JP2013004707A - Piezoelectric film element and piezoelectric film device - Google Patents
Piezoelectric film element and piezoelectric film device Download PDFInfo
- Publication number
- JP2013004707A JP2013004707A JP2011133911A JP2011133911A JP2013004707A JP 2013004707 A JP2013004707 A JP 2013004707A JP 2011133911 A JP2011133911 A JP 2011133911A JP 2011133911 A JP2011133911 A JP 2011133911A JP 2013004707 A JP2013004707 A JP 2013004707A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric film
- substrate
- electrode layer
- lower electrode
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 153
- 239000013078 crystal Substances 0.000 claims abstract description 99
- 238000009826 distribution Methods 0.000 claims abstract description 63
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 56
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910000484 niobium oxide Inorganic materials 0.000 claims abstract description 8
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 214
- 239000002356 single layer Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052738 indium Inorganic materials 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910004121 SrRuO Inorganic materials 0.000 claims description 7
- 229910002367 SrTiO Inorganic materials 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 229910052741 iridium Inorganic materials 0.000 claims description 7
- 229910052707 ruthenium Inorganic materials 0.000 claims description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 6
- 239000010980 sapphire Substances 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 5
- 239000003513 alkali Substances 0.000 abstract description 6
- 239000010408 film Substances 0.000 description 265
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 135
- 235000012431 wafers Nutrition 0.000 description 44
- 230000015572 biosynthetic process Effects 0.000 description 22
- 238000004544 sputter deposition Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000003990 capacitor Substances 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 11
- MVDSPIQMADQKKM-UHFFFAOYSA-N lithium potassium sodium Chemical compound [Li+].[Na+].[K+] MVDSPIQMADQKKM-UHFFFAOYSA-N 0.000 description 9
- 239000010409 thin film Substances 0.000 description 9
- 239000012790 adhesive layer Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000005477 sputtering target Methods 0.000 description 6
- 229910001260 Pt alloy Inorganic materials 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 229910016523 CuKa Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- -1 or the like Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005478 sputtering type Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000010180 surface X-ray diffraction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
【課題】圧電特性に優れ且つ信頼性の高い圧電膜素子及び圧電膜デバイスを提供する。
【解決手段】基板1上に、少なくとも下部電極層2と、非鉛のアルカリニオブ酸化物系の圧電膜4とを配した圧電膜素子10において、前記下部電極層2は、立方晶、正方晶、斜方晶、六方晶、単斜晶、三斜晶、三方晶のいずれかの結晶構造、またはこれら結晶構造のうちの二以上の結晶構造が共存した状態を有し、前記結晶構造の結晶軸のうちの2軸以下のある特定の結晶軸に優先的に配向しており、前記基板1上における少なくとも一つの前記結晶軸を法線とした結晶面のX線回折強度分布において、前記結晶面のX線回折強度の相対標準偏差が57%以下である。
【選択図】図1A piezoelectric film element and a piezoelectric film device having excellent piezoelectric characteristics and high reliability are provided.
In a piezoelectric film element having at least a lower electrode layer and a lead-free alkali niobium oxide-based piezoelectric film disposed on a substrate, the lower electrode layer is made of cubic or tetragonal crystals. An orthorhombic, hexagonal, monoclinic, triclinic, or trigonal crystal structure, or a state in which two or more of these crystal structures coexist, In the X-ray diffraction intensity distribution of a crystal plane that is preferentially oriented to a specific crystal axis that is not more than two of the axes and that is normal to at least one of the crystal axes on the substrate 1, The relative standard deviation of the X-ray diffraction intensity of the surface is 57% or less.
[Selection] Figure 1
Description
本発明は、非鉛のアルカリニオブ酸化物系の圧電膜を用いた圧電膜素子及び圧電膜デバイスに関する。 The present invention relates to a piezoelectric film element and a piezoelectric film device using a lead-free alkali niobium oxide-based piezoelectric film.
圧電体は種々の目的に応じて様々な圧電素子に加工され、特に電圧を加えて変形を生じさせるアクチュエータや、逆に素子の変形から電圧を発生するセンサなどの機能性電子部品として広く利用されている。アクチュエータやセンサの用途に利用されている圧電体としては、優れた圧電特性を有する鉛系材料の誘電体、特にPZTと呼ばれるPb(Zr1−xTix)O3系のペロブスカイト型強誘電体が、これまで広く用いられている。PZTなどの圧電体は、通常、圧電体材料の酸化物を焼結することにより形成されている。 Piezoelectric materials are processed into various piezoelectric elements according to various purposes. In particular, they are widely used as functional electronic parts such as actuators that generate deformation by applying voltage and conversely sensors that generate voltage from deformation of the element. ing. As a piezoelectric material used for actuators and sensors, a lead-based material dielectric material having excellent piezoelectric characteristics, particularly a Pb (Zr 1-x Ti x ) O 3 -based perovskite ferroelectric material called PZT However, it has been widely used so far. A piezoelectric material such as PZT is usually formed by sintering an oxide of a piezoelectric material.
また、近年では環境への配慮から鉛を含有しない圧電体の開発が切望されており、非鉛のアルカリニオブ酸化物であるニオブ酸カリウムナトリウム(一般式:(NaxKy)NbO3(0<x<1、0<y<1、x+y+z=1))、ニオブ酸リチウムカリウムナトリウム(一般式:(NaxKyLiz)NbO3(0<x<1、0<y<1、0<z<1、x+y+z=1))等の開発が進められている。ニオブ酸カリウムナトリウム等は、PZTに匹敵する圧電特性を有することから、非鉛圧電材料の有力な候補として期待されている。 In recent years, the development of a piezoelectric material containing no lead has been eagerly desired for environmental considerations, and potassium sodium niobate (general formula: (Na x K y ) NbO 3 (0 <X <1, 0 <y <1, x + y + z = 1)), lithium potassium sodium niobate (general formula: (Na x K y Li z ) NbO 3 (0 <x <1, 0 <y <1, 0 <Z <1, x + y + z = 1)) and the like are under development. Since potassium sodium niobate has piezoelectric characteristics comparable to PZT, it is expected as a promising candidate for lead-free piezoelectric materials.
一方、現在、各種電子部品の小型かつ高性能化が進むにつれ、圧電素子においても小型化と高性能化が強く求められるようになった。しかしながら、従来からの焼結法を中心とした製造方法により作製した圧電膜は、その厚みを薄くするにつれ、特に厚みが10μm程度の厚さに近づくにつれて、圧電材料を構成する結晶粒の大きさに近づくため、特性のばらつきや劣化が顕著になるといった問題が発生する。これを回避するために、焼結法に変わる薄膜技術等を応用した圧電膜の形成法が近年研究されるようになってきた。 On the other hand, as various types of electronic components have become smaller and higher in performance, there has been a strong demand for smaller and higher performance piezoelectric elements. However, as the thickness of the piezoelectric film produced by the conventional manufacturing method centered on the sintering method is reduced, the size of the crystal grains constituting the piezoelectric material particularly as the thickness approaches 10 μm. Therefore, there arises a problem that variation and deterioration of characteristics become remarkable. In order to avoid this, a method for forming a piezoelectric film using a thin film technique or the like instead of the sintering method has been recently studied.
近年、RFスパッタリング法で形成したPZT薄膜が高精細高速インクジェットプリンタのヘッド用アクチュエータや、小型低価格の角速度センサまたはジャイロセンサとして実用化されている(例えば、特許文献1参照)。また、鉛を用いないニオブ酸リチウムカリウムナトリウムの圧電薄膜を用いた圧電体薄膜素子も提案されている(例えば、特許文献2参照)。 In recent years, PZT thin films formed by RF sputtering have been put to practical use as high-definition high-speed inkjet printer head actuators, small-sized and low-cost angular velocity sensors, or gyro sensors (see, for example, Patent Document 1). A piezoelectric thin film element using a piezoelectric thin film of lithium potassium sodium niobate that does not use lead has also been proposed (see, for example, Patent Document 2).
これらの圧電素子を駆動させるには、圧電膜に対して電界(電圧)を印加させなければならない。そのためには、電極と呼ばれる導電性材料を圧電膜の上下に配置することが必要である。一般に、圧電膜、高誘電率膜、強誘電性薄膜などの電極としては、耐環境性に優れた白金(Pt)を用いられることが多い。また、その他にも、電極層の種類として、Ru(ルテニウム)、Ir(イリジウム)、Sn(スズ)、In(インジウム)乃至それらの酸化物や、圧電膜中に含む元素との化合物で構成される単層、あるいはそれらの層を含む積層体がある。 In order to drive these piezoelectric elements, an electric field (voltage) must be applied to the piezoelectric film. For this purpose, it is necessary to dispose conductive materials called electrodes above and below the piezoelectric film. In general, platinum (Pt) having excellent environmental resistance is often used for electrodes such as piezoelectric films, high dielectric constant films, and ferroelectric thin films. In addition, the electrode layer is composed of Ru (ruthenium), Ir (iridium), Sn (tin), In (indium) or their oxides, or a compound with an element contained in the piezoelectric film. Single layer, or a laminate including these layers.
圧電膜として非鉛圧電膜を形成することにより、環境負荷を低減させた高精細高速インクジェットプリンタ用ヘッドや小型で低価格な角速度センサやジャイロセンサを作製することができる。このため、ニオブ酸リチウムカリウムナトリウム等の圧電膜の基礎研究が進められている。また、応用面における低コスト化においては、Si基板やガラス基板上に圧電膜を制御良く形成する技術を確立することも不可欠である。 By forming a lead-free piezoelectric film as the piezoelectric film, it is possible to manufacture a high-definition high-speed inkjet printer head with reduced environmental load, and a small and inexpensive angular velocity sensor or gyro sensor. For this reason, basic research on piezoelectric films such as lithium potassium sodium niobate is underway. In order to reduce the cost in application, it is indispensable to establish a technique for forming a piezoelectric film on a Si substrate or a glass substrate with good control.
アクチュエータやセンサを作製する場合、従来技術では、圧電膜素子の基幹部位にあたる非鉛系の圧電膜の周辺材料の一つである電極材料に対し、その結晶配向性などの原子レベル構造を定量的にかつ精密に制御することや管理することは行われていなかった。このため、長寿命かつ高い圧電定数を示す非鉛系デバイスを安定に生産することができなかった。また、基板上に多数形成される圧電膜素子の電極構造が基板上の形成部位によって異なることがあるため、圧電膜素子の圧電定数が不均一となり、製造上の歩留り低下の原因の一つとなっていた。 In the case of manufacturing actuators and sensors, in the conventional technology, the atomic level structure such as crystal orientation of the electrode material, which is one of the peripheral materials of the lead-free piezoelectric film, which is the basic part of the piezoelectric film element, is quantitatively determined. In addition, no precise control or management was performed. For this reason, a lead-free device having a long life and a high piezoelectric constant could not be stably produced. In addition, since the electrode structure of a large number of piezoelectric film elements formed on the substrate may differ depending on the formation site on the substrate, the piezoelectric constant of the piezoelectric film element becomes non-uniform, which is one of the causes of manufacturing yield reduction. It was.
本発明の目的は、圧電特性に優れ且つ信頼性の高い圧電膜素子及び圧電膜デバイスを提供することにある。 An object of the present invention is to provide a piezoelectric film element and a piezoelectric film device having excellent piezoelectric characteristics and high reliability.
本発明の第1の態様は、基板上に、少なくとも下部電極層と、非鉛のアルカリニオブ酸化物系の圧電膜とを配した圧電膜素子において、前記下部電極層は、立方晶、正方晶、斜方晶、六方晶、単斜晶、三斜晶、三方晶のいずれかの結晶構造、またはこれら結晶構造のうちの二以上の結晶構造が共存した状態を有し、前記結晶構造の結晶軸のうちの2軸以下のある特定の結晶軸に優先的に配向しており、前記基板上における少なくとも一つの前記結晶軸を法線とした結晶面のX線回折強度分布において、前記結晶面のX線回折強度の相対標準偏差が57%以下である圧電膜素子である。 According to a first aspect of the present invention, there is provided a piezoelectric film element in which at least a lower electrode layer and a lead-free alkali niobium oxide-based piezoelectric film are disposed on a substrate, wherein the lower electrode layer includes a cubic crystal and a tetragonal crystal. An orthorhombic, hexagonal, monoclinic, triclinic, or trigonal crystal structure, or a state in which two or more of these crystal structures coexist, In the X-ray diffraction intensity distribution of the crystal plane that is preferentially oriented to a specific crystal axis that is two or less of the axes, and that is normal to at least one of the crystal axes on the substrate, the crystal plane The piezoelectric film element has a relative standard deviation of X-ray diffraction intensity of 57% or less.
本発明の第2の態様は、基板上に、少なくとも下部電極層と、非鉛のアルカリニオブ酸化物系の圧電膜とを配した圧電膜素子において、前記下部電極層は、立方晶、正方晶、斜方晶、六方晶、単斜晶、三斜晶、三方晶のいずれかの結晶構造、またはこれら結晶構造のうちの二以上の結晶構造が共存した状態を有し、前記結晶構造の結晶軸のうち2軸以下のある特定の軸に優先的に配向しており、前記基板上における少なくとも一つの前記結晶軸を法線とした結晶面のX線回折強度の分布において、前記結晶面のX線回折強度の最小ピーク強度に対する最大ピーク強度の大きさが7倍以下の範囲にある圧電膜素子である。 According to a second aspect of the present invention, there is provided a piezoelectric film element in which at least a lower electrode layer and a lead-free alkali niobium oxide-based piezoelectric film are disposed on a substrate, wherein the lower electrode layer includes a cubic crystal and a tetragonal crystal. An orthorhombic, hexagonal, monoclinic, triclinic, or trigonal crystal structure, or a state in which two or more of these crystal structures coexist, In the distribution of the X-ray diffraction intensity of the crystal plane that is preferentially oriented to a specific axis that is two or less of the axes and that is normal to at least one of the crystal axes on the substrate, This is a piezoelectric film element in which the maximum peak intensity relative to the minimum peak intensity of the X-ray diffraction intensity is in the range of 7 times or less.
本発明の第3の態様は、第1又は第2の態様に記載の圧電膜素子において、前記基板上における前記圧電膜の圧電定数の分布は、相対標準偏差が10%以下にある。 According to a third aspect of the present invention, in the piezoelectric film element according to the first or second aspect, the piezoelectric constant distribution of the piezoelectric film on the substrate has a relative standard deviation of 10% or less.
本発明の第4の態様は、第1〜第3の態様のいずれかに記載の圧電膜素子において、前記下部電極層は、柱状構造の粒子で構成された集合組織を有している。 According to a fourth aspect of the present invention, in the piezoelectric film element according to any one of the first to third aspects, the lower electrode layer has a texture composed of particles having a columnar structure.
本発明の第5の態様は、第1〜第4の態様のいずれかに記載の圧電膜素子において、前記下部電極層が、(001)優先配向結晶粒、(110)優先配向結晶粒および(111)優先配向結晶粒のうち、主に一つの優先配向結晶粒で構成された構造、または二以上の優先配向結晶粒が共存した構造である。 According to a fifth aspect of the present invention, in the piezoelectric film element according to any one of the first to fourth aspects, the lower electrode layer includes (001) preferentially oriented crystal grains, (110) preferentially oriented crystal grains, and ( 111) Of the preferentially oriented crystal grains, a structure mainly composed of one preferentially oriented crystal grain or a structure in which two or more preferentially oriented crystal grains coexist.
本発明の第6の態様は、第1〜第5の態様のいずれかに記載の圧電膜素子において、前記下部電極層は、Pt層またはPtを主成分とする合金層からなる単層構造、あるいはPt層またはPtを主成分とする合金層を含む積層構造である。 According to a sixth aspect of the present invention, in the piezoelectric film element according to any one of the first to fifth aspects, the lower electrode layer has a single-layer structure including a Pt layer or an alloy layer containing Pt as a main component, Or it is a laminated structure containing the alloy layer which has Pt layer or Pt as a main component.
本発明の第7の態様は、第1〜第6の態様のいずれかに記載の圧電膜素子において、前記下部電極層は、Ru、Ir、Sn、In、これらの酸化物、またはPtと前記圧電膜中に含まれる元素との化合物からなる層の単層構造、または前記層を含む積層構造である。 According to a seventh aspect of the present invention, in the piezoelectric film element according to any one of the first to sixth aspects, the lower electrode layer includes Ru, Ir, Sn, In, an oxide thereof, or Pt and A single layer structure of a layer made of a compound with an element contained in the piezoelectric film, or a laminated structure including the layer.
本発明の第8の態様は、第1〜第7の態様のいずれかに記載の圧電膜素子において、前記圧電膜上に、上部電極層が設けられ、前記上部電極層は、Pt層またはPtを主成分とする合金層からなる単層構造、あるいはPt層またはPtを主成分とする合金層を含む積層構造である。 According to an eighth aspect of the present invention, in the piezoelectric film element according to any one of the first to seventh aspects, an upper electrode layer is provided on the piezoelectric film, and the upper electrode layer includes a Pt layer or a Pt layer. It is a single layer structure made of an alloy layer containing as a main component, or a laminated structure including a Pt layer or an alloy layer containing Pt as a main component.
本発明の第9の態様は、第8の態様に記載の圧電膜素子において、前記上部電極層は、Ru、Ir、Sn、In、これらの酸化物、またはPtと前記圧電膜中に含まれる元素との化合物からなる層の単層構造、または前記層を含む積層構造である。 According to a ninth aspect of the present invention, in the piezoelectric film element according to the eighth aspect, the upper electrode layer is contained in Ru, Ir, Sn, In, an oxide thereof, or Pt and the piezoelectric film. It is a single layer structure of a layer made of a compound with an element or a laminated structure including the layer.
本発明の第10の態様は、第1〜第4の態様のいずれかに記載の圧電膜素子において、前記基板は、Si基板、MgO基板、ZnO基板、SrTiO3基板、SrRuO3基板、ガラス基板、石英ガラス基板、GaAs基板、GaN基板、サファイア基板、Ge基板、またはステンレス基板である。 According to a tenth aspect of the present invention, in the piezoelectric film element according to any one of the first to fourth aspects, the substrate is a Si substrate, a MgO substrate, a ZnO substrate, a SrTiO 3 substrate, a SrRuO 3 substrate, or a glass substrate. A quartz glass substrate, a GaAs substrate, a GaN substrate, a sapphire substrate, a Ge substrate, or a stainless steel substrate.
本発明の第11の態様は、第1〜第10の態様のいずれかに記載の圧電膜素子を備えた圧電膜デバイスである。 An eleventh aspect of the present invention is a piezoelectric film device comprising the piezoelectric film element according to any one of the first to tenth aspects.
本発明によれば、圧電膜素子の下部電極層構造を精密に制御することにより、圧電特性に優れ且つ信頼性の高い圧電膜素子及び圧電膜デバイスを提供することができる。 According to the present invention, a piezoelectric film element and a piezoelectric film device having excellent piezoelectric characteristics and high reliability can be provided by precisely controlling the lower electrode layer structure of the piezoelectric film element.
本発明者は、圧電膜素子の構成材料である、基板、下部電極層及び圧電膜を適切に選定すると共に、これら材料の作製条件の最適化を図ったが、その過程で圧電膜素子の圧電特性と下部電極構造との関係に着目し、圧電特性と下部電極構造との相関関係を明確にすべく、精密かつ詳細な解析を定量的に行った。その結果、下部電極層の結晶配向性を厳密に制御することにより、非鉛の圧電膜素子の圧電特性の向上と、圧電膜デバイスの高性能化を実現できると同時に、圧電膜素子及び圧電膜デバイスの製造歩留りを向上できることを見出した。 The present inventor has appropriately selected the substrate, the lower electrode layer, and the piezoelectric film, which are constituent materials of the piezoelectric film element, and has optimized the manufacturing conditions of these materials. Focusing on the relationship between the characteristics and the lower electrode structure, a precise and detailed analysis was quantitatively performed in order to clarify the correlation between the piezoelectric characteristics and the lower electrode structure. As a result, by strictly controlling the crystal orientation of the lower electrode layer, the piezoelectric characteristics of the lead-free piezoelectric film element can be improved and the performance of the piezoelectric film device can be improved. We found that the manufacturing yield of devices can be improved.
本発明の一態様の圧電膜素子は、基板上に、少なくとも下部電極層と、非鉛のアルカリニオブ酸化物系の圧電膜とを配した圧電膜素子において、前記下部電極層は、立方晶、正方晶、斜方晶、六方晶、単斜晶、三斜晶、三方晶のいずれかの結晶構造、またはこれら結晶構造のうちの二以上の結晶構造が共存した状態を有し、前記結晶構造の結晶軸のうちの2軸以下のある特定の結晶軸に優先的に配向しており、前記基板上における少なくとも一つの前記結晶軸を法線とした結晶面のX線回折強度分布において、前記結晶面のX線回折強度の相対標準偏差が57%以下である。
例えば、後述する実施例の表2及び図16に示すように、基板上における下部電極層の(111)優先配向分布の指標である(111)X線回折強度の相対標準偏差が57%以下、より好ましくは44%以下の範囲に設定することによって、基板上における圧電定数分布の指標である圧電定数の相対標準偏差を10%以下、もしくは7%以下(111X線回折強度の相対標準偏差が44%以下の場合)にまで、基板上における圧電特性を均一かつ安定的に実現できる。
The piezoelectric film element of one embodiment of the present invention is a piezoelectric film element in which at least a lower electrode layer and a lead-free alkali niobium oxide-based piezoelectric film are arranged on a substrate, wherein the lower electrode layer includes a cubic crystal, A crystal structure of any one of tetragonal, orthorhombic, hexagonal, monoclinic, triclinic, and trigonal crystals, or a state in which two or more of these crystal structures coexist, and the crystal structure In the X-ray diffraction intensity distribution of the crystal plane that is preferentially oriented to a specific crystal axis of two or less of the crystal axes, and at least one of the crystal axes on the substrate is normal. The relative standard deviation of the X-ray diffraction intensity of the crystal plane is 57% or less.
For example, as shown in Table 2 of an example described later and FIG. 16, the relative standard deviation of the (111) X-ray diffraction intensity, which is an index of the (111) preferred orientation distribution of the lower electrode layer on the substrate, is 57% or less, More preferably, the relative standard deviation of the piezoelectric constant, which is an index of the piezoelectric constant distribution on the substrate, is set to 10% or less, or 7% or less (the relative standard deviation of 111 X-ray diffraction intensity is 44 by setting the range to 44% or less. % Or less), the piezoelectric characteristics on the substrate can be realized uniformly and stably.
本発明の他の態様の圧電膜素子は、基板上に、少なくとも下部電極層と、非鉛のアルカリニオブ酸化物系の圧電膜とを配した圧電膜素子において、前記下部電極層は、立方晶、正方晶、斜方晶、六方晶、単斜晶、三斜晶、三方晶のいずれかの結晶構造、またはこれら結晶構造のうちの二以上の結晶構造が共存した状態を有し、前記結晶構造の結晶軸のうち2軸以下のある特定の軸に優先的に配向しており、前記基板上における少なくとも一つの
前記結晶軸を法線とした結晶面のX線回折強度の分布において、前記結晶面のX線回折強度の最小ピーク強度に対する最大ピーク強度の大きさが7倍以下、より好ましくは6倍以下の範囲にある。
例えば、後述する実施例の表3及び図17に示すように、基板上における下部電極層の(111)優先配向分布の指標である(111)X線回折強度の最小ピーク強度に対する最大ピーク強度の大きさを7倍以下の範囲に精密に設定することによって、非鉛圧電体の圧電特性を自由に制御あるいは向上させることができる。そして、より好ましくは、上記X線回折強度の大きさを約6倍以下に設定することによって、圧電定数を各種デバイスへ広く適用できるレベルの70以上に制御することが可能である。尚、このときの圧電定数は、KNN圧電膜のヤング率をバルクで仮定しているために、任意単位で表記しているが、本発明の一実施例として電極面に沿った方向の伸縮の変化量であるd31である。
According to another aspect of the present invention, there is provided a piezoelectric film element in which at least a lower electrode layer and a lead-free alkali niobium oxide-based piezoelectric film are arranged on a substrate, wherein the lower electrode layer has a cubic crystal structure. A crystal structure of any one of tetragonal, orthorhombic, hexagonal, monoclinic, triclinic, and trigonal crystals, or a state in which two or more of these crystal structures coexist, In the distribution of the X-ray diffraction intensity of the crystal plane that is preferentially oriented to a specific axis of two or less of the crystal axes of the structure, and that is normal to at least one of the crystal axes on the substrate, The magnitude of the maximum peak intensity relative to the minimum peak intensity of the X-ray diffraction intensity of the crystal plane is in the range of 7 times or less, more preferably 6 times or less.
For example, as shown in Table 3 of an example described later and FIG. 17, the maximum peak intensity with respect to the minimum peak intensity of the (111) X-ray diffraction intensity, which is an index of the (111) preferred orientation distribution of the lower electrode layer on the substrate. By precisely setting the size within a range of 7 times or less, the piezoelectric characteristics of the lead-free piezoelectric body can be freely controlled or improved. More preferably, by setting the magnitude of the X-ray diffraction intensity to about 6 times or less, the piezoelectric constant can be controlled to 70 or more, a level that can be widely applied to various devices. The piezoelectric constant at this time is expressed in arbitrary units because the Young's modulus of the KNN piezoelectric film is assumed in bulk, but in one embodiment of the present invention, the expansion and contraction in the direction along the electrode surface is described. a d 31 is the change amount.
上記態様の圧電膜素子において、前記下部電極層として、Pt層またはPt合金層を使用し、Pt層またはPt合金層からなる下部電極層を前記基板面に対して垂直方向に(111)優先配向にすることにより、基板上に形成した圧電膜の配向性を向上できる。これにより圧電膜素子の圧電特性を更に向上させることができる。
また、前記下部電極層の材料として、Ru、Ir、Sn、In、これらの酸化物、またはPtと前記圧電膜中に含まれる元素との化合物を使用することによっても、同様にして圧電膜の配向性、圧電膜素子の圧電特性を向上できる。
また、前記基板についても、Si基板、MgO基板、ZnO基板、SrTiO3基板、SrRuO3基板、ガラス基板、石英ガラス基板、GaAs基板、GaN基板、サファイア基板、Ge基板、またはステンレス基板を使用することによって、その上に形成した圧電膜の結晶配向性を制御することができ、圧電特性を向上することができる。
In the piezoelectric film element of the above aspect, a Pt layer or a Pt alloy layer is used as the lower electrode layer, and the lower electrode layer made of the Pt layer or the Pt alloy layer is (111) preferentially oriented in a direction perpendicular to the substrate surface. By doing so, the orientation of the piezoelectric film formed on the substrate can be improved. Thereby, the piezoelectric characteristics of the piezoelectric film element can be further improved.
In addition, by using Ru, Ir, Sn, In, an oxide thereof, or a compound of Pt and an element contained in the piezoelectric film as the material of the lower electrode layer, the piezoelectric film is similarly formed. The orientation and the piezoelectric characteristics of the piezoelectric film element can be improved.
In addition, for the substrate, a Si substrate, MgO substrate, ZnO substrate, SrTiO 3 substrate, SrRuO 3 substrate, glass substrate, quartz glass substrate, GaAs substrate, GaN substrate, sapphire substrate, Ge substrate, or stainless steel substrate should be used. Thus, the crystal orientation of the piezoelectric film formed thereon can be controlled, and the piezoelectric characteristics can be improved.
以下に、本発明に係る圧電膜素子及び圧電膜デバイスの一実施形態を図面を用いて説明する。 Hereinafter, an embodiment of a piezoelectric film element and a piezoelectric film device according to the present invention will be described with reference to the drawings.
(圧電膜素子の一実施形態)
図1に、本発明に係る圧電膜素子の一実施形態を示す。
本実施形態の圧電膜素子10は、図1に示すように、表面に酸化膜を有する基板1と、基板1上に接着層2を介して形成される下部電極層3と、下部電極層3上に形成されるペロブスカイト構造の圧電膜4とを有する。圧電膜4は、(NaxKyLiz)NbO3(0≦x≦1、0≦y≦1、0≦z≦0.2、x+y+z=1)であり、所定方向に配向し
て形成される下部電極層3に対して、圧電膜4が所定方向に優先配向している。
(One Embodiment of Piezoelectric Film Element)
FIG. 1 shows an embodiment of a piezoelectric film element according to the present invention.
As shown in FIG. 1, the piezoelectric film element 10 of the present embodiment includes a substrate 1 having an oxide film on the surface, a lower electrode layer 3 formed on the substrate 1 with an adhesive layer 2 interposed therebetween, and a lower electrode layer 3. And a piezoelectric film 4 having a perovskite structure formed thereon. The piezoelectric film 4 is (Na x K y Li z ) NbO 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 0.2, x + y + z = 1), and is formed by being oriented in a predetermined direction. The piezoelectric film 4 is preferentially oriented in a predetermined direction with respect to the lower electrode layer 3 to be formed.
基板1には、Si基板、MgO基板、ZnO基板、SrTiO3基板、SrRuO3基板、ガラス基板、石英ガラス基板、GaAs基板、GaN基板、サファイア基板、Ge基板、ステンレス基板などが挙げられる。特に、低価格でかつ工業的に実績のあるSi基板が望ましい。Si基板等の表面に形成される前記酸化膜は、熱酸化により形成される熱酸化膜、CVD(Chemical Vapor Deposition)法により形成されるSi酸化膜などが挙げ
られる。なお、前記酸化膜を形成せずに、石英ガラス、MgO、SrTiO3、SrRuO3基板などの酸化物基板上に、直接Pt電極などの下部電極層3を形成しても良い。
Examples of the substrate 1 include a Si substrate, MgO substrate, ZnO substrate, SrTiO 3 substrate, SrRuO 3 substrate, glass substrate, quartz glass substrate, GaAs substrate, GaN substrate, sapphire substrate, Ge substrate, and stainless steel substrate. In particular, an Si substrate that is inexpensive and has an industrial record is desirable. Examples of the oxide film formed on the surface of a Si substrate and the like include a thermal oxide film formed by thermal oxidation and a Si oxide film formed by a CVD (Chemical Vapor Deposition) method. The lower electrode layer 3 such as a Pt electrode may be directly formed on an oxide substrate such as quartz glass, MgO, SrTiO 3 , or SrRuO 3 without forming the oxide film.
下部電極層3は、PtもしくはPtを主成分とするPt合金からなる単層構造の電極層、またはこれらの層を含む積層した構造の電極層であることが望ましい。また、下部電極層3は、(111)面方位([111]軸の方向)に配向して形成されるのが好ましく、基板1とPt層もしくはPt合金層からなる下部電極層3との間には、図1に示すように、基板1との密着性を高めるためのTi等からなる接着層2を設けるのが良い。 The lower electrode layer 3 is desirably a single-layer electrode layer made of Pt or a Pt alloy containing Pt as a main component, or an electrode layer having a laminated structure including these layers. Further, the lower electrode layer 3 is preferably formed so as to be oriented in the (111) plane direction (the direction of the [111] axis), and between the substrate 1 and the lower electrode layer 3 made of a Pt layer or a Pt alloy layer. As shown in FIG. 1, it is preferable to provide an adhesive layer 2 made of Ti or the like for improving the adhesion to the substrate 1.
本実施形態においては、下部電極層3の結晶配向性は(111)面優先配向であり、一
例として、基板1である4インチSiウェハ上における分布において、下部電極層3は、(111)配向度のばらつきである(111)面のX線回折強度の相対標準偏差が15%であると共に、(111)面優先配向の指標として用いた(111)面のX線回折強度について、(111)面X線回折強度分布における最小ピーク強度に対する最大ピーク強度の大きさを7倍にまで制御した。また、Ptの下部電極層3の(111)優先配向性を評価する上で、下部電極層3のX線回折パターンは、KNN圧電膜を形成する前と後においても、容易に測定できることから、圧電膜形成後の改質処理の前後においても、(111)優先配向性を有するPt下部電極層3を評価することが可能である。(111)面など所定の方向に優先配向した下部電極層3について、その配向度に注目し、X線回折法等(その他の配向方向を見積もることができる構造解析法、例えば、走査型電子顕微鏡による電子線回折を応用した結晶方位解析法等)を用いて、適切な結晶配向性を有する下部電極層3の作製条件の最適化を図る。
In this embodiment, the crystal orientation of the lower electrode layer 3 is the (111) plane preferential orientation. For example, in the distribution on the 4-inch Si wafer as the substrate 1, the lower electrode layer 3 has the (111) orientation. The relative standard deviation of the X-ray diffraction intensity of the (111) plane, which is a variation in degree, is 15%, and the X-ray diffraction intensity of the (111) plane used as an index of the (111) plane preferred orientation is (111) The magnitude of the maximum peak intensity with respect to the minimum peak intensity in the surface X-ray diffraction intensity distribution was controlled to 7 times. Further, in evaluating the (111) preferential orientation of the lower electrode layer 3 of Pt, the X-ray diffraction pattern of the lower electrode layer 3 can be easily measured before and after the KNN piezoelectric film is formed. It is possible to evaluate the Pt lower electrode layer 3 having (111) preferential orientation even before and after the modification treatment after the formation of the piezoelectric film. Focusing on the degree of orientation of the lower electrode layer 3 preferentially oriented in a predetermined direction such as the (111) plane, an X-ray diffraction method or the like (structural analysis method capable of estimating other orientation directions, for example, a scanning electron microscope The crystal orientation analysis method applying electron beam diffraction by the above-mentioned method is used to optimize the manufacturing conditions of the lower electrode layer 3 having an appropriate crystal orientation.
一般的に、Ptなどの電極層については、その上部に形成される誘電性膜や圧電性膜などの結晶配向性や格子歪など原子レベル構造を制御するために、上記のように電極層の結晶配向性に関し、特定軸方向に優先配向させることが多い。しかし、下部電極層の膜質以外に、その上部の圧電膜の膜質を決定する要因が多数存在することや、大口径の基板上において下部電極層の膜質を均一に形成することが困難であることから、結果として、高性能な圧電膜を安定に作製することは容易ではない。本発明の実施形態の一つである(111)優先配向のPt電極層においても、上記理由から、非鉛の圧電膜の特性決定要因の一つであるPt下部電極層の結晶配向性の精密な制御が難しいため、所望の高い圧電定数を有する小型の非鉛系圧電素子を安定に生産することができなかった。 In general, for an electrode layer such as Pt, in order to control the atomic level structure such as crystal orientation and lattice strain of a dielectric film or a piezoelectric film formed on the upper side, the electrode layer is formed as described above. In many cases, the crystal orientation is preferentially oriented in a specific axis direction. However, in addition to the film quality of the lower electrode layer, there are many factors that determine the film quality of the upper piezoelectric film, and it is difficult to form the film quality of the lower electrode layer uniformly on a large-diameter substrate. As a result, it is not easy to stably produce a high-performance piezoelectric film. Also in the (111) preferentially oriented Pt electrode layer which is one of the embodiments of the present invention, for the above reasons, the precision of the crystal orientation of the Pt lower electrode layer, which is one of the characteristics determining factors of the lead-free piezoelectric film, Therefore, it has been difficult to stably produce a small lead-free piezoelectric element having a desired high piezoelectric constant.
そこで、非鉛系圧電膜であるニオブ酸リチウムカリウムナトリウム膜の圧電特性を厳密に制御するために、この圧電膜における初期の結晶成長状態を決定するPt下部電極層について、Pt下部電極層の結晶構造を精度良く安定に製造すべく、次に述べる製造条件によって最適化を行う。
本実施形態では、一般に量産実績のある成膜法であるスパッタリング法を用いて、Pt下部電極層の試作を行った。まず、制御パラメータの一つである成膜時のスパッタリング投入電力(Power)については、スパッタリング投入電力を増加させることで、Arイオ
ンなどのエネルギー粒子の衝撃により、多くのスパッタ粒子を強制的に基板上に打ち込み、結果として最適な高配向を有するPt下部電極層を作製する。また、成膜温度も結晶配向性の制御パラメータとして注目し、均一に(111)優先配向となるよう、室温〜800℃の範囲、より好ましくは室温〜300℃の範囲で、最適な(111)優先配向のPt下部電極層を作製する。更に、下部電極層表面の平滑性と基板との密着性も向上するため、下部電極層の形成前に基板上に0.1から数nmの膜厚のTiもしくはTiOxを形成
し、その上にPt下部電極層を形成することで、基板との密着力の強い高配向のPt下部電極層を安定に作製することを可能にした。
Therefore, in order to strictly control the piezoelectric characteristics of the lithium potassium sodium niobate film that is a lead-free piezoelectric film, the Pt lower electrode layer that determines the initial crystal growth state in this piezoelectric film is the crystal of the Pt lower electrode layer. In order to manufacture the structure accurately and stably, optimization is performed according to the manufacturing conditions described below.
In this embodiment, the Pt lower electrode layer was prototyped using a sputtering method, which is a film forming method that has generally been proven in mass production. First, with regard to sputtering power (Power) at the time of film formation, which is one of the control parameters, by increasing the sputtering power, many sputtered particles are forced to be applied by the impact of energetic particles such as Ar ions. As a result, a Pt lower electrode layer having an optimum high orientation is produced. The film forming temperature is also noted as a control parameter for crystal orientation, and is optimal (111) in the range of room temperature to 800 ° C., more preferably in the range of room temperature to 300 ° C., so that the (111) preferred orientation is uniformly obtained. A preferentially oriented Pt lower electrode layer is prepared. Furthermore, in order to improve the smoothness of the lower electrode layer surface and the adhesion with the substrate, Ti or TiO x having a film thickness of 0.1 to several nm is formed on the substrate before the lower electrode layer is formed. By forming a Pt lower electrode layer on the substrate, it was possible to stably produce a highly oriented Pt lower electrode layer having strong adhesion to the substrate.
また、基板1の候補としては、Si、MgO、ZnO、SrTiO3、SrRuO3、ガラス、石英ガラス、GaAs、GaN、サファイア、Ge、ステンレス等の結晶あるいは非晶質あるいはそれらの複合体等が望ましく、それらの基板上に、密着層や下部電極層を形成し、その上部にニオブ酸リチウムカリウムナトリウム膜を形成した圧電膜素子について、ニオブ酸リチウムカリウムナトリウム膜の結晶配向性を詳細に比較して、実際に、優先配向性を厳密に制御できる基板の選定を進めた。更に、ニオブ酸リチウムカリウムナトリウム膜の優先配向性をより確実に実現するために、上記の実施の形態において、ニオブ酸リチウムカリウムナトリウム膜を成膜するときの温度、スパッタリング動作ガスの種類、動作ガス圧力、真空度、投入電力、及び成膜後の熱処理等の条件について最適化を行い、圧電特性が向上する結晶配向性を有する圧電膜を作製した。 Further, the candidate for the substrate 1 is preferably Si, MgO, ZnO, SrTiO 3 , SrRuO 3 , glass, quartz glass, GaAs, GaN, sapphire, Ge, stainless steel, or the like, or a composite thereof. , Comparing the crystal orientation of the lithium potassium sodium niobate film in detail with respect to the piezoelectric film element in which the adhesion layer and the lower electrode layer are formed on those substrates and the lithium potassium sodium niobate film is formed on the upper layer. In fact, we proceeded with the selection of substrates that can strictly control the preferred orientation. Further, in order to more surely realize the preferential orientation of the lithium potassium sodium niobate film, in the above embodiment, the temperature when forming the lithium potassium sodium niobate film, the type of sputtering operation gas, the operation gas The conditions such as pressure, degree of vacuum, input power, and heat treatment after film formation were optimized to produce a piezoelectric film having crystal orientation that improves the piezoelectric characteristics.
本実施形態における多結晶あるいはエピタキシャル成長させた単結晶のPt下部電極層は、(111)優先配向しており、基板(例えばSiウェハ)上における(111)配向度のばらつきとして、(111)X線回折強度の相対標準偏差が一定の範囲内におさまるように精密に制御されたものである。この(111)X線回折強度の相対標準偏差は、(111)面に優先配向したPt下部電極層の結晶配向性を定量的に現した構造パラメータであり、その上部に形成する圧電膜の特性向上の鍵となる制御パラメータである。
実際には、Pt下部電極層の(111)優先配向分布を均一にすべく、赤外線ランプによる熱幅射、レーザー照射あるいは伝熱板等を介したヒータ加熱による熱伝導などを用いて、成膜温度、熱処理温度などが一定の範囲となるように制御する。また、Ptのスパッタリング成膜時の投入電力値を最適制御すること、ターゲット材の形状を変更すること、成膜される側の基板と原料のスパッタリングターゲット間の距離、およびスパッタリングターゲットに対して自転、公転、あるいは自公転させた基板側の速度を適切に制御すること等によって、大きな面積を有する基板(ウェハ)上におけるPt下部電極層の結晶配向性、すなわち(111)優先配向度を均一化する効果が期待できる。更に、上記の設定条件・制御条件に加えて、圧電膜のスパッタリング投入電力、成膜装置内に導入されるガス圧力や流量を制御し、He、Ar、Kr、Xeなどのスパッタ動作ガスに対して、0.1
%以上のO2やN2やH2Oなどを含有させるなど、適切なガス種を選ぶことによって、高い圧電定数を示すニオブ酸リチウムカリウムナトリウム膜を備えた圧電膜素子が安定かつ歩留まり良く得られる。また、マグネトロンスパッタ装置に搭載されるスパッタリングターゲット側に配置される磁石の磁力の強弱や回転数を調節あるいは制御することによっても同様な効果が期待できる。
The polycrystal or epitaxially grown single crystal Pt lower electrode layer in this embodiment is (111) preferentially oriented, and (111) X-rays are expressed as variations in the degree of (111) orientation on the substrate (eg, Si wafer). It is precisely controlled so that the relative standard deviation of the diffraction intensity falls within a certain range. The relative standard deviation of the (111) X-ray diffraction intensity is a structural parameter that quantitatively represents the crystal orientation of the Pt lower electrode layer preferentially oriented on the (111) plane, and the characteristics of the piezoelectric film formed on the upper part. It is a control parameter that is the key to improvement.
Actually, in order to make the (111) preferential orientation distribution of the Pt lower electrode layer uniform, film formation is performed by using thermal radiation by an infrared lamp, heat conduction by laser irradiation or heater heating through a heat transfer plate, or the like. The temperature and heat treatment temperature are controlled to be within a certain range. In addition, the input power value during the sputtering film formation of Pt is optimally controlled, the shape of the target material is changed, the distance between the substrate on which the film is formed and the sputtering target of the raw material, and the rotation relative to the sputtering target is achieved. The crystal orientation of the Pt lower electrode layer on the substrate (wafer) having a large area, that is, the (111) preferential orientation degree is made uniform by appropriately controlling the speed on the side of the substrate that has been rotated or revolved. Can be expected. Furthermore, in addition to the above setting and control conditions, the sputtering input power of the piezoelectric film, the gas pressure and flow rate introduced into the film forming apparatus are controlled, and the sputtering operation gases such as He, Ar, Kr, and Xe are controlled. 0.1
By selecting an appropriate gas type, such as containing O 2 , N 2 , H 2 O or the like, a piezoelectric film element having a lithium potassium sodium niobate film exhibiting a high piezoelectric constant can be obtained stably and with a high yield. It is done. Further, the same effect can be expected by adjusting or controlling the strength and rotation speed of the magnet arranged on the sputtering target side mounted on the magnetron sputtering apparatus.
(圧電膜素子の他の実施形態)
前記の下部電極層の結晶配向性を正確に定量化し、厳密に制御・管理して作製された図1に示す実施形態の圧電膜素子(ないし圧電膜付き基板)10に対して、更に、図2に示すように、圧電膜4上に上部電極層5を形成することによって、高い圧電定数を示す圧電膜素子20を作製できる。
また、図1に示す圧電膜素子10の圧電膜4上に所定のパターンを備えた電極を形成することで、表面弾性波を利用した圧電膜素子(フィルタデバイス)を形成することができる。表面弾性波を利用する圧電膜素子(フィルタデバイス)などのように、下部電極を必要としない場合には、下部電極層3を圧電膜4の下地層として用いる。
(Other Embodiments of Piezoelectric Film Element)
The piezoelectric film element (or the substrate with the piezoelectric film) 10 of the embodiment shown in FIG. 1 manufactured by accurately quantifying the crystal orientation of the lower electrode layer and strictly controlling and managing the lower electrode layer is shown in FIG. As shown in FIG. 2, by forming the upper electrode layer 5 on the piezoelectric film 4, the piezoelectric film element 20 exhibiting a high piezoelectric constant can be produced.
Further, by forming an electrode having a predetermined pattern on the piezoelectric film 4 of the piezoelectric film element 10 shown in FIG. 1, a piezoelectric film element (filter device) using surface acoustic waves can be formed. The lower electrode layer 3 is used as a base layer of the piezoelectric film 4 when a lower electrode is not required, such as a piezoelectric film element (filter device) using surface acoustic waves.
(圧電膜デバイス)
図2に示す実施形態の圧電膜素子20を所定形状に成型し、成型した圧電膜素子の下部電極層3と上部電極層5との間に、電圧印加手段あるいは電圧検出手段を設けることにより、各種のアクチュエータあるいはセンサなどの圧電膜デバイスを作製することができる。これらデバイスにおける下部電極層及び圧電膜の結晶配向性を安定に制御することによって、圧電膜素子や圧電膜デバイスの圧電特性の向上や安定化を実現でき、高性能なマイクロデバイスを安価に提供することが可能になる。また、本発明の圧電膜素子は、鉛を用いない圧電膜を備えた圧電膜素子であるため、本発明の圧電膜素子を搭載することによって、環境負荷を低減させかつ高性能な小型のモータ、センサ、アクチュエータ等の小型システム装置、例えばMEMS(Micro Electro Mechanical System)等が実現できる。
(Piezoelectric device)
By forming the piezoelectric film element 20 of the embodiment shown in FIG. 2 into a predetermined shape and providing a voltage application means or a voltage detection means between the lower electrode layer 3 and the upper electrode layer 5 of the molded piezoelectric film element, Piezoelectric film devices such as various actuators or sensors can be manufactured. By stably controlling the crystal orientation of the lower electrode layer and the piezoelectric film in these devices, it is possible to improve and stabilize the piezoelectric characteristics of the piezoelectric film elements and piezoelectric film devices, and to provide high-performance microdevices at low cost. It becomes possible. In addition, since the piezoelectric film element of the present invention is a piezoelectric film element including a piezoelectric film that does not use lead, by mounting the piezoelectric film element of the present invention, the environmental load is reduced and a high-performance small motor is provided. In addition, small system devices such as sensors and actuators, such as MEMS (Micro Electro Mechanical System), can be realized.
図3は、他の実施形態に係る圧電膜デバイスの概略構成を示す断面図である。この実施形態の圧電膜デバイス30は、図2に示す実施形態の圧電体膜素子20を可変容量キャパシタに適用した場合を示す。
この圧電膜デバイス30は、デバイス基板31と、デバイス基板31上に形成された絶縁層32と、絶縁層32上に形成され、図2と同様の構造を有する圧電膜素子20とを備える。デバイス基板31及び絶縁層32は、圧電膜素子20の一方の端部を支持する支持部材として機能する。圧電膜素子20は、基板1上に密着層2、下部電極層3、圧電膜4
及び上部電極層5が形成され、圧電膜素子20のもう一方の端部(自由端部)は、基板1が延出されており、この基板1の延出部には、上部キャパシタ電極36が突出して設けられている。デバイス基板31上には、上部キャパシタ電極36の下に空隙33を介して下部キャパシタ電極34を形成し、下部キャパシタ電極34の表面にSiN等からなる絶縁層35を形成している。
そして、上部電極層5及び下部電極層3に、それぞれボンディングワイヤ18A、18Bを介して電圧を印加すると、圧電膜素子20の先端が変位し、これに伴って上部キャパシタ電極36が上下方向に変位する。上部キャパシタ電極36の変位によって上部キャパシタ電極36と下部キャパシタ電極34との間のキャパシタが変化し、本実施形態の圧電膜デバイス30は可変キャパシタとして動作する。
FIG. 3 is a cross-sectional view showing a schematic configuration of a piezoelectric film device according to another embodiment. The piezoelectric film device 30 of this embodiment shows a case where the piezoelectric film element 20 of the embodiment shown in FIG. 2 is applied to a variable capacitor.
The piezoelectric film device 30 includes a device substrate 31, an insulating layer 32 formed on the device substrate 31, and a piezoelectric film element 20 formed on the insulating layer 32 and having a structure similar to that shown in FIG. The device substrate 31 and the insulating layer 32 function as a support member that supports one end of the piezoelectric film element 20. The piezoelectric film element 20 includes an adhesion layer 2, a lower electrode layer 3, and a piezoelectric film 4 on the substrate 1.
The upper electrode layer 5 is formed, and the other end portion (free end portion) of the piezoelectric film element 20 is extended from the substrate 1. The extended portion of the substrate 1 is provided with an upper capacitor electrode 36. Protrusively provided. On the device substrate 31, a lower capacitor electrode 34 is formed below the upper capacitor electrode 36 via a gap 33, and an insulating layer 35 made of SiN or the like is formed on the surface of the lower capacitor electrode 34.
When a voltage is applied to the upper electrode layer 5 and the lower electrode layer 3 via the bonding wires 18A and 18B, respectively, the tip of the piezoelectric film element 20 is displaced, and accordingly, the upper capacitor electrode 36 is displaced in the vertical direction. To do. The displacement between the upper capacitor electrode 36 changes the capacitor between the upper capacitor electrode 36 and the lower capacitor electrode 34, and the piezoelectric film device 30 of this embodiment operates as a variable capacitor.
以下に、本発明の実施例を具体的に説明する。 Examples of the present invention will be specifically described below.
(圧電膜素子)
本実施例では、図1に示す上記実施形態と同様の断面構造を有する圧電膜素子(圧電膜付き基板)を作製した。
(Piezoelectric membrane element)
In this example, a piezoelectric film element (substrate with a piezoelectric film) having a cross-sectional structure similar to that of the above-described embodiment shown in FIG. 1 was produced.
本実施例においては、まず、酸化膜を有するSi基板1上に接着層2を形成した上部に、Pt下部電極層3を形成した下部電極付き基板を作製した。このとき、Pt下部電極層3は、図6に示すように、結晶系としては立方晶の一つである面心立方格子の構造を有している。また、下部電極層3としては、Ptではなく、Auを用いても良く、あるいはPt合金、Ir、Ru、Auを含む合金、InやSnを含む導電性酸化物であっても良い。以下、それぞれの製造方法を記述する。 In this example, first, a substrate with a lower electrode in which the Pt lower electrode layer 3 was formed on the upper portion of the Si substrate 1 having an oxide film on which the adhesive layer 2 was formed was fabricated. At this time, the Pt lower electrode layer 3 has a structure of a face-centered cubic lattice which is one of cubic crystals as a crystal system, as shown in FIG. The lower electrode layer 3 may be made of Au instead of Pt, or may be a Pt alloy, an alloy containing Ir, Ru, or Au, or a conductive oxide containing In or Sn. Each manufacturing method will be described below.
始めに、Si基板1の表面に熱酸化膜を形成し、その上に接着層2、下部電極層3形成した。基板1としては、Si基板ではなく、MgO基板、ZnO基板、SrTiO3板、SrRuO3基板、ガラス基板、石英ガラス基板、GaAs基板、GaN基板、サファイア基板、Ge基板、ステンレス基板であっても良い。下部電極は、接着層2として形成した厚さ2nmのTi膜(あるいはTiを含む化合物膜でも良い)上に、Pt下部電極層3として形成した厚さ100nmのPt薄膜からなる。接着層2、Pt下部電極層3の形成にはスパッタリング法を用いた。 First, a thermal oxide film was formed on the surface of the Si substrate 1, and an adhesive layer 2 and a lower electrode layer 3 were formed thereon. The substrate 1 may be an MgO substrate, a ZnO substrate, a SrTiO 3 plate, a SrRuO 3 substrate, a glass substrate, a quartz glass substrate, a GaAs substrate, a GaN substrate, a sapphire substrate, a Ge substrate, or a stainless steel substrate instead of the Si substrate. . The lower electrode is made of a 100 nm thick Pt thin film formed as the Pt lower electrode layer 3 on the 2 nm thick Ti film (or a compound film containing Ti) formed as the adhesive layer 2. A sputtering method was used to form the adhesive layer 2 and the Pt lower electrode layer 3.
本発明の実施例では、接着層2、下部電極層3及び圧電膜4の形成には、図4に示すRFマグネトロンスパッタリング装置を用い、スパッタリング装置の成膜容器41内に、スパッタリング用ターゲット42に対向させてSi基板1を設置した。Ti膜、Pt膜のスパッタリング用ターゲット42として直径100mmの金属ターゲットを用い、成膜時のスパッタリング投入電力は100Wであり、スパッタリング用ガスには100%ArガスまたはArとO2の混合ガス、あるいはHeまたはNeまたはKrまたはN2など少なくとも一つ以上の不活性ガスが混合したガスを使用した。また、Pt膜形成時には基板温度を300℃にして成膜を行って、多結晶のPt膜を形成した。また、成膜後において酸素中や不活性ガス中あるいは両者の混合ガス、または大気中あるいは真空中で加熱処理を行った。 In the embodiment of the present invention, the RF magnetron sputtering apparatus shown in FIG. 4 is used to form the adhesive layer 2, the lower electrode layer 3, and the piezoelectric film 4, and the sputtering target 42 is placed in the film forming container 41 of the sputtering apparatus. The Si substrate 1 was placed facing each other. A metal target having a diameter of 100 mm is used as the sputtering target 42 for the Ti film and the Pt film, the sputtering input power at the time of film formation is 100 W, and the sputtering gas is 100% Ar gas or a mixed gas of Ar and O 2 , or A gas in which at least one inert gas such as He, Ne, Kr, or N 2 was mixed was used. In forming the Pt film, the substrate temperature was set to 300 ° C. to form a polycrystalline Pt film. In addition, after film formation, heat treatment was performed in oxygen, an inert gas, a mixed gas of both, or in the air or in vacuum.
図5に原子間力顕微鏡で測定した下部電極層3としてのPt膜の表面形状像を示す。図5に示すように、微細な結晶粒子の集合組織が表面上に見られ、個々の粒子が正三角形に近い形状をしていることがわかる。これは、Ptが面心立方格子であることを考慮すれば、図6のPtの結晶構造から推察できるように、(111)結晶面が基板表面側に向いていると考えられる。一般的なX線回折装置で結晶構造を調べた結果、Pt下部電極層は、図7のX線回折パターン(2θ/θスキャン測定)に示すように、(111)面、(22
2)面の回折ピークのみが観測され、他の(200)面、(220)面、(311)面の回折ピークは確認できなかった。すなわち、基板表面に対して(111)優先配向したPt薄膜が形成されていることが明確になった。
FIG. 5 shows a surface shape image of the Pt film as the lower electrode layer 3 measured with an atomic force microscope. As shown in FIG. 5, it can be seen that a texture of fine crystal particles is seen on the surface, and each particle has a shape close to an equilateral triangle. Considering that Pt is a face-centered cubic lattice, it is considered that the (111) crystal plane faces the substrate surface side, as can be inferred from the crystal structure of Pt in FIG. As a result of examining the crystal structure with a general X-ray diffractometer, the Pt lower electrode layer has a (111) plane, (22) as shown in the X-ray diffraction pattern (2θ / θ scan measurement) of FIG.
2) Only diffraction peaks on the plane were observed, and diffraction peaks on the other (200) plane, (220) plane, and (311) plane could not be confirmed. That is, it became clear that a Pt thin film with (111) preferential orientation with respect to the substrate surface was formed.
次に、Pt下部電極層3上に圧電膜4としてペロブスカイト構造のニオブ酸カリウムナトリウム(以下、KNNと記す)膜を形成した。KNN膜の成膜にもスパッタリング法を用いて形成した。KNN膜の形成時には基板温度を400〜500℃の範囲で行い、ArとO2の5:5の混合ガスまたはArガスまたはHeまたはNeまたはKrまたはN2など少なくとも一つ以上の不活性ガスが混合したガスによるプラズマでスパッタリング成膜を実施した。また、ターゲットには(NaxK1−x)NbO3(x=0.5)のセラミ
ックターゲットを用いた。膜厚が3μmになるまでKNN膜の成膜を行った。また、成膜後において酸素中や不活性ガス中あるいは両者の混合ガス、または大気中あるいは真空中で加熱処理を行った。
Next, a potassium sodium niobate (hereinafter referred to as KNN) film having a perovskite structure was formed as the piezoelectric film 4 on the Pt lower electrode layer 3. A KNN film was also formed by sputtering. When the KNN film is formed, the substrate temperature is in the range of 400 to 500 ° C., and a 5: 5 mixed gas of Ar and O 2 or Ar gas or He or Ne or Kr or N 2 is used. Sputtering film formation was performed by plasma with mixed gas. Further, the target was a ceramic target (Na x K 1-x) NbO 3 (x = 0.5). The KNN film was formed until the film thickness became 3 μm. In addition, after film formation, heat treatment was performed in oxygen, an inert gas, a mixed gas of both, or in the air or in vacuum.
このとき、KNN圧電膜は、結晶系としては擬立方晶あるいは正方晶あるいは斜方晶であり、その少なくとも一部にABO3の結晶、非晶質あるいは両者の混合した組成が含まれていても良い。ここで、AはLi、Na、K、La、Sr、Nd、Ba及びBiの中から少なくとも1つの元素、BはZr、Ti、Mn、Mg、Nb、Sn、Sb、Ta及びInの中から選択される少なくとも1つの元素であり、Oは酸素である。作製条件によって圧電膜の結晶配向性の状態が変化するとともに、圧電膜の内部応力(歪)が圧縮応力あるいは引張応力へと変化することもある。また、応力のない状態、すなわち無歪の状態の場合もある。 At this time, the KNN piezoelectric film is a pseudo cubic crystal, a tetragonal crystal or an orthorhombic crystal as a crystal system, and at least a part thereof includes an ABO 3 crystal, an amorphous material or a mixture of both. good. Here, A is at least one element from Li, Na, K, La, Sr, Nd, Ba, and Bi, and B is from Zr, Ti, Mn, Mg, Nb, Sn, Sb, Ta, and In. At least one element selected and O is oxygen. The state of crystal orientation of the piezoelectric film changes depending on the manufacturing conditions, and the internal stress (strain) of the piezoelectric film may change to compressive stress or tensile stress. In some cases, there is no stress, that is, no strain.
こうして作製したKNN膜について、走査電子顕微鏡などで断面形状を観察すると、その組織は柱状構造で構成されていた。また、一般的なX線回折装置で結晶構造を調べたところ、図8のX線回折パターン(2θ/θスキャン測定)に示すように、(111)に優先配向したPt膜上にKNN膜を形成した結果、作製されたKNN膜は擬立方晶のペロブスカイト型の結晶構造を有する多結晶膜であることが判明した。また、図8のX線回折パターンからわかるように、(001)面、(002)面、(003)面の回折ピークのみを確認できることから、KNN圧電膜が概ね(001)面に優先配向していることがわかる。 When the cross-sectional shape of the KNN film thus produced was observed with a scanning electron microscope or the like, the structure was composed of a columnar structure. Further, when the crystal structure was examined with a general X-ray diffractometer, as shown in the X-ray diffraction pattern (2θ / θ scan measurement) in FIG. 8, the KNN film was formed on the Pt film preferentially oriented to (111). As a result of the formation, the produced KNN film was found to be a polycrystalline film having a pseudo cubic perovskite crystal structure. Further, as can be seen from the X-ray diffraction pattern of FIG. 8, since only the diffraction peaks of the (001) plane, (002) plane, and (003) plane can be confirmed, the KNN piezoelectric film is generally preferentially oriented in the (001) plane. You can see that
KNN膜の配向性を詳細かつ精密に評価するために、極図形(Pole figure)の測定を
行ったところ、(001)優先配向であることが明らかになった。詳細については、以下の参考文献1,2を参照されたい。更に、図8から、実施例のPt下部電極層の上部にKNN膜を形成した状態でのX線回折測定で、KNN膜の下地であるPt下部電極層の(111)回折ピークや(222)回折ピークを同時に確認することができた。すなわち、KNN膜を形成した後においてもPt下部電極層の(111)優先配向性を見出すことできる。実施例の圧電膜素子における下部電極層の配向性評価について、評価装置であるX線回折装置には、Panalytical社製のMRDを用い、測定時のX線源の出力は1.8kW(45kV、40mA)であり、特性X線源にCuKa線を使用し、Line focusとして10mm×0.1mmのスリットを使用した。また、回折X線の検出器にはシンチレーションカ
ウンターを使用した。配向性の高精度評価として極図形測定も行い、広い面積のX線検出城をもつ2次元検出器を搭載した高出力X線回折装置(Bruker AXS社製の「D8 DISCOVER with Hi STAR、VANTEC2000°」)を用いた。
参考文献1:カリティ著、新版X線回折要論、アグネ、1980年
参考文献2:理学電気編、X線回折の手引き、改訂第4版、理学電気株式会社、1986年
In order to evaluate the orientation of the KNN film in detail and precisely, a pole figure was measured, and it was revealed that it was the (001) preferred orientation. For details, see References 1 and 2 below. Further, from FIG. 8, in the X-ray diffraction measurement with the KNN film formed on the upper part of the Pt lower electrode layer of the example, the (111) diffraction peak of the Pt lower electrode layer that is the base of the KNN film and (222) A diffraction peak could be confirmed simultaneously. That is, the (111) preferred orientation of the Pt lower electrode layer can be found even after the KNN film is formed. Regarding the evaluation of the orientation of the lower electrode layer in the piezoelectric film element of the example, the X-ray diffraction apparatus as an evaluation apparatus uses an MRD manufactured by Panasonic, and the output of the X-ray source at the time of measurement is 1.8 kW (45 kW, 40 mA), a CuKa line was used as the characteristic X-ray source, and a slit of 10 mm × 0.1 mm was used as the line focus. A scintillation counter was used as the diffraction X-ray detector. A high-power X-ray diffractometer equipped with a two-dimensional detector with a large area X-ray detection castle ("D8 DISCOVER with Hi STAR, VANTEC2000 ° manufactured by Bruker AXS"). )).
Reference 1: Book written by Karity, New Edition X-ray diffraction theory, Agne, 1980 Reference 2: Guide to Rigaku Denki, X-ray diffraction, 4th revised edition, Rigaku Denki, 1986
(Pt下部電極層の(111)優先配向とKNN膜の(001)優先配向との相関)
本実施例では、Pt下部電極層の(111)優先配向について、図8で説明したX線回折パターンのPt111回折ピーク強度を参考にした。また、圧電特性の向上と密接に関連するKNN膜の(001)優先配向について、X線回折パターンのKNN001回折ピーク強度を参考にした。図9に、一実施例における、下部電極層のPt111回折強度に対するKNN膜のKNN001回折強度の変化を示す。
図9(a)に示すように、Si基板であるウェハの中心部において、Pt下部電極層の111回折強度が増加するに従い、KNN膜の001回折強度が、約100カウント(counts)から650カウント(counts)へと増加することがわかる。また、Si基板であるウェハの中心から30mm離れた位置においても、図9(b)に示すように、Pt下部電極層の111回折強度の増加に従って、KNN圧電膜の001回折強度が増加している。すなわち、Pt下部電極層の(111)優先配向度が高いほど、KNN圧電膜の(001)優先配向度が高くなることを表している。KNN圧電膜の(001)優先配向と相関のある圧電特性を向上するためには、KNN圧電膜の下地にあたる下部電極層の(111)優先配向度を制御することが重要であることが分かった。
(Correlation between (111) preferred orientation of Pt lower electrode layer and (001) preferred orientation of KNN film)
In this example, for the (111) preferential orientation of the Pt lower electrode layer, the Pt111 diffraction peak intensity of the X-ray diffraction pattern described in FIG. 8 was referred to. In addition, regarding the (001) preferential orientation of the KNN film, which is closely related to the improvement of the piezoelectric characteristics, the KNN001 diffraction peak intensity of the X-ray diffraction pattern was referred to. FIG. 9 shows the change in the KNN001 diffraction intensity of the KNN film with respect to the Pt111 diffraction intensity of the lower electrode layer in one example.
As shown in FIG. 9A, the 001 diffraction intensity of the KNN film increases from about 100 counts to 650 counts as the 111 diffraction intensity of the Pt lower electrode layer increases at the center of the wafer, which is a Si substrate. It turns out that it increases to (counts). In addition, even at a position 30 mm away from the center of the wafer as the Si substrate, as shown in FIG. 9B, the 001 diffraction intensity of the KNN piezoelectric film increases as the 111 diffraction intensity of the Pt lower electrode layer increases. Yes. That is, the higher the (111) preferred orientation degree of the Pt lower electrode layer, the higher the (001) preferred orientation degree of the KNN piezoelectric film. In order to improve the piezoelectric properties correlated with the (001) preferential orientation of the KNN piezoelectric film, it was found that it is important to control the (111) preferential orientation degree of the lower electrode layer that is the base of the KNN piezoelectric film. .
(Pt下部電極層の(111)優先配向度の制御)
Pt下部電極層の(111)優先配向度の制御方法の一つとして、スパッタリング成膜時の温度制御がある。図10に成膜温度(基板温度)に対するPt下部電極層の111回折強度の変化を示す。図10(a)に、111回折強度のウェハ上の分布が比較的に均一なサンプルについて、ウェハのオリフラ側からトップ側にかけて5点測定した結果を示している。Pt下部電極層の成膜温度が高くなるに従い、Pt111回折強度が増加することがわかる。また、図10(b)に、当該サンプルウェハについて、オリフラ側を下にして、左から右側に5点測定した結果を示す。図10(a)と同じように、成膜温度が高くなるに伴ってPt111回折強度が高くなる温度依存性を示す。すなわち、ウェハ全体にわたって、成膜温度とPt111回折強度の間に正の相関がある。成膜温度の適切な制御がPt下部電極層の(111)優先配向度を向上させ、その結果、KNN圧電膜の(001)優先配向度を最適化することができることを表している。
(Control of (111) preferred orientation degree of Pt lower electrode layer)
One method for controlling the (111) preferential orientation degree of the Pt lower electrode layer is temperature control during sputtering film formation. FIG. 10 shows the change in 111 diffraction intensity of the Pt lower electrode layer with respect to the film formation temperature (substrate temperature). FIG. 10A shows the result of measuring five points from the orientation flat side to the top side of the wafer for a sample having a relatively uniform distribution of 111 diffraction intensity on the wafer. It can be seen that the Pt111 diffraction intensity increases as the deposition temperature of the Pt lower electrode layer increases. FIG. 10B shows the result of measuring five points from the left to the right with the orientation flat side facing down for the sample wafer. Similar to FIG. 10A, the temperature dependence is shown in which the Pt111 diffraction intensity increases as the film formation temperature increases. That is, there is a positive correlation between the film formation temperature and the Pt111 diffraction intensity over the entire wafer. This shows that appropriate control of the deposition temperature improves the (111) preferred orientation degree of the Pt lower electrode layer, and as a result, the (001) preferred orientation degree of the KNN piezoelectric film can be optimized.
Pt下部電極層の(111)優先配向度を制御する、その他の方法として、スパッタリング成膜時のスパッタリング投入電力(Power)がある。図11にPowerに対するPt下部電極層の111回折強度の変化を示す。なお、図11には、異なる成膜温度(非加熱時、150℃加熱時)における、Powerに対する111回折強度の変化を示している。また図
11(a)は、ウェハのオリフラ側からトップ側にかけて5点測定した結果、図11(b)はオリフラ側を下にして、左から右側に5点測定した結果を示している。図11に示すように、Powerが300Wから500Wへと大きくなるに従い、111回折強度が高くな
ることがわかる。ウェハ面上においてほぼ一様に、Powerが大きくなるに従い111回折
強度が大きくなる。また、Power(スパッタリング投入電力)の大きさに関係なく、成膜
時に150℃で加熱した時は、非加熱の時に比べてPt111の回折強度が高くなることがわかる。言い換えると、Powerも成膜温度と同じく、Pt下部電極層の(111)優先
配向を制御するパラメータであると考えられる。
As another method for controlling the (111) preferential orientation degree of the Pt lower electrode layer, there is a sputtering input power (Power) at the time of sputtering film formation. FIG. 11 shows a change in 111 diffraction intensity of the Pt lower electrode layer with respect to power. FIG. 11 shows changes in 111 diffraction intensity with respect to power at different film formation temperatures (non-heating, 150 ° C. heating). FIG. 11A shows the result of measuring five points from the orientation flat side to the top side of the wafer, and FIG. 11B shows the result of measuring five points from the left to the right with the orientation flat side facing down. As shown in FIG. 11, it can be seen that the 111 diffraction intensity increases as the power increases from 300 W to 500 W. On the wafer surface, the 111 diffraction intensity increases almost uniformly as the power increases. Further, it can be understood that the diffraction intensity of Pt111 is higher when heated at 150 ° C. during film formation than when not heated regardless of the magnitude of power (sputtering input power). In other words, Power is also considered to be a parameter for controlling the (111) preferred orientation of the Pt lower electrode layer, as is the film formation temperature.
(基板(ウェハ)上におけるPt下部電極層の(111)優先配向度の分布)
ここで本発明の実施例について、基板、例えばSiウェハ上における、Pt下部電極層の(111)優先配向度の分布について説明する。図12はSiウェハ上のPt下部電極層の(111)優先配向度の分布を示したものである。尚、横軸はオリフラ側からトップ側へ多点測定したときのX線回折の測定位置、縦軸はPt下部電極層の111X線回折強度である。図12(a)は、4インチSiウェハ上に成膜したPt下部電極層の111回折強度分布が不均一な状態を表した図である。図12(a)の場合、111回折強度の分布指標であるSiウェハ上の111回折強度の相対標準偏差は約59%である。一方、図12(b)は、Pt下部電極層の111回折強度分布が均一な分布を実現した状態を表し
た図である。図12(b)と図12(a)を比較すると、図12(a)の111回折強度の凸状分布が図12(b)では平坦化していることがわかる。図12(b)の場合、Siウェハ上の111回折強度の相対標準偏差は14%であり、ウェハ上におけるPt下部電極層の(111)優先配向性分布の大きさを約1/4にまで改善できることを示している。
(Distribution of (111) preferred orientation degree of Pt lower electrode layer on substrate (wafer))
Here, the distribution of the (111) preferential orientation degree of the Pt lower electrode layer on the substrate, for example, a Si wafer, will be described with respect to an embodiment of the present invention. FIG. 12 shows the distribution of the (111) preferred orientation degree of the Pt lower electrode layer on the Si wafer. The horizontal axis represents the X-ray diffraction measurement position when multipoint measurement is performed from the orientation flat side to the top side, and the vertical axis represents the 111 X-ray diffraction intensity of the Pt lower electrode layer. FIG. 12A is a diagram showing a state where the 111 diffraction intensity distribution of the Pt lower electrode layer formed on the 4-inch Si wafer is not uniform. In the case of FIG. 12A, the relative standard deviation of 111 diffraction intensity on the Si wafer, which is a distribution index of 111 diffraction intensity, is about 59%. On the other hand, FIG. 12B is a diagram showing a state in which the 111 diffraction intensity distribution of the Pt lower electrode layer has a uniform distribution. Comparing FIG. 12B and FIG. 12A, it can be seen that the convex distribution of 111 diffraction intensity in FIG. 12A is flattened in FIG. In the case of FIG. 12B, the relative standard deviation of the 111 diffraction intensity on the Si wafer is 14%, and the size of the (111) preferential orientation distribution of the Pt lower electrode layer on the wafer is reduced to about ¼. It shows that it can be improved.
(Pt下部電極層の(111)優先配向とKNN圧電膜の格子歪との関係)
次に、Pt下部電極層の(111)優先配向性分布が異なる基板上にKNN圧電膜を形成し、これらKNN圧電膜の格子歪分布を比較し、下部電極層の配向性分布の均一性に対する、KNN圧電膜の格子歪分布の均一性について調べた。図13にKNN圧電膜の格子歪c/aのウェハ上分布を示す。ここで、格子歪c/aとは、KNN圧電膜の基板面に垂直な法線方向の格子定数cと、基板面に平行な方向の格子定数aとの比である。c/a<1のときは、基板面に対して平行な方向の格子間距離が法線方向の格子間距離に対して長く、KNN圧電膜は面内において引張状態にあり、c/a>1のときは、基板面に対して平行な方向の格子間距離が法線方向の格子間距離に対して短く、KNN圧電膜は面内において圧縮状態にあることを表している。
(Relationship between (111) preferred orientation of Pt lower electrode layer and lattice strain of KNN piezoelectric film)
Next, KNN piezoelectric films are formed on substrates having different (111) preferred orientation distributions of the Pt lower electrode layer, and the lattice strain distributions of these KNN piezoelectric films are compared, and the uniformity of the orientation distribution of the lower electrode layer is compared. The uniformity of the lattice strain distribution of the KNN piezoelectric film was examined. FIG. 13 shows the distribution on the wafer of the lattice strain c / a of the KNN piezoelectric film. Here, the lattice strain c / a is the ratio of the lattice constant c in the normal direction perpendicular to the substrate surface of the KNN piezoelectric film and the lattice constant a in the direction parallel to the substrate surface. When c / a <1, the interstitial distance in the direction parallel to the substrate surface is longer than the interstitial distance in the normal direction, and the KNN piezoelectric film is in a tensile state in the plane, and c / a> When 1, the interstitial distance in the direction parallel to the substrate surface is shorter than the interstitial distance in the normal direction, indicating that the KNN piezoelectric film is in a compressed state in the plane.
図13(a)は、図12(a)で示した(111)優先配向性の分布が不均一な状態のPt下部電極層上に形成したKNN圧電膜の格子歪c/a分布を示した図である。Pt下部電極層の(111)優先配向性の分布が不均一な場合、KNN圧電膜の格子歪c/a分布が不均一であることがわかる。このとき、格子歪c/aの相対標準偏差は約31%である。一方、図13(b)は、図12(b)で示した(111)優先配向性の分布を均一化させたPt下部電極層上に形成したKNN圧電膜の格子歪c/a分布を示した図である。Pt下部電極層の(111)優先配向性の分布を均一に制御した結果、その上部に積層したKNN圧電膜の格子歪c/a分布が均一化する。このとき、c/aの相対標準偏差は約5%である。Pt下部電極層の(111)優先配向性の均一化を実現することによって、KNN圧電膜のウェハ上での格子歪分布の相対標準偏差を約1/6にまで低減できる。 FIG. 13A shows the lattice strain c / a distribution of the KNN piezoelectric film formed on the Pt lower electrode layer in which the distribution of the (111) preferred orientation shown in FIG. 12A is not uniform. FIG. When the distribution of the (111) preferred orientation of the Pt lower electrode layer is non-uniform, it can be seen that the lattice strain c / a distribution of the KNN piezoelectric film is non-uniform. At this time, the relative standard deviation of the lattice strain c / a is about 31%. On the other hand, FIG. 13B shows the lattice strain c / a distribution of the KNN piezoelectric film formed on the Pt lower electrode layer in which the distribution of the (111) preferred orientation shown in FIG. It is a figure. As a result of uniformly controlling the distribution of the (111) preferential orientation of the Pt lower electrode layer, the lattice strain c / a distribution of the KNN piezoelectric film laminated thereon is made uniform. At this time, the relative standard deviation of c / a is about 5%. By realizing uniform (111) preferred orientation of the Pt lower electrode layer, the relative standard deviation of the lattice strain distribution on the wafer of the KNN piezoelectric film can be reduced to about 1/6.
また、表1に、Pt下部電極層の(111)優先配向性の均一性が異なる基板上に形成したKNN圧電膜に関し、Pt下部電極層の111回折強度の相対標準偏差、及びそれに対応したKNN圧電膜の格子歪c/aの相対標準偏差をまとめている。表1を用いて、Pt下部電極層の(111)優先配向性のばらつきの大きさと、KNN圧電膜の格子歪c/aのばらつきとの相関を検討した。図14にその結果を示す。横軸はPt下部電極層の(111)優先配向性の均一性を表すPt下部電極層の111回折強度のばらつき、縦軸はKNN圧電膜の格子歪c/aのばらつきである。Pt下部電極層の(111)優先配向性の基板上のばらつきが大きくなるに従い、KNN圧電膜の基板上での格子歪c/aのばらつきが大きくなることがわかる。以上から、Ptの下部電極層の(111)優先配向分布を均一化することによって、Siウェハ上で均一な格子歪c/aのKNN圧電膜を安定的に生産することができる。また、格子歪c/aは圧電特性と密接に関連しているため、歩留まり良く、高性能なKNN圧電膜を製造することができる。
上記のPt下部電極層の111回折強度のばらつきは、KNN圧電膜を形成する前のPt下部電極形成ウェハにおいて、ウェハの移動あるいはX線源の移動によって、ウェハ上の任意の位置を多数点測定したPt下部電極層の111X線回折強度の標準偏差であって、それを平均値で割った百分率、すなわち相対標準偏差である。次に、KNN圧電膜のウェハ上での格子歪の分布との相関関係を明確にするために、前述したPt下部電極層の111回折強度のばらつきを求めたウェハ上にKNN圧電膜を形成したウェハを作製した。このKNN圧電膜のウェハ上の任意の位置について、Out of plane(面外)X線回折法とIn-plane(面内)X線回折法によって、KNN圧電膜の面外(膜厚)方向の格子定数cと面内方向の格子定数aを多数点測定し、ウェハ上での任意の位置における格子歪量c/aを求めた。実施例に記載したKNN圧電膜の格子歪c/aのばらつきは、前述したウェハ
上で多数点測定して得られたc/aの標準偏差であって、それを平均値で割った百分率、すなわち相対標準偏差である。尚、当該Pt下部電極層の111X線回折強度のばらつき、及びKNN圧電膜の格子歪c/aのばらつきは、一枚のウェハ上におけるばらつきの均一・不均一に基づく標準偏差や相対標準偏差には限定されず、ウェハ上の任意の一点を測定して得られたPt下部電極層の111X線回折強度やKNN圧電膜の格子歪c/aについて、異なるウェハ間あるいはロット間に基づく標準偏差や相対標準偏差であっても良い。
Table 1 also shows the relative standard deviation of 111 diffraction intensities of the Pt lower electrode layer and the corresponding KNN for KNN piezoelectric films formed on substrates with different uniformity of (111) preferred orientation of the Pt lower electrode layer. The relative standard deviation of the lattice strain c / a of the piezoelectric film is summarized. Table 1 was used to examine the correlation between the variation in the (111) preferred orientation of the Pt lower electrode layer and the variation in the lattice strain c / a of the KNN piezoelectric film. FIG. 14 shows the result. The horizontal axis represents the 111 diffraction intensity variation of the Pt lower electrode layer representing the uniformity of the (111) preferential orientation of the Pt lower electrode layer, and the vertical axis represents the variation of the lattice strain c / a of the KNN piezoelectric film. It can be seen that the variation of the lattice strain c / a on the substrate of the KNN piezoelectric film increases as the variation of the Pt lower electrode layer on the (111) preferential orientation substrate increases. From the above, it is possible to stably produce a KNN piezoelectric film having a uniform lattice strain c / a on a Si wafer by making the (111) preferential orientation distribution of the lower electrode layer of Pt uniform. Further, since the lattice strain c / a is closely related to the piezoelectric characteristics, a high-performance KNN piezoelectric film can be manufactured with a high yield.
The 111 diffraction intensity variation of the Pt lower electrode layer is measured at multiple points on the wafer by moving the wafer or moving the X-ray source in the Pt lower electrode-formed wafer before forming the KNN piezoelectric film. The standard deviation of the 111 X-ray diffraction intensity of the Pt lower electrode layer, which is a percentage obtained by dividing the standard deviation by the average value, that is, the relative standard deviation. Next, in order to clarify the correlation between the KNN piezoelectric film and the lattice strain distribution on the wafer, the KNN piezoelectric film was formed on the wafer for which the 111 diffraction intensity variation of the Pt lower electrode layer was obtained. A wafer was produced. The arbitrary position of the KNN piezoelectric film on the wafer is measured in the out-of-plane (film thickness) direction of the KNN piezoelectric film by the out-of-plane X-ray diffraction method and the in-plane X-ray diffraction method. The lattice constant c and the lattice constant a in the in-plane direction were measured at many points, and the lattice strain amount c / a at an arbitrary position on the wafer was obtained. The variation of the lattice strain c / a of the KNN piezoelectric film described in the examples is the standard deviation of c / a obtained by measuring multiple points on the wafer described above, and is a percentage obtained by dividing the standard deviation by the average value. That is, the relative standard deviation. Note that the variation in 111 X-ray diffraction intensity of the Pt lower electrode layer and the variation of the lattice strain c / a of the KNN piezoelectric film are caused by a standard deviation or a relative standard deviation based on uniformity or non-uniformity of variation on a single wafer. Is not limited, and the standard deviation based on the difference between different wafers or lots regarding the 111 X-ray diffraction intensity of the Pt lower electrode layer obtained by measuring an arbitrary point on the wafer and the lattice strain c / a of the KNN piezoelectric film It may be a relative standard deviation.
(Pt下部電極層の(111)優先配向分布とKNN圧電膜の圧電定数分布との関係)
実際に、Pt下部電極層の(111)優先配向分布の状態が異なる基板(4インチSiウェハ)上に形成したKNN圧電膜について、圧電定数の分布を評価した結果を図15に示す。図15(a)は図12(a)で示した(111)優先配向性の分布が不均一な状態のPt下部電極層上に形成したKNN圧電膜の圧電定数の分布を示した図である。Pt下部電極の(111)優先配向性の分布が不均一な場合、KNN圧電膜の圧電定数が不均一であることがわかる。このとき、ウェハ上において圧電定数が約70〜110(任意単位)まで分布をもっており、相対標準偏差は約14.3%であった。一方、図15(b)に
図12(b)で示した(111)優先配向性の分布を均一化させたPt下部電極上に形成したKNN圧電膜の圧電定数の分布を示した。Pt下部電極の(111)優先配向性の分布を均一に制御した場合、その上部に形成したKNN圧電膜について、その圧電定数の分布が均一化した。この圧電定数分布の相対標準偏差は約4.1%であり、約1/4にまで
ウェハ上での圧電定数のばらつきが低減できることがわかる。すなわち、KNN圧電膜の下地であるPt下部電極層の構造制御、具体的には(111)優先配向性の精密な制御によって、KNN圧電膜の高性能化と安定生産を両立させることができる。
(Relationship between (111) preferred orientation distribution of Pt lower electrode layer and piezoelectric constant distribution of KNN piezoelectric film)
FIG. 15 shows the results of evaluating the distribution of piezoelectric constants for KNN piezoelectric films actually formed on substrates (4-inch Si wafers) having different (111) preferred orientation distribution states of the Pt lower electrode layer. FIG. 15A is a diagram showing a distribution of piezoelectric constants of the KNN piezoelectric film formed on the Pt lower electrode layer in a state where the distribution of the (111) preferential orientation shown in FIG. . When the distribution of the (111) preferential orientation of the Pt lower electrode is nonuniform, it can be seen that the piezoelectric constant of the KNN piezoelectric film is nonuniform. At this time, the piezoelectric constant had a distribution from about 70 to 110 (arbitrary unit) on the wafer, and the relative standard deviation was about 14.3%. On the other hand, FIG. 15B shows the distribution of the piezoelectric constant of the KNN piezoelectric film formed on the Pt lower electrode in which the distribution of the (111) preferred orientation shown in FIG. When the distribution of the (111) preferred orientation of the Pt lower electrode was controlled uniformly, the distribution of the piezoelectric constant of the KNN piezoelectric film formed on the upper part was made uniform. The relative standard deviation of the piezoelectric constant distribution is about 4.1%, and it can be seen that the variation of the piezoelectric constant on the wafer can be reduced to about 1/4. That is, it is possible to achieve both high performance and stable production of the KNN piezoelectric film by controlling the structure of the Pt lower electrode layer that is the base of the KNN piezoelectric film, specifically, precise control of the (111) preferential orientation.
尚、図15に示すように、本実施例における圧電定数の単位は任意単位である。これは、圧電定数を求めるためには、圧電膜のヤング率やポアソン比などの数値が必要であるが、薄膜形態にある圧電体のヤング率やポアソン比の数値を求めることは困難であるからである。薄膜の圧電膜の場合、バルク体と異なり、成膜時に使用される基板からの影響(拘束など)を受けるため、圧電薄膜自身のヤング率やポアソン比(定数)の絶対値(真値)を原理的に求めることができない。そこで、現在までに知られているKNN膜のヤング率やポアソン比の推定値を用いて圧電定数を算出した。従って、得られた圧電定数の値は推定値となることから、客観性をもたせるために相対的な任意単位とした。但し、圧電定数の算出に用いたKNNのヤング率やポアソン比の値は推定値とはいえ、ある程度、信頼性のある値であり、圧電定数の約100(任意単位)は、圧電定数−d31が概ね100(pm/V)であると考えられる。 As shown in FIG. 15, the unit of the piezoelectric constant in this embodiment is an arbitrary unit. In order to obtain the piezoelectric constant, numerical values such as the Young's modulus and Poisson's ratio of the piezoelectric film are required, but it is difficult to obtain the numerical values of the Young's modulus and Poisson's ratio of the piezoelectric material in the thin film form. It is. In the case of a thin piezoelectric film, unlike the bulk material, it is affected by the substrate used during film formation (restraint, etc.), so the absolute value (true value) of the Young's modulus and Poisson's ratio (constant) of the piezoelectric thin film itself is determined. It cannot be obtained in principle. Therefore, the piezoelectric constant was calculated using the estimated values of the Young's modulus and Poisson's ratio of the KNN film known so far. Accordingly, since the obtained piezoelectric constant value is an estimated value, it is set as a relative arbitrary unit in order to provide objectivity. However, although the values of the Young's modulus and Poisson's ratio of KNN used for calculating the piezoelectric constant are estimated values, they are reliable to some extent, and the piezoelectric constant of about 100 (arbitrary unit) is the piezoelectric constant-d. 31 is considered to be approximately 100 (pm / V).
また、表2にPt下部電極層の(111)優先配向性の均一性が異なる基板上に形成したKNN圧電膜について、Pt下部電極の(111)X線回折強度の相対標準偏差、及びそれに対応したKNN圧電膜の圧電定数の相対標準偏差をまとめて示す。表2をもとに、
図16に、Pt下部電極層の(111)優先配向性のばらつきに対する、KNN圧電膜の圧電定数のばらつきの変化を検討した結果を示す。図16の横軸はPt下部電極層の(111)優先配向性のばらつきに相当する(111)X線回折強度の相対標準偏差、縦軸はKNN圧電膜の圧電定数のばらつきに相当する圧電定数の相対標準偏差である。Pt下部電極層の(111)優先配向性の基板上でのばらつきが大きくなるに従い、結果としてKNN圧電膜の基板上での圧電定数のばらつきが大きくなることがわかる。すなわち、Ptの下部電極の(111)優先配向分布を均一化することによって、Siウェハ上で均一な圧電特性を有するKNN圧電膜を製造することができる。
Table 2 also shows the relative standard deviation of the (111) X-ray diffraction intensity of the Pt lower electrode and the corresponding values for the KNN piezoelectric films formed on the substrates with different uniformity of the (111) preferred orientation of the Pt lower electrode layer. The relative standard deviation of the piezoelectric constant of the obtained KNN piezoelectric film is shown together. Based on Table 2,
FIG. 16 shows the result of examining the variation of the piezoelectric constant variation of the KNN piezoelectric film with respect to the variation of the (111) preferred orientation of the Pt lower electrode layer. The horizontal axis in FIG. 16 is the relative standard deviation of (111) X-ray diffraction intensity corresponding to the variation in (111) preferred orientation of the Pt lower electrode layer, and the vertical axis is the piezoelectric constant corresponding to the variation in piezoelectric constant of the KNN piezoelectric film. Relative standard deviation. It can be seen that the variation of the piezoelectric constant on the substrate of the KNN piezoelectric film increases as the variation of the Pt lower electrode layer on the (111) preferred orientation substrate increases. That is, by homogenizing the (111) preferential orientation distribution of the Pt lower electrode, a KNN piezoelectric film having uniform piezoelectric characteristics on the Si wafer can be manufactured.
(Pt下部電極層の(111)面のX線回折強度の最小ピーク強度に対する最大ピーク強度の大きさと、KNN圧電膜の圧電定数−d31との関係)
表3に、Pt下部電極層の(111)優先配向性の均一性が異なる基板上に形成したKNN圧電膜に関し、Pt下部電極層の(111)面のX線回折強度の最小ピーク強度に対する最大ピーク強度の大きさ(X線回折強度の最小ピーク強度に対する最大ピーク強度の大きさを、単に「X線回折強度の倍率」と記す)、及びそれに対応したKNN圧電膜の圧電定数−d31をまとめている。また、表3をもとに作成した図17に、Pt下部電極層の(111)面のX線回折強度の倍率と、KNN圧電膜の圧電定数−d31との関係を図示する。Pt下部電極層の(111)面のX線回折強度の倍率(ばらつき)が大きくなるに従い、KNN圧電膜の圧電定数−d31が低下し、Pt下部電極層の(111)面のX線回折強度の倍率を6倍以下にすることで、圧電定数−d31を各種デバイスへ広く適用できるレベルの70以上に制御できることが分かる。
(Relationship between the maximum peak intensity with respect to the minimum peak intensity of the (111) plane of the (111) plane of the Pt lower electrode layer and the piezoelectric constant −d 31 of the KNN piezoelectric film)
Table 3 shows the maximum relative to the minimum peak intensity of the X-ray diffraction intensity of the (111) plane of the Pt lower electrode layer for KNN piezoelectric films formed on substrates with different uniformity of the (111) preferred orientation of the Pt lower electrode layer. The magnitude of the peak intensity (the magnitude of the maximum peak intensity with respect to the minimum peak intensity of the X-ray diffraction intensity is simply referred to as “magnification of X-ray diffraction intensity”), and the corresponding piezoelectric constant −d 31 of the KNN piezoelectric film It is summarized. FIG. 17 created based on Table 3 illustrates the relationship between the magnification of the X-ray diffraction intensity of the (111) plane of the Pt lower electrode layer and the piezoelectric constant −d 31 of the KNN piezoelectric film. As the magnification (variation) of the X-ray diffraction intensity of the (111) plane of the Pt lower electrode layer increases, the piezoelectric constant −d 31 of the KNN piezoelectric film decreases, and the X-ray diffraction of the (111) plane of the Pt lower electrode layer It can be seen that the piezoelectric constant −d 31 can be controlled to 70 or more, which is a level widely applicable to various devices, by setting the strength magnification to 6 times or less.
1 基板(Si基板)
2 接着層
3 下部電極層(Pt下部電極層)
4 圧電膜(KNN膜)
5 上部電極層
10 圧電膜素子
20 圧電膜素子
30 圧電膜デバイス
41 成膜容器
42 スパッタリング用ターゲット
1 Substrate (Si substrate)
2 Adhesive layer 3 Lower electrode layer (Pt lower electrode layer)
4 Piezoelectric film (KNN film)
5 Upper Electrode Layer 10 Piezoelectric Film Element 20 Piezoelectric Film Element 30 Piezoelectric Film Device 41 Film Formation Container 42 Sputtering Target
Claims (11)
前記下部電極層は、
立方晶、正方晶、斜方晶、六方晶、単斜晶、三斜晶、三方晶のいずれかの結晶構造、またはこれら結晶構造のうちの二以上の結晶構造が共存した状態を有し、前記結晶構造の結晶軸のうちの2軸以下のある特定の結晶軸に優先的に配向しており、前記基板上における少なくとも一つの前記結晶軸を法線とした結晶面のX線回折強度の分布において、前記結晶面のX線回折強度の相対標準偏差が57%以下である
ことを特徴とする圧電膜素子。 In a piezoelectric film element in which at least a lower electrode layer and a lead-free alkaline niobium oxide-based piezoelectric film are arranged on a substrate,
The lower electrode layer is
Cubic, tetragonal, orthorhombic, hexagonal, monoclinic, triclinic, trigonal crystal structure, or a state in which two or more of these crystal structures coexist, X-ray diffraction intensity of a crystal plane that is preferentially oriented to a specific crystal axis that is two or less of the crystal axes of the crystal structure and that is normal to at least one of the crystal axes on the substrate. The piezoelectric film element according to the distribution, wherein a relative standard deviation of X-ray diffraction intensity of the crystal plane is 57% or less.
前記下部電極層は、
立方晶、正方晶、斜方晶、六方晶、単斜晶、三斜晶、三方晶のいずれかの結晶構造、またはこれら結晶構造のうちの二以上の結晶構造が共存した状態を有し、前記結晶構造の結晶軸のうち2軸以下のある特定の結晶軸に優先的に配向しており、前記基板上における少なくとも一つの前記結晶軸を法線とした結晶面のX線回折強度の分布において、前記結晶面のX線回折強度の最小ピーク強度に対する最大ピーク強度の大きさが7倍以下の範囲にある
ことを特徴とする圧電膜素子。 In a piezoelectric film element in which at least a lower electrode layer and a lead-free alkaline niobium oxide-based piezoelectric film are arranged on a substrate,
The lower electrode layer is
Cubic, tetragonal, orthorhombic, hexagonal, monoclinic, triclinic, trigonal crystal structure, or a state in which two or more of these crystal structures coexist, X-ray diffraction intensity distribution of a crystal plane that is preferentially oriented to a specific crystal axis of two or less of the crystal axes of the crystal structure and that has at least one crystal axis as a normal line on the substrate Wherein the maximum peak intensity relative to the minimum peak intensity of the X-ray diffraction intensity of the crystal plane is in the range of 7 times or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011133911A JP2013004707A (en) | 2011-06-16 | 2011-06-16 | Piezoelectric film element and piezoelectric film device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011133911A JP2013004707A (en) | 2011-06-16 | 2011-06-16 | Piezoelectric film element and piezoelectric film device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013004707A true JP2013004707A (en) | 2013-01-07 |
Family
ID=47672965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011133911A Pending JP2013004707A (en) | 2011-06-16 | 2011-06-16 | Piezoelectric film element and piezoelectric film device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013004707A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014187219A (en) * | 2013-03-25 | 2014-10-02 | Hitachi Metals Ltd | Piezoelectric material-thin-film-multilayer substrate |
JP2014207393A (en) * | 2013-04-16 | 2014-10-30 | 日立金属株式会社 | Piezoelectric material thin film laminated board, and piezoelectric material thin film device |
EP3761383A1 (en) * | 2019-07-04 | 2021-01-06 | Sumitomo Chemical Company Limited | Piezoelectric laminate, piezoelectric element and method of manufacturing the piezoelectric laminate |
US11171280B2 (en) | 2018-08-29 | 2021-11-09 | Seiko Epson Corporation | Piezoelectric device, liquid ejection head, and printer |
WO2022210563A1 (en) * | 2021-03-30 | 2022-10-06 | 日東電工株式会社 | Piezoelectric film, piezoelectric film manufacturing method, piezoelectric element and piezoelectric device |
WO2022210438A1 (en) * | 2021-03-30 | 2022-10-06 | 日東電工株式会社 | Method for manufacturing piezoelectric element and method for manufacturing piezoelectric device |
WO2022210182A1 (en) * | 2021-03-30 | 2022-10-06 | 日東電工株式会社 | Method for manufacturing piezoelectric film, method for manufacturing piezoelectric element, and method for manufacturing piezoelectric device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11274419A (en) * | 1998-03-26 | 1999-10-08 | Toshiba Corp | Thin film capacitor |
JP2002164586A (en) * | 2000-11-24 | 2002-06-07 | Tdk Corp | Electronic device substrate, thin film piezoelectric element using the same, and method of manufacturing electronic device substrate |
JP2007184513A (en) * | 2005-12-06 | 2007-07-19 | Seiko Epson Corp | Piezoelectric laminate, surface acoustic wave device, thin film piezoelectric resonator, and piezoelectric actuator |
JP2008127244A (en) * | 2006-11-21 | 2008-06-05 | Hitachi Cable Ltd | Piezoelectric ceramics and piezoelectric ceramic elements |
JP2009049355A (en) * | 2007-07-26 | 2009-03-05 | Hitachi Cable Ltd | Piezoelectric thin film element |
JP2009200469A (en) * | 2008-01-24 | 2009-09-03 | Hitachi Cable Ltd | Piezoelectric thin film element |
JP2010135669A (en) * | 2008-12-08 | 2010-06-17 | Hitachi Cable Ltd | Substrate with thin-film piezoelectric material, thin-film piezoelectric element, thin-film piezoelectric device, and method of manufacturing substrate with thin-film piezoelectric material |
JP2011030195A (en) * | 2009-06-22 | 2011-02-10 | Hitachi Cable Ltd | Piezoelectric thin film element and manufacturing method thereof, and piezoelectric thin film device |
-
2011
- 2011-06-16 JP JP2011133911A patent/JP2013004707A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11274419A (en) * | 1998-03-26 | 1999-10-08 | Toshiba Corp | Thin film capacitor |
JP2002164586A (en) * | 2000-11-24 | 2002-06-07 | Tdk Corp | Electronic device substrate, thin film piezoelectric element using the same, and method of manufacturing electronic device substrate |
JP2007184513A (en) * | 2005-12-06 | 2007-07-19 | Seiko Epson Corp | Piezoelectric laminate, surface acoustic wave device, thin film piezoelectric resonator, and piezoelectric actuator |
JP2008127244A (en) * | 2006-11-21 | 2008-06-05 | Hitachi Cable Ltd | Piezoelectric ceramics and piezoelectric ceramic elements |
JP2009049355A (en) * | 2007-07-26 | 2009-03-05 | Hitachi Cable Ltd | Piezoelectric thin film element |
JP2009200469A (en) * | 2008-01-24 | 2009-09-03 | Hitachi Cable Ltd | Piezoelectric thin film element |
JP2010135669A (en) * | 2008-12-08 | 2010-06-17 | Hitachi Cable Ltd | Substrate with thin-film piezoelectric material, thin-film piezoelectric element, thin-film piezoelectric device, and method of manufacturing substrate with thin-film piezoelectric material |
JP2011030195A (en) * | 2009-06-22 | 2011-02-10 | Hitachi Cable Ltd | Piezoelectric thin film element and manufacturing method thereof, and piezoelectric thin film device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014187219A (en) * | 2013-03-25 | 2014-10-02 | Hitachi Metals Ltd | Piezoelectric material-thin-film-multilayer substrate |
JP2014207393A (en) * | 2013-04-16 | 2014-10-30 | 日立金属株式会社 | Piezoelectric material thin film laminated board, and piezoelectric material thin film device |
US11171280B2 (en) | 2018-08-29 | 2021-11-09 | Seiko Epson Corporation | Piezoelectric device, liquid ejection head, and printer |
EP3761383A1 (en) * | 2019-07-04 | 2021-01-06 | Sumitomo Chemical Company Limited | Piezoelectric laminate, piezoelectric element and method of manufacturing the piezoelectric laminate |
JP2021012909A (en) * | 2019-07-04 | 2021-02-04 | 住友化学株式会社 | Method for manufacturing piezoelectric laminate, piezoelectric element and piezoelectric laminate |
JP7464360B2 (en) | 2019-07-04 | 2024-04-09 | 住友化学株式会社 | Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate |
WO2022210563A1 (en) * | 2021-03-30 | 2022-10-06 | 日東電工株式会社 | Piezoelectric film, piezoelectric film manufacturing method, piezoelectric element and piezoelectric device |
WO2022210438A1 (en) * | 2021-03-30 | 2022-10-06 | 日東電工株式会社 | Method for manufacturing piezoelectric element and method for manufacturing piezoelectric device |
WO2022210182A1 (en) * | 2021-03-30 | 2022-10-06 | 日東電工株式会社 | Method for manufacturing piezoelectric film, method for manufacturing piezoelectric element, and method for manufacturing piezoelectric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8304966B2 (en) | Piezoelectric thin film element and manufacturing method of the piezoelectric thin film element, piezoelectric thin film device | |
JP5531653B2 (en) | Piezoelectric thin film element, manufacturing method thereof, and piezoelectric thin film device | |
JP5035378B2 (en) | Piezoelectric thin film element, manufacturing method thereof, and piezoelectric thin film device | |
JP5808262B2 (en) | Piezoelectric element and piezoelectric device | |
CN102157678B (en) | Piezoelectric thin film element and piezoelectric thin film device | |
US8058779B2 (en) | Piezoelectric thin film element | |
JP5024399B2 (en) | Piezoelectric thin film element, piezoelectric thin film device, and method for manufacturing piezoelectric thin film element | |
JP5035374B2 (en) | Piezoelectric thin film element and piezoelectric thin film device including the same | |
JP2013004707A (en) | Piezoelectric film element and piezoelectric film device | |
JP6091281B2 (en) | Piezoelectric thin film multilayer substrate | |
EP2846370A1 (en) | Piezoelectric element | |
JP2011233817A (en) | Piezoelectric element, method of manufacturing the same, and piezoelectric device | |
WO2011121863A1 (en) | Piezoelectric thin-film element, process for producing same, and piezoelectric thin-film device | |
US20200052190A1 (en) | Method of manufacturing piezoelectric thin film and piezoelectric sensor manufactured using piezoelectric thin film | |
JP6196797B2 (en) | Piezoelectric thin film multilayer substrate and piezoelectric thin film element | |
JP4998652B2 (en) | Ferroelectric thin film, ferroelectric thin film manufacturing method, piezoelectric element manufacturing method | |
JP2010135669A (en) | Substrate with thin-film piezoelectric material, thin-film piezoelectric element, thin-film piezoelectric device, and method of manufacturing substrate with thin-film piezoelectric material | |
CN101924179B (en) | Piezoelectric thin film element and piezoelectric thin film device having same | |
JP6499810B2 (en) | Piezoelectric film and piezoelectric element including the same | |
WO2011099231A1 (en) | Piezoelectric thin film element, piezoelectric thin film device, and process for production of piezoelectric thin film element | |
WO2011118093A1 (en) | Piezoelectric thin-film element and piezoelectric thin-film device equipped with same | |
WO2011062050A1 (en) | Method of manufacturing piezoelectric thin film, and piezoelectric thin film and piezoelectric element | |
JP2015056517A (en) | Piezoelectric material film laminate board and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130723 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140904 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141224 |