing provided with the bearing outer ring used as the object of the manufacturing method of this invention. 従来から知られている軸受外輪の製造方法を示す、図1と同様の図。The figure similar to FIG. 1 which shows the manufacturing method of the bearing outer ring | wheel conventionally known. 同じく図2と同様の図。The same figure as FIG.

本発明に関する参考例の第1例]
図1〜2は、本発明に関する参考例の第1例を示している。本参考例の製造方法は、図1の(A)に示した、中炭素鋼、軸受鋼、浸炭鋼の如き鉄系合金等の、塑性加工後に焼き入れ硬化可能な、金属製で円柱状の素材10に、順次、塑性加工或いは打ち抜き加工を施す。そして、(B)に示した第一中間素材11a、(D)に示した第二中間素材12a、(E)に示した第三中間素材25aを経て、(F)に示した第四中間素材26aを得る。更に、この第四中間素材26aに、必要とする切削加工及び研削加工を施して、前述の図7に示した様な複列アンギュラ型玉軸受1を構成する外輪3とする。以下、上記素材10を上記第四中間素材26aに加工する工程に就いて、順番に説明する。尚、以下の加工のうち、(A)→(E)に示した、据え込み加工と、後方押出加工と、打ち抜き加工とは、基本的には総て熱間若しくは温間で行い、(E)→(F)に示したローリング加工は冷間で行うが、小型の外輪3を形成し、しかも金属材料として優れた延性を有するものを使用する場合等、可能であれば、全工程を冷間で行っても良い。
[First example of reference example of the present invention ]
1 and 2 show a first example of a reference example related to the present invention . The manufacturing method of this reference example is made of a metal and cylindrical shape that can be quenched and hardened after plastic working, such as iron-based alloys such as medium carbon steel, bearing steel, and carburized steel shown in FIG. The material 10 is sequentially subjected to plastic working or punching. Then, after passing through the first intermediate material 11a shown in (B), the second intermediate material 12a shown in (D), and the third intermediate material 25a shown in (E), the fourth intermediate material shown in (F). 26a is obtained. Further, the fourth intermediate material 26a is subjected to necessary cutting and grinding to form the outer ring 3 constituting the double row angular ball bearing 1 as shown in FIG. Hereinafter, the process of processing the material 10 into the fourth intermediate material 26a will be described in order. Of the following processes, the upsetting process, the backward extrusion process, and the punching process shown in (A) → (E) are basically performed hot or warm. ) → The rolling process shown in (F) is performed cold, but if possible, the entire process can be cooled if a small outer ring 3 is formed and a metal material having excellent ductility is used. You may go between.

先ず、据え込み工程で、図1の(A)→(B)に示す様に、上記素材10を軸方向に押し潰しつつ外径を拡げ、この素材10を、軸方向中間部が膨らんだ、上記第一中間素材11aとする。この様な据え込み工程の基本的な実施状況に関しては、前述の図8に示した、従来の製造方法での据え込み工程と同様である。但し、本参考例の場合には、上記据え込み加工で、上記素材10を軸方向に押し潰す、1対の金型の押圧面同士の最接近距離を、上記従来の製造方法の場合よりも短くする。即ち、上記据え込み加工での、上記素材10の加工量(押し潰し量)を、上記従来の製造方法の場合よりも多くする。この為、上記第一中間素材11aの形状は、ビヤ樽型よりも、むしろ厚肉円板状に近くなる。そして、上記据え込み加工により造る上記第一中間素材11aの外径D11を、上記従来の製造方法の途中過程で造る第一中間素材11の外径d11{図8の(B)参照}よりも大きく(D11>d11)している。具体的には、次の後方押出加工に使用するダイス13{図1の(C)、(D)参照}の内周面に形成した内周面側大径部18の内径R18以下で、同じく内周面側小径部19の内径R19よりも大きく(R18≧D11>R19と)する。 First, in the upsetting process, as shown in FIG. 1 (A) → (B), the outer diameter is expanded while the material 10 is crushed in the axial direction, and the intermediate portion in the axial direction swells. The first intermediate material 11a is used. The basic implementation status of such an upsetting process is the same as the upsetting process in the conventional manufacturing method shown in FIG. However, in the case of this reference example , the closest distance between the pressing surfaces of a pair of molds that crush the material 10 in the axial direction in the upsetting process is greater than in the case of the conventional manufacturing method. shorten. That is, the amount of processing (crushing amount) of the material 10 in the upsetting process is made larger than that in the conventional manufacturing method. For this reason, the shape of the first intermediate material 11a is closer to a thick disk rather than a beer barrel. Then, the outer diameter D 11 of the first intermediate material 11a building by upsetting the outer diameter d 11 of the first intermediate material 11 to build in the middle course of the conventional manufacturing method {shown in FIG. 8 (B) see} (D 11 > d 11 ). Specifically, the inner diameter R 18 or less of the inner peripheral surface side large-diameter portion 18 formed on the inner peripheral surface of the die 13 {see (C) and (D) of FIG. 1} used for the subsequent backward extrusion, larger than the inner diameter R 19 of the inner peripheral surface side small-diameter portion 19 similarly (with R 18 ≧ D 11> R 19 ).

上述の様な、上記第一中間素材11aは、次の後方押出工程で、図1の(C)→(D)に示す様に、前記第二中間素材12aに塑性加工する。この様な後方押出工程では、前述した従来の製造方法の場合と同様のダイス13とパンチ14とを使用して、上記第一中間素材11aの径方向中央寄り部分を軸方向に圧縮し、金属材料を径方向外方に移動させつつ、軸方向両側(前後両方向、但し、主として後側)に移動させる。但し、本参考例の製造方法の場合には、上記第一中間素材11aの外径D11が大きい分だけ、次の様に、加工状況が上記従来の製造方法の場合とは異なる。 As described above, the first intermediate material 11a is plastically processed into the second intermediate material 12a as shown in (C) → (D) of FIG. In such a backward extrusion process, a die 13 and a punch 14 similar to those in the above-described conventional manufacturing method are used to compress the radially central portion of the first intermediate material 11a in the axial direction, While moving the material outward in the radial direction, the material is moved to both sides in the axial direction (both in the front-rear direction, but mainly the rear side). However, in the case of the manufacturing method of the present embodiment, only the partial outer diameter D 11 is greater in the first intermediate material 11a, as follows, not the case processing conditions of the conventional manufacturing method.

即ち、本参考例の場合、上記後方押出加工では、先ず、図1の(C)に示す様に、上記第一中間素材11aの外径寄り部分を上記ダイス13の内周面の軸方向中間部に設けた内周面側傾斜部20に、全周に亙り引っ掛ける。そして、この状態から、上記パンチ14を下降させ、このパンチの先端面により、上記第一中間素材11aを上記ダイス13の底板部15の上面に向けて押し込む。この押し込みの初期段階、即ち、上記第一中間素材11aの下面中央部が上記底板部15の上面に当接する以前の状態に於いては、この第一中間素材11aが、外径寄り部分程上記ダイス13の開口部に向かう方向(上方)に塑性変形する。 That is, in the case of this reference example , in the backward extrusion process, first, as shown in FIG. 1C, the portion closer to the outer diameter of the first intermediate material 11a is set in the middle in the axial direction of the inner peripheral surface of the die 13. The inner peripheral surface side inclined part 20 provided in the part is hooked over the entire circumference. Then, from this state, the punch 14 is lowered, and the first intermediate material 11a is pushed toward the upper surface of the bottom plate portion 15 of the die 13 by the front end surface of the punch. In the initial stage of the pushing, that is, in the state before the lower surface central portion of the first intermediate material 11a comes into contact with the upper surface of the bottom plate portion 15, the first intermediate material 11a has a portion closer to the outer diameter. Plastic deformation occurs in a direction (upward) toward the opening of the die 13.

そして、上記第一中間素材11aの下面中央部が上記底板部15の上面に当接した後、更に上記パンチ14を下降させると、上記第一中間素材11aの中央部を軸方向に押し潰すと共に、押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材11aの径方向外寄り部分に存在する金属材料と共に、主として、上記パンチ14の押し込み方向後方(上方)に移動させる。この様に、このパンチ14の押し込み方向後方に移動した金属材料の内外両周面は、このパンチ14の外周面と上記ダイス13を構成する周壁部16の内周面とに見合った段付形状となる。この結果、上記後方押出加工により、図1の(C)に示した上記第一中間素材11aが、同図の(D)に示した、内外両周面が段付円筒面で全体が有底円筒状の第二中間素材12aとなる。又、上記金属材料の一部を押し込み方向前方に移動させて、上記底板部15の外径寄り部分に形成した環状凹溝17内に進入させる。   Then, after the lower center portion of the first intermediate material 11a contacts the upper surface of the bottom plate portion 15, when the punch 14 is further lowered, the center portion of the first intermediate material 11a is crushed in the axial direction. The metal material pushed out in the radial direction along with the crushing is mainly rearward (upward) in the pushing direction of the punch 14 together with the metal material present in the radially outer portion of the first intermediate material 11a. Move. As described above, the inner and outer peripheral surfaces of the metal material moved rearward in the pressing direction of the punch 14 are stepped shapes corresponding to the outer peripheral surface of the punch 14 and the inner peripheral surface of the peripheral wall portion 16 constituting the die 13. It becomes. As a result, by the backward extrusion process, the first intermediate material 11a shown in FIG. 1 (C) is shown in (D) of FIG. It becomes the cylindrical second intermediate material 12a. Further, a part of the metal material is moved forward in the pushing direction to enter the annular groove 17 formed in a portion near the outer diameter of the bottom plate portion 15.

この様な第二中間素材12aは、図示しないカウンターパンチにより底部24を上方に押圧する等により、上記ダイス13から取り出した後、前述した従来の製造方法の場合と同様の打ち抜き加工とローリング加工とを施す事により、図1の(F)及び図2に示す様な、第四中間素材26aとする。このうちの打ち抜き加工では、上記第二中間素材12aを図示しない受型の内周面に保持した状態で、この第二中間素材12aの内径側に図示しない打ち抜きパンチを押し込み、上記底部24を打ち抜き除去する。この様な打ち抜き工程により、図1の(E)に示す様な、段付円筒状の、前記第三中間素材25aとする。次いで、上記ローリング加工では、図示しない1対のローラによりこの第三中間素材25aの内外両周面をこれら両ローラの周面に見合う形状に塑性変形させて、上記第四中間素材26aとする。   Such a second intermediate material 12a is removed from the die 13 by pressing the bottom 24 upward with a counter punch (not shown), and then punching and rolling as in the conventional manufacturing method described above. As a result, the fourth intermediate material 26a as shown in FIG. 1 (F) and FIG. 2 is obtained. In the punching process, a punching punch (not shown) is pushed into the inner diameter side of the second intermediate material 12a while the second intermediate material 12a is held on the inner peripheral surface of the receiving die (not shown), and the bottom 24 is punched out. Remove. By such a punching step, the third intermediate material 25a having a stepped cylindrical shape as shown in FIG. Next, in the rolling process, the inner and outer peripheral surfaces of the third intermediate material 25a are plastically deformed into a shape corresponding to the peripheral surfaces of both rollers by a pair of rollers (not shown) to obtain the fourth intermediate material 26a.

この第四中間素材26aは、完成後の外輪3{図1の(F)及び図2の鎖線参照}よりも厚肉である。そこで、この第四中間素材26aに、所定の切削(旋削)加工及び研削加工を施して、上記外輪3として完成する。上記図1の(A)〜(F)に、加工の進行に伴う、中心側、中間部、外径側各金属材料28〜30の分布状態の変化状況を、図1の(F)及び図2に、上記第四中間素材26aの段階での、上記各金属材料28〜30の分布状態と完成後の外輪3の断面形状とを示している。   The fourth intermediate material 26a is thicker than the completed outer ring 3 {see FIG. 1 (F) and the chain line in FIG. 2}. Therefore, the fourth intermediate material 26a is subjected to predetermined cutting (turning) processing and grinding processing to complete the outer ring 3. FIGS. 1A to 1F show the change in the distribution state of the metal materials 28 to 30 on the center side, the intermediate portion, and the outer diameter side as the processing proceeds. 2 shows the distribution state of the metal materials 28 to 30 and the cross-sectional shape of the outer ring 3 after completion at the stage of the fourth intermediate material 26a.

これら各図から明らかな通り、本参考例の外輪3の製造方法によれば、この外輪3の内周面の軸方向に離隔した2個所位置に形成した両外輪軌道2、2のうち、少なくとも転動体荷重が作用する部分に、各図に斜格子で示した、前記素材10のうちで清浄度の高い中間円筒状部分27の中間部金属材料29を露出させられる。この為、上記両外輪軌道2、2の転がり疲れ寿命を確保し、これら両外輪軌道2、2を備えた外輪3を含む車輪支持用転がり軸受ユニットの耐久性確保の為の設計の自由度向上を図れる。 As is clear from these figures, according to the manufacturing method of the outer ring 3 of this reference example , at least of the outer ring raceways 2 and 2 formed at two positions spaced apart in the axial direction of the inner peripheral surface of the outer ring 3. The intermediate metal material 29 of the intermediate cylindrical portion 27 having a high cleanliness among the raw materials 10, which is indicated by a diagonal grid in each drawing, is exposed to the portion where the rolling element load acts. For this reason, the rolling fatigue life of both the outer ring raceways 2 and 2 is ensured, and the degree of freedom in design for ensuring the durability of the wheel bearing rolling bearing unit including the outer ring 3 provided with the both outer ring raceways 2 and 2 is improved. Can be planned.

本発明に関する参考例の第2例]
図3〜4は、本発明に関する参考例の第2例を示している。本参考例の場合には、図3の(A)→(B)の過程で行う据え込み加工で使用する1対の金型のうちの一方の金型の押圧面を平坦面とすると共に、他方の金型の押圧面の外径寄り部分を、外周縁に向かうに従って上記一方の金型の押圧面から遠ざかる方向に傾斜した傾斜面とする。そして、上記据え込み加工で造る第一中間素材11bの形状を、その軸方向片面を、径方向中央部が外周縁部に対し凹んだ形状とする。本参考例の場合、この軸方向片面の中央部を平坦面とし、外周寄り部分を部分円すい状凹面とする事で、この軸方向片面を逆円すい台状の凹面としている。これに対して、軸方向他面は平坦面としている。この様な形状を有する上記第一中間素材11bの場合、図3の(B)(C)と前述の図1の(B)(C)とを比較すれば明らかな通り、上記据え込み加工に伴って中心側金属材料28及び中間部金属材料29が径方向外方に変位する程度が、軸方向片面側で著しくなる。
[Second Example of Reference Example of the Present Invention ]
FIGS. 3-4 has shown the 2nd example of the reference example regarding this invention . In the case of this reference example , the pressing surface of one mold of the pair of molds used in the upsetting process performed in the process of (A) → (B) in FIG. The portion closer to the outer diameter of the pressing surface of the other mold is an inclined surface that is inclined in a direction away from the pressing surface of the one mold toward the outer peripheral edge. And let the shape of the 1st intermediate raw material 11b produced by the said upsetting process be the shape where the radial direction center part was dented with respect to the outer-periphery edge part. In the case of this reference example , the central portion of this one axial surface is a flat surface, and the portion near the outer periphery is a partially conical concave surface, so that this axial one surface is an inverted conical concave surface. On the other hand, the other surface in the axial direction is a flat surface. In the case of the above-described first intermediate material 11b having such a shape, as apparent from comparing (B) and (C) of FIG. 3 with (B) and (C) of FIG. Along with this, the extent to which the central metal material 28 and the intermediate metal material 29 are displaced radially outward becomes significant on one axial side.

この様な、形状が軸方向に関して非対称な、上記第一中間素材11bは、図3の(C)→(D)に示した後方押出加工の際に、上記凹んだ軸方向片面をダイス13の底板部15の上面に対向させる。そして、上述した参考例の第1例の場合と同様にして、(C)→(D)に示した後方押出加工を施して第二中間素材12bとし、(D)→(E)に示した打ち抜き加工を施して第三中間素材25bとし、更に、(E)→(F)に示したローリング加工を施して、第四中間素材26bとする。この結果、図3の(F)及び図4と、前述の図1の(F)及び図2とを比較すれば明らかな通り、上記参考例の第1例の場合に比べて、清浄である、中間部金属材料29を1対の外輪軌道2、2の表面部分のより広い範囲に、効果的に露出させられる。
その他の部分の構成及び効果は、上記参考例の第1例の場合と同様であるから、同等部分には同一符号を付して、重複する説明は省略する。
The first intermediate material 11b having such an asymmetric shape with respect to the axial direction is formed so that the concave axial one surface of the die 13 is formed in the backward extrusion shown in FIG. 3 (C) → (D). It is made to oppose the upper surface of the baseplate part 15. As shown in FIG. Then, in the same manner as in the first example of the reference example described above, the backward extrusion process shown in (C) → (D) is performed to form the second intermediate material 12b, and (D) → (E). A punching process is performed to obtain a third intermediate material 25b, and then a rolling process shown in (E) → (F) is performed to obtain a fourth intermediate material 26b. As a result, as apparent from a comparison between FIG. 3F and FIG. 4 and the above-described FIG. 1F and FIG. 2, it is cleaner than the first example of the reference example . The intermediate metal material 29 can be effectively exposed to a wider range of the surface portions of the pair of outer ring raceways 2 and 2.
Since the configurations and effects of the other parts are the same as those in the first example of the reference example , the same parts are denoted by the same reference numerals, and redundant description is omitted.

実施の形態の1例
図5〜6は、本発明の実施の形態の1例を示している。本例の場合には、前述の図1〜2に記載した参考例の第1例の場合に図1の(C)→(D)で行う、後方押出加工に代えて、図5の(B)→(C)に示した前後方同時押出加工を行う。本例の場合、この前後方同時押出加工を採用し、これに合わせて第一中間素材11を、前述した従来例と同様のビヤ樽型としている点以外は、上記参考例の第1例の製造方法と同様である。
本例の場合、上記前後方同時押出加工で、図5の(B)に示した第一中間素材11を、図5の(C)に示した第二中間素材12cに加工する。この様に、第一中間素材11を第二中間素材12cに加工する上記前後方同時押出加工には、この第二中間素材12cの表面形状に合致する内面形状を有するダイス及び外面形状を有するパンチを使用する。このうちのダイスの内面形状は、上記図5の(C)に示した上記第二中間素材12cの形状から分かる様に、有底円筒状で、底面中央部に深さ寸法の1/2未満の高さ寸法を有する円形凸部を設けている。そして、この円形凸部の外周面と内周面との間を、上記第二中間素材12cの下寄り部分を形成する為の、円筒状成形空間としている。又、上記パンチは、上記第二中間素材12cの上寄り部分に押し込まれて、この上寄り部分の内面形状を加工する為のもので、上記ダイスの内径よりも小さな外径を有する。
[ Example of Embodiment ]
5 to 6 show an example of the embodiment of the present invention . In the case of this example, in the case of the first example of the reference example described in FIGS. 1 and 2 described above, (B) in FIG. ) → A front-rear simultaneous extrusion process shown in (C) is performed. In the case of this example, the front and rear co-extrusion process is adopted, and the first intermediate material 11 is manufactured according to the first example of the above reference example , except that the first intermediate material 11 has a beer barrel shape similar to the conventional example described above. It is the same as the method.
In the case of this example, the first intermediate material 11 shown in FIG. 5B is processed into the second intermediate material 12c shown in FIG. Thus, in the front-rear co-extrusion process for processing the first intermediate material 11 into the second intermediate material 12c, a die having an inner surface shape that matches the surface shape of the second intermediate material 12c and a punch having an outer surface shape are used. Is used. The inner surface shape of the die is a bottomed cylindrical shape as shown in the shape of the second intermediate material 12c shown in FIG. 5C, and is less than half of the depth dimension at the center of the bottom surface. The circular convex part which has the height dimension of is provided. A space between the outer peripheral surface and the inner peripheral surface of the circular convex portion is a cylindrical molding space for forming a lower portion of the second intermediate material 12c. The punch is pressed into the upper portion of the second intermediate material 12c to process the inner surface shape of the upper portion, and has an outer diameter smaller than the inner diameter of the die.

上記前後方同時押出加工で、上記第一中間素材11を上記第二中間素材12cに加工するには、上記ダイス内にこの第一中間素材11を、この第一中間素材11の軸方向片面(下面)の中央部を、上記円形凸部に当接させる(載置する)状態でセットする。次いで、上記パンチにより上記第一中間素材11の軸方向他面の中央部を強く押圧し、このパンチの先端面(下面)と上記円形凸部の先端面(上面)との間で、上記第一中間素材の中央部を軸方向に押し潰す。そして、この押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材11の径方向外寄り部分に存在する金属材料と共に、上記円筒状成形用空間及び上記パンチの押し込み方向後方でこのパンチの外周面と上記ダイスの内周面との間に存在する円筒状の空間に移動させる。そして、図5の(C)に示す様な、円筒部31の軸方向中間部内径側に隔壁部32を設けた、上記第二中間素材12cとする。そして、この第二中間素材12cに、上記実施の形態の第1例の場合と同様、図5の(C)→(D)に示す打ち抜き加工、同じく(D)→(E)に示したローリング加工、更に仕上加工により、図5の(E)及び図6に鎖線で示す形状を削り出して、複列玉軸受用の外輪3に加工する。 In order to process the first intermediate material 11 into the second intermediate material 12c by the front-rear simultaneous extrusion process, the first intermediate material 11 is placed in the die on the one side surface in the axial direction of the first intermediate material 11 ( The center portion of the lower surface is set in a state of contacting (mounting) the circular convex portion. Then, the central portion of the other surface in the axial direction of the first intermediate material 11 is strongly pressed by the punch, and the first intermediate material 11 is moved between the tip surface (lower surface) of the punch and the tip surface (upper surface) of the circular convex portion. Crush the middle part of one intermediate material in the axial direction. Then, the metal material pushed out in the radial direction along with the crushing is pushed into the cylindrical forming space and the punch together with the metal material present in the radially outward portion of the first intermediate material 11. It moves to the cylindrical space which exists between the outer peripheral surface of this punch and the inner peripheral surface of the said die behind in the direction. And it is set as the said 2nd intermediate material 12c which provided the partition part 32 in the axial direction intermediate part internal diameter side of the cylindrical part 31 as shown to (C) of FIG. Then, the second intermediate material 12c is punched as shown in (C) → (D) of FIG. 5, and the rolling shown in (D) → (E) as in the case of the first example of the above embodiment. By machining and further finishing, the shape shown by the chain line in FIG. 5E and FIG. 6 is cut out and processed into an outer ring 3 for a double row ball bearing.

本例の場合、上記第一中間素材11から上記第二中間素材12cへの加工を、上記前後方同時押出加工により、これら両素材11、12cの軸方向に関してほぼ対称な状態で行う為、図5の(C)〜(E)及び図6から明らかな通り、清浄度の高い中間部金属材料29を、複列の外輪軌道2、2となる部分全体に亙り露出させられる。この為、上記両外輪軌道2、2の転がり疲れ寿命を十分に確保できる。そして、これら両外輪軌道2、2を備えた外輪3を含む、車輪支持用転がり軸受ユニットの耐久性確保の為の設計の自由度を、より向上させられる。   In the case of this example, the processing from the first intermediate material 11 to the second intermediate material 12c is performed in a substantially symmetric state with respect to the axial direction of both the materials 11, 12c by the front-rear simultaneous extrusion process. As shown in FIGS. 5C to 5E and FIG. 6, the intermediate metal material 29 having a high degree of cleanness is exposed over the entire portion that forms the double-row outer ring raceways 2 and 2. For this reason, the rolling fatigue life of both the outer ring raceways 2 and 2 can be sufficiently secured. And the freedom degree of the design for ensuring durability of the rolling bearing unit for wheel support including the outer ring 3 provided with both the outer ring raceways 2 and 2 can be further improved.

前述した両参考例及び上述した実施の形態の1例は、何れも、複列アンギュラ型玉軸受1を構成する外輪3を造る場合に就いて説明した。これに対して本発明の軸受外輪の製造方法は、複列アンギュラ型円すいころ軸受を構成する外輪を造る場合に利用する事もできる。 Both the above-described reference examples and the above-described example of the embodiment have been described for the case where the outer ring 3 constituting the double-row angular ball bearing 1 is manufactured. On the other hand, the method for manufacturing a bearing outer ring according to the present invention can also be used when an outer ring constituting a double-row angular tapered roller bearing is manufactured .

1 複列アンギュラ型玉軸受
2 外輪軌道
3 外輪
4 内輪軌道
5 内輪
6 玉
7 保持器
8 ハウジング
9 回転軸
10 素材
11、11a、11b 第一中間素材
12、12a、12b、12c 第二中間素材
13 ダイス
14 パンチ
15 底板部
16 周壁部
17 環状凹溝
18 内周面側大径部
19 内周面側小径部
20 内周面側傾斜部
21 外周面側小径部
22 外周面側大径部
23 外周面側傾斜部
24 底部
25、25a、25b 第三中間素材
26、26a、26b 第四中間素材
27 中間円筒状部分
28 中心側金属材料
29 中間部金属材料
30 外径側金属材料
31 円筒部
32 隔壁部
DESCRIPTION OF SYMBOLS 1 Double row angular contact ball bearing 2 Outer ring raceway 3 Outer ring 4 Inner ring raceway 5 Inner ring 6 Ball 7 Cage 8 Housing 9 Rotating shaft 10 Material 11, 11a, 11b First intermediate material 12, 12a, 12b, 12c Second intermediate material 13 Die 14 Punch 15 Bottom plate portion 16 Peripheral wall portion 17 Annular groove 18 Inner peripheral surface side large diameter portion 19 Inner peripheral surface side small diameter portion 20 Inner peripheral surface side inclined portion 21 Outer peripheral surface side small diameter portion 22 Outer peripheral surface side large diameter portion 23 Outer periphery Surface side inclined portion 24 Bottom portion 25, 25a, 25b Third intermediate material 26, 26a, 26b Fourth intermediate material 27 Intermediate cylindrical portion 28 Center side metal material 29 Intermediate portion metal material 30 Outer diameter side metal material 31 Cylindrical portion 32 Partition Part

Claims (3)

円柱状の素材に、据え込み加工と、後方押出加工と、打ち抜き加工と、ローリング加工と、仕上加工とを順次施す事により、内周面の軸方向2個所位置に複列の背面組み合わせ型の外輪軌道を備えた軸受外輪とする為、
上記据え込み加工では、上記素材を、1対の金型の互いに対向する押圧面同士の間で軸方向に押し潰して、第一中間素材とし、
上記後方押出加工では、有底円筒状で、内周面を、開口部寄りの内周面側大径部と底部寄りの内周面側小径部とを軸方向中間部の内周面側傾斜部により連続させた段付形状としたダイスと、外周面を、先端寄りの外周面側小径部と基端寄りの外周面側大径部とを軸方向中間部の外周面側傾斜部により連続させた段付形状としたパンチとの間で上記第一中間素材の中央部を軸方向に押し潰し、この押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材の径方向外寄り部分に存在する金属材料と共に、上記パンチの押し込み方向後方に移動させて、内外両周面が段付円筒面で全体が有底円筒状の第二中間素材とし、
上記打ち抜き加工では、上記第二中間素材の底部を打ち抜き除去する事で、内外両周面が段付円筒面で全体が円筒状の第三中間素材とし、
上記ローリング加工では、この第三中間素材の内外両周面を塑性変形させて、外周面が軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である第四中間素材とし、
上記仕上加工では、上記第四中間素材の内周面を削り取る事により、この内周面に上記両外輪軌道を形成する軸受外輪の製造方法に於いて、
上記据え込み加工で造る上記第一中間素材の外径を、上記ダイスの内周面側大径部の内径以下で上記内周面側小径部の内径よりも大きくし、
上記後方押出加工では、上記第一中間素材の外径寄り部分を上記ダイスの内周面側傾斜部に全周に亙り引っ掛けた状態で、この第一中間素材を上記パンチの先端面により上記ダイスの底部に向けて押し込み、この第一中間素材を外径寄り部分程このダイスの開口部に向かう方向に傾斜した形状に塑性変形させてから、この第一中間素材の中央部を軸方向に押し潰すと共に、この第一中間素材の外径寄り部分を上記パンチの押し込み方向後方に移動させて上記第二中間素材とする事を特徴とする
軸受外輪の製造方法。
By applying upsetting, backward extrusion, punching, rolling, and finishing to a cylindrical material in sequence, a double-row back combination type is placed at two axial positions on the inner peripheral surface. To make a bearing outer ring with an outer ring raceway,
In the upsetting process, the material is crushed in the axial direction between the pressing surfaces of the pair of molds facing each other, to become a first intermediate material,
In the backward extrusion process, the inner peripheral surface is inclined with the inner peripheral surface side large diameter portion near the opening and the inner peripheral surface side small diameter portion near the bottom portion on the inner peripheral surface side of the axial intermediate portion. A die having a stepped shape made continuous by a portion, and an outer peripheral surface, an outer peripheral surface side small-diameter portion near the tip and an outer peripheral surface-side large diameter portion near the base end are continuously connected by an outer peripheral surface-side inclined portion in the axial direction intermediate portion. The center portion of the first intermediate material is crushed in the axial direction between the punch having a stepped shape, and the metal material extruded radially outward along with the crushing is converted into the first intermediate material. Along with the metal material present in the radially outer portion of the above, the punch is moved backward in the pushing direction, the inner and outer peripheral surfaces are stepped cylindrical surfaces and the whole is a bottomed cylindrical second intermediate material,
In the punching process, by punching and removing the bottom of the second intermediate material, the inner and outer peripheral surfaces are stepped cylindrical surfaces and the whole is a cylindrical third intermediate material,
In the rolling process, both the inner and outer peripheral surfaces of the third intermediate material are plastically deformed so that the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface is the axial intermediate portion. The fourth inner material having the smallest inner diameter and the shape in which the both sides of the axial intermediate portion are inclined in a direction in which the inner diameter gradually increases toward both axial end portions,
In the finishing process, in the method for manufacturing the bearing outer ring, the both outer ring raceways are formed on the inner peripheral surface by scraping the inner peripheral surface of the fourth intermediate material.
The outer diameter of the first intermediate material produced by the upsetting process is less than the inner diameter of the inner peripheral surface side large diameter portion of the die and larger than the inner diameter of the inner peripheral surface side small diameter portion,
In the backward extrusion process, the first intermediate material is put on the die by the tip end surface of the punch in a state where the portion near the outer diameter of the first intermediate material is hooked on the inner peripheral surface side inclined portion of the die over the entire circumference. The first intermediate material is plastically deformed into a shape inclined toward the opening of the die as the portion closer to the outer diameter, and then the central portion of the first intermediate material is pushed in the axial direction. A method for producing a bearing outer ring, wherein the outer intermediate portion of the first intermediate material is crushed and moved to the rear of the punch in the pushing direction to form the second intermediate material.
据え込み加工で使用する1対の金型のうちの一方の金型の押圧面を平坦面とすると共に、他方の金型の押圧面の少なくとも外径寄り部分を、外周縁に向かうに従って上記一方の金型の押圧面から遠ざかる方向に傾斜した傾斜面とする事で、第一の中間素材の軸方向片面を、径方向中央部が外周縁部に対し凹んだ形状とし、後方押出加工の際に、この凹んだ面をダイスの底部に対向させる、請求項1に記載した軸受外輪の製造方法。   The pressing surface of one of the pair of molds used in the upsetting process is a flat surface, and at least a portion closer to the outer diameter of the pressing surface of the other mold is moved toward the outer edge. By making the inclined surface inclined in a direction away from the pressing surface of the mold, the axial one side of the first intermediate material has a shape in which the central portion in the radial direction is recessed with respect to the outer peripheral edge, and during the backward extrusion process The method for manufacturing a bearing outer ring according to claim 1, wherein the concave surface is opposed to the bottom of the die. 円柱状の素材に、据え込み加工と、前後方同時押出加工と、打ち抜き加工と、ローリング加工と、仕上加工とを順次施す事により、内周面の軸方向2個所位置に複列の背面組み合わせ型の外輪軌道を備えた軸受外輪とする軸受外輪の製造方法であって、
上記据え込み加工では、上記素材を、1対の金型の互いに対向する押圧面同士の間で軸方向に押し潰して、第一中間素材とし、
上記前後方同時押出加工では、有底円筒状で、底面中央部に深さ寸法の1/2未満の高さ寸法を有する円形凸部を設け、この円形凸部の外周面と内周面との間を円筒状成形空間としたダイスと、このダイスの内径よりも小さな外径を有するパンチとの間で上記第一中間素材の中央部を軸方向に押し潰し、この押し潰しに伴って径方向外方に押し出された金属材料を、上記第一中間素材の径方向外寄り部分に存在する金属材料と共に、上記円筒状成形用空間及び上記パンチの押し込み方向後方でこのパンチの外周面と上記ダイスの内周面との間に存在する円筒状の空間に移動させて、円筒部の軸方向中間部内径側に隔壁部を設けた第二中間素材とし、
上記打ち抜き加工では、上記第二中間素材の隔壁部を打ち抜き除去する事で、全体が円筒状の第三中間素材とし、
上記ローリング加工では、この第三中間素材の内外両周面を塑性変形させて、外周面が軸方向に関して外径が実質的に変化しない円筒面であり、内周面が、軸方向中間部の内径が最も小さく、この軸方向中間部の両側部分が軸方向両端部に向かうに従って内径が漸次大きくなる方向に傾斜した形状である第四中間素材とし、
上記仕上加工では、上記第四中間素材の内周面を削り取る事により、この内周面に上記両外輪軌道を形成する
軸受外輪の製造方法。
Double column backside combination at two axial positions on the inner peripheral surface by sequentially performing upsetting, front / rear coextrusion, punching, rolling, and finishing on a cylindrical material A method for manufacturing a bearing outer ring, which is a bearing outer ring provided with a mold outer ring raceway,
In the upsetting process, the material is crushed in the axial direction between the pressing surfaces of the pair of molds facing each other, to become a first intermediate material,
In the front-rear coextrusion process, a circular convex portion having a bottomed cylindrical shape and having a height dimension less than 1/2 of the depth dimension is provided at the center of the bottom surface, and the outer peripheral surface and inner peripheral surface of the circular convex portion are provided. The center portion of the first intermediate material is crushed in the axial direction between a die having a cylindrical forming space between the die and a punch having an outer diameter smaller than the inner diameter of the die. The metal material extruded outward in the direction, together with the metal material present in the radially outward portion of the first intermediate material, and the outer peripheral surface of the punch and the punching space behind the cylindrical forming space and the punch in the pushing direction. Move to a cylindrical space existing between the inner peripheral surface of the die, and a second intermediate material provided with a partition wall portion on the inner diameter side in the axial direction intermediate portion of the cylindrical portion,
In the punching process, by removing the partition wall of the second intermediate material by punching, the whole is a cylindrical third intermediate material,
In the rolling process, both the inner and outer peripheral surfaces of the third intermediate material are plastically deformed so that the outer peripheral surface is a cylindrical surface whose outer diameter does not substantially change in the axial direction, and the inner peripheral surface is the axial intermediate portion. The fourth inner material having the smallest inner diameter and the shape in which the both sides of the axial intermediate portion are inclined in a direction in which the inner diameter gradually increases toward both axial end portions,
In the finishing process, a method for producing a bearing outer ring, wherein the outer ring raceways are formed on the inner peripheral surface by scraping the inner peripheral surface of the fourth intermediate material.
JP2012184983A 2007-01-16 2012-08-24 Manufacturing method for bearing outer ring Pending JP2013006218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184983A JP2013006218A (en) 2007-01-16 2012-08-24 Manufacturing method for bearing outer ring

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007006535 2007-01-16
JP2007006535 2007-01-16
JP2012184983A JP2013006218A (en) 2007-01-16 2012-08-24 Manufacturing method for bearing outer ring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008002761A Division JP5151489B2 (en) 2007-01-16 2008-01-10 Manufacturing method of bearing outer ring

Publications (1)

Publication Number Publication Date
JP2013006218A true JP2013006218A (en) 2013-01-10

Family

ID=39755812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184983A Pending JP2013006218A (en) 2007-01-16 2012-08-24 Manufacturing method for bearing outer ring

Country Status (1)

Country Link
JP (1) JP2013006218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128788A (en) * 2014-01-09 2015-07-16 日本精工株式会社 Manufacturing method of bearing outer ring
CN111618222A (en) * 2020-06-04 2020-09-04 福建龙溪轴承(集团)股份有限公司 Integral joint bearing precision forging forming device with flange and forming method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118737A (en) * 1996-10-17 1998-05-12 Daido Steel Co Ltd Manufacture of outer ring of hub unit bearing
JPH1110272A (en) * 1997-06-27 1999-01-19 Ntn Corp Production of blank for bearing raceway ring
JPH11257357A (en) * 1998-03-10 1999-09-21 Nippon Seiko Kk Rolling bearing race
JP2006250317A (en) * 2005-03-14 2006-09-21 Nsk Ltd Rolling bearings, bearing units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118737A (en) * 1996-10-17 1998-05-12 Daido Steel Co Ltd Manufacture of outer ring of hub unit bearing
JPH1110272A (en) * 1997-06-27 1999-01-19 Ntn Corp Production of blank for bearing raceway ring
JPH11257357A (en) * 1998-03-10 1999-09-21 Nippon Seiko Kk Rolling bearing race
JP2006250317A (en) * 2005-03-14 2006-09-21 Nsk Ltd Rolling bearings, bearing units

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128788A (en) * 2014-01-09 2015-07-16 日本精工株式会社 Manufacturing method of bearing outer ring
CN111618222A (en) * 2020-06-04 2020-09-04 福建龙溪轴承(集团)股份有限公司 Integral joint bearing precision forging forming device with flange and forming method thereof

Similar Documents

Publication Publication Date Title
JP5151489B2 (en) Manufacturing method of bearing outer ring
US9056375B2 (en) Manufacturing method for bearing outer ring
JP4984910B2 (en) Method for manufacturing bearing ring member
JP6523677B2 (en) Method of manufacturing hub wheel and inner member of wheel bearing device
JP4840102B2 (en) Method for manufacturing bearing ring member
JP5737371B2 (en) Manufacturing method of outer ring of rolling bearing unit for wheel support
JP5966726B2 (en) Method for manufacturing bearing ring member
JP5556297B2 (en) Manufacturing method of bearing ring member of rolling bearing unit for supporting wheel
JP2014024091A5 (en)
JP4674580B2 (en) Method for manufacturing bearing ring member
JP5494275B2 (en) Method for manufacturing bearing ring member
JP6191423B2 (en) Manufacturing method of outer ring for rolling bearing unit and outer ring for rolling bearing unit
JP2013006218A (en) Manufacturing method for bearing outer ring
US20130205593A1 (en) Manufacturing method for bearing outer ring
JP4826491B2 (en) Method for manufacturing bearing ring member
JP4978552B2 (en) Method for manufacturing ring-shaped raceway material
JP6252179B2 (en) Manufacturing method of bearing outer ring
JP5029376B2 (en) Manufacturing method of outer ring for double row rolling bearing unit
JP5672181B2 (en) Method for manufacturing bearing ring member
JP2006341255A (en) Manufacturing method of high precision ring
JP2008064261A (en) Manufacturing method of outer ring of rolling bearing unit for wheel support
JP5834592B2 (en) Manufacturing method of metal member with outward flange
JP2010241381A (en) Manufacturing method of inner diameter raceway member constituting rolling bearing unit for supporting wheel
JP5056189B2 (en) Method for manufacturing rolling ring bearing ring
JP2007170586A (en) Method for manufacturing rolling ring bearing ring

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805