[go: up one dir, main page]

JP2012246514A - Method for producing reduced iron - Google Patents

Method for producing reduced iron Download PDF

Info

Publication number
JP2012246514A
JP2012246514A JP2011117296A JP2011117296A JP2012246514A JP 2012246514 A JP2012246514 A JP 2012246514A JP 2011117296 A JP2011117296 A JP 2011117296A JP 2011117296 A JP2011117296 A JP 2011117296A JP 2012246514 A JP2012246514 A JP 2012246514A
Authority
JP
Japan
Prior art keywords
furnace
reduced iron
combustible
combustible powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011117296A
Other languages
Japanese (ja)
Inventor
Itaru Yaso
格 八十
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011117296A priority Critical patent/JP2012246514A/en
Publication of JP2012246514A publication Critical patent/JP2012246514A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing reduced iron which can improve the heat-retaining property of a rotary hearth furnace at a low cost.SOLUTION: In the method for producing the reduced iron, combustible powder K is introduced into a rotary hearth type heating and reducing furnace A and burnt, and a raw material mixture including a carboneceous reducing agent and an oxidized iron-containing material is heated and reduced to produce the reduced iron. The content of ash in the combustible powder is preferably ≤1.3 wt.%, and as the example of the combustible powder, a biomass or brown coal, etc., is cited.

Description

本発明は、還元鉄の製造方法に関するものである。   The present invention relates to a method for producing reduced iron.

近年天然ガスの代わりに石炭を還元剤として用い酸化鉄と共に塊成化して、回転炉床炉(RHF)に投入し還元鉄(DRI)を製造するという方法が、特に製鉄所内ダストをリサイクル使用する方法として多く採用されている。   In recent years, coal is used as a reducing agent instead of natural gas and agglomerates with iron oxide and put into a rotary hearth furnace (RHF) to produce reduced iron (DRI). Many methods have been adopted.

回転炉床炉の保温性の向上のために、当該回転炉床炉内の火炎の輻射率や放射率を向上する方法が提案されている。例えば、バーナーに金属粉を吹き込むことで、当該バーナーによる火炎の輻射率を向上させる方法がある(例えば特許文献1参照)。   In order to improve the heat retention of the rotary hearth furnace, a method for improving the emissivity and emissivity of the flame in the rotary hearth furnace has been proposed. For example, there is a method of improving the flame radiation rate of the burner by blowing metal powder into the burner (see, for example, Patent Document 1).

また、ガラス溶解炉において、ガラス原料からなる粉体をバーナーに供給することで放射率を向上させる方法が提案されている(例えば特許文献2参照)。さらに、灰溶融炉において、バーナーに灰を吹き込むことで放射率を向上させる方法が提案されている(例えば特許文献3参照)。   Moreover, in a glass melting furnace, a method for improving the emissivity by supplying powder made of glass raw material to a burner has been proposed (see, for example, Patent Document 2). Furthermore, in an ash melting furnace, a method for improving the emissivity by blowing ash into a burner has been proposed (see, for example, Patent Document 3).

特開昭51−75231号公報JP 51-75231 A 特開平11−11953号公報JP-A-11-11953 特開2000−88234号公報JP 2000-88234 A

高温に加熱された回転炉床炉内の雰囲気から被加熱物への伝熱は対流伝熱と輻射伝熱とによって行われるが、炉内流束はそれほど高くなく、また伝熱面積も限られるため、輻射伝熱が主となっている。   Heat transfer from the atmosphere in the rotary hearth furnace heated to high temperature to the object to be heated is performed by convection heat transfer and radiation heat transfer, but the heat flux in the furnace is not so high and the heat transfer area is limited. Therefore, radiant heat transfer is mainly used.

輻射伝熱は、炉壁による固体輻射とガスによる気体輻射とに分類される。ガス輻射は、主としてCO,HOによるものであるが、壁面輻射率が0.7〜0.9程度あるのに対して、ガス輻射率は0.3程度と小さく、ガスによる気体輻射は炉壁からの固体輻射に比べて低くなる。 Radiation heat transfer is classified into solid radiation by the furnace wall and gas radiation by gas. Although gas radiation is mainly due to CO 2 and H 2 O, the wall radiation rate is about 0.7 to 0.9, whereas the gas radiation rate is as small as about 0.3. Is lower than the solid radiation from the furnace wall.

一方、気体燃料以外の液体や固体を燃料として使用するバーナー(重油バーナー、微粉炭バーナー等)では、燃料から炭素の微粒子(いわゆる、すす)が生成され、当該すすが高温に熱せられることでバーナーガスからの気体輻射にすすからの固体輻射が重畳され、火炎の輻射率が高くなるという特徴がある。   On the other hand, in a burner (heavy oil burner, pulverized coal burner, etc.) that uses a liquid or solid other than gaseous fuel as fuel, carbon fine particles (so-called soot) are generated from the fuel, and the soot is heated to a high temperature. The solid radiation from soot is superimposed on the gas radiation from the gas, and the emissivity of the flame is high.

しかしながら、燃料として重油を使用した場合、燃料中に含まれる硫黄分による製品への悪影響が懸念され、また燃料として微粉炭を使用した場合、当該微粉炭は灰分が高いために、炉内に溶融灰が固着して徐々に操業が困難になるという欠点がある。また、コスト削減等の目的によって上記燃料が利用可能であるとは限らない。   However, when heavy oil is used as the fuel, there is a concern about the negative effects on the product due to sulfur contained in the fuel, and when pulverized coal is used as the fuel, the pulverized coal has a high ash content, so it melts in the furnace. There is a drawback that the operation becomes difficult due to ash sticking. Moreover, the said fuel is not necessarily usable for the purpose of cost reduction or the like.

また、上述の特許文献1〜3では火炎の輻射率を向上する方法として、不燃物(金属、ガラス、灰等)を炉内に導入しているが、回転炉床炉にこれらの物質を導入した場合、炉内の高温雰囲気においてこれらの物質が溶融付着して、操業トラブルにつながる虞が高い。   Moreover, in the above-mentioned patent documents 1 to 3, as a method for improving the flame emissivity, incombustibles (metal, glass, ash, etc.) are introduced into the furnace, but these substances are introduced into the rotary hearth furnace. In such a case, there is a high possibility that these substances melt and adhere in a high temperature atmosphere in the furnace, resulting in operational troubles.

本発明はかかる事情に鑑みてなされたものであり、本発明の目的は、低コストで回転炉床炉の保温性を向上することができる還元鉄の製造方法を提供することである。   This invention is made | formed in view of this situation, The objective of this invention is providing the manufacturing method of reduced iron which can improve the heat retention of a rotary hearth furnace at low cost.

本発明に係る還元鉄の製造方法は、移動式加熱還元炉内に可燃物粉体を導入して燃焼させ、炭素質還元剤及び酸化鉄含有物質を含む原料混合物を加熱し還元することにより還元鉄を製造することを要旨とする。   The method for producing reduced iron according to the present invention is achieved by introducing combustible powder into a mobile heating reduction furnace and burning it, and heating and reducing a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance. The gist is to produce iron.

本発明に係る還元鉄の製造方法においては、灰分がほぼ含まれない可燃物粉体を炉内に導入することで、当該可燃物粉体は炉内で完全に燃え切り、ダストを生成せずに被加熱物への入熱量を増加させることができる。したがって、炉内の保温性を向上することができる。   In the method for producing reduced iron according to the present invention, the combustible powder that is substantially free of ash is introduced into the furnace, so that the combustible powder is completely burned out in the furnace without generating dust. The amount of heat input to the object to be heated can be increased. Therefore, the heat retention in the furnace can be improved.

また、本発明において可燃物粉体を採用することで、重油等の化石燃料の使用を削減することができ低コストである。   In addition, by using the combustible powder in the present invention, the use of fossil fuels such as heavy oil can be reduced and the cost is low.

可燃物粉体の灰分の含有率が1.3重量%以下であれば、炉内壁面に付着する灰分の蓄積量を抑制することができる。   If the ash content of the combustible powder is 1.3% by weight or less, the amount of ash accumulated on the inner wall surface of the furnace can be suppressed.

可燃物粉体がバイオマス又は褐炭を含んでいれば、灰分の含有量を著しく抑制することができる。   If the combustible powder contains biomass or lignite, the ash content can be remarkably suppressed.

可燃物粉体をバーナー内に設けられた可燃物導入部から移動式加熱還元炉内に導入すれば、当該バーナーからの火炎と可燃物粉体とが混合され易くなり、可燃物粉体の燃焼が行われ易くなる。   If the combustible powder is introduced into the mobile heating reduction furnace from the combustible material introduction part provided in the burner, the flame from the burner and the combustible powder are easily mixed, and the combustible powder is burned. Is easily performed.

可燃物粉体を二次燃焼空気導入部内に設けられた可燃物導入部から移動式加熱還元炉内に導入すれば、炉内に導入された二次燃焼空気によって可燃物粉体が炉内を流れ易くなりバーナーの火炎に接触し易くなるので、可燃物粉体の燃焼効率を向上できる。   If combustible powder is introduced into the mobile heat reduction furnace from the combustible material introduction section provided in the secondary combustion air introduction section, the combustible powder is moved inside the furnace by the secondary combustion air introduced into the furnace. Since it becomes easy to flow and contacts the flame of a burner, the combustion efficiency of combustible powder can be improved.

本発明によれば、灰分がほぼ含まれない可燃物粉体を炉内に導入することで、当該可燃物粉体は炉内で完全に燃え切り、ダストを生成せずに被加熱物への入熱量を増加させることができる。したがって、炉内の保温性を向上することができる。   According to the present invention, by introducing combustible powder that is substantially free of ash into the furnace, the combustible powder is completely burned out in the furnace, and no dust is generated. The amount of heat input can be increased. Therefore, the heat retention in the furnace can be improved.

移動炉床式加熱還元炉の構成を示す概略工程説明図である。It is a schematic process explanatory drawing which shows the structure of a moving hearth type heating reduction furnace. (a)〜(c)は還元炉内に可燃物粉体を導入する方法の例を説明するための図である。(A)-(c) is a figure for demonstrating the example of the method of introduce | transducing combustible powder in a reduction furnace. おがくずをバーナー中心軸から炉内に吹き込んだ時の被加熱物への入熱量の計算結果を示すグラフである。It is a graph which shows the calculation result of the heat input amount to a to-be-heated material when sawdust is blown in into a furnace from the burner central axis.

本実施形態に係る還元鉄の製造方法は、以下に説明する移動炉床式加熱還元炉、例えば回転炉床式還元炉に適用することができるが、これに限定されるものではなく、固定式加熱還元炉にも適用することができる。以下、回転炉床式還元炉を例に説明する。   The method for producing reduced iron according to the present embodiment can be applied to a moving hearth type heating reduction furnace described below, for example, a rotary hearth type reduction furnace, but is not limited thereto, and is a fixed type. It can also be applied to a heating reduction furnace. Hereinafter, a rotary hearth type reduction furnace will be described as an example.

還元鉄の製造には原料混合物として、炭素質還元剤と酸化鉄含有物質との直接混合粉体、または塊成化手段により炭素質還元剤および酸化鉄含有物質の粉体状混合物が塊成化された塊成物が用いられる。上記の塊成化手段としては、ブリケット化用プレス機(シリンダープレス、ロールプレス、リングローラプレスなど)を用いる等、プレス機を用いる他、押出成形機、転動型造粒機(パンペレタイザー、ドラムペレタイザーなど)などの公知の種々の機器を使用できる。   In the production of reduced iron, a powder mixture of a carbonaceous reducing agent and an iron oxide-containing substance is agglomerated as a raw material mixture by directly mixing powder of a carbonaceous reducing agent and an iron oxide-containing substance or by agglomeration means. The agglomerated material is used. As the agglomeration means, in addition to using a press machine such as a briquetting press machine (cylinder press, roll press, ring roller press, etc.), an extrusion molding machine, a rolling granulator (pan pelletizer, Various known devices such as a drum pelletizer can be used.

塊成物の形状は、特に限定されず、塊状、粒状、ブリケット状、ペレット状、棒状などの種々の形状が採用できる。上記塊成物を還元して還元鉄を製造するが、具体的な還元方法については特に限定されず、公知の還元炉を用いればよい。   The shape of the agglomerated material is not particularly limited, and various shapes such as a lump shape, a granular shape, a briquette shape, a pellet shape, and a rod shape can be employed. Although the agglomerate is reduced to produce reduced iron, the specific reduction method is not particularly limited, and a known reduction furnace may be used.

図1は移動炉床式加熱還元炉の構成を示す概略工程説明図であり、回転炉床式のものを示している。   FIG. 1 is a schematic process explanatory diagram showing the configuration of a moving hearth-type heat reduction furnace, showing a rotary hearth type.

図1に示すように、回転炉床式加熱還元炉Aには、上記塊成物1が原料投入ホッパー3を通して回転炉床4上へ連続的に装入される。   As shown in FIG. 1, the agglomerate 1 is continuously charged into the rotary hearth 4 through the raw material charging hopper 3 in the rotary hearth type heating reduction furnace A.

回転炉床式加熱還元炉Aの回転炉床4は反時計方向に回転されており、操業条件によって異なるが、約10分から20分程度で1周し、その間に塊成物1中に含まれる酸化鉄は固体還元される。   The rotary hearth 4 of the rotary hearth type heating and reducing furnace A is rotated counterclockwise and, depending on the operating conditions, makes one round in about 10 to 20 minutes, and is included in the agglomerate 1 during that time. Iron oxide is solid reduced.

還元炉Aにおける回転炉床4の上方側壁及び/又は天井部には燃焼バーナー5が複数個設けられており、該燃焼バーナー5の燃焼熱あるいはその輻射熱によって炉床部に熱が供給される。   A plurality of combustion burners 5 are provided on the upper side wall and / or ceiling of the rotary hearth 4 in the reduction furnace A, and heat is supplied to the hearth by the combustion heat of the combustion burner 5 or its radiant heat.

耐火材で構成された回転炉床4上に装入された塊成物1は、該炉床4上で還元炉A内を周方向へ移動する中で、燃焼バーナー5からの燃焼熱や輻射熱によって加熱され、当該還元炉A内の加熱帯を通過する間に、当該塊成物1内の酸化鉄は固体還元され、還元鉄となり、回転炉床4の下流側ゾーンで冷却された後、スクリューなどの排出装置6によって炉床上からホッパー8を介して排出される。なお、回転炉床4内の排ガスは排ガスダクト7から外部に排出される。   The agglomerate 1 charged on the rotary hearth 4 made of refractory material moves in the reduction furnace A on the hearth 4 in the circumferential direction, and the combustion heat and radiant heat from the combustion burner 5 The iron oxide in the agglomerate 1 is solid-reduced while passing through the heating zone in the reduction furnace A, becomes reduced iron, and is cooled in the downstream zone of the rotary hearth 4. It is discharged from the hearth via a hopper 8 by a discharge device 6 such as a screw. The exhaust gas in the rotary hearth 4 is discharged outside from the exhaust gas duct 7.

図2は還元炉A内に可燃物粉体Kを導入する方法の例を説明するための図である。   FIG. 2 is a view for explaining an example of a method for introducing the combustible powder K into the reducing furnace A.

図2(a)に示すように、還元炉Aには上述の燃焼バーナー5と二次燃焼空気を導入するための二次燃焼空気導入部10とが設けられている。図2(a)の例では、燃焼バーナー5内に可燃物導入部15が設けられている。可燃物粉体Kは、燃焼バーナー5からの火炎とともに還元炉A内に導入される。   As shown in FIG. 2A, the reduction furnace A is provided with the above-described combustion burner 5 and a secondary combustion air introduction section 10 for introducing secondary combustion air. In the example of FIG. 2A, a combustible material introducing portion 15 is provided in the combustion burner 5. The combustible powder K is introduced into the reduction furnace A together with the flame from the combustion burner 5.

本実施形態において、可燃物粉体Kはバイオマスまたは褐炭である。バイオマスは、木材チップ、紙、おがくず、小麦粉、草本材料、刈芝、藻類、食品原料混合物、コットン、麻、亜麻、UBC(改質褐炭)及びハイパーコールを含む。   In the present embodiment, the combustible powder K is biomass or lignite. Biomass includes wood chips, paper, sawdust, flour, herbaceous material, mowing lawn, algae, food ingredient mixture, cotton, hemp, flax, UBC (modified brown coal) and hypercoal.

また、図2(b)に示すように、二次燃焼空気導入部10内に可燃物導入部15を設けてもよい。可燃物粉体Kは、二次燃焼空気導入部10からの空気とともに還元炉A内に導入される。   Further, as shown in FIG. 2 (b), a combustible material introducing portion 15 may be provided in the secondary combustion air introducing portion 10. The combustible powder K is introduced into the reduction furnace A together with the air from the secondary combustion air introduction unit 10.

また、図2(c)に示すように、可燃物導入部15を別個独立に設けて、当該可燃物導入部15から可燃物粉体Kを還元炉A内に導入することもできる。   In addition, as shown in FIG. 2 (c), the combustible material introduction part 15 may be provided separately and the combustible material powder K may be introduced into the reduction furnace A from the combustible material introduction part 15.

このように本実施形態では、灰分がほぼ含まれない可燃物粉体Kを炉内に導入することで、可燃物粉体Kは炉内で完全に燃え切り、ダストを生成せずに被加熱物への入熱量を増加させることができる。したがって、炉内の保温性を向上することができる。   As described above, in this embodiment, by introducing the combustible powder K substantially free of ash into the furnace, the combustible powder K is completely burned out in the furnace and is heated without generating dust. The amount of heat input to the object can be increased. Therefore, the heat retention in the furnace can be improved.

また、本実施形態において可燃物粉体Kを採用することで、重油等の化石燃料の使用を削減することができ低コストである。   In addition, by using the combustible powder K in the present embodiment, the use of fossil fuel such as heavy oil can be reduced and the cost is low.

なお、炉内に導入する可燃物粉体Kはバイオマスおよび褐炭のうちいずれか一方としてもよいし、これらを組み合わせて炉内に導入してもよい。   The combustible powder K introduced into the furnace may be either biomass or lignite, or may be combined and introduced into the furnace.

また、可燃物導入部15は、燃焼バーナー5および二次燃焼空気導入部10の双方に設けてもよいし、これに加えて別個独立にさらに設けることとしてもよい。   Further, the combustible material introduction part 15 may be provided in both the combustion burner 5 and the secondary combustion air introduction part 10, or may be additionally provided separately and in addition to this.

本発明はもとより上記実施形態によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention is not limited by the above-described embodiments, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. Is included.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.

実施例として、天然ガスを燃料とし、燃焼空気を等量比1.0の割合で吹き込むことのできる、バーナー燃焼量2.9MWである燃焼バーナーを備える2m×2m×7mの角形炉に対して、おがくずをバーナー中心軸から炉内に吹き込んだ時の被加熱物への入熱量の計算結果を図3に示す。   As an example, for a 2 m × 2 m × 7 m square furnace equipped with a combustion burner having a burner combustion amount of 2.9 MW, in which natural gas is used as fuel and combustion air can be injected at a ratio of 1.0. FIG. 3 shows the calculation results of the heat input to the object to be heated when sawdust is blown into the furnace from the burner central axis.

おがくずの組成は表1に示す通りであり、灰分がほとんどなく、炉内で燃え切ってしまうものを採用した。なお炉内平均温度は1525℃であった。   The composition of the sawdust is as shown in Table 1, and there was almost no ash, and the one that burned out in the furnace was adopted. The average furnace temperature was 1525 ° C.

Figure 2012246514
Figure 2012246514

バーナー燃焼ガス量に対して、重量比0.6%のおがくずを炉内に吹き込むことによって、入熱量が2%以上増加しており、完全に燃え切ってしまうおがくず等の可燃物粉体を導入した場合でも入熱量は大きく増加することが確認できた。なお、全ての灰分が全て炉内壁面に付着した場合でも、灰分の年間蓄積量が20mmを下回るようにするために、灰分濃度は1.3重量%以下とすることが望ましい。   The amount of heat input increased by 2% or more by blowing 0.6% of sawdust into the furnace with respect to the amount of burner combustion gas, and combustible powder such as sawdust that completely burns out was introduced. Even in this case, it was confirmed that the heat input greatly increased. Even when all the ash is attached to the inner wall of the furnace, it is desirable that the ash concentration is 1.3% by weight or less so that the accumulated amount of ash is less than 20 mm.

5 燃焼バーナー
10 二次燃焼空気導入部
15 可燃物導入部
A 回転炉床式加熱還元炉
K 可燃物粉体
5 Combustion burner 10 Secondary combustion air introduction part 15 Combustible substance introduction part A Rotary hearth type heating reduction furnace K Combustible substance powder

Claims (6)

移動式加熱還元炉内に可燃物粉体を導入して燃焼させ、炭素質還元剤及び酸化鉄含有物質を含む原料混合物を加熱し還元することにより還元鉄を製造することを特徴とする還元鉄の製造方法。   Reduced iron characterized in that reduced iron is produced by introducing and burning combustible powder into a mobile heating and reducing furnace and heating and reducing a raw material mixture containing a carbonaceous reducing agent and an iron oxide-containing substance. Manufacturing method. 前記可燃物粉体の灰分の含有率が1.3重量%以下である請求項1に記載の還元鉄の製造方法。   The method for producing reduced iron according to claim 1, wherein the ash content of the combustible powder is 1.3 wt% or less. 前記可燃物粉体はバイオマスを含む請求項1または2に記載の還元鉄の製造方法。   The method for producing reduced iron according to claim 1, wherein the combustible powder contains biomass. 前記可燃物粉体は褐炭を含む請求項1〜3のいずれか1項に記載の還元鉄の製造方法。   The said combustible powder is a manufacturing method of the reduced iron of any one of Claims 1-3 containing lignite. 前記可燃物粉体をバーナー内に設けられた可燃物導入部から前記移動式加熱還元炉内に導入する請求項1〜4のいずれか1項に記載の還元鉄の製造方法。   The manufacturing method of reduced iron of any one of Claims 1-4 which introduce | transduce the said combustible powder into the said mobile heating reduction furnace from the combustible material introduction part provided in the burner. 前記可燃物粉体を二次燃焼空気導入部内に設けられた可燃物導入部から前記移動式加熱還元炉内に導入する請求項1〜5のいずれか1項に記載の還元鉄の製造方法。
The method for producing reduced iron according to any one of claims 1 to 5, wherein the combustible powder is introduced into the mobile heating reduction furnace from a combustible material introduction section provided in a secondary combustion air introduction section.
JP2011117296A 2011-05-25 2011-05-25 Method for producing reduced iron Pending JP2012246514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117296A JP2012246514A (en) 2011-05-25 2011-05-25 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117296A JP2012246514A (en) 2011-05-25 2011-05-25 Method for producing reduced iron

Publications (1)

Publication Number Publication Date
JP2012246514A true JP2012246514A (en) 2012-12-13

Family

ID=47467248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117296A Pending JP2012246514A (en) 2011-05-25 2011-05-25 Method for producing reduced iron

Country Status (1)

Country Link
JP (1) JP2012246514A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151304A (en) * 1976-06-12 1977-12-15 Taiho Kogyo Co Ltd Combustion method of fuel and fuel additive
JPS55140031A (en) * 1979-04-09 1980-11-01 Kobe Steel Ltd Combustion control
JPS6080007A (en) * 1983-10-07 1985-05-07 Taihoo Kogyo Kk A method of increasing the emissivity of the flame of a burner such as a heating furnace
US4622905A (en) * 1985-03-04 1986-11-18 International Metals Reclamation Co., Inc. Furnacing
WO1998029690A1 (en) * 1996-12-27 1998-07-09 Sumitomo Osaka Cement Co., Ltd. Device and method for combustion of fuel
JP2002363626A (en) * 2001-06-11 2002-12-18 Kobe Steel Ltd Method for operating movable hearth furnace
JP2003279255A (en) * 2002-03-22 2003-10-02 Nippon Steel Corp Rotary hearth furnace and operating method thereof
JP2011027281A (en) * 2009-07-22 2011-02-10 Kobe Steel Ltd Method for suppressing adhesion of ash and device for suppressing adhesion of ash in boiler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151304A (en) * 1976-06-12 1977-12-15 Taiho Kogyo Co Ltd Combustion method of fuel and fuel additive
JPS55140031A (en) * 1979-04-09 1980-11-01 Kobe Steel Ltd Combustion control
JPS6080007A (en) * 1983-10-07 1985-05-07 Taihoo Kogyo Kk A method of increasing the emissivity of the flame of a burner such as a heating furnace
US4622905A (en) * 1985-03-04 1986-11-18 International Metals Reclamation Co., Inc. Furnacing
WO1998029690A1 (en) * 1996-12-27 1998-07-09 Sumitomo Osaka Cement Co., Ltd. Device and method for combustion of fuel
JP2002363626A (en) * 2001-06-11 2002-12-18 Kobe Steel Ltd Method for operating movable hearth furnace
JP2003279255A (en) * 2002-03-22 2003-10-02 Nippon Steel Corp Rotary hearth furnace and operating method thereof
JP2011027281A (en) * 2009-07-22 2011-02-10 Kobe Steel Ltd Method for suppressing adhesion of ash and device for suppressing adhesion of ash in boiler

Similar Documents

Publication Publication Date Title
JP5116883B1 (en) Method and apparatus for producing reduced iron
Gan et al. Fuel pre-granulation for reducing NOx emissions from the iron ore sintering process
CN100510120C (en) Method for producing metallized iron-smelting raw material
JP4837799B2 (en) Method for producing sintered ore
JP2022033594A (en) Sintered ore manufacturing method
JP2018178252A (en) Method of manufacturing reduced iron using rotary hearth furnace and rotary hearth furnace
KR101405480B1 (en) Method for manufacturinfg coal briquettes
JP5598423B2 (en) Method for producing pre-reduced agglomerates
RU2669653C2 (en) Method of producing granular metallic iron
JP4490640B2 (en) Method for producing reduced metal
JP7553759B2 (en) Sintering machine, sintering machine operation method
JP2010236081A (en) Method of manufacturing carbonaceous material-containing agglomerate
EP3418400B1 (en) Process of making pig iron in a blast furnace using pellets containing thermoplastic and cellulosic materials
CN1940092A (en) Fuse reducing iron-smelting process for rotating furnace
JP5475630B2 (en) Agglomerate for producing reduced iron and method for producing the same
Cavaliere Sintering: most efficient technologies for greenhouse emissions abatement
JP2012246514A (en) Method for producing reduced iron
AU2012355194A1 (en) Blast furnace operation method
CN115786693B (en) Carbon-neutral iron ore sintering method based on biomass energy
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
JP2013014791A (en) Raw material agglomerate for producing reduced iron
CN109536703A (en) A kind of ferrochrome smelting device and technique
JP2016160473A (en) Partially reduced iron production device and method
JP2022110008A (en) Operating method of iron making device and associated operating device
JP5862515B2 (en) Blast furnace operation method using oil palm core shell coal.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203