[go: up one dir, main page]

JP2012245728A - Composite sheet - Google Patents

Composite sheet Download PDF

Info

Publication number
JP2012245728A
JP2012245728A JP2011120291A JP2011120291A JP2012245728A JP 2012245728 A JP2012245728 A JP 2012245728A JP 2011120291 A JP2011120291 A JP 2011120291A JP 2011120291 A JP2011120291 A JP 2011120291A JP 2012245728 A JP2012245728 A JP 2012245728A
Authority
JP
Japan
Prior art keywords
fiber
sheet
silicone rubber
fibers
composite sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011120291A
Other languages
Japanese (ja)
Inventor
Satoshi Naruko
聡 成子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011120291A priority Critical patent/JP2012245728A/en
Publication of JP2012245728A publication Critical patent/JP2012245728A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • D01F6/765Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products from polyarylene sulfides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Insulating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrical insulation sheet that combines heat resistance, electrical characteristics, and chemical resistance, and is excellent in thermoformability, and especially deep drawing properties.SOLUTION: The composite sheet includes: a fiber sheet consisting of a synthetic fiber whose glass transition point is at most 200°C, and whose melting point is at least 250°C; and a silicone rubber.

Description

本発明の目的は、モーター、オルタネータ、トランスといった電気機器の電気絶縁シートとして、割れにくく、かつ熱成形性に優れたシートに関する。   The object of the present invention relates to a sheet that is not easily broken and excellent in thermoformability as an electrical insulating sheet for electrical equipment such as a motor, an alternator, and a transformer.

近年の動向として、電気機器の小型軽量化、高性能化に伴い、新規絶縁システムの開発が進められており、その中で、耐熱性、電気特性、耐薬品性を兼ね備えながら、割れにくく、熱成形性に優れた電気絶縁シートが求められている。
従来、耐熱クラスF種以上の耐熱性が要求される電気絶縁シートとしては、1)PPSやPI等からなるフィルム、2)前記フィルムと繊維シートの積層体、3)ポリメタフェニレンイソフタルアミドのフィブリッドおよび繊維から構成される紙、4)前記の紙とシリコーンゴムの積層体、が使用できることが知られている(特許文献1〜4)。
しかしながら、1)前記に代表されるフィルムは、耐衝撃性に欠けるため、成形加工時に、割れやすい、裂けやすいといった問題があり、2)フィルムの耐衝撃性を改善する目的で提案されているフィルムと繊維シートの積層体は、成形時にフィルム層と繊維シート層の界面が剥がれるといった問題がある。3)また、前記ポリメタフェニレンイソフタルアミドのフィブリッドおよび繊維から構成される紙は、200℃以上の高温下でも軟化、溶融しないため、熱成形により変形後の形状を保持することができない。4)たとえ、前記の紙にシリコーンゴムを積層していても紙単体時と同様の理由により熱成形できない。
As a trend in recent years, new insulation systems have been developed along with the reduction in size, weight, and performance of electrical equipment. Among them, heat resistance, electrical characteristics, and chemical resistance are combined, but they are resistant to cracking and heat. There is a need for an electrical insulating sheet having excellent moldability.
Conventionally, as an electrical insulating sheet requiring heat resistance of heat class F or higher, 1) a film made of PPS or PI, 2) a laminate of the film and a fiber sheet, and 3) a polymetaphenylene isophthalamide fibrid It is known that papers composed of fibers and fibers, and 4) a laminate of the above paper and silicone rubber can be used (Patent Documents 1 to 4).
However, 1) films represented by the above lack impact resistance, and thus have problems such as being easily broken or easily torn during molding, and 2) films proposed for the purpose of improving the impact resistance of the film. The fiber sheet laminate has a problem that the interface between the film layer and the fiber sheet layer is peeled off during molding. 3) Further, since the paper composed of the polymetaphenylene isophthalamide fibrids and fibers does not soften or melt even at a high temperature of 200 ° C. or higher, the shape after deformation cannot be maintained by thermoforming. 4) Even if silicone rubber is laminated on the paper, thermoforming cannot be performed for the same reason as that of the paper alone.

また、シリコーンゴムは、それ単体では柔軟すぎて自己保持性に欠けるため、繊維シートに塗工又は含浸する等により、機械的強度を向上させなければ、本用途の実用に耐えないものである。   In addition, silicone rubber itself is too flexible and lacks self-holding ability, and therefore cannot be put into practical use unless the mechanical strength is improved by coating or impregnating the fiber sheet.

なお、シリコーンゴムの引裂きやすさを向上させるための方法として、シリコーンゴムと基材シートを複合した特許文献5があるが、該文献には熱成形性に関する記載は一切なされていない上、バインダーに熱硬化性樹脂を使用していることから、熱成形には不適である。   In addition, as a method for improving the ease of tearing of silicone rubber, there is Patent Document 5 in which silicone rubber and a base material sheet are combined. Since thermosetting resin is used, it is unsuitable for thermoforming.

以上に述べた通り、これまで耐熱性、電気特性、耐薬品性を兼ね備えながら、割れにくく、熱成型性に優れた電気絶縁シートは開発されていなかった。   As described above, an electrical insulating sheet that has both heat resistance, electrical characteristics, and chemical resistance but is resistant to cracking and excellent in thermoformability has not been developed so far.

特開昭55−35459号公報JP 55-35459 A 特開昭63−237949号公報JP-A 63-237949 特開平4−228696号公報JP-A-4-228696 特開平9−183187号公報Japanese Patent Laid-Open No. 9-183187 特開平6−262694号公報JP-A-6-262694

本発明の課題は、耐熱性、電気特性、耐薬品性を兼ね備えた熱成形性特に深絞り成形性に優れた電気絶縁シートを提供することである。   An object of the present invention is to provide an electrical insulating sheet excellent in thermoformability, particularly deep drawability, having heat resistance, electrical properties, and chemical resistance.

かかる課題を解決すべく鋭意検討の結果、ガラス転移点が200℃以下であり、かつ融点が250℃以上である合成繊維からなる繊維シートに、シリコーンゴムを例えば含浸、または塗付して、繊維シートとシリコーンゴムとを有する複合シートとすることで、前記の課題が解決できることを見出した。
本発明の好ましい実施態様においては、前記ガラス転移点が200℃以下であり、かつ融点が250℃以上である合成繊維の内、20質量%〜100質量%が未延伸繊維である。
As a result of intensive studies to solve such problems, a fiber sheet made of a synthetic fiber having a glass transition point of 200 ° C. or lower and a melting point of 250 ° C. or higher is impregnated or coated with, for example, silicone rubber. It discovered that the said subject could be solved by setting it as the composite sheet which has a sheet | seat and silicone rubber.
In a preferred embodiment of the present invention, 20% to 100% by mass of the synthetic fiber having a glass transition point of 200 ° C. or lower and a melting point of 250 ° C. or higher is unstretched fiber.

さらに、本発明の好ましい実施態様においては、前記未延伸繊維がポリフェニレンサルファイド繊維(PPS繊維と呼ぶ)である。さらに、本発明の好ましい実施態様においては、前記複合シートは深絞り成形用のものである。また、本発明の好ましい実施態様においては、前記複合シートは電気絶縁用として使用されるものである。また、前記複合シートを深絞り成形することで電気絶縁シートとすることができる。また、複合シートの製造方法は、ガラス転移点が200℃以下であり、かつ融点が250℃以上である合成繊維を湿式抄紙法でシート化し、しかる後にシリコーンゴムを含浸、または塗工することを特徴とするものである。さらに、本発明の電気絶縁材の製造方法は、前記複合シートを深絞り成形することを特徴とするものである。   Furthermore, in a preferred embodiment of the present invention, the undrawn fiber is polyphenylene sulfide fiber (referred to as PPS fiber). Furthermore, in a preferred embodiment of the present invention, the composite sheet is for deep drawing. In a preferred embodiment of the present invention, the composite sheet is used for electrical insulation. Moreover, it can be set as an electrical insulation sheet by carrying out the deep drawing of the said composite sheet. In addition, the method for producing a composite sheet is to form a synthetic fiber having a glass transition point of 200 ° C. or less and a melting point of 250 ° C. or more into a sheet by a wet papermaking method, and then impregnate or coat with silicone rubber. It is a feature. Furthermore, the method for producing an electrical insulating material of the present invention is characterized in that the composite sheet is deep-drawn.

本発明によれば、高い耐熱性と絶縁破壊強さを有し、深絞り成形性に優れる複合シートを提供される。   According to the present invention, a composite sheet having high heat resistance and dielectric breakdown strength and excellent deep drawability is provided.

深絞り成形により得られた不良品の斜視図Perspective view of defective product obtained by deep drawing 実施例で深絞り成形性を評価するために使用した円柱状プレス金型の斜視図A perspective view of a cylindrical press die used for evaluating deep drawability in Examples

本発明者らは、耐熱性と絶縁性能を兼備し、かつ深絞り成形が可能な複合シートについて鋭意検討し、繊維シート単独では電気絶縁性能に劣り、また、シリコーンゴム単独では熱成形できないばかりか、柔軟すぎて自己保持性に欠けることから、繊維シートとシリコーンゴムを包括する複合であって、かつ繊維シートを構成する合成繊維としてガラス転移点が200℃以下であり、かつ融点が250℃以上であるものを採用して、初めて所望の性能を具備する複合シートに想到したものである。   The present inventors have intensively studied a composite sheet having both heat resistance and insulation performance and capable of deep drawing, and the fiber sheet alone is inferior in electrical insulation performance, and not only silicone rubber alone can be thermoformed. Since it is too flexible and lacks self-holding properties, it is a composite that includes a fiber sheet and silicone rubber, and the synthetic fiber constituting the fiber sheet has a glass transition point of 200 ° C. or lower and a melting point of 250 ° C. or higher. This is the first time that a composite sheet having desired performance has been conceived.

ここで、本発明における深絞り成形とは、側壁が周囲からの流入によって形成される一般的な深絞り成形を含み、また、平らなシートを3次元的に成形する際に、成形体の一部が延伸または、圧縮される成形をも含む。   Here, the deep drawing in the present invention includes general deep drawing in which a side wall is formed by inflow from the surroundings, and when forming a flat sheet three-dimensionally, It includes molding in which the part is stretched or compressed.

一般的に繊維シートは繊維間に空隙を有しているため、絶縁破壊強さに乏しく、繊維シート単独では電気絶縁シートとしての実用性が低い。本発明によると、シリコーンゴムが繊維シートを構成する繊維間の空隙を埋め、あるいは、繊維シート表面にシリコーン層を形成し、繊維シート単独よりも絶縁破壊強さを飛躍的に向上することができる。
本発明における繊維シートは、ガラス転移点が200℃以下であり、かつ融点が250℃以上である合成繊維を含む。かようなガラス転移点、融点を有する合成繊維は繊維シートにおいて、70質量%以上、さらには80質量%以上、さらに90質量%以上含むことが好ましい。
In general, since a fiber sheet has voids between fibers, the dielectric breakdown strength is poor, and the fiber sheet alone is not practical as an electrical insulating sheet. According to the present invention, silicone rubber fills the gaps between the fibers constituting the fiber sheet, or forms a silicone layer on the surface of the fiber sheet, so that the dielectric breakdown strength can be dramatically improved as compared with the fiber sheet alone. .
The fiber sheet in the present invention includes a synthetic fiber having a glass transition point of 200 ° C. or lower and a melting point of 250 ° C. or higher. The synthetic fiber having such a glass transition point and melting point is preferably 70% by mass or more, more preferably 80% by mass or more, and further 90% by mass or more in the fiber sheet.

ガラス転移点が上記範囲である合成繊維を含むことにより、本発明の繊維シートは200℃以上の温度下では荷重をかけた際に変形し易くなる。一般的に、熱成形時の温度に対し、ガラス転移点が低い程、繊維シートの軟化が進むため、前記特定範囲のガラス転移点を有する合成繊維のガラス転移温度は、より低温の150℃以下であることがより好ましく、さらに好ましくは100℃以下である。   By including a synthetic fiber having a glass transition point in the above range, the fiber sheet of the present invention is easily deformed when a load is applied at a temperature of 200 ° C. or higher. Generally, the lower the glass transition point relative to the temperature during thermoforming, the softer the fiber sheet, so the glass transition temperature of the synthetic fiber having the glass transition point in the specific range is lower than 150 ° C. More preferably, it is 100 degrees C or less.

本発明におけるシリコーンゴムは、シリコーンが架橋して硬化した弾性体であり、可撓性を有しており、容易に変形するため、熱成形可能なシートと積層した場合、シートの変形に追従する。また、シリコーンゴムは弾性体であるため圧縮応力に対しては反発力が生じる。そのため、従来は円筒型の深絞り成形においては、図1の不良品として示したようなフランジや側壁部の重なり皺が発生しやすいが、材料が容易に変形できれば、円周方向に生じた歪みを分散させ、皺の発生が抑制される。つまり、本発明品は、繊維シート単体対比で重なり皺を少なくして深絞り成形が可能となる。   The silicone rubber in the present invention is an elastic body in which silicone is crosslinked and cured, and has flexibility and easily deforms. Therefore, when laminated with a thermoformable sheet, it follows the deformation of the sheet. . Further, since silicone rubber is an elastic body, a repulsive force is generated against compressive stress. For this reason, conventionally, in the deep drawing of a cylindrical type, overlapping flaws of the flange and the side wall as shown in FIG. 1 are likely to occur. However, if the material can be easily deformed, the distortion generated in the circumferential direction is likely to occur. And the generation of wrinkles is suppressed. That is, the product of the present invention can be deep-drawn with less overlap wrinkles compared to a single fiber sheet.

本発明における繊維シートは繊維は、ガラス転移点が200℃以下であり、かつ融点が250℃以上である合成繊維を含む。ここでいう合成繊維とは、合成樹脂を繊維状にしたものを示す。その中でかようなガラス転移点および融点を与えることができる繊維としては、PPS繊維、PTFE繊維、全芳香族PET繊維、PEN繊維、が例示できるが、中でもPPS繊維が好ましい。理由として、PPS繊維は、耐薬品性、耐加水分解性、吸湿寸法安定性に優れ、かつ熱軟化時の流動性に優れるため深絞り成形性に優れることが挙げられる。   The fiber sheet in the present invention includes synthetic fibers having a glass transition point of 200 ° C. or lower and a melting point of 250 ° C. or higher. The synthetic fiber here refers to a synthetic resin in the form of a fiber. Among them, examples of fibers that can provide such a glass transition point and melting point include PPS fibers, PTFE fibers, wholly aromatic PET fibers, and PEN fibers. Among them, PPS fibers are preferable. The reason is that the PPS fiber is excellent in chemical resistance, hydrolysis resistance, hygroscopic dimensional stability, and fluidity at the time of heat softening, and therefore has excellent deep drawability.

ガラス転移点が200℃を超える繊維では、軟化温度が高すぎるため、汎用設備での深絞り成形が困難となる。また、前記の通り、一般的に、熱成形時の温度に対し、ガラス転移点が低い程、繊維シートの軟化が進むため、前記合成繊維のガラス転移温度は、150℃以下であることがより好ましく、さらに好ましくは100℃以下である。   A fiber having a glass transition point exceeding 200 ° C. has a too high softening temperature, which makes deep drawing with a general-purpose facility difficult. In addition, as described above, generally, as the glass transition point is lower than the temperature at the time of thermoforming, the fiber sheet is softened. Therefore, the glass transition temperature of the synthetic fiber is more preferably 150 ° C. or less. Preferably, it is 100 degrees C or less more preferably.

また、前記ガラス転移点および融点を有する合成繊維のうち、20質量%〜100質量%が未延伸繊維であることが好ましく、さらに好ましくは25質量%〜100質量%である。前記合成繊維の20質量%以上を未延伸繊維とすることで、繊維シートを構成する繊維の内、非晶成分が占める割合が多くなる。その結果、軟化開始温度が低くなり、かつ、軟化時の流動性が高くなり、より嵩高い深絞り加工が可能となる。
さらに、前記耐熱繊維の中では、耐薬品性、耐加水分解性、吸湿寸法安定性に優れ、かつ熱成形時の流動性に優れるPPS繊維が特に好ましく使用できる。例えば、東レ(株)から‘トルコン’の商品名で市販されているものを使用できる。
PPS繊維とは、PPS樹脂を溶融紡糸して繊維化したものであり、ここでPPS樹脂とは、繰り返し単位としてp−フェニレンサルファイド単位やm−フェニレンサルファイド単位などのフェニレンサルファイド単位を含有するポリマーであり、これらのいずれかの単位のホモポリマーでもよいし、両方の単位を有する共重合体でもよい。また、他の芳香族サルファイドとの共重合体であってもよいが、好ましくは繰り返し単位の70モル%以上がp−フェニレンサルファイドからなるものである。
Moreover, it is preferable that 20 mass%-100 mass% are unstretched fibers among the synthetic fibers which have the said glass transition point and melting | fusing point, More preferably, they are 25 mass%-100 mass%. By using 20% by mass or more of the synthetic fiber as unstretched fiber, the proportion of the amorphous component in the fiber constituting the fiber sheet increases. As a result, the softening start temperature is lowered, the fluidity at the time of softening is increased, and a deeper deep drawing process is possible.
Furthermore, among the heat resistant fibers, PPS fibers that are excellent in chemical resistance, hydrolysis resistance, moisture absorption dimensional stability, and fluidity during thermoforming can be particularly preferably used. For example, those commercially available from Toray Industries, Inc. under the trade name “Torcon” can be used.
PPS fiber is a fiber obtained by melt spinning PPS resin, and PPS resin is a polymer containing phenylene sulfide units such as p-phenylene sulfide units and m-phenylene sulfide units as repeating units. There may be a homopolymer of any of these units, or a copolymer having both units. Further, it may be a copolymer with another aromatic sulfide, but preferably 70 mol% or more of the repeating units are composed of p-phenylene sulfide.

また、PPS繊維に用いるPPS樹脂の重量平均分子量としては、40000〜60000が好ましい。40000以上とすることで、PPS繊維として良好な力学的特性を得ることができる。また、60000以下とすることで、溶融紡糸の溶液の粘度を抑え、特殊な高耐圧仕様の紡糸設備を必要とせずに済むので好ましい。   Moreover, as a weight average molecular weight of PPS resin used for a PPS fiber, 40000-60000 are preferable. By setting it to 40,000 or more, good mechanical properties as PPS fibers can be obtained. Moreover, it is preferable to set it to 60000 or less because the viscosity of the melt spinning solution can be suppressed and a special high pressure resistant spinning equipment is not required.

なおエクストルダー型紡糸機等で口金を通して溶融紡糸した後、概ね延伸することなく回収することで、未延伸のPPS繊維を得ることができる。   In addition, after melt spinning through a die with an extruder-type spinning machine or the like, undrawn PPS fibers can be obtained by collecting without spinning.

また一方で延伸されたPPS繊維は、未延伸PPS繊維と同様にPPS樹脂を、エクストルダー型紡糸機等で溶融紡糸した後、3.0倍以上、好ましくは5.5倍以下、さらに好ましくは3.5〜5.0倍の範囲で延伸することにより得ることができる。この延伸は1段で延伸してもよいが、2段以上の多段延伸を行ってもよい。2段延伸を用いる場合の1段目の延伸は総合倍率の70%以上、好ましくは75〜85%とし、残りを2段目の延伸で行なうのが好ましい。得られた未延伸PPS繊維および延伸されたPPS繊維は捲縮を付与せずにカットしてもよいし、捲縮を付与してカットしてもよい。   On the other hand, the stretched PPS fiber is the same as the unstretched PPS fiber, and after melt-spinning the PPS resin with an extruder spinning machine or the like, it is 3.0 times or more, preferably 5.5 times or less, more preferably It can be obtained by stretching in the range of 3.5 to 5.0 times. This stretching may be performed in one stage, but may be performed in two or more stages. In the case of using two-stage stretching, the first stage of stretching is preferably 70% or more of the total magnification, preferably 75 to 85%, and the rest is preferably performed by the second stage of stretching. The obtained unstretched PPS fiber and stretched PPS fiber may be cut without being crimped, or may be cut with crimp.

また、捲縮の有無については、有するものと有しないものとのそれぞれに利点がある。捲縮を有する繊維は、例えば湿式不織布の製造において、繊維同士の絡合性が向上して強度の優れた湿式不織布を得るのに適している。一方、捲縮を有しない繊維は、水への分散性が良好であるので、ムラが小さい均一な湿式不織布を得るのに適している。   In addition, as for the presence or absence of crimps, there are advantages to those having and not having crimps. The fibers having crimps are suitable for obtaining wet nonwoven fabrics having excellent strength by improving the entanglement between fibers in the production of wet nonwoven fabrics, for example. On the other hand, a fiber that does not have crimps is suitable for obtaining a uniform wet nonwoven fabric with little unevenness because it has good dispersibility in water.

本発明における繊維シートを構成する繊維の形態として、短繊維、長繊維、が挙げられるが、製造する繊維シートの形態によって使い分けることができる。   Although the short fiber and the long fiber are mentioned as a form of the fiber which comprises the fiber sheet in this invention, It can use properly by the form of the fiber sheet to manufacture.

本発明の繊維シートとは、前記合成繊維から製造されるシート状の成形体であり、耐熱性、絶縁性を向上させる目的から、マイカ、酸化チタン、タルク、カオリン、水酸化アルミなどの鉱物系粒子を添加することができる。シートの形態としては、乾式不織布、湿式不織布、織布等が挙げられ、これらに限定されるわけではないが、均一構造かつ薄いシートが容易に得られる湿式不織布がとりわけ好ましく用いられる。   The fiber sheet of the present invention is a sheet-like molded body produced from the synthetic fiber, and for the purpose of improving heat resistance and insulation, minerals such as mica, titanium oxide, talc, kaolin, aluminum hydroxide, etc. Particles can be added. Examples of the form of the sheet include dry nonwoven fabrics, wet nonwoven fabrics, woven fabrics, and the like, but are not limited thereto, but wet nonwoven fabrics that can easily obtain uniform structures and thin sheets are particularly preferably used.

次に、前記したような繊維からなる繊維シートを製造する方法の中で、とりわけ好ましく用いられる湿式不織布を得る方法の一例を示す。ただし、本発明における繊維シートの製造方法はこれに限定されるわけではない。   Next, an example of a method for obtaining a wet nonwoven fabric that is particularly preferably used among the methods for producing a fiber sheet composed of fibers as described above will be described. However, the manufacturing method of the fiber sheet in this invention is not necessarily limited to this.

繊維の単繊維繊度としては、いずれも0.05dtex以上10dtex以下が好ましい。細いと繊維同士が絡み易くなり均一に分散するのが難しくなる傾向がある。太くなると繊維が太く、硬くなり、繊維同士の絡合力が弱くなるので、十分な紙力が得られず、破れ易い不織布になってしまう傾向がある。   The single fiber fineness of the fibers is preferably 0.05 dtex or more and 10 dtex or less. If it is thin, the fibers tend to be entangled with each other and it tends to be difficult to disperse them uniformly. When thicker, the fibers become thicker and harder, and the entanglement force between the fibers becomes weaker. Therefore, sufficient paper strength cannot be obtained, and the nonwoven fabric tends to be easily broken.

また、繊維シートに使用する繊維の繊維長としては、いずれも1〜20mmの範囲内が好ましい。1mm以上とすることで、繊維同士の絡合により複合シートの強度を高くすることができる。また20mm以下とすることで、繊維同士がダマになるなどして複合シートにムラ等が生じるのを防ぐことができる。   Moreover, as a fiber length of the fiber used for a fiber sheet, all within the range of 1-20 mm are preferable. By setting it to 1 mm or more, the strength of the composite sheet can be increased by entanglement of fibers. Moreover, by setting it as 20 mm or less, it can prevent that a fiber etc. become lumps and unevenness etc. arise in a composite sheet.

本発明に用いる繊維シートは紙状物であることが好ましく、好ましくは目付としては、5g/m以上、さらには10g/m以上、一方200g/m以下、さらには120g/mであることが好ましい。厚みとしては、5μm以上、さらには10μm以上、一方500μm以下、さらに300μmの範囲であることが好ましい。 The fiber sheet used in the present invention is preferably a paper-like material, and preferably has a basis weight of 5 g / m 2 or more, more preferably 10 g / m 2 or more, on the other hand 200 g / m 2 or less, and further 120 g / m 2 . Preferably there is. The thickness is preferably in the range of 5 μm or more, more preferably 10 μm or more, on the other hand, 500 μm or less, and further 300 μm.

次に湿式での不織布の製造方法を説明する。   Next, a method for producing a non-woven fabric in a wet manner will be described.

まず、繊維を、水中に分散させ、抄紙スラリーをつくる。抄紙スラリー全体に対する繊維の合計量としては、0.005〜5質量%が好ましい。合計量を0.005質量%以上にすることで、抄紙工程で水を効率よく活用できる。また、5質量%以下にすることで繊維の分散状態が良くなり、均一な湿式不織布を得ることができる。   First, the fiber is dispersed in water to make a papermaking slurry. The total amount of fibers with respect to the entire papermaking slurry is preferably 0.005 to 5 mass%. By making the total amount 0.005% by mass or more, water can be efficiently used in the paper making process. Moreover, by making it 5 mass% or less, the dispersion state of a fiber improves and a uniform wet nonwoven fabric can be obtained.

抄紙スラリーは、予め延伸された繊維のスラリーと未延伸繊維のスラリーとを別々に作ってから両者を抄紙機で混合してもよいし、直接両者を含むスラリーを作ってもよい。それぞれの繊維のスラリーを別々に作ってから両者を混合するのは、それぞれの繊維の形状・特性等に合わせて攪拌時間を別個に制御できる点で好ましく、直接両者を含むスラリーを作るのは工程簡略の点で好ましい。   The papermaking slurry may be prepared by separately preparing a slurry of pre-stretched fibers and a slurry of unstretched fibers and then mixing them with a paper machine, or a slurry containing both directly. It is preferable to make the slurry of each fiber separately and then mix the two in terms of being able to control the stirring time according to the shape and characteristics of each fiber separately. It is preferable in terms of simplicity.

抄紙スラリーには、分散状態を良好にするためにカチオン系、アニオン系、ノニオン系などの界面活性剤などからなる分散剤や油剤、また泡の発生を抑制する消泡剤等を添加してもよい。
前記のように準備した抄紙スラリーを、丸網式、長網式、傾斜網式などの抄紙機または手漉き抄紙機を用いて抄紙し、これをヤンキードライヤーやロータリードライヤー等で乾燥し、湿式不織布とすることができる。この後、得られた湿式不織布の表面平滑化、表面毛羽抑制、高密度化などのために、カレンダー加工を行ってもよい。
In order to improve the dispersion state, the papermaking slurry may be added with a dispersant or an oil agent composed of a cationic, anionic or nonionic surfactant, or an antifoaming agent that suppresses the generation of bubbles. Good.
The papermaking slurry prepared as described above is paper-made using a round-mesh type, long-mesh type, inclined net-type paper machine or hand-made paper machine, and dried with a Yankee dryer, a rotary dryer, etc. can do. Thereafter, calendering may be performed for surface smoothing, surface fluff suppression, densification and the like of the obtained wet nonwoven fabric.

本発明では、本発明の繊維シートに対してシリコーンゴムを施すことにより、深絞り成形性が向上する。本発明におけるシリコーンゴムとは、三次元構造に硬化反応したオルガノポリシロキサンであり、側鎖にある官能基としては、メチル基、エチル基、プロピル基、ブチル基、オクチル基、シクロヘキシル基、などのアルキル基の他、ハロゲン化アルキル基、アリール基を有していてもよい。通常はメチル基が多いが、メチル基の一部をフェニル基へ置換することでシリコーンの耐熱性を向上させることができる。   In the present invention, the deep drawability is improved by applying silicone rubber to the fiber sheet of the present invention. The silicone rubber in the present invention is an organopolysiloxane that has undergone a curing reaction in a three-dimensional structure, and examples of functional groups in the side chain include a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, and a cyclohexyl group. In addition to the alkyl group, it may have a halogenated alkyl group or an aryl group. Usually, there are many methyl groups, but the heat resistance of silicone can be improved by substituting a part of methyl groups with phenyl groups.

三次元構造にさせるための化学反応としては、末端が水酸基であるポリシロキサンと、カルボニルオキシ基、アルコキシなど加水分解性の官能基を複数有するケイ素化合物とを反応させる方法が例示される。この場合官能基を複数有するケイ素化合物を多量に添加して、加水分解および縮合を起こさせることにより架橋させることもできる。また水素がケイ素原子に直結したポリシロキサンとビニル基など不飽和二重結合を有するポリシロキサンとを白金触媒などのもとで付加反応させる方法もなる。また重合性官能基を側鎖に有するポリシロキサンとラジカル発生剤をと混合し、熱により架橋させる方法も例示される。   Examples of the chemical reaction for obtaining a three-dimensional structure include a method of reacting a polysiloxane having a hydroxyl group at a terminal with a silicon compound having a plurality of hydrolyzable functional groups such as a carbonyloxy group and alkoxy. In this case, crosslinking can be performed by adding a large amount of a silicon compound having a plurality of functional groups to cause hydrolysis and condensation. There is also a method in which a polysiloxane in which hydrogen is directly bonded to a silicon atom and a polysiloxane having an unsaturated double bond such as a vinyl group are subjected to an addition reaction using a platinum catalyst or the like. Moreover, the method of mixing the polysiloxane which has a polymeric functional group in a side chain, and a radical generator, and bridge | crosslinking with a heat | fever is also illustrated.

シリコーンゴムは、単独で使用できる他、2種以上の混合物であってもよく、さらに、アルキド樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、アクリル樹脂、メラミン樹脂によって変性させたシリコーンゴムであってもよい。硬化反応としては過酸化物硬化、付加硬化、縮合硬化、脱水素硬化、UV硬化等が例示でき、一液型でも二液型でもよいが、本発明においては、深部硬化性に優れる付加硬化が好ましく、使用する触媒として白金系触媒、パラジウム系触媒、ロジウム系触媒などが挙げられる。   Silicone rubber can be used alone, or may be a mixture of two or more, and is a silicone rubber modified with an alkyd resin, acrylic resin, epoxy resin, polyester resin, phenol resin, acrylic resin, melamine resin. There may be. Examples of the curing reaction include peroxide curing, addition curing, condensation curing, dehydrogenation curing, UV curing, and the like, which may be one-pack type or two-pack type, but in the present invention, addition curing with excellent deep-curability is provided. Preferably, the catalyst used includes a platinum-based catalyst, a palladium-based catalyst, a rhodium-based catalyst, and the like.

また、これらのシリコーンゴムの熱伝導性・機械的強度を改善する目的で、シリカ、アルミナ、石英、窒化ホウ素、酸化マグネシウム、炭酸カルシウムのような充填材を混合していても何ら差し支えは無い。   In addition, for the purpose of improving the thermal conductivity and mechanical strength of these silicone rubbers, there is no problem even if fillers such as silica, alumina, quartz, boron nitride, magnesium oxide, and calcium carbonate are mixed.

このようなシリコーンゴムは、ミラブルタイプ、液状タイプなどに分類できる。ミラブルタイプは、ミキサーなどのゴム練り機を用いて均一に混合し、加熱することにより、シリコーンゴム組成物を得ることができる。得られたシリコーンゴム組成物を、押し出し成形などに代表される成形方法でフィルム状に加工し、繊維シートに担持させることで複合シートを得ることができる。一方、液状タイプは、液状シリコーンを直接繊維シート上にコーティングした後加熱するか、あるいは、繊維シートを液状シリコーン中に一旦浸漬し引き揚げた後加熱することにより、シリコーンゴムが硬化し、複合シートを得ることができる。ただし、本発明においては、作業性に優れる液状タイプの使用が好ましい。
このとき、繊維シートとシリコーンゴムの層間密着力を向上させる目的で、繊維シート表面あるいはシリコーンゴム表面にコロナ処理、プラズマ処理をなどの表面改質を行ってもよいし、シリコーンゴムの接着性を向上させる材料を前もって繊維シートに付与していてもよい。一方、シリコーンゴムの組成物に接着付与剤を添加させていてもよい。
Such silicone rubber can be classified into a millable type and a liquid type. In the millable type, a silicone rubber composition can be obtained by uniformly mixing and heating using a rubber kneader such as a mixer. A composite sheet can be obtained by processing the obtained silicone rubber composition into a film by a molding method typified by extrusion molding or the like and supporting it on a fiber sheet. On the other hand, in the liquid type, the liquid silicone is directly coated on the fiber sheet and heated, or the fiber sheet is dipped in the liquid silicone and then heated, and then the silicone rubber is cured, and the composite sheet is formed. Obtainable. However, in the present invention, it is preferable to use a liquid type having excellent workability.
At this time, for the purpose of improving the interlayer adhesion between the fiber sheet and the silicone rubber, the fiber sheet surface or the silicone rubber surface may be subjected to surface modification such as corona treatment or plasma treatment, and the adhesion of the silicone rubber may be improved. The material to be improved may be applied to the fiber sheet in advance. On the other hand, an adhesion-imparting agent may be added to the silicone rubber composition.

複合シートのシリコーンゴム側表面のタック性に関しては、シートを貼り付ける用途では好ましいが、シートを挿入する用途等、表面の滑り性能が要求される場合は、好ましくない。この場合は、触媒量や硬化雰囲気を調節するなどで、タック性を無くすことができる。あるいは、繊維シートの片面にシリコーンを塗工した後、シリコーン層のもう片面上に別の繊維シートを積層し、2枚の繊維シート間にシリコーン層を存在させた3層構成とすることで両面とも滑り性に優れたシートが得られる。   The tackiness of the silicone rubber side surface of the composite sheet is preferable for the application of attaching the sheet, but is not preferable when the sliding performance of the surface is required, such as the application of inserting the sheet. In this case, tackiness can be eliminated by adjusting the amount of catalyst and the curing atmosphere. Alternatively, after applying silicone on one side of the fiber sheet, another fiber sheet is laminated on the other side of the silicone layer, and the two-sided structure is made by having a silicone layer between the two fiber sheets. In both cases, a sheet excellent in slipperiness can be obtained.

本発明の複合シートは繊維シートとシリコーンゴムを包括するものであり、その構成は、繊維シートを構成している繊維間にシリコーンゴムが充填されたもの、あるいは、シリコーンゴム内部に繊維シートが侵入して一体化しているもの、あるいは繊維シートとシリコーンゴムが別々の層として積層密着しているもの、などである。中でも、シリコーンゴム層の少なくとも一部が繊維シートの内部に浸透していることが、熱成形加工時に剥離が生じないようにアンカー効果による層間密着力を高められる点から好ましい。   The composite sheet of the present invention includes a fiber sheet and silicone rubber, and the configuration is that the fiber constituting the fiber sheet is filled with silicone rubber, or the fiber sheet penetrates into the silicone rubber. And the fiber sheet and the silicone rubber are laminated and adhered as separate layers. Among them, it is preferable that at least a part of the silicone rubber layer penetrates into the fiber sheet from the viewpoint of enhancing the interlayer adhesion due to the anchor effect so that peeling does not occur during thermoforming.

このような本発明の複合シートを得る方法は、前記の通り、使用するシリコーンの種類により異なる。たとえば、ミラブルタイプのシリコーンを使用する場合は、ミキサーなどのゴム練り機を用いて均一に混合し、加熱することにより得たシリコーンゴム組成物を、押し出し成形などに代表される成形方法でフィルム状に加工した後、繊維シートに担持させることで複合シートを得ることができる。ここで、フィルム状にしたシリコーンゴム組成物を繊維シートに担持させる方法としては、接着剤を介してシリコーンゴム組成物と繊維シートを貼り合わせる方法の他、シリコーンゴムに繊維シートを重ね合わせた状態で、熱プレス、熱カレンダーなどを使用し、熱圧着する方法が例示できる。また、液状タイプのシリコーンを使用する場合は、液状のシリコーンを直接繊維シート上にコーティングした後、加熱してシリコーンゴムを硬化させ、複合シートを得る方法。あるいは、繊維シートを液状シリコーン中に一旦浸漬し引き揚げた後加熱してシリコーンゴムを硬化させ、複合シートを得る方法などが例示できる。これらの方法の中でも、液状のシリコーンを直接繊維シート上にコーティングした後、加熱してシリコーンゴムを硬化させ、複合シートを得る方法が、作業性、工程の簡略化、の観点から好適に採用できる。   As described above, the method for obtaining the composite sheet of the present invention varies depending on the type of silicone used. For example, when millable type silicone is used, a silicone rubber composition obtained by uniformly mixing and heating using a rubber kneader such as a mixer is formed into a film by a molding method such as extrusion molding. After being processed into a composite sheet, the composite sheet can be obtained by supporting the fiber sheet. Here, as a method of supporting the silicone rubber composition in the form of a film on the fiber sheet, in addition to the method of bonding the silicone rubber composition and the fiber sheet via an adhesive, the fiber sheet is superimposed on the silicone rubber. Thus, a method of thermocompression bonding using a heat press, a heat calendar, or the like can be exemplified. In the case where liquid type silicone is used, the liquid silicone is directly coated on the fiber sheet and then heated to cure the silicone rubber to obtain a composite sheet. Alternatively, a method of obtaining a composite sheet by immersing a fiber sheet in liquid silicone and pulling it up and then heating to cure the silicone rubber can be exemplified. Among these methods, a method in which a liquid silicone is directly coated on a fiber sheet and then heated to cure the silicone rubber to obtain a composite sheet can be suitably employed from the viewpoint of workability and process simplification. .

また、繊維シート層とシリコーンゴム層の多層積層体については、繊維シート1層とシリコーンゴム1層からなる2層構成、シリコーンゴムを繊維シートで挟んだ3層構成、繊維シートをシリコーンゴムで挟んだ3層構成、さらに積層数を増やした多層構成なども例示できる。本発明の複合シートの厚みは、使用状況により、10μm〜1000μmから好ましく選択できるが、これに限定されるものではない。また、使用するシリコーンゴムの目付は20g/m〜200g/mが好ましい。 In addition, for a multilayer laminate of a fiber sheet layer and a silicone rubber layer, a two-layer structure comprising one fiber sheet and one silicone rubber layer, a three-layer structure in which silicone rubber is sandwiched between fiber sheets, and a fiber sheet is sandwiched between silicone rubbers. Examples of such a three-layer structure and a multilayer structure in which the number of layers is further increased are also possible. The thickness of the composite sheet of the present invention can be preferably selected from 10 μm to 1000 μm depending on use conditions, but is not limited thereto. Also, the basis weight of the silicone rubber used is 20g / m 2 ~200g / m 2 is preferred.

また、本発明の複合シートは深絞り成形により、所望の形状へ成形し、電気絶縁シートとすることができる。   Further, the composite sheet of the present invention can be formed into a desired shape by deep drawing to form an electrical insulating sheet.

以下に実施例を用いて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

[測定・評価方法]
(1)目付
JIS L 1906:2000に準じて、25cm×25cmの試験片を、1枚採取し、標準状態におけるそれぞれの質量(g)を量り、1m当たりの質量(g/m)で表した。
[Measurement and evaluation method]
(1) Basis weight According to JIS L 1906: 2000, one 25 cm × 25 cm test piece is collected, and each mass (g) in a standard state is measured, and the mass per 1 m 2 (g / m 2 ). expressed.

(2)厚さ
JIS L 1906:2000で準用するJIS L 1096:1999に準じて、試料の異なる10か所について、厚さ測定機を用いて、直径22mmの加圧子による2kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
(2) Thickness According to JIS L 1906: 2000, which is applied mutatis mutandis according to JIS L 1906: 2000, thickness was measured under a pressure of 2 kPa with a 22 mm diameter pressurizer using a thickness measuring device at 10 different points of the sample. In order to calm the thickness, after waiting for 10 seconds, the thickness was measured, and an average value was calculated.

(3)絶縁破壊強さ
JIS K 6911:1995に準じて測定した。試料の異なる5か所から約10cm×10cmの試験片を採取し、直径25mm、質量250gの円盤状の電極で試験片を挟み、試験媒体には空気を用い、0.25kV/秒で電圧を上昇させながら周波数60Hzの交流電圧をかけ、絶縁破壊したときの電圧を測定した。測定には、絶縁破壊耐電圧試験機(安田精機製作所社製)を使用した。得られた絶縁破壊電圧をあらかじめ測定しておいた中央部の厚さで割り、絶縁破壊強さを算出した。
(4)深絞り成形試験
図2の様な、絞り深さa=9.3mm、絞り径b=32mmの円柱状プレス金型を用いて、金型温度:220℃、金型圧力:5kg/cm2、の条件で、サンプル端部をクランプで固定しながら深絞り成形加工を行った。深絞り成形性について、下記のとおり判定を行った。
(3) Dielectric breakdown strength Measured according to JIS K 6911: 1995. Test specimens of about 10 cm × 10 cm are collected from five different specimens, and the specimens are sandwiched between disc-shaped electrodes with a diameter of 25 mm and a mass of 250 g, air is used as the test medium, and a voltage is applied at 0.25 kV / second. While increasing, an AC voltage having a frequency of 60 Hz was applied, and the voltage when dielectric breakdown was measured. A dielectric breakdown voltage tester (manufactured by Yasuda Seiki Seisakusho) was used for the measurement. The obtained dielectric breakdown voltage was divided by the thickness of the central portion measured in advance, and the dielectric breakdown strength was calculated.
(4) Deep Drawing Molding Test Using a cylindrical press mold with a drawing depth a = 9.3 mm and a drawing diameter b = 32 mm as shown in FIG. 2, a mold temperature: 220 ° C., a mold pressure: 5 kg / Under the condition of cm 2, deep drawing was performed while fixing the sample end with a clamp. The deep drawability was determined as follows.

◎ :側壁部の重なり皺無し。使用可能。   A: There is no overlap flaw on the side wall. Available.

○ :側壁部にわずかな重なり皺が発生(皺長4mm未満、皺数3箇所以下)。使用可能。   ○: Slight overlap flaws occur on the side wall (Long length is less than 4mm, Number of flaws is 3 or less). Available.

△ :側壁部に重なり皺が発生(皺長4mm以上、皺数4箇所以上)。使用不可能。
× :破断し、成形できなかった。
△: Overlapping occurs on the side wall part (over 4mm length, over 4 locations). Unavailable.
X: Fractured and could not be molded.

(5)使用するPPS繊維のガラス転移点の測定
下記装置および条件で比熱測定を行い、JIS K7121に従って決定した。
測定装置 :TA Instrument社製温度変調DSC
測定温度範囲 :約0〜350℃
温度較正 :高純度インジウムおよびスズの融点
昇温速度 :2℃/分
温度変調振幅 :±1℃
温度変調周期 :60秒
試料重量 :約5mg 。
(5) Measurement of glass transition point of PPS fiber to be used Specific heat was measured with the following apparatus and conditions, and determined according to JIS K7121.
Measuring device: Temperature modulation DSC manufactured by TA Instrument
Measurement temperature range: about 0 to 350 ° C
Temperature calibration: Melting point of high purity indium and tin
Temperature increase rate: 2 ° C / min
Temperature modulation amplitude: ± 1 ° C
Temperature modulation period: 60 seconds
Sample weight: about 5 mg.

(6)使用するPPS繊維の融点の測定
示差走査熱量計(島津製作所製、DSC−60)を用いて、サンプルを約2mg精秤し、窒素下、昇温速度10℃/分で昇温した。そのとき、観測される融解の吸熱ピークの頂点温度を融点(Tm)として測定した。
(6) Measurement of melting point of PPS fiber to be used Using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-60), about 2 mg of the sample was precisely weighed and heated at a heating rate of 10 ° C./min under nitrogen. . At that time, the peak temperature of the endothermic peak of melting observed was measured as the melting point (Tm).

[実施例1]
(1)繊維シート
(延伸された繊維)
延伸された繊維として、単繊維繊度1.0dtex、カット長6mmのPPS繊維、東レ社製‘トルコン’、品番S301を用いた。前記評価方法によりガラス点移転と融点を測定した結果は表1の通り。ガラス転移点は88.6℃、融点は283.2℃であった。
[Example 1]
(1) Fiber sheet (stretched fiber)
As the drawn fiber, PPS fiber having a single fiber fineness of 1.0 dtex and a cut length of 6 mm, “Torcon” manufactured by Toray Industries, Inc., and product number S301 were used. Table 1 shows the results of measuring glass point transfer and melting point by the evaluation method. The glass transition point was 88.6 ° C. and the melting point was 283.2 ° C.

(延伸された繊維の分散液)
前記延伸されたPPS繊維を、表1の構成を基に、仕上がりが100g/mとなるように準備し、延伸されたPPS繊維1gに対し、水1Lをともに家庭用ジューサーミキサーに投入して攪拌することを繰り返し、分散液とした。攪拌時間としては、繊維同士が絡むのを防ぐために10秒とした。
(未延伸繊維)
未延伸繊維として、単繊維繊度3.0dtex、カット長6mmの東レ社製PPS繊維‘トルコン’、品番S111を用いた。記評価方法によりガラス点移転と融点を測定した結果は表1の通り、ガラス転移点は89.5℃、融点は282.9℃であった。
(Drawn fiber dispersion)
The stretched PPS fiber was prepared based on the configuration shown in Table 1 so that the finish was 100 g / m 2, and 1 L of water was added to 1 g of the stretched PPS fiber together with a household juicer mixer. Stirring was repeated to obtain a dispersion. The stirring time was 10 seconds in order to prevent the fibers from getting tangled.
(Undrawn fiber)
As unstretched fibers, PPS fiber “Torcon” manufactured by Toray Industries, Inc., having a single fiber fineness of 3.0 dtex and a cut length of 6 mm, product number S111 was used. As a result of measuring the glass point transfer and melting point by the above evaluation method, the glass transition point was 89.5 ° C. and the melting point was 282.9 ° C. as shown in Table 1.

(未延伸繊維の分散液)
前記未延伸PPS繊維を、それぞれ表1記載の質量分の小数第1位を切り上げた数に概ね等分し、1等分ずつをとり、おのおの水1Lとともに家庭用ジューサーミキサーに投入して攪拌することを繰り返し、分散液とした。攪拌時間としては、繊維同士が絡むのを防ぐために10秒とした。
(Unstretched fiber dispersion)
Each of the unstretched PPS fibers is roughly divided into the numbers obtained by rounding up the first decimal place for the mass shown in Table 1, and each aliquot is taken into a domestic juicer mixer with 1 L of water and stirred. This was repeated to obtain a dispersion. The stirring time was 10 seconds in order to prevent the fibers from getting tangled.

(繊維シートの製造)
各実施例・比較例において使用した繊維の分散液を、底に140メッシュの手漉き抄紙網を設置した大きさ25cm×25cm、高さ40cmの手すき抄紙機(熊谷理機工業社製)に仕上がりが80g/mとなるように投入し、さらに水を追加して抄紙分散液の総量を20Lとし、攪拌器で十分に攪拌した。
手すき抄紙機の水を抜き、抄紙網に残った湿紙を濾紙に転写した。
(Manufacture of fiber sheets)
The fiber dispersion used in each Example / Comparative Example is finished on a handmade paper machine (manufactured by Kumagai Riki Kogyo Co., Ltd.) having a size of 25 cm × 25 cm and a height of 40 cm with a 140-mesh handmade paper net installed on the bottom. The mixture was added to 80 g / m 2 , water was further added to make the total amount of the papermaking dispersion 20 L, and the mixture was sufficiently stirred with a stirrer.
Water from the handsheet machine was drained, and the wet paper remaining on the paper web was transferred to filter paper.

(乾燥)
前記湿紙を濾紙ごとロータリー式乾燥機に投入し、温度110℃、工程通過速度0.5m/min、工程長1.25m(処理時間2.5min)にて乾燥する処理を2回繰り返して、乾燥処理した繊維シートを得た。
(Dry)
The wet paper is put into a rotary dryer together with the filter paper, and the process of drying at a temperature of 110 ° C., a process passing speed of 0.5 m / min, and a process length of 1.25 m (processing time 2.5 min) is repeated twice A dried fiber sheet was obtained.

(加熱・加圧処理)
前記乾燥処理した繊維シートを濾紙から剥離して、金属ロールとペーパーロールとからなるカレンダー加工機(由利ロール社製)に通した。カレンダー条件は、温度160℃、圧力130kgf/cm、ロール回転速度15m/minとし、表裏の2回繰り返して、繊維シートを得た。
(Heating / pressurizing treatment)
The dried fiber sheet was peeled from the filter paper and passed through a calendar processing machine (manufactured by Yuri Roll Co., Ltd.) consisting of a metal roll and a paper roll. The calender conditions were a temperature of 160 ° C., a pressure of 130 kgf / cm, and a roll rotation speed of 15 m / min.

(2)シリコーンゴム
シリコーンゴムとして、信越化学(株)製の付加型液状シリコーンゴムを使用した。
(2) Silicone rubber An addition-type liquid silicone rubber manufactured by Shin-Etsu Chemical Co., Ltd. was used as the silicone rubber.

(3)繊維シートとシリコーンゴムの複合
コーターバーを使用し、繊維シートの片面に未硬化シリコーンゴムを平均厚み100μmとなるように均一に塗布した後、該繊維シートを150℃に調整した乾燥機中で5分間静置し、シリコーンゴムを硬化させ、複合シートを得た。このとき、硬化後のシリコーン層の厚みは平均100μm、塗布目付量は131g/mであった。
(3) Composite of fiber sheet and silicone rubber Dryer using a coater bar, after uniformly applying uncured silicone rubber on one side of the fiber sheet to an average thickness of 100 μm, and then adjusting the fiber sheet to 150 ° C. The mixture was allowed to stand for 5 minutes to cure the silicone rubber to obtain a composite sheet. At this time, the thickness of the cured silicone layer was an average of 100 μm, and the coating weight per unit area was 131 g / m 2 .

[実施例2]
(1)繊維シート
表1の構成に基づき、実施例1と同様の方法で繊維シートを得た。
(2)シリコーンゴム
実施例1と同様のシリコーンゴムを使用した。
(3)繊維シートとシリコーンゴムの複合化
実施例1と同様の方法で、複合シートを得た。
[Example 2]
(1) Fiber sheet Based on the structure of Table 1, a fiber sheet was obtained in the same manner as in Example 1.
(2) Silicone rubber The same silicone rubber as in Example 1 was used.
(3) Composite of fiber sheet and silicone rubber A composite sheet was obtained in the same manner as in Example 1.

[比較例1]
実施例1と同様の方法で繊維シートを得た後、シリコーンゴムを積層しなかった。
[Comparative Example 1]
After obtaining a fiber sheet by the same method as in Example 1, no silicone rubber was laminated.

[比較例2]
実施例2と同様の方法で繊維シートを得た後、シリコーンゴムを積層しなかった。
[比較例3]
(1)繊維シートの作成
ポリメタフェニレンイソフタルアミドからなる紙(商標名:ノーメックス#410-4mil、デュポン(株)製)を使用した。
(2)シリコーンゴム
実施例1と同様のシリコーンゴムを使用した。
(3)繊維シートとシリコーンゴムの複合
実施例1と同様の方法で、複合シートを得た。
(4)ガラス転移点について
比較例2の材料のガラス転移点については、下記文献に記載された値を採用した。
[Comparative Example 2]
After obtaining the fiber sheet by the same method as in Example 2, no silicone rubber was laminated.
[Comparative Example 3]
(1) Preparation of fiber sheet Paper made of polymetaphenylene isophthalamide (trade name: Nomex # 410-4mil, manufactured by DuPont) was used.
(2) Silicone rubber The same silicone rubber as in Example 1 was used.
(3) Composite sheet and silicone rubber composite A composite sheet was obtained in the same manner as in Example 1.
(4) About glass transition point About the glass transition point of the material of the comparative example 2, the value described in the following literature was employ | adopted.

参考文献 第3版 繊維便覧 H16.12.15発行
P182 表1.70 アラミド繊維の物理的特性
メタアラミド ガラス転移温度 280〜290℃
Reference 3rd edition Textbook H16.12.15 issued
P182 Table 1.70 Physical properties of aramid fibers
Meta-aramid Glass transition temperature 280-290 ° C

Figure 2012245728
Figure 2012245728

Figure 2012245728
Figure 2012245728

このように実施例1において電気絶縁シートとして使用し得る絶縁破壊強さを有し、かつ、深絞り成形性に優れた複合シートを得ることができた。一方で、繊維シートのみからなる比較例1と比較例2は、絶縁破壊強さに乏しい上、深絞り成形試験において側壁部に重なり皺が生じた。特に比較例2については、電気絶縁シートとして使用できない程の重なり皺が生じた。また、アラミドで構成される比較例3は、絶縁破壊強さには優れているが、ガラス転移点が280℃〜290℃と非常に高いため、深絞り成形試験において材料が変形に追従しきれず破断し、成形品を得ることができなかった。すなわち、熱成形性に欠ける複合シートであった。   As described above, a composite sheet having a dielectric breakdown strength that can be used as an electrical insulating sheet in Example 1 and excellent in deep drawability was obtained. On the other hand, Comparative Example 1 and Comparative Example 2 consisting only of a fiber sheet have poor dielectric breakdown strength, and overlapped wrinkles occurred in the side wall portion in the deep drawing test. In particular, in Comparative Example 2, overlapping wrinkles that could not be used as an electrical insulating sheet occurred. Moreover, although the comparative example 3 comprised with an aramid is excellent in dielectric breakdown strength, since a glass transition point is very high with 280 degreeC-290 degreeC, a material cannot follow a deformation | transformation in a deep drawing test. It fractured and a molded product could not be obtained. That is, the composite sheet lacked thermoformability.

また、実施例1に対し、未延伸繊維量が少ない実施例2においては、電気絶縁シートとして使用し得る絶縁破壊強さを有しているが、実施例1対比では、軟化時の流動性に劣るため、熱成形性に劣るものであった。   Further, in Example 2, where the amount of unstretched fibers is small compared to Example 1, it has a dielectric breakdown strength that can be used as an electrical insulating sheet. Since it was inferior, it was inferior to thermoformability.

本発明の積層体は、モーター、コンデンサー、変圧器、ケーブル、高電圧伝送トランス等に用いることができる、成形性良好な電気絶縁紙として利用可能であり、その結果所望の形状の電気絶縁体が得られる。   The laminate of the present invention can be used as an electrically insulating paper having good moldability, which can be used for motors, capacitors, transformers, cables, high voltage transmission transformers, etc. As a result, an electrically insulating material having a desired shape can be obtained. can get.

Claims (7)

ガラス転移点が200℃以下であり、かつ融点が250℃以上である合成繊維からなる繊維シートとシリコーンゴムとを有する複合シート。 A composite sheet having a fiber sheet made of synthetic fiber having a glass transition point of 200 ° C. or lower and a melting point of 250 ° C. or higher and silicone rubber. 前記繊維シートを構成する全繊維のうち、20質量%〜100質量%が前記ガラス転移点と融点を有する合成繊維であることを特徴とする請求項1に記載の複合シート。 The composite sheet according to claim 1, wherein 20% by mass to 100% by mass of the total fibers constituting the fiber sheet is a synthetic fiber having the glass transition point and the melting point. 前記ガラス転移点と融点とを有する合成繊維が未延伸繊維であることを特徴とする請求項2に記載の複合シート。 The composite sheet according to claim 2, wherein the synthetic fiber having a glass transition point and a melting point is an unstretched fiber. 前記未延伸繊維がPPS繊維の未延伸繊維であることを特徴とする請求項2に記載の複合シート。 The composite sheet according to claim 2, wherein the unstretched fibers are unstretched fibers of PPS fibers. 深絞り成形用である請求項1〜3いずれかの複合シート。 The composite sheet according to any one of claims 1 to 3, which is for deep drawing. 電気絶縁用である請求項1〜4いずれかの複合シート The composite sheet according to any one of claims 1 to 4, which is for electrical insulation. 請求項1〜5いずれかの複合シートを深絞り成形することを特徴とする電気絶縁材の製造方法。 A method for producing an electrical insulating material, comprising deep-drawing the composite sheet according to claim 1.
JP2011120291A 2011-05-30 2011-05-30 Composite sheet Withdrawn JP2012245728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120291A JP2012245728A (en) 2011-05-30 2011-05-30 Composite sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120291A JP2012245728A (en) 2011-05-30 2011-05-30 Composite sheet

Publications (1)

Publication Number Publication Date
JP2012245728A true JP2012245728A (en) 2012-12-13

Family

ID=47466663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120291A Withdrawn JP2012245728A (en) 2011-05-30 2011-05-30 Composite sheet

Country Status (1)

Country Link
JP (1) JP2012245728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157205A1 (en) 2013-03-26 2014-10-02 東レ株式会社 Laminate and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157205A1 (en) 2013-03-26 2014-10-02 東レ株式会社 Laminate and method for producing same
EP2979855A4 (en) * 2013-03-26 2016-11-30 Toray Industries Laminate and method for producing same
US10279561B2 (en) 2013-03-26 2019-05-07 Toray Industries, Inc. Laminated body and process for producing the same

Similar Documents

Publication Publication Date Title
TWI304848B (en)
TWI737838B (en) Insulating component and its manufacturing method
TWI598226B (en) Aromatic polyamine resin film laminated body and its manufacturing method
CN100362162C (en) Wet-spun nonwoven fabric and method for producing the same
JP5640993B2 (en) Nonwoven fabric containing polyphenylene sulfide fiber
EP0882574A1 (en) Complex sheet and method of manufacturing the same
US10279561B2 (en) Laminated body and process for producing the same
JP5779893B2 (en) Laminate made of nonwoven fabric and film
TW380331B (en) High voltage electric appliance
JPH0732549A (en) Aramid layered product
JP2012245728A (en) Composite sheet
JP2017222786A (en) Fiber-resin composite body and method for producing the same
EP3381981B1 (en) Resin composition and electrical insulation sheet
JP2009133033A (en) Synthetic fiber paper, electrical insulating paper and method for producing synthetic fiber paper
TWI763889B (en) Fiber-reinforced body and components using the same
JPH11255908A (en) Printed wiring board base material and manufacturing method thereof
JP5022742B2 (en) Self-adhesive silicone rubber sheet and method for producing self-adhesive silicone rubber sheet
JP6722480B2 (en) Laminate of aramid paper and polyimide film and method for producing the same
JP2015118836A (en) Method for manufacturing nonwoven fabric base material for lithium ion secondary battery separator and nonwoven fabric base material for lithium ion secondary battery separator
TWI250240B (en) Heat-resistant fiber paper sheet, method for making same, and prepreg and laminate made by same
JP2002138385A (en) Nonwoven fabric of staple fiber of polyimide, method for producing the same and prepreg using the nonwoven fabric
JPS585299Y2 (en) electrical insulation materials
JP6480135B2 (en) Three-dimensional molded body of sheet-like laminate and method for producing the same
JP7176410B2 (en) Method for producing wet-laid nonwoven fabric containing meta-aramid and polyphenylene sulfide
CN105408111B (en) The lamilate formed by film and fibre sheet material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805