[go: up one dir, main page]

JP2012241608A - Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine - Google Patents

Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine Download PDF

Info

Publication number
JP2012241608A
JP2012241608A JP2011112142A JP2011112142A JP2012241608A JP 2012241608 A JP2012241608 A JP 2012241608A JP 2011112142 A JP2011112142 A JP 2011112142A JP 2011112142 A JP2011112142 A JP 2011112142A JP 2012241608 A JP2012241608 A JP 2012241608A
Authority
JP
Japan
Prior art keywords
reforming
catalyst
fuel
deterioration
side temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011112142A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inuzuka
寛之 犬塚
Makoto Miwa
真 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011112142A priority Critical patent/JP2012241608A/en
Priority to US13/474,791 priority patent/US20120291424A1/en
Publication of JP2012241608A publication Critical patent/JP2012241608A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0623Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0668Treating or cleaning means; Fuel filters
    • F02D19/0671Means to generate or modify a fuel, e.g. reformers, electrolytic cells or membranes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0411Methods of control or diagnosing using a feed-forward control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To diagnose deterioration in a fuel-reforming catalyst while satisfying a cost reduction request, in a system including a function for reforming fuel to be supplied to an engine.SOLUTION: A diagnostic apparatus for deterioration in a catalyst in a fuel reforming system includes: an inlet-side temperature sensor 30 for detecting a temperature at an inlet side of a fuel reforming catalyst 28; and an outlet-side temperature sensor 31 for detecting a temperature at an outlet side of the fuel-reforming catalyst 28. In a reforming driving mode, an ECU 34 opens an EGR valve 25 to recirculate a part of exhaust gas into an intake side as EGR gas, and a reforming-fuel injection valve 26 injects a reforming fuel into the EGR gas. The fuel-reforming catalyst 28 executes reforming control to reform the fuel into a fuel having high-combustibility. A differential temperature between the catalyst outlet-side temperature detected by the outlet-side temperature sensor 31 and the catalyst inlet-side temperature detected by the inlet-side temperature sensor 30 is calculated during the execution of the reforming control and compared with a deterioration-determination threshold, whereby deterioration diagnosis can be performed to determine whether the fuel-reforming catalyst 28 is deteriorated.

Description

本発明は、内燃機関に供給される燃料を改質する機能を備えた内燃機関の燃料改質システムの触媒劣化診断装置に関する発明である。   The present invention relates to a catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine having a function of reforming fuel supplied to the internal combustion engine.

内燃機関に改質した燃料を供給する技術としては、例えば、特許文献1(特開2004−218548号公報)に記載されているように、燃料タンク内の燃料を燃料噴射弁に供給する燃料供給通路の途中に、燃料を改質するためのヒータや改質触媒を備えた改質器を配置するようにしたものがある。   As a technique for supplying reformed fuel to an internal combustion engine, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2004-218548), fuel supply for supplying fuel in a fuel tank to a fuel injection valve In some cases, a reformer provided with a heater or reforming catalyst for reforming fuel is disposed in the middle of the passage.

このような改質器を備えたシステムでは、改質器に異常(例えば改質触媒の劣化)が発生して燃料を正常に改質できなくなると、内燃機関の燃焼状態が悪化する可能性があるため、改質器の異常が発生した場合には、その異常を早期に検出することが好ましい。   In a system equipped with such a reformer, if the reformer becomes abnormal (for example, deterioration of the reforming catalyst) and the fuel cannot be reformed normally, the combustion state of the internal combustion engine may deteriorate. For this reason, when an abnormality occurs in the reformer, it is preferable to detect the abnormality early.

そこで、上記特許文献1では、改質器の異常により燃料の改質状態(例えば高沸点成分の含有割合)が変化すると、燃料の物性(比重や蒸気圧)が変化することに着目して、改質器の下流側に、改質器から送り出された燃料を貯溜する貯溜タンクを設けると共に、この貯溜タンク内の燃料の物性(比重又は蒸気圧)を検出するセンサを設け、このセンサで検出した燃料の物性を基準値と比較して改質器(改質触媒等)の異常の有無を判定するようにしている。   Therefore, in Patent Document 1, paying attention to the fact that the physical properties (specific gravity and vapor pressure) of the fuel change when the reforming state of the fuel (for example, the content ratio of the high boiling point component) changes due to the abnormality of the reformer, A storage tank for storing the fuel sent from the reformer is provided on the downstream side of the reformer, and a sensor for detecting the physical properties (specific gravity or vapor pressure) of the fuel in the storage tank is provided. By comparing the physical properties of the fuel with the reference value, it is determined whether there is an abnormality in the reformer (reforming catalyst or the like).

特開2004−218548号公報JP 2004-218548 A

しかし、上記特許文献1の異常診断技術では、改質器から送り出された燃料を貯溜する貯溜タンクを設ける必要があると共に、この貯溜タンク内の燃料の物性(例えば比重)を検出する特殊なセンサを設ける必要があるため、近年の重要な技術的課題である低コスト化の要求を満たすことができないという欠点がある。   However, in the abnormality diagnosis technique disclosed in Patent Document 1, it is necessary to provide a storage tank that stores the fuel sent from the reformer, and a special sensor that detects physical properties (for example, specific gravity) of the fuel in the storage tank. Therefore, there is a drawback that it is not possible to meet the demand for cost reduction which is an important technical problem in recent years.

そこで、本発明が解決しようとする課題は、低コスト化の要求を満たしながら、燃料改質触媒の劣化診断を行うことができる内燃機関の燃料改質システムの触媒劣化診断装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine, which can perform deterioration diagnosis of a fuel reforming catalyst while satisfying the demand for cost reduction. is there.

上記課題を解決するために、請求項1に係る発明は、内燃機関の吸気系に供給される媒体ガス中に改質用の燃料を噴射する改質用燃料噴射手段と、媒体ガス中の燃料を改質する燃料改質触媒とを備えた内燃機関の燃料改質システムの触媒劣化診断装置において、燃料改質触媒での反応熱量の情報を検出する反応熱量情報検出手段と、この反応熱量情報検出手段で検出した反応熱量の情報に基づいて燃料改質触媒の劣化診断を行う触媒劣化診断手段とを備えた構成としたものである。   In order to solve the above problems, the invention according to claim 1 is directed to reforming fuel injection means for injecting reforming fuel into a medium gas supplied to an intake system of an internal combustion engine, and fuel in the medium gas. In the catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine provided with a fuel reforming catalyst for reforming the fuel, reaction heat quantity information detecting means for detecting information of the reaction heat quantity in the fuel reforming catalyst, and the reaction heat quantity information The apparatus includes a catalyst deterioration diagnosis unit that performs a deterioration diagnosis of the fuel reforming catalyst based on information on the amount of reaction heat detected by the detection unit.

燃料改質触媒が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒での反応熱量(発熱量又は吸熱量)が減少するため、燃料改質触媒での反応熱量の情報を用いれば、燃料改質触媒の劣化の有無を判定する劣化診断を行うことができる。しかも、従来技術のように燃料を貯溜する貯溜タンクや燃料の物性を検出する特殊なセンサ等を設けるといった必要が無いため、近年の重要な技術的課題である低コスト化の要求を満たすことができる。   When the fuel reforming catalyst deteriorates, the amount of reaction heat (heat generation amount or endothermic amount) at the fuel reforming catalyst decreases compared to when it is normal (when there is no deterioration). If used, it is possible to perform a deterioration diagnosis for determining whether or not the fuel reforming catalyst has deteriorated. Moreover, since there is no need to provide a storage tank for storing fuel or a special sensor for detecting the physical properties of the fuel as in the prior art, it can satisfy the demand for cost reduction, which is an important technical issue in recent years. it can.

この場合、請求項2のように、反応熱量情報検出手段として、燃料改質触媒の入口側の温度(以下「触媒入口側温度」という)を検出する入口側温度検出手段と、燃料改質触媒の出口側の温度(以下「触媒出口側温度」という)を検出する出口側温度検出手段とを備え、触媒劣化診断手段は、燃料改質触媒で燃料を改質する改質制御の実行中に入口側温度検出手段で検出した触媒入口側温度と出口側温度検出手段で検出した触媒出口側温度とに基づいて燃料改質触媒の劣化診断を行うようにしても良い。   In this case, as in claim 2, as the reaction heat quantity information detecting means, the inlet side temperature detecting means for detecting the temperature on the inlet side of the fuel reforming catalyst (hereinafter referred to as “catalyst inlet side temperature”), and the fuel reforming catalyst An outlet side temperature detecting means for detecting the temperature of the outlet side of the catalyst (hereinafter referred to as “catalyst outlet side temperature”), and the catalyst deterioration diagnosing means during the reforming control for reforming the fuel with the fuel reforming catalyst. The deterioration diagnosis of the fuel reforming catalyst may be performed based on the catalyst inlet side temperature detected by the inlet side temperature detecting means and the catalyst outlet side temperature detected by the outlet side temperature detecting means.

燃料改質触媒が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒での反応熱量が減少して、改質制御の実行中の触媒入口側温度と触媒出口側温度との関係が正常時とは異なってくるため、改質制御の実行中に検出した触媒入口側温度と触媒出口側温度とを用いれば、燃料改質触媒の劣化の有無を精度良く判定することができる。   When the fuel reforming catalyst deteriorates, the amount of reaction heat at the fuel reforming catalyst decreases compared with the normal state (when there is no deterioration), and the catalyst inlet side temperature and the catalyst outlet side temperature during the reforming control are reduced. Since the relationship is different from the normal state, the presence or absence of deterioration of the fuel reforming catalyst can be accurately determined by using the catalyst inlet side temperature and the catalyst outlet side temperature detected during the reforming control. .

或は、請求項3のように、反応熱量情報検出手段として、燃料改質触媒の温度(以下「触媒温度」という)又は燃料改質触媒の出口側の温度(以下「触媒出口側温度」という)を検出する温度検出手段を備え、触媒劣化診断手段は、燃料改質触媒で燃料を改質する改質制御の開始前に温度検出手段で検出した触媒温度又は触媒出口側温度と改質制御の開始後に温度検出手段で検出した触媒温度又は触媒出口側温度とに基づいて燃料改質触媒の劣化診断を行うようにしても良い。   Alternatively, as the reaction heat quantity information detecting means, the temperature of the fuel reforming catalyst (hereinafter referred to as “catalyst temperature”) or the temperature on the outlet side of the fuel reforming catalyst (hereinafter referred to as “catalyst outlet side temperature”). ), And the catalyst deterioration diagnosis means detects the catalyst temperature detected by the temperature detection means or the catalyst outlet side temperature and the reforming control before starting the reforming control for reforming the fuel by the fuel reforming catalyst. The deterioration diagnosis of the fuel reforming catalyst may be performed based on the catalyst temperature detected by the temperature detecting means or the catalyst outlet side temperature after the start of the operation.

燃料改質触媒が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒での反応熱量が減少して、改質制御の開始前の触媒温度又は触媒出口側温度と改質制御の開始後の触媒温度又は触媒出口側温度との関係が正常時とは異なってくるため、改質制御の開始前に検出した触媒温度又は触媒出口側温度と改質制御の開始後に検出した触媒温度又は触媒出口側温度とを用いれば、燃料改質触媒の劣化の有無を精度良く判定することができる。   When the fuel reforming catalyst deteriorates, the amount of reaction heat at the fuel reforming catalyst decreases compared to when it is normal (when there is no deterioration), and the catalyst temperature before the start of reforming control or the catalyst outlet side temperature and reforming control. Since the relationship between the catalyst temperature after the start of the catalyst or the catalyst outlet side temperature is different from the normal time, the catalyst temperature detected before the start of the reform control or the catalyst outlet side temperature and the catalyst detected after the start of the reform control If the temperature or the catalyst outlet side temperature is used, the presence or absence of deterioration of the fuel reforming catalyst can be accurately determined.

しかしながら、本発明は、改質制御の開始後(つまり改質制御の実行中)に温度検出手段で検出した触媒温度又は触媒出口側温度に基づいて燃料改質触媒の劣化診断を行うようにしても良い。   However, in the present invention, the deterioration diagnosis of the fuel reforming catalyst is performed based on the catalyst temperature detected by the temperature detecting means or the catalyst outlet side temperature after the start of the reforming control (that is, during the execution of the reforming control). Also good.

また、請求項4のように、内燃機関の燃焼状態の情報を検出する燃焼状態情報検出手段と、この燃焼状態情報検出手段で検出した燃焼状態の情報に基づいて燃料改質触媒の劣化診断を行う触媒劣化診断手段とを備えた構成としても良い。燃料改質触媒が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒による燃料の改質度合が低下して、内燃機関の燃焼状態が変化するため、燃焼状態の情報を用いれば、燃料改質触媒の劣化の有無を判定する劣化診断を行うことができる。   According to a fourth aspect of the present invention, combustion state information detecting means for detecting information on the combustion state of the internal combustion engine, and deterioration diagnosis of the fuel reforming catalyst are performed based on the combustion state information detected by the combustion state information detecting means. It is good also as a structure provided with the catalyst deterioration diagnostic means to perform. When the fuel reforming catalyst deteriorates, the degree of fuel reforming by the fuel reforming catalyst decreases and the combustion state of the internal combustion engine changes compared to the normal state (when there is no deterioration). For example, it is possible to perform a deterioration diagnosis for determining whether or not the fuel reforming catalyst has deteriorated.

この場合、請求項5のように、触媒劣化診断手段は、燃料改質触媒で燃料を改質する改質制御の開始前に燃焼状態情報検出手段で検出した燃焼状態の情報と改質制御の開始後に燃焼状態情報検出手段で検出した燃焼状態の情報とに基づいて燃料改質触媒の劣化診断を行うようにしても良い。燃料改質触媒が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒による燃料の改質度合が低下して、改質制御の開始前の燃焼状態と改質制御の開始後の燃焼状態との関係が正常時とは異なってくるため、改質制御の開始前に検出した燃焼状態の情報と改質制御の開始後に検出した燃焼状態の情報とを用いれば、燃料改質触媒の劣化の有無を精度良く判定することができる。   In this case, as in claim 5, the catalyst deterioration diagnosis means includes the combustion state information detected by the combustion state information detection means and the reforming control information before the start of reforming control for reforming the fuel by the fuel reforming catalyst. The deterioration diagnosis of the fuel reforming catalyst may be performed based on the combustion state information detected by the combustion state information detecting means after the start. When the fuel reforming catalyst deteriorates, the degree of reforming of the fuel by the fuel reforming catalyst decreases compared with the normal state (when there is no deterioration), and the combustion state before starting reforming control and after starting reforming control. Therefore, if the information on the combustion state detected before the start of reforming control and the information on the combustion state detected after the start of reforming control are used, the fuel reforming The presence or absence of catalyst deterioration can be accurately determined.

しかしながら、本発明は、改質制御の開始後(つまり改質制御の実行中)に燃焼状態情報検出手段で検出した燃焼状態の情報に基づいて燃料改質触媒の劣化診断を行うようにしても良い。   However, in the present invention, the deterioration diagnosis of the fuel reforming catalyst is performed based on the combustion state information detected by the combustion state information detecting means after the start of the reforming control (that is, during the execution of the reforming control). good.

更に、請求項6のように、燃焼状態情報検出手段は、燃焼状態の情報として、燃焼安定性指標、着火遅れ期間、主燃焼期間、燃焼重心、筒内圧力最大値、EGR限界、燃焼速度のうちの少なくとも一つを検出するようにすると良い。これらのパラメータは、いずれも内燃機関の燃焼状態を精度良く反映した情報となる。   Further, as in claim 6, the combustion state information detecting means includes, as the combustion state information, a combustion stability index, an ignition delay period, a main combustion period, a combustion center of gravity, an in-cylinder pressure maximum value, an EGR limit, and a combustion speed. It is better to detect at least one of them. These parameters are information that accurately reflects the combustion state of the internal combustion engine.

また、請求項7のように、燃料改質触媒の出口側で燃料の改質度合を検出する改質度合検出手段と、この改質度合検出手段で検出した燃料の改質度合に基づいて燃料改質触媒の劣化診断を行う触媒劣化診断手段とを備えた構成としても良い。燃料改質触媒が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒による燃料の改質度合が低下するため、燃料の改質度合を用いれば、燃料改質触媒の劣化の有無を判定する劣化診断を行うことができる。   Further, as in claim 7, a reforming degree detecting means for detecting the reforming degree of the fuel on the outlet side of the fuel reforming catalyst, and a fuel based on the reforming degree of the fuel detected by the reforming degree detecting means. It is good also as a structure provided with the catalyst deterioration diagnostic means which performs the deterioration diagnosis of a reforming catalyst. When the fuel reforming catalyst deteriorates, the degree of reforming of the fuel by the fuel reforming catalyst is lower than when it is normal (when no deterioration occurs). A deterioration diagnosis for determining the presence or absence can be performed.

この場合、請求項8のように、触媒劣化診断手段は、燃料改質触媒で燃料を改質する改質制御の開始前に改質度合検出手段で検出した燃料の改質度合と改質制御の開始後に改質度合検出手段で検出した燃料の改質度合とに基づいて燃料改質触媒の劣化診断を行うようにしても良い。燃料改質触媒が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒による燃料の改質度合が低下して、改質制御の開始前の燃料の改質度合と改質制御の開始後の燃料の改質度合との関係が正常時とは異なってくるため、改質制御の開始前に検出した燃料の改質度合と改質制御の開始後に検出した燃料の改質度合とを用いれば、燃料改質触媒の劣化の有無を精度良く判定することができる。   In this case, as in claim 8, the catalyst deterioration diagnosis means detects the reforming degree of fuel and the reforming control detected by the reforming degree detection means before the start of reforming control for reforming the fuel with the fuel reforming catalyst. The deterioration diagnosis of the fuel reforming catalyst may be performed based on the degree of reforming of the fuel detected by the reforming degree detection means after the start of the operation. When the fuel reforming catalyst deteriorates, the degree of fuel reforming by the fuel reforming catalyst is lower than when it is normal (when there is no deterioration), and the degree of fuel reforming and reforming control before the start of reforming control are reduced. Since the relationship with the degree of reforming of fuel after the start of fuel is different from normal, the degree of reforming of fuel detected before the start of reforming control and the degree of reforming of fuel detected after starting reforming control Can be used to accurately determine whether the fuel reforming catalyst has deteriorated.

しかしながら、本発明は、改質制御の開始後(つまり改質制御の実行中)に改質度合検出手段で検出した燃料の改質度合に基づいて燃料改質触媒の劣化診断を行うようにしても良い。   However, in the present invention, the deterioration diagnosis of the fuel reforming catalyst is performed based on the reforming degree of the fuel detected by the reforming degree detecting means after the start of the reforming control (that is, during the execution of the reforming control). Also good.

また、燃料改質触媒によって燃料を水素濃度の高い状態に改質するシステムの場合、請求項9のように、改質度合検出手段は、燃料の改質度合として水素濃度を検出する水素センサを用いるようにしても良い。このようにすれば、燃料の改質度合(水素濃度)を精度良く検出することができる。   Further, in the case of a system for reforming a fuel to a high hydrogen concentration state using a fuel reforming catalyst, the reforming degree detection means includes a hydrogen sensor that detects the hydrogen concentration as the reforming degree of the fuel. It may be used. In this way, the reforming degree (hydrogen concentration) of the fuel can be detected with high accuracy.

図1は本発明の実施例1におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in Embodiment 1 of the present invention. 図2は実施例1(発熱反応触媒の場合)の劣化診断方法を説明するタイムチャートである。FIG. 2 is a time chart for explaining the deterioration diagnosis method of Example 1 (in the case of an exothermic reaction catalyst). 図3は実施例1(吸熱反応触媒の場合)の劣化診断方法を説明するタイムチャートである。FIG. 3 is a time chart for explaining the deterioration diagnosis method of Example 1 (in the case of an endothermic reaction catalyst). 図4は実施例1(発熱反応触媒の場合)の触媒劣化診断ルーチンの処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of processing of the catalyst deterioration diagnosis routine of the first embodiment (in the case of an exothermic reaction catalyst). 図5は改質用燃料の噴射量と劣化判定閾値との関係を説明する図である。FIG. 5 is a diagram for explaining the relationship between the reforming fuel injection amount and the deterioration determination threshold value. 図6はEGRガス流量と劣化判定閾値との関係を説明する図である。FIG. 6 is a diagram for explaining the relationship between the EGR gas flow rate and the deterioration determination threshold value. 図7は実施例1(吸熱反応触媒の場合)の触媒劣化診断ルーチンの処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of processing of the catalyst deterioration diagnosis routine of Example 1 (in the case of an endothermic reaction catalyst). 図8は実施例1(発熱反応触媒の場合)の触媒劣化診断の実行例を説明するタイムチャートである。FIG. 8 is a time chart for explaining an execution example of catalyst deterioration diagnosis in Example 1 (in the case of an exothermic reaction catalyst). 図9は実施例1(吸熱反応触媒の場合)の触媒劣化診断の実行例を説明するタイムチャートである。FIG. 9 is a time chart for explaining an execution example of the catalyst deterioration diagnosis of Example 1 (in the case of an endothermic reaction catalyst). 図10は実施例2におけるエンジン制御システムの概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of an engine control system according to the second embodiment. 図11は実施例2の劣化診断方法を説明するタイムチャートである。FIG. 11 is a time chart for explaining the deterioration diagnosis method according to the second embodiment. 図12は実施例2の触媒劣化診断ルーチンの処理の流れを示すフローチャートである。FIG. 12 is a flowchart showing the flow of processing of the catalyst deterioration diagnosis routine of the second embodiment. 図13は実施例2の触媒劣化診断の実行例を説明するタイムチャートである。FIG. 13 is a time chart for explaining an execution example of the catalyst deterioration diagnosis of the second embodiment. 図14は実施例3におけるエンジン制御システムの概略構成を示す図である。FIG. 14 is a diagram illustrating a schematic configuration of an engine control system according to the third embodiment. 図15は実施例3の劣化診断方法を説明するタイムチャートである。FIG. 15 is a time chart for explaining the deterioration diagnosis method of the third embodiment. 図16は実施例3の触媒劣化診断ルーチンの処理の流れを示すフローチャートである。FIG. 16 is a flowchart showing the flow of processing of the catalyst deterioration diagnosis routine of the third embodiment. 図17は実施例3の触媒劣化診断の実行例を説明するタイムチャートである。FIG. 17 is a time chart illustrating an execution example of catalyst deterioration diagnosis according to the third embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図9に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.

内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、モータ等によって開度調節されるスロットルバルブ14が設けられている。   An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and a throttle valve 14 whose opening degree is adjusted by a motor or the like is provided downstream of the air cleaner 13.

更に、スロットルバルブ14の下流側には、サージタンク15が設けられている。このサージタンク15には、エンジン11の各気筒に空気を導入する吸気マニホールド16が設けられ、各気筒の吸気マニホールド16に接続された吸気ポート(図示せず)又はその近傍に、それぞれ吸気ポートに燃料を噴射する燃料噴射弁17が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ18が取り付けられ、各点火プラグ18の火花放電によって筒内の混合気に着火される。   Further, a surge tank 15 is provided on the downstream side of the throttle valve 14. The surge tank 15 is provided with an intake manifold 16 for introducing air into each cylinder of the engine 11, and an intake port (not shown) connected to the intake manifold 16 of each cylinder or the vicinity thereof is connected to each intake port. A fuel injection valve 17 for injecting fuel is attached. A spark plug 18 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 18.

一方、エンジン11の排気管19には、排出ガスを浄化する三元触媒等の触媒20が設けられ、この触媒20の上流側と下流側に、それぞれ排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ21,22(空燃比センサ、酸素センサ等)が設けられている。   On the other hand, the exhaust pipe 19 of the engine 11 is provided with a catalyst 20 such as a three-way catalyst for purifying exhaust gas, and the exhaust gas air-fuel ratio or rich / lean is set on the upstream side and downstream side of the catalyst 20, respectively. Exhaust gas sensors 21 and 22 (air-fuel ratio sensor, oxygen sensor, etc.) to be detected are provided.

このエンジン11には、排出ガスの一部をEGRガスとして吸気側へ還流させるEGR装置23が搭載されている。このEGR装置23は、排気管19のうちの触媒20の上流側と吸気管12のうちのスロットルバルブ14の下流側との間にEGR配管24が接続され、このEGR配管24に、排出ガス還流量(外部EGR量)を調整するEGR弁25が設けられている。   The engine 11 is equipped with an EGR device 23 that recirculates a part of the exhaust gas to the intake side as EGR gas. In the EGR device 23, an EGR pipe 24 is connected between the upstream side of the catalyst 20 in the exhaust pipe 19 and the downstream side of the throttle valve 14 in the intake pipe 12, and the exhaust gas return is connected to the EGR pipe 24. An EGR valve 25 for adjusting the flow rate (external EGR amount) is provided.

更に、EGR配管24には、EGRガス(媒体ガス)中に改質用の燃料を噴射する改質用燃料噴射弁26(改質用燃料噴射手段)を備えた燃料噴射装置27と、EGRガス中の燃料を改質する燃料改質触媒28を備えた燃料改質器29が設けられている。この燃料改質触媒28での反応熱量の情報を検出する反応熱量情報検出手段として、燃料改質触媒28の入口側のEGRガスの温度(以下「触媒入口側温度」という)を検出する入口側温度センサ30(入口側温度検出手段)と、燃料改質触媒28の出口側のEGRガスの温度(以下「触媒出口側温度」という)を検出する出口側温度センサ31(出口側温度検出手段)とが設けられている。各気筒の燃料噴射弁17と改質用燃料噴射弁26には、共通の燃料タンク(図示せず)から燃料が供給される。   Further, the EGR pipe 24 includes a fuel injection device 27 provided with a reforming fuel injection valve 26 (reforming fuel injection means) for injecting reforming fuel into EGR gas (medium gas), and EGR gas. A fuel reformer 29 including a fuel reforming catalyst 28 for reforming the fuel therein is provided. As reaction heat quantity information detecting means for detecting information of reaction heat quantity in the fuel reforming catalyst 28, an inlet side for detecting the temperature of EGR gas on the inlet side of the fuel reforming catalyst 28 (hereinafter referred to as "catalyst inlet side temperature"). A temperature sensor 30 (inlet side temperature detecting means) and an outlet side temperature sensor 31 (outlet side temperature detecting means) for detecting the temperature of the EGR gas on the outlet side of the fuel reforming catalyst 28 (hereinafter referred to as “catalyst outlet side temperature”). And are provided. Fuel is supplied from a common fuel tank (not shown) to the fuel injection valve 17 and the reforming fuel injection valve 26 of each cylinder.

また、エンジン11には、吸入空気量を検出するエアフローメータ32や、クランク軸(図示せず)が所定クランク角回転する毎にパルス信号を出力するクランク角センサ33等が設けられ、このクランク角センサ33の出力信号に基づいてクランク角やエンジン回転速度が検出される。   The engine 11 is provided with an air flow meter 32 for detecting the intake air amount, a crank angle sensor 33 for outputting a pulse signal each time a crankshaft (not shown) rotates a predetermined crank angle, and the like. Based on the output signal of the sensor 33, the crank angle and the engine speed are detected.

これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)34に入力される。このECU34は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 34. The ECU 34 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby determine the fuel injection amount and the ignition timing according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

また、ECU34は、エンジン11の運転状態が所定の改質運転領域(例えば低回転・低負荷運転領域)のときに、通常運転モードから改質運転モードに切り換える。この改質運転モードでは、EGR弁25を開弁して排出ガスの一部をEGRガスとして吸気側へ還流させながら、改質用燃料噴射弁26でEGRガス中に改質用の燃料を噴射して気化させ、燃料改質触媒28でEGRガス中の燃料を燃焼性の高い状態(例えば水素濃度の高い状態)に改質する改質制御を実行することで、改質された燃料をエンジン11の吸気管12に供給する。   Further, the ECU 34 switches from the normal operation mode to the reforming operation mode when the operating state of the engine 11 is in a predetermined reforming operation region (for example, a low rotation / low load operation region). In this reforming operation mode, the reforming fuel injection valve 26 injects reforming fuel into the EGR gas while the EGR valve 25 is opened and a part of the exhaust gas is recirculated to the intake side as EGR gas. The reformed fuel is then vaporized, and reforming control is performed to reform the fuel in the EGR gas to a highly combustible state (for example, a state having a high hydrogen concentration) by the fuel reforming catalyst 28. 11 to the intake pipe 12.

燃料改質触媒28が発熱反応触媒の場合、ECU34は、後述する図4の触媒劣化診断ルーチンを実行することで、改質制御の実行中に出口側温度センサ31で検出した触媒出口側温度と入口側温度センサ30で検出した触媒入口側温度との温度差を所定の劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定する劣化診断を行う。   When the fuel reforming catalyst 28 is an exothermic reaction catalyst, the ECU 34 executes a catalyst deterioration diagnosis routine of FIG. 4 to be described later, whereby the catalyst outlet side temperature detected by the outlet side temperature sensor 31 during the reforming control is detected. A deterioration diagnosis for determining whether or not the fuel reforming catalyst 28 has deteriorated is performed by comparing a temperature difference with the catalyst inlet side temperature detected by the inlet side temperature sensor 30 with a predetermined deterioration determination threshold value.

図2に示すように、燃料改質触媒28が発熱反応触媒の場合、燃料改質触媒28が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒28での発熱量が減少して、改質制御の実行中の触媒入口側温度に対する触媒出口側温度の上昇具合が正常時とは異なってくるため、改質制御の実行中に検出した触媒出口側温度と触媒入口側温度との温度差を劣化判定閾値と比較すれば、燃料改質触媒28の劣化の有無を精度良く判定することができる。   As shown in FIG. 2, when the fuel reforming catalyst 28 is an exothermic reaction catalyst, when the fuel reforming catalyst 28 deteriorates, the amount of heat generated by the fuel reforming catalyst 28 decreases compared to when it is normal (without deterioration). Thus, since the degree of increase in the catalyst outlet side temperature with respect to the catalyst inlet side temperature during the reforming control is different from that during normal operation, the catalyst outlet side temperature and the catalyst inlet side temperature detected during the reforming control are different. Is compared with the deterioration determination threshold value, the presence or absence of deterioration of the fuel reforming catalyst 28 can be accurately determined.

以下、燃料改質触媒28が発熱反応触媒の場合にECU34が実行する図4の触媒劣化診断ルーチンの処理内容を説明する。   The processing contents of the catalyst deterioration diagnosis routine of FIG. 4 executed by the ECU 34 when the fuel reforming catalyst 28 is an exothermic reaction catalyst will be described below.

図4に示す触媒劣化診断ルーチンは、ECU34の電源オン期間中(イグニッションスイッチのオン期間中)に所定周期で繰り返し実行され、特許請求の範囲でいう触媒劣化診断手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、改質運転モードであるか否かを判定し、改質運転モードではない(つまり通常運転モードである)と判定された場合には、ステップ102以降の処理を行うことなく、本ルーチンを終了する。   The catalyst deterioration diagnosis routine shown in FIG. 4 is repeatedly executed at a predetermined period during the power-on period of the ECU 34 (while the ignition switch is on), and serves as catalyst deterioration diagnosis means in the claims. When this routine is started, first, in step 101, it is determined whether or not it is the reforming operation mode, and if it is determined that it is not the reforming operation mode (that is, the normal operation mode), step This routine is terminated without performing the processing after 102.

一方、上記ステップ101で、改質運転モードであると判定された場合には、ステップ102以降の処理を次のようにして実行する。まず、ステップ102で、EGR弁25を開弁して排出ガスの一部をEGRガスとして吸気側へ還流させるようにした後、ステップ103に進み、改質用燃料噴射弁26でEGRガス中に改質用の燃料を噴射して気化させるようにして、燃料改質触媒28でEGRガス中の燃料を燃焼性の高い状態に改質する改質制御を実行する。この際、改質用燃料の噴射量とEGRガス流量(例えばEGR弁25の開度)は、それぞれエンジン運転状態(例えばエンジン回転速度やエンジン負荷等)に応じてマップ等により算出される。   On the other hand, if it is determined in step 101 that the reforming operation mode is set, the processing after step 102 is executed as follows. First, in step 102, the EGR valve 25 is opened so that a part of the exhaust gas is recirculated to the intake side as EGR gas, and then the process proceeds to step 103, where the reforming fuel injection valve 26 enters the EGR gas. The reforming control is performed in which the fuel in the EGR gas is reformed to a highly combustible state by the fuel reforming catalyst 28 by injecting and vaporizing the reforming fuel. At this time, the injection amount of the reforming fuel and the EGR gas flow rate (for example, the opening degree of the EGR valve 25) are calculated by a map or the like according to the engine operating state (for example, the engine speed, the engine load, etc.).

この後、ステップ104に進み、入口側温度センサ30で検出した触媒入口側温度と出口側温度センサ31で検出した触媒出口側温度を読み込んだ後、ステップ105に進み、改質用燃料の噴射量とEGRガス流量に応じた劣化判定閾値をマップ等により算出する。燃料改質触媒28が発熱反応触媒の場合、劣化判定閾値のマップは、例えば、改質用燃料の噴射量が多くなるほど劣化判定閾値が大きくなる(図5参照)と共に、EGRガス流量が多くなるほど劣化判定閾値が大きくなる(図6参照)ように設定されている。更に、触媒入口側温度に応じて劣化判定閾値を補正するようにしても良い。   Thereafter, the process proceeds to step 104, and after the catalyst inlet side temperature detected by the inlet side temperature sensor 30 and the catalyst outlet side temperature detected by the outlet side temperature sensor 31 are read, the process proceeds to step 105 and the injection amount of reforming fuel is injected. And a deterioration determination threshold value corresponding to the EGR gas flow rate are calculated using a map or the like. When the fuel reforming catalyst 28 is an exothermic reaction catalyst, for example, the deterioration determination threshold map increases as the fuel injection amount for reforming increases (see FIG. 5), and as the EGR gas flow rate increases. The deterioration determination threshold is set to be large (see FIG. 6). Furthermore, the deterioration determination threshold value may be corrected according to the catalyst inlet side temperature.

この後、ステップ106に進み、触媒出口側温度と触媒入口側温度との温度差が劣化判定閾値以上であるか否かを判定する。このステップ106で、触媒出口側温度と触媒入口側温度との温度差が劣化判定閾値以上であると判定された場合には、ステップ107に進み、燃料改質触媒28の劣化無し(正常)と判定して、本ルーチンを終了する。   Thereafter, the process proceeds to step 106, where it is determined whether or not the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature is equal to or greater than the deterioration determination threshold value. If it is determined in step 106 that the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature is greater than or equal to the deterioration determination threshold value, the process proceeds to step 107, where the fuel reforming catalyst 28 is not deteriorated (normal). Determination is made and this routine is terminated.

これに対して、上記ステップ106で、触媒出口側温度と触媒入口側温度との温度差が劣化判定閾値よりも小さいと判定された場合には、ステップ108に進み、燃料改質触媒28の劣化有り(異常)と判定して、ステップ109に進み、フェールセーフ処理を実行する。このフェールセーフ処理では、EGR弁25の開度を減少させてEGRガス流量を減量すると共に、改質用燃料噴射弁26による改質用燃料の噴射を停止して、燃料の改質を禁止する。   On the other hand, when it is determined in step 106 that the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature is smaller than the deterioration determination threshold value, the process proceeds to step 108 and the fuel reforming catalyst 28 is deteriorated. It is determined that there is an abnormality (abnormal), and the process proceeds to step 109 to execute fail-safe processing. In this fail-safe process, the opening degree of the EGR valve 25 is decreased to reduce the EGR gas flow rate, and the reforming fuel injection by the reforming fuel injection valve 26 is stopped to prohibit the reforming of the fuel. .

一方、燃料改質触媒28が吸熱反応触媒の場合、ECU34は、後述する図7の触媒劣化診断ルーチンを実行することで、改質制御の実行中に出口側温度センサ31で検出した触媒出口側温度と入口側温度センサ30で検出した触媒入口側温度との温度差を所定の劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定する劣化診断を行う。   On the other hand, when the fuel reforming catalyst 28 is an endothermic reaction catalyst, the ECU 34 executes a catalyst deterioration diagnosis routine of FIG. 7 to be described later, thereby detecting the catalyst outlet side detected by the outlet side temperature sensor 31 during the reforming control. A deterioration diagnosis for determining the presence or absence of deterioration of the fuel reforming catalyst 28 is performed by comparing the temperature difference between the temperature and the catalyst inlet side temperature detected by the inlet side temperature sensor 30 with a predetermined deterioration determination threshold value.

図3に示すように、燃料改質触媒28が吸熱反応触媒の場合、燃料改質触媒28が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒28での吸熱量が減少して、改質制御の実行中の触媒入口側温度に対する触媒出口側温度の低下具合が正常時とは異なってくるため、改質制御の実行中に検出した触媒出口側温度と触媒入口側温度との温度差を劣化判定閾値と比較すれば、燃料改質触媒28の劣化の有無を精度良く判定することができる。   As shown in FIG. 3, when the fuel reforming catalyst 28 is an endothermic reaction catalyst, when the fuel reforming catalyst 28 deteriorates, the endothermic amount at the fuel reforming catalyst 28 decreases as compared with the normal time (when there is no deterioration). Thus, the catalyst outlet side temperature and the catalyst inlet side temperature detected during the reforming control are different because the degree of decrease in the catalyst outlet side temperature with respect to the catalyst inlet side temperature during the reforming control is different from the normal state. Is compared with the deterioration determination threshold value, the presence or absence of deterioration of the fuel reforming catalyst 28 can be accurately determined.

以下、燃料改質触媒28が吸熱反応触媒の場合にECU34が実行する図7の触媒劣化診断ルーチンの処理内容を説明する。尚、図7のルーチンは、図4のルーチンのステップ106の処理をステップ106aの処理に変更したものである。   The processing contents of the catalyst deterioration diagnosis routine of FIG. 7 executed by the ECU 34 when the fuel reforming catalyst 28 is an endothermic reaction catalyst will be described below. The routine of FIG. 7 is obtained by changing the process of step 106 of the routine of FIG. 4 to the process of step 106a.

本ルーチンでは、ステップ101で、改質運転モードであると判定された場合に、ステップ102に進み、EGR弁25を開弁した後、ステップ103に進み、改質用燃料噴射弁26で改質用の燃料を噴射して、燃料改質触媒28でEGRガス中の燃料を改質する改質制御を実行する。   In this routine, if it is determined in step 101 that the reforming operation mode is selected, the process proceeds to step 102, the EGR valve 25 is opened, then the process proceeds to step 103, and the reforming fuel injection valve 26 reforms. Fuel reforming control is performed in which fuel for fuel is injected and fuel in the EGR gas is reformed by the fuel reforming catalyst 28.

この後、ステップ104に進み、触媒入口側温度と触媒出口側温度を読み込んだ後、ステップ105に進み、改質用燃料の噴射量とEGRガス流量に応じた劣化判定閾値をマップ等により算出する。燃料改質触媒28が吸熱反応触媒の場合、劣化判定閾値のマップは、例えば、改質用燃料の噴射量が多くなるほど劣化判定閾値が小さくなると共に、EGRガス流量が多くなるほど劣化判定閾値が小さくなるように設定されている。更に、触媒入口側温度に応じて劣化判定閾値を補正するようにしても良い。   Thereafter, the process proceeds to step 104, and the catalyst inlet side temperature and the catalyst outlet side temperature are read. Then, the process proceeds to step 105, and a deterioration determination threshold value corresponding to the injection amount of the reforming fuel and the EGR gas flow rate is calculated using a map or the like. . When the fuel reforming catalyst 28 is an endothermic reaction catalyst, for example, the deterioration determination threshold map is such that the deterioration determination threshold decreases as the injection amount of the reforming fuel increases, and the deterioration determination threshold decreases as the EGR gas flow rate increases. It is set to be. Furthermore, the deterioration determination threshold value may be corrected according to the catalyst inlet side temperature.

この後、ステップ106aに進み、触媒出口側温度と触媒入口側温度との温度差が劣化判定閾値以下であるか否かを判定する。このステップ106aで、触媒出口側温度と触媒入口側温度との温度差が劣化判定閾値以下であると判定された場合には、ステップ107に進み、燃料改質触媒28の劣化無し(正常)と判定して、本ルーチンを終了する。   Thereafter, the process proceeds to step 106a, and it is determined whether or not the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature is equal to or less than the deterioration determination threshold value. If it is determined in step 106a that the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature is equal to or less than the deterioration determination threshold value, the process proceeds to step 107, where the fuel reforming catalyst 28 is not deteriorated (normal). Determination is made and this routine is terminated.

これに対して、上記ステップ106aで、触媒出口側温度と触媒入口側温度との温度差が劣化判定閾値よりも大きいと判定された場合には、ステップ108に進み、燃料改質触媒28の劣化有り(異常)と判定して、ステップ109に進み、フェールセーフ処理(EGRガス流量を減量すると共に改質用燃料の噴射を停止して燃料の改質を禁止する処理)を実行する。   On the other hand, when it is determined in step 106a that the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature is larger than the deterioration determination threshold value, the process proceeds to step 108 and the fuel reforming catalyst 28 is deteriorated. It is determined that the engine is present (abnormal), and the process proceeds to step 109 to execute a fail-safe process (a process for reducing the EGR gas flow rate and stopping the reforming fuel injection to prohibit the reforming of the fuel).

図8及び図9を用いて本実施例1の触媒劣化診断の実行例を説明する。
図8及び図9に示すように、通常運転モードから改質運転モードに切り換えられたときに、EGR弁25を開弁して排出ガスの一部をEGRガスとして吸気側へ還流させながら、改質用燃料噴射弁26でEGRガス中に改質用の燃料を噴射して、燃料改質触媒28でEGRガス中の燃料を燃焼性の高い状態に改質する改質制御を実行する。
An execution example of the catalyst deterioration diagnosis according to the first embodiment will be described with reference to FIGS. 8 and 9.
As shown in FIGS. 8 and 9, when the normal operation mode is switched to the reforming operation mode, the EGR valve 25 is opened and a part of the exhaust gas is recirculated to the intake side as EGR gas. The quality control fuel injection valve 26 injects reforming fuel into the EGR gas and the fuel reforming catalyst 28 reforms the fuel in the EGR gas into a highly combustible state.

本実施例1では、この改質制御の実行中に出口側温度センサ31で検出した触媒出口側温度と入口側温度センサ30で検出した触媒入口側温度との温度差を算出し、この温度差を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定する劣化診断を行うようにしたので、燃料改質触媒28の劣化の有無を精度良く判定することができる。しかも、従来技術のように燃料を貯溜する貯溜タンクや燃料の物性を検出する特殊なセンサ等を設けるといった必要が無いため、近年の重要な技術的課題である低コスト化の要求を満たすことができる。   In the first embodiment, the temperature difference between the catalyst outlet side temperature detected by the outlet side temperature sensor 31 and the catalyst inlet side temperature detected by the inlet side temperature sensor 30 during the execution of the reforming control is calculated, and this temperature difference is calculated. Is compared with the deterioration determination threshold value to perform the deterioration diagnosis for determining whether or not the fuel reforming catalyst 28 has deteriorated. Therefore, it is possible to accurately determine whether or not the fuel reforming catalyst 28 has deteriorated. Moreover, since there is no need to provide a storage tank for storing fuel or a special sensor for detecting the physical properties of the fuel as in the prior art, it can satisfy the demand for cost reduction, which is an important technical issue in recent years. it can.

また、図8及び図9に破線で示すように、燃料改質触媒28の劣化診断機能を備えていないシステムでは、燃料改質触媒28の劣化が発生しても、それを検出できず、燃料改質触媒28の劣化発生時にフェールセーフ処理を実施できないため、エンジン11の燃焼状態が悪化してトルク変動が発生してドライバビリティが悪化する可能性がある。   Further, as shown by broken lines in FIGS. 8 and 9, in a system that does not have a function for diagnosing the deterioration of the fuel reforming catalyst 28, even if the fuel reforming catalyst 28 is deteriorated, it cannot be detected, and the fuel Since fail-safe processing cannot be performed when deterioration of the reforming catalyst 28 occurs, the combustion state of the engine 11 deteriorates, torque fluctuations may occur, and drivability may deteriorate.

これに対して、本実施例1では、改質制御の実行中に検出した触媒出口側温度と触媒入口側温度との温度差を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定し、燃料改質触媒28の劣化有りと判定された場合には、フェールセーフ処理(EGRガス流量を減量すると共に改質用燃料の噴射を停止して燃料の改質を禁止する処理)を実行するようにしたので、エンジン11の燃焼状態の悪化を抑制してトルク変動の発生を抑制することができ、ドライバビリティの悪化を防止することができる。   In contrast, in the first embodiment, the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature detected during the execution of the reforming control is compared with the deterioration determination threshold value to determine whether or not the fuel reforming catalyst 28 has deteriorated. If it is determined that the fuel reforming catalyst 28 is deteriorated, a fail-safe process (a process of reducing the EGR gas flow rate and stopping the reforming fuel injection to prohibit the reforming of the fuel) Therefore, the deterioration of the combustion state of the engine 11 can be suppressed to suppress the occurrence of torque fluctuation, and the drivability can be prevented from being deteriorated.

尚、上記実施例1では、改質制御の実行中に検出した触媒出口側温度と触媒入口側温度との温度差を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしたが、劣化診断方法は、これに限定されず、適宜変更しても良く、例えば、改質制御の実行中に検出した触媒出口側温度と触媒入口側温度との温度比を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしても良い。   In the first embodiment, the temperature difference between the catalyst outlet side temperature and the catalyst inlet side temperature detected during the reforming control is compared with the deterioration determination threshold value to determine whether the fuel reforming catalyst 28 has deteriorated. However, the deterioration diagnosis method is not limited to this, and may be changed as appropriate. For example, the deterioration determination is performed based on the temperature ratio between the catalyst outlet side temperature and the catalyst inlet side temperature detected during the execution of the reforming control. The presence or absence of deterioration of the fuel reforming catalyst 28 may be determined by comparison with a threshold value.

また、改質制御の開始前に検出した触媒出口側温度と改質制御の開始後に検出した触媒出口側温度との温度差又は温度比を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしても良い。或は、燃料改質触媒28の温度(触媒温度)を検出する触媒温度センサを設け、改質制御の開始前に検出した触媒温度と改質制御の開始後に検出した触媒温度との温度差又は温度比を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしても良い。   Further, the deterioration of the fuel reforming catalyst 28 is compared by comparing the temperature difference or temperature ratio between the catalyst outlet side temperature detected before the start of the reforming control and the catalyst outlet side temperature detected after the start of the reforming control with the deterioration determination threshold value. It may be determined whether or not there is. Alternatively, a catalyst temperature sensor for detecting the temperature of the fuel reforming catalyst 28 (catalyst temperature) is provided, and the temperature difference between the catalyst temperature detected before the start of reforming control and the catalyst temperature detected after the start of reforming control or The presence or absence of deterioration of the fuel reforming catalyst 28 may be determined by comparing the temperature ratio with a deterioration determination threshold value.

燃料改質触媒28が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒28での反応熱量が減少して、改質制御の開始前の触媒温度又は触媒出口側温度と改質制御の開始後の触媒温度又は触媒出口側温度との関係が正常時とは異なってくるため、改質制御の開始前に検出した触媒温度又は触媒出口側温度と改質制御の開始後に検出した触媒温度又は触媒出口側温度とを用いれば、燃料改質触媒28の劣化の有無を精度良く判定することができる。   When the fuel reforming catalyst 28 deteriorates, the amount of heat of reaction at the fuel reforming catalyst 28 decreases compared with the normal time (when there is no deterioration), and the catalyst temperature before the start of reforming control or the catalyst outlet side temperature is improved. Since the relationship between the catalyst temperature after the start of quality control or the catalyst outlet side temperature is different from the normal state, the catalyst temperature detected before the start of reforming control or the catalyst outlet side temperature and the detection after the start of reforming control are detected. By using the catalyst temperature or the catalyst outlet side temperature, it is possible to accurately determine whether the fuel reforming catalyst 28 has deteriorated.

しかしながら、本発明は、改質制御の開始後(つまり改質制御の実行中)に検出した触媒温度又は触媒出口側温度を劣化判定値と比較して燃料改質触媒28の劣化の有無を判定するようにしても良い。   However, the present invention determines whether or not the fuel reforming catalyst 28 has deteriorated by comparing the catalyst temperature or the catalyst outlet side temperature detected after the start of reforming control (that is, during execution of reforming control) with the deterioration determination value. You may make it do.

次に、図10乃至図13を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、図10に示すように、エンジン11のシリンダヘッドには、各気筒毎(又は特定の気筒のみ)に燃焼状態を検出する燃焼状態検出センサとして、各気筒毎(又は特定の気筒のみ)に筒内圧力を検出する筒内圧力センサ35が設けられている。この筒内圧力センサ35は、点火プラグ18と一体化したタイプのものを用いても良いし、点火プラグ18とは別体で取り付けるタイプのものを用いても良い。尚、温度センサ30,31を省略した構成としても良い。   In the second embodiment, as shown in FIG. 10, the cylinder head of the engine 11 has a cylinder head of the engine 11 as a combustion state detection sensor that detects a combustion state for each cylinder (or only a specific cylinder). An in-cylinder pressure sensor 35 for detecting the in-cylinder pressure is provided in the cylinder only). The in-cylinder pressure sensor 35 may be of a type integrated with the spark plug 18 or may be of a type attached separately from the spark plug 18. Note that the temperature sensors 30 and 31 may be omitted.

また、本実施例2では、ECU34により後述する図12の触媒劣化診断ルーチンを実行することで、改質制御の実行中に筒内圧力センサ35の出力に基づいてエンジン11の燃焼状態の情報である燃焼パラメータを算出(検出)し、この燃焼パラメータを所定の劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定する劣化診断を行う。ここで、燃焼パラメータとしては、例えば、燃焼安定性指標COV(例えば図示平均有効圧力の変動率)、着火遅れ期間、主燃焼期間、燃焼重心、筒内圧力最大値等のうちの一つを算出する。   Further, in the second embodiment, the ECU 34 executes a catalyst deterioration diagnosis routine shown in FIG. 12 to be described later, so that information on the combustion state of the engine 11 is obtained based on the output of the in-cylinder pressure sensor 35 during the reforming control. A certain combustion parameter is calculated (detected), and this combustion parameter is compared with a predetermined deterioration determination threshold value to perform deterioration diagnosis for determining whether or not the fuel reforming catalyst 28 has deteriorated. Here, as the combustion parameter, for example, one of a combustion stability index COV (for example, a fluctuation rate of the indicated mean effective pressure), an ignition delay period, a main combustion period, a combustion center of gravity, a maximum in-cylinder pressure value, and the like is calculated. To do.

図11に示すように、燃料改質触媒28が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒28による燃料の改質度合が低下して、エンジン11の燃焼状態が変化して燃焼パラメータが変化するため、改質制御の実行中に検出した燃焼パラメータを劣化判定閾値と比較すれば、燃料改質触媒28の劣化の有無を精度良く判定することができる。   As shown in FIG. 11, when the fuel reforming catalyst 28 deteriorates, the degree of fuel reforming by the fuel reforming catalyst 28 decreases and the combustion state of the engine 11 changes as compared with the normal time (without deterioration). Since the combustion parameter changes, the presence or absence of deterioration of the fuel reforming catalyst 28 can be accurately determined by comparing the combustion parameter detected during the execution of the reforming control with the deterioration determination threshold value.

以下、本実施例2でECU34が実行する図12の触媒劣化診断ルーチンの処理内容を説明する。   Hereinafter, the processing content of the catalyst deterioration diagnosis routine of FIG. 12 executed by the ECU 34 in the second embodiment will be described.

図12に示す触媒劣化診断ルーチンは、ECU34の電源オン期間中に所定周期で繰り返し実行される。本ルーチンが起動されると、まず、ステップ201で、改質運転モードであるか否かを判定し、改質運転モードであると判定された場合には、ステップ202に進み、EGR弁25を開弁した後、ステップ203に進み、改質用燃料噴射弁26で改質用の燃料を噴射して、燃料改質触媒28でEGRガス中の燃料を改質する改質制御を実行する。   The catalyst deterioration diagnosis routine shown in FIG. 12 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 34. When this routine is started, first, at step 201, it is determined whether or not it is the reforming operation mode. When it is determined that it is the reforming operation mode, the routine proceeds to step 202 and the EGR valve 25 is turned on. After the valve is opened, the routine proceeds to step 203, where reforming fuel is injected by the reforming fuel injection valve 26, and reforming control for reforming the fuel in the EGR gas by the fuel reforming catalyst 28 is executed.

この後、ステップ204に進み、筒内圧力センサ35の出力に基づいて燃焼パラメータ(例えば、燃焼安定性指標COV、着火遅れ期間、主燃焼期間、燃焼重心、筒内圧力最大値等のうちの一つ)を算出する。このステップ204の処理が特許請求の範囲でいう燃焼状態情報検出手段としての役割を果たす。   Thereafter, the routine proceeds to step 204, where one of the combustion parameters (eg, combustion stability index COV, ignition delay period, main combustion period, combustion center of gravity, in-cylinder pressure maximum value, etc.) is determined based on the output of the in-cylinder pressure sensor 35. One). The processing in step 204 serves as a combustion state information detecting means in the claims.

この後、ステップ205に進み、改質用燃料の噴射量とEGRガス流量に応じた劣化判定閾値をマップ等により算出する。更に、改質制御の開始前に検出した燃焼パラメータに応じて劣化判定閾値を補正するようにしても良い。   Thereafter, the process proceeds to step 205, and a deterioration determination threshold corresponding to the injection amount of the reforming fuel and the EGR gas flow rate is calculated using a map or the like. Furthermore, the deterioration determination threshold value may be corrected according to the combustion parameter detected before the start of reforming control.

この後、ステップ206に進み、燃焼パラメータを劣化判定閾値と比較して、燃焼パラメータが正常範囲内であるか否かを判定する。この際、燃焼パラメータとして、燃焼安定性指標COV、着火遅れ期間、主燃焼期間を用いる場合には、燃焼パラメータ(燃焼安定性指標COV、着火遅れ期間、主燃焼期間)が劣化判定閾値以下であるか否かによって、燃焼パラメータが正常範囲内であるか否かを判定する。一方、燃焼パラメータとして、燃焼重心、筒内圧力最大値を用いる場合には、燃焼パラメータ(燃焼重心、筒内圧力最大値)が劣化判定閾値以上であるか否かによって、燃焼パラメータが正常範囲内であるか否かを判定する。   Thereafter, the process proceeds to step 206, where the combustion parameter is compared with a deterioration determination threshold value to determine whether the combustion parameter is within a normal range. At this time, when the combustion stability index COV, the ignition delay period, and the main combustion period are used as the combustion parameters, the combustion parameters (the combustion stability index COV, the ignition delay period, and the main combustion period) are equal to or less than the deterioration determination threshold value. Whether or not the combustion parameter is within the normal range is determined. On the other hand, when the combustion center of gravity and the maximum in-cylinder pressure are used as the combustion parameter, the combustion parameter is within the normal range depending on whether or not the combustion parameter (combustion center of gravity and maximum in-cylinder pressure) is equal to or greater than the deterioration determination threshold. It is determined whether or not.

このステップ206で、燃焼パラメータが正常範囲内であると判定された場合には、ステップ207に進み、燃料改質触媒28の劣化無し(正常)と判定して、本ルーチンを終了する。   If it is determined in step 206 that the combustion parameter is within the normal range, the process proceeds to step 207, where it is determined that the fuel reforming catalyst 28 has not deteriorated (normal), and this routine ends.

これに対して、上記ステップ206で、燃焼パラメータが正常範囲内ではないと判定された場合には、ステップ208に進み、燃料改質触媒28の劣化有り(異常)と判定して、ステップ209に進み、フェールセーフ処理(EGRガス流量を減量すると共に改質用燃料の噴射を停止して燃料の改質を禁止する処理)を実行する。   On the other hand, if it is determined in step 206 that the combustion parameter is not within the normal range, the process proceeds to step 208, where it is determined that the fuel reforming catalyst 28 has deteriorated (abnormal), and the process proceeds to step 209. Advancing and performing a fail-safe process (a process of reducing the EGR gas flow rate and stopping the reforming fuel injection to prohibit the reforming of the fuel).

図13を用いて本実施例2の触媒劣化診断の実行例を説明する。
図13に示すように、通常運転モードから改質運転モードに切り換えられたときに、EGR弁25を開弁して排出ガスの一部をEGRガスとして吸気側へ還流させながら、改質用燃料噴射弁26でEGRガス中に改質用の燃料を噴射して、燃料改質触媒28でEGRガス中の燃料を燃焼性の高い状態に改質する改質制御を実行する。
An execution example of the catalyst deterioration diagnosis according to the second embodiment will be described with reference to FIG.
As shown in FIG. 13, when the normal operation mode is switched to the reforming operation mode, the EGR valve 25 is opened and a part of the exhaust gas is recirculated to the intake side as EGR gas, and the reforming fuel The reforming control is performed in which the fuel for reforming is injected into the EGR gas by the injection valve 26, and the fuel in the EGR gas is reformed to a highly combustible state by the fuel reforming catalyst 28.

本実施例2では、この改質制御の実行中に筒内圧力センサ35の出力に基づいてエンジン11の燃焼状態の情報である燃焼パラメータを算出(検出)し、この燃焼パラメータを劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定する劣化診断を行うようにしたので、燃料改質触媒28の劣化の有無を精度良く判定することができる。   In the second embodiment, during execution of the reforming control, a combustion parameter that is information on the combustion state of the engine 11 is calculated (detected) based on the output of the in-cylinder pressure sensor 35, and this combustion parameter is used as a deterioration determination threshold value. In comparison, since the deterioration diagnosis for determining whether or not the fuel reforming catalyst 28 has deteriorated is performed, the presence or absence of deterioration of the fuel reforming catalyst 28 can be accurately determined.

また、図13に破線で示すように、燃料改質触媒28の劣化診断機能を備えていないシステムでは、燃料改質触媒28の劣化が発生しても、それを検出できず、燃料改質触媒28の劣化発生時にフェールセーフ処理を実施できないため、エンジン11の燃焼状態が悪化してトルク変動が発生してドライバビリティが悪化する可能性がある。   Further, as shown by a broken line in FIG. 13, in a system that does not have a function for diagnosing the deterioration of the fuel reforming catalyst 28, even if the fuel reforming catalyst 28 is deteriorated, it cannot be detected. Since the fail-safe process cannot be performed when the deterioration 28 occurs, there is a possibility that the combustion state of the engine 11 deteriorates and torque fluctuations occur and drivability deteriorates.

これに対して、本実施例2では、改質制御の実行中に検出した燃焼パラメータを劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定し、燃料改質触媒28の劣化有りと判定された場合には、フェールセーフ処理(EGRガス流量を減量すると共に改質用燃料の噴射を停止して燃料の改質を禁止する処理)を実行するようにしたので、エンジン11の燃焼状態の悪化を抑制してトルク変動の発生を抑制することができ、ドライバビリティの悪化を防止することができる。   On the other hand, in the second embodiment, the combustion parameter detected during the execution of the reforming control is compared with the degradation determination threshold value to determine whether or not the fuel reforming catalyst 28 is degraded, and the degradation of the fuel reforming catalyst 28 is determined. When it is determined that there is, the fail safe process (the process of reducing the EGR gas flow rate and stopping the reforming fuel injection to prohibit the reforming of the fuel) is executed. It is possible to suppress the deterioration of the combustion state and suppress the occurrence of torque fluctuation, and to prevent the deterioration of drivability.

尚、上記実施例2では、改質制御の実行中に検出した燃焼パラメータを劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしたが、劣化診断方法は、これに限定されず、適宜変更しても良く、例えば、改質制御の開始前に検出した燃焼パラメータと改質制御の開始後に検出した燃焼パラメータとの差又は比を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしても良い。   In the second embodiment, the combustion parameter detected during the execution of the reforming control is compared with the deterioration determination threshold value to determine whether or not the fuel reforming catalyst 28 has deteriorated. For example, the difference or ratio between the combustion parameter detected before the start of the reforming control and the combustion parameter detected after the start of the reforming control is compared with the deterioration determination threshold value. The presence or absence of deterioration of the reforming catalyst 28 may be determined.

燃料改質触媒28が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒28による燃料の改質度合が低下して、改質制御の開始前の燃焼状態と改質制御の開始後の燃焼状態との関係が正常時とは異なってくるため、改質制御の開始前に検出した燃焼パラメータと改質制御の開始後に検出した燃焼パラメータとを用いれば、燃料改質触媒28の劣化の有無を精度良く判定することができる。   When the fuel reforming catalyst 28 deteriorates, the degree of reforming of the fuel by the fuel reforming catalyst 28 is reduced as compared with the normal state (when there is no deterioration), and the combustion state and the reforming control before the start of the reforming control are reduced. Since the relationship with the combustion state after the start is different from the normal state, the fuel reforming catalyst 28 can be obtained by using the combustion parameter detected before the start of the reforming control and the combustion parameter detected after the start of the reforming control. The presence or absence of deterioration can be determined with high accuracy.

また、上記実施例2では、燃焼パラメータ(燃焼状態の情報)として、燃焼安定性指標COV、着火遅れ期間、主燃焼期間、燃焼重心、筒内圧力最大値等を検出するようにしたが、これに限定されず、燃焼パラメータ(燃焼状態の情報)として、例えば、EGR限界、燃焼速度、エンジン回転変動、トルク変動等を検出するようにしても良い。   In the second embodiment, the combustion stability index COV, the ignition delay period, the main combustion period, the combustion center of gravity, the in-cylinder pressure maximum value, and the like are detected as the combustion parameters (combustion state information). For example, EGR limit, combustion speed, engine rotation fluctuation, torque fluctuation, etc. may be detected as the combustion parameter (combustion state information).

また、上記実施例2では、燃焼状態を検出するセンサとして、筒内圧力センサ35を用いるようにしたが、これに限定されず、例えば、点火プラグ18に流れるイオン電流を検出するセンサを点火プラグ18と一体又は別体で設けるようにしても良い。   In the second embodiment, the in-cylinder pressure sensor 35 is used as a sensor for detecting the combustion state. However, the present invention is not limited to this. For example, a sensor for detecting an ionic current flowing through the ignition plug 18 is an ignition plug. 18 may be provided integrally or separately.

次に、図14乃至図17を用いて本発明の実施例3を説明する。但し、前記実施例1,2と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1,2と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those of the first and second embodiments will be omitted or simplified, and different parts from the first and second embodiments will be mainly described.

本実施例3では、図14に示すように、EGR配管24のうちの燃料改質触媒28の出口側に、燃料の改質度合を検出する改質度合センサ36(改質度合検出手段)が設けられている。この改質度合センサ36は、例えば、燃料の改質度合として水素濃度を検出する水素センサを用いる。尚、温度センサ30,31を省略した構成としても良い。   In the third embodiment, as shown in FIG. 14, a reforming degree sensor 36 (reforming degree detecting means) for detecting the reforming degree of fuel is provided on the outlet side of the fuel reforming catalyst 28 in the EGR pipe 24. Is provided. The reforming degree sensor 36 uses, for example, a hydrogen sensor that detects the hydrogen concentration as the degree of reforming of the fuel. Note that the temperature sensors 30 and 31 may be omitted.

また、本実施例3では、ECU34により後述する図16の触媒劣化診断ルーチンを実行することで、改質制御の実行中に改質度合センサ36で検出した燃料の改質度合(例えば水素濃度)を所定の劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定する劣化診断を行う。   Further, in the third embodiment, the ECU 34 executes a catalyst deterioration diagnosis routine shown in FIG. 16 to be described later, so that the fuel reforming degree (for example, hydrogen concentration) detected by the reforming degree sensor 36 during the execution of reforming control. Is compared with a predetermined deterioration determination threshold value to perform deterioration diagnosis for determining whether or not the fuel reforming catalyst 28 has deteriorated.

図15に示すように、燃料改質触媒28が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒28による燃料の改質度合が低下するため、改質制御の実行中に検出した改質度合を劣化判定閾値と比較すれば、燃料改質触媒28の劣化の有無を精度良く判定することができる。   As shown in FIG. 15, when the fuel reforming catalyst 28 deteriorates, the degree of fuel reforming by the fuel reforming catalyst 28 decreases compared with the normal time (when no deterioration occurs). By comparing the detected degree of reforming with the deterioration determination threshold value, it is possible to accurately determine whether the fuel reforming catalyst 28 has deteriorated.

以下、本実施例3でECU34が実行する図16の触媒劣化診断ルーチンの処理内容を説明する。   Hereinafter, the processing content of the catalyst deterioration diagnosis routine of FIG. 16 executed by the ECU 34 in the third embodiment will be described.

図16に示す触媒劣化診断ルーチンは、ECU34の電源オン期間中に所定周期で繰り返し実行される。本ルーチンが起動されると、まず、ステップ301で、改質運転モードであるか否かを判定し、改質運転モードであると判定された場合には、ステップ302に進み、EGR弁25を開弁した後、ステップ303に進み、改質用燃料噴射弁26で改質用の燃料を噴射して、燃料改質触媒28でEGRガス中の燃料を改質する改質制御を実行する。   The catalyst deterioration diagnosis routine shown in FIG. 16 is repeatedly executed at a predetermined cycle during the power-on period of the ECU 34. When this routine is started, first, at step 301, it is determined whether or not it is the reforming operation mode. When it is determined that it is the reforming operation mode, the routine proceeds to step 302 and the EGR valve 25 is turned on. After the valve is opened, the routine proceeds to step 303, where reforming fuel is injected by the reforming fuel injection valve 26, and reforming control for reforming the fuel in the EGR gas by the fuel reforming catalyst 28 is executed.

この後、ステップ304に進み、改質度合センサ36で検出した燃料の改質度合(例えば水素濃度)を読み込んだ後、ステップ305に進み、改質用燃料の噴射量とEGRガス流量に応じた劣化判定閾値をマップ等により算出する。更に、改質制御の開始前に検出した改質度合に応じて劣化判定閾値を補正するようにしても良い。   Thereafter, the process proceeds to step 304, and after reading the reforming degree (for example, hydrogen concentration) of the fuel detected by the reforming degree sensor 36, the process proceeds to step 305, in accordance with the injection amount of the reforming fuel and the EGR gas flow rate. A deterioration determination threshold value is calculated using a map or the like. Furthermore, the deterioration determination threshold value may be corrected according to the degree of reform detected before the start of reform control.

この後、ステップ306に進み、改質度合が劣化判定閾値以上であるか否かを判定する。このステップ306で、改質度合が劣化判定閾値以上であると判定された場合には、ステップ307に進み、燃料改質触媒28の劣化無し(正常)と判定して、本ルーチンを終了する。   Thereafter, the process proceeds to step 306, where it is determined whether or not the reforming degree is equal to or greater than a deterioration determination threshold value. If it is determined in step 306 that the reforming degree is equal to or greater than the deterioration determination threshold value, the process proceeds to step 307, where it is determined that the fuel reforming catalyst 28 has not deteriorated (normal), and this routine ends.

これに対して、上記ステップ306で、改質度合が劣化判定閾値よりも小さいと判定された場合には、ステップ308に進み、燃料改質触媒28の劣化有り(異常)と判定して、ステップ309に進み、フェールセーフ処理(EGRガス流量を減量すると共に改質用燃料の噴射を停止して燃料の改質を禁止する処理)を実行する。   On the other hand, if it is determined in step 306 that the reforming degree is smaller than the deterioration determination threshold, the process proceeds to step 308, where it is determined that the fuel reforming catalyst 28 has deteriorated (abnormal), and step Proceeding to 309, a fail-safe process (a process of reducing the EGR gas flow rate and stopping the reforming fuel injection to prohibit the reforming of the fuel) is executed.

図17を用いて本実施例3の触媒劣化診断の実行例を説明する。
図17に示すように、通常運転モードから改質運転モードに切り換えられたときに、EGR弁25を開弁して排出ガスの一部をEGRガスとして吸気側へ還流させながら、改質用燃料噴射弁26でEGRガス中に改質用の燃料を噴射して、燃料改質触媒28でEGRガス中の燃料を燃焼性の高い状態に改質する改質制御を実行する。
An execution example of the catalyst deterioration diagnosis according to the third embodiment will be described with reference to FIG.
As shown in FIG. 17, when the normal operation mode is switched to the reforming operation mode, the EGR valve 25 is opened and a part of the exhaust gas is recirculated to the intake side as EGR gas, and the reforming fuel The reforming control is performed in which the fuel for reforming is injected into the EGR gas by the injection valve 26, and the fuel in the EGR gas is reformed to a highly combustible state by the fuel reforming catalyst 28.

本実施例3では、この改質制御の実行中に改質度合センサ36で燃料の改質度合(例えば水素濃度)検出し、この改質度合を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定する劣化診断を行うようにしたので、燃料改質触媒28の劣化の有無を精度良く判定することができる。   In the third embodiment, the reforming degree sensor 36 detects the reforming degree (for example, hydrogen concentration) of the fuel during execution of the reforming control, and compares the reforming degree with the deterioration determination threshold value, thereby the fuel reforming catalyst 28. Since the deterioration diagnosis for determining the presence or absence of the deterioration is performed, the presence or absence of the deterioration of the fuel reforming catalyst 28 can be accurately determined.

また、図17に破線で示すように、燃料改質触媒28の劣化診断機能を備えていないシステムでは、燃料改質触媒28の劣化が発生しても、それを検出できず、燃料改質触媒28の劣化発生時にフェールセーフ処理を実施できないため、エンジン11の燃焼状態が悪化してトルク変動が発生してドライバビリティが悪化する可能性がある。   Further, as shown by a broken line in FIG. 17, in a system that does not have a function for diagnosing the deterioration of the fuel reforming catalyst 28, even if the fuel reforming catalyst 28 is deteriorated, it cannot be detected. Since the fail-safe process cannot be performed when the deterioration 28 occurs, there is a possibility that the combustion state of the engine 11 deteriorates and torque fluctuations occur and drivability deteriorates.

これに対して、本実施例3では、改質制御の実行中に検出した改質度合を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定し、燃料改質触媒28の劣化有りと判定された場合には、フェールセーフ処理(EGRガス流量を減量すると共に改質用燃料の噴射を停止して燃料の改質を禁止する処理)を実行するようにしたので、エンジン11の燃焼状態の悪化を抑制してトルク変動の発生を抑制することができ、ドライバビリティの悪化を防止することができる。   On the other hand, in the third embodiment, the reforming degree detected during the execution of the reforming control is compared with the degradation determination threshold value to determine whether or not the fuel reforming catalyst 28 has deteriorated. When it is determined that there is deterioration, a fail-safe process (a process of reducing the EGR gas flow rate and stopping the reforming fuel injection to prohibit the reforming of the fuel) is executed. The deterioration of the combustion state can be suppressed to suppress the occurrence of torque fluctuation, and the drivability can be prevented from deteriorating.

尚、上記実施例3では、改質制御の実行中に検出した改質度合を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしたが、劣化診断方法は、これに限定されず、適宜変更しても良く、例えば、改質制御の開始前に検出した改質度合と改質制御の開始後に検出した改質度合との差又は比を劣化判定閾値と比較して燃料改質触媒28の劣化の有無を判定するようにしても良い。   In the third embodiment, the degree of deterioration of the fuel reforming catalyst 28 is determined by comparing the degree of reforming detected during the execution of the reforming control with the deterioration determination threshold value. For example, the difference or ratio between the reforming degree detected before the start of the reforming control and the reforming degree detected after the start of the reforming control is compared with the deterioration determination threshold value. Thus, the presence or absence of deterioration of the fuel reforming catalyst 28 may be determined.

燃料改質触媒28が劣化すると、正常時(劣化無し時)と比べて、燃料改質触媒28による燃料の改質度合が低下して、改質制御の開始前の燃料の改質度合と改質制御の開始後の燃料の改質度合との関係が正常時とは異なってくるため、改質制御の開始前に検出した改質度合と改質制御の開始後に検出した改質度合とを用いれば、燃料改質触媒28の劣化の有無を精度良く判定することができる。   When the fuel reforming catalyst 28 deteriorates, the degree of fuel reforming by the fuel reforming catalyst 28 is lower than when normal (when there is no deterioration), and the degree of fuel reforming before the start of reforming control is improved. The relationship between the reforming degree of the fuel after the start of the quality control differs from the normal time, so the reforming degree detected before starting the reforming control and the reforming degree detected after starting the reforming control are If used, the presence or absence of deterioration of the fuel reforming catalyst 28 can be accurately determined.

また、上記各実施例1〜3では、EGR配管に改質用燃料噴射弁と燃料改質触媒を配置したシステムに本発明を適用したが、これに限定されず、例えば、吸気管に吸入空気を過給する過給機を設けると共に、吸気管のうちの過給機の下流側に改質用燃料噴射弁と燃料改質触媒を配置したシステムに本発明を適用しても良い。   In the first to third embodiments, the present invention is applied to a system in which a reforming fuel injection valve and a fuel reforming catalyst are arranged in an EGR pipe. However, the present invention is not limited to this. The present invention may be applied to a system in which a supercharger for supercharging is provided and a reforming fuel injection valve and a fuel reforming catalyst are arranged downstream of the supercharger in the intake pipe.

その他、本発明は、吸気ポート噴射式エンジンに限定されず、筒内噴射式エンジンや、吸気ポート噴射用の燃料噴射弁と筒内噴射用の燃料噴射弁の両方を備えたデュアル噴射式のエンジンにも適用して実施できる。   In addition, the present invention is not limited to the intake port injection type engine, but is an in-cylinder injection type engine or a dual injection type engine having both a fuel injection valve for intake port injection and a fuel injection valve for in-cylinder injection. It can also be applied to.

11…エンジン(内燃機関)、12…吸気管、14…スロットルバルブ、17…燃料噴射弁、18…点火プラグ、19…排気管、23…EGR装置、24…EGR配管、25…EGR弁、26…改質用燃料噴射弁(改質用燃料噴射手段)、27…燃料噴射装置、28…燃料改質触媒、29…燃料改質器、30…入口側温度センサ(入口側温度検出手段)、31…出口側温度センサ(出口側温度検出手段)、34…ECU(触媒劣化診断手段,燃焼状態情報検出手段)、35…筒内圧力センサ、36…改質度合センサ(改質度合検出手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Throttle valve, 17 ... Fuel injection valve, 18 ... Spark plug, 19 ... Exhaust pipe, 23 ... EGR device, 24 ... EGR piping, 25 ... EGR valve, 26 ... reforming fuel injection valve (reforming fuel injection means), 27 ... fuel injection device, 28 ... fuel reforming catalyst, 29 ... fuel reformer, 30 ... inlet side temperature sensor (inlet side temperature detecting means), 31... Outlet side temperature sensor (outlet side temperature detection means) 34... ECU (catalyst deterioration diagnosis means, combustion state information detection means) 35 .. cylinder pressure sensor 36 .. reforming degree sensor (reforming degree detection means)

Claims (9)

内燃機関の吸気系に供給される媒体ガス中に改質用の燃料を噴射する改質用燃料噴射手段と、前記媒体ガス中の燃料を改質する燃料改質触媒とを備えた内燃機関の燃料改質システムの触媒劣化診断装置において、
前記燃料改質触媒での反応熱量の情報を検出する反応熱量情報検出手段と、
前記反応熱量情報検出手段で検出した反応熱量の情報に基づいて前記燃料改質触媒の劣化診断を行う触媒劣化診断手段と
を備えていることを特徴とする内燃機関の燃料改質システムの触媒劣化診断装置。
An internal combustion engine comprising: a reforming fuel injection means for injecting a reforming fuel into a medium gas supplied to an intake system of the internal combustion engine; and a fuel reforming catalyst for reforming the fuel in the medium gas. In the catalyst deterioration diagnosis device of the fuel reforming system,
Reaction heat quantity information detecting means for detecting information of the reaction heat quantity in the fuel reforming catalyst;
A catalyst deterioration diagnosis unit for diagnosing deterioration of the fuel reforming catalyst based on information of the reaction heat amount detected by the reaction heat amount information detection unit; Diagnostic device.
前記反応熱量情報検出手段として、前記燃料改質触媒の入口側の温度(以下「触媒入口側温度」という)を検出する入口側温度検出手段と、前記燃料改質触媒の出口側の温度(以下「触媒出口側温度」という)を検出する出口側温度検出手段とを備え、
前記触媒劣化診断手段は、前記燃料改質触媒で燃料を改質する改質制御の実行中に前記入口側温度検出手段で検出した触媒入口側温度と前記出口側温度検出手段で検出した触媒出口側温度とに基づいて前記燃料改質触媒の劣化診断を行うことを特徴とする請求項1に記載の内燃機関の燃料改質システムの触媒劣化診断装置。
As the reaction heat quantity information detecting means, an inlet side temperature detecting means for detecting an inlet side temperature of the fuel reforming catalyst (hereinafter referred to as “catalyst inlet side temperature”), and an outlet side temperature of the fuel reforming catalyst (hereinafter referred to as “catalyst inlet side temperature”). An outlet side temperature detecting means for detecting "catalyst outlet side temperature"),
The catalyst deterioration diagnosing means includes a catalyst inlet side temperature detected by the inlet side temperature detecting means and a catalyst outlet detected by the outlet side temperature detecting means during execution of reforming control for reforming fuel by the fuel reforming catalyst. 2. The catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine according to claim 1, wherein the deterioration diagnosis of the fuel reforming catalyst is performed based on a side temperature.
前記反応熱量情報検出手段として、前記燃料改質触媒の温度(以下「触媒温度」という)又は前記燃料改質触媒の出口側の温度(以下「触媒出口側温度」という)を検出する温度検出手段を備え、
前記触媒劣化診断手段は、前記燃料改質触媒で燃料を改質する改質制御の開始前に前記温度検出手段で検出した触媒温度又は触媒出口側温度と前記改質制御の開始後に前記温度検出手段で検出した触媒温度又は触媒出口側温度とに基づいて前記燃料改質触媒の劣化診断を行うことを特徴とする請求項1に記載の内燃機関の燃料改質システムの触媒劣化診断装置。
Temperature detecting means for detecting the temperature of the fuel reforming catalyst (hereinafter referred to as “catalyst temperature”) or the temperature on the outlet side of the fuel reforming catalyst (hereinafter referred to as “catalyst outlet side temperature”) as the reaction heat quantity information detecting means. With
The catalyst deterioration diagnosing means detects the temperature of the catalyst or the catalyst outlet side detected by the temperature detecting means before the start of reforming control for reforming the fuel with the fuel reforming catalyst and the temperature after starting the reforming control. The catalyst deterioration diagnosis apparatus for a fuel reforming system of an internal combustion engine according to claim 1, wherein the deterioration diagnosis of the fuel reforming catalyst is performed based on the catalyst temperature detected by the means or the catalyst outlet side temperature.
内燃機関の吸気系に供給される媒体ガス中に改質用の燃料を噴射する改質用燃料噴射手段と、前記媒体ガス中の燃料を改質する燃料改質触媒とを備えた内燃機関の燃料改質システムの触媒劣化診断装置において、
前記内燃機関の燃焼状態の情報を検出する燃焼状態情報検出手段と、
前記燃焼状態情報検出手段で検出した燃焼状態の情報に基づいて前記燃料改質触媒の劣化診断を行う触媒劣化診断手段と
を備えていることを特徴とする内燃機関の燃料改質システムの触媒劣化診断装置。
An internal combustion engine comprising: a reforming fuel injection means for injecting a reforming fuel into a medium gas supplied to an intake system of the internal combustion engine; and a fuel reforming catalyst for reforming the fuel in the medium gas. In the catalyst deterioration diagnosis device of the fuel reforming system,
Combustion state information detecting means for detecting information on the combustion state of the internal combustion engine;
Catalyst deterioration diagnosis means for diagnosing deterioration of the fuel reforming catalyst based on information on the combustion state detected by the combustion state information detection means. Diagnostic device.
前記触媒劣化診断手段は、前記燃料改質触媒で燃料を改質する改質制御の開始前に前記燃焼状態情報検出手段で検出した燃焼状態の情報と前記改質制御の開始後に前記燃焼状態情報検出手段で検出した燃焼状態の情報とに基づいて前記燃料改質触媒の劣化診断を行うことを特徴とする請求項4に記載の内燃機関の燃料改質システムの触媒劣化診断装置。   The catalyst deterioration diagnosing means includes information on the combustion state detected by the combustion state information detecting means before the start of reforming control for reforming fuel with the fuel reforming catalyst and the combustion state information after starting the reforming control. 5. The catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine according to claim 4, wherein the deterioration diagnosis of the fuel reforming catalyst is performed based on information on a combustion state detected by a detecting means. 前記燃焼状態情報検出手段は、前記燃焼状態の情報として、燃焼安定性指標、着火遅れ期間、主燃焼期間、燃焼重心、筒内圧力最大値、EGR限界、燃焼速度のうちの少なくとも一つを検出することを特徴とする請求項4又は5に記載の内燃機関の燃料改質システムの触媒劣化診断装置。   The combustion state information detection means detects at least one of a combustion stability index, an ignition delay period, a main combustion period, a combustion center of gravity, an in-cylinder pressure maximum value, an EGR limit, and a combustion speed as the combustion state information. The catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine according to claim 4 or 5, wherein 内燃機関の吸気系に供給される媒体ガス中に改質用の燃料を噴射する改質用燃料噴射手段と、前記媒体ガス中の燃料を改質する燃料改質触媒とを備えた内燃機関の燃料改質システムの触媒劣化診断装置において、
前記燃料改質触媒の出口側で燃料の改質度合を検出する改質度合検出手段と、
前記改質度合検出手段で検出した燃料の改質度合に基づいて前記燃料改質触媒の劣化診断を行う触媒劣化診断手段と
を備えていることを特徴とする内燃機関の燃料改質システムの触媒劣化診断装置。
An internal combustion engine comprising: a reforming fuel injection means for injecting a reforming fuel into a medium gas supplied to an intake system of the internal combustion engine; and a fuel reforming catalyst for reforming the fuel in the medium gas. In the catalyst deterioration diagnosis device of the fuel reforming system,
A reforming degree detecting means for detecting the reforming degree of the fuel on the outlet side of the fuel reforming catalyst;
A catalyst for diagnosing deterioration of the fuel reforming catalyst based on the degree of reforming of the fuel detected by the reforming degree detecting means; Deterioration diagnostic device.
前記触媒劣化診断手段は、前記燃料改質触媒で燃料を改質する改質制御の開始前に前記改質度合検出手段で検出した燃料の改質度合と前記改質制御の開始後に前記改質度合検出手段で検出した燃料の改質度合とに基づいて前記燃料改質触媒の劣化診断を行うことを特徴とする請求項7に記載の内燃機関の燃料改質システムの触媒劣化診断装置。   The catalyst deterioration diagnosing means includes a fuel reforming degree detected by the reforming degree detecting means before starting reforming control for reforming fuel by the fuel reforming catalyst and the reforming after starting reforming control. 8. The catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine according to claim 7, wherein deterioration diagnosis of the fuel reforming catalyst is performed based on a fuel reforming degree detected by a degree detecting means. 前記改質度合検出手段は、前記燃料の改質度合として水素濃度を検出する水素センサであることを特徴とする請求項7又は8に記載の内燃機関の燃料改質システムの触媒劣化診断装置。   The catalyst deterioration diagnosis device for a fuel reforming system of an internal combustion engine according to claim 7 or 8, wherein the reforming degree detection means is a hydrogen sensor that detects a hydrogen concentration as the reforming degree of the fuel.
JP2011112142A 2011-05-19 2011-05-19 Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine Withdrawn JP2012241608A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011112142A JP2012241608A (en) 2011-05-19 2011-05-19 Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine
US13/474,791 US20120291424A1 (en) 2011-05-19 2012-05-18 Diagnostic apparatus for catalyst in fuel-property reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011112142A JP2012241608A (en) 2011-05-19 2011-05-19 Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012241608A true JP2012241608A (en) 2012-12-10

Family

ID=47173884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011112142A Withdrawn JP2012241608A (en) 2011-05-19 2011-05-19 Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine

Country Status (2)

Country Link
US (1) US20120291424A1 (en)
JP (1) JP2012241608A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125979A (en) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd Control device of engine and control method
JP2016130186A (en) * 2015-01-13 2016-07-21 株式会社デンソー Fuel reformer
KR101855788B1 (en) * 2016-11-15 2018-06-20 현대자동차 주식회사 Reforming system and reformer malfunction diagnosis method using pressure sensor
KR20200070768A (en) * 2018-12-10 2020-06-18 현대자동차주식회사 Fuel reforming system and diagnotic method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255358A (en) * 2011-06-08 2012-12-27 Denso Corp Failure diagnostic apparatus for fuel-property reforming system for internal combustion engine
WO2014118574A1 (en) * 2013-02-04 2014-08-07 Johnson Matthey Public Limited Company Exhaust system with a reformer catalyst
FR3005997B1 (en) * 2013-05-22 2015-06-19 Peugeot Citroen Automobiles Sa MOTOR VEHICLE ENGINE WITH EXHAUST GAS RECIRCULATION WITH IMPROVED COOLING
EP3080039A1 (en) 2013-12-13 2016-10-19 Exxonmobil Research And Engineering Company Natural gas vehicle powertrain with onboard catalytic reformer
KR101786659B1 (en) * 2015-06-30 2017-10-18 현대자동차주식회사 Fault diagnosis system and mehtod of exhaust gas temperature sensor of hybrid vehicle
US9945801B1 (en) 2016-10-14 2018-04-17 Air Products And Chemicals, Inc. Monitoring the activity of reforming catalyst
EP3309121A1 (en) * 2016-10-14 2018-04-18 Air Products And Chemicals, Inc. Monitoring the activity of reforming catalyst
KR20180068194A (en) * 2016-12-13 2018-06-21 현대자동차주식회사 Fuel reforming system and method of controlling flow rate of exhaust gas recirculation gas in a fuel reformer
US11268434B1 (en) 2020-08-20 2022-03-08 Saudi Arabian Oil Company Method and system for extending dilution limit of a prechamber spark ignition engine
JP7157832B2 (en) * 2021-01-22 2022-10-20 本田技研工業株式会社 fuel reformer
US11674419B1 (en) 2021-11-24 2023-06-13 Saudi Arabian Oil Company Engine system with catalytic reactor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6832473B2 (en) * 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
JP4251321B2 (en) * 2003-01-28 2009-04-08 トヨタ自動車株式会社 Internal combustion engine and method of operating internal combustion engine
JP4038770B2 (en) * 2003-08-27 2008-01-30 トヨタ自動車株式会社 Apparatus and method for determining state of reformer
JP4052268B2 (en) * 2004-03-11 2008-02-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3962386B2 (en) * 2004-03-11 2007-08-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4314134B2 (en) * 2004-03-11 2009-08-12 トヨタ自動車株式会社 Particulate matter regeneration control device for internal combustion engine exhaust purification device
JP4248427B2 (en) * 2004-03-11 2009-04-02 トヨタ自動車株式会社 Particulate matter regeneration control device for internal combustion engine exhaust purification device
JP4218556B2 (en) * 2004-03-11 2009-02-04 トヨタ自動車株式会社 Particulate matter regeneration control device for internal combustion engine exhaust purification device
JP4321332B2 (en) * 2004-04-01 2009-08-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4544011B2 (en) * 2005-04-08 2010-09-15 トヨタ自動車株式会社 Internal combustion engine exhaust purification system
JP4175427B1 (en) * 2007-05-16 2008-11-05 いすゞ自動車株式会社 NOx purification system control method and NOx purification system
JP5018550B2 (en) * 2008-02-27 2012-09-05 トヨタ自動車株式会社 Fuel reformer
JP4530081B2 (en) * 2008-07-25 2010-08-25 トヨタ自動車株式会社 Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125979A (en) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd Control device of engine and control method
JP2016130186A (en) * 2015-01-13 2016-07-21 株式会社デンソー Fuel reformer
WO2016113812A1 (en) * 2015-01-13 2016-07-21 株式会社デンソー Fuel reformer
KR101855788B1 (en) * 2016-11-15 2018-06-20 현대자동차 주식회사 Reforming system and reformer malfunction diagnosis method using pressure sensor
US10655553B2 (en) 2016-11-15 2020-05-19 Hyundai Motor Company Reforming system and reformer malfunction diagnosis method using pressure sensor
KR20200070768A (en) * 2018-12-10 2020-06-18 현대자동차주식회사 Fuel reforming system and diagnotic method thereof
KR102552026B1 (en) 2018-12-10 2023-07-05 현대자동차 주식회사 Fuel reforming system and diagnotic method thereof

Also Published As

Publication number Publication date
US20120291424A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP2012241608A (en) Diagnostic apparatus for deterioration in catalyst in fuel-reforming system for internal combustion engine
JP4477644B2 (en) Control device for internal combustion engine
US9677484B2 (en) Fuel reformer for internal-combustion engine
US8850877B2 (en) Diagnostic apparatus for fuel-property reforming system
JP4013704B2 (en) Exhaust reformer system for internal combustion engine
CN101558225A (en) Control device and control method for internal combustion engine
JP2012237217A (en) Fuel-property reforming control apparatus for internal combustion engine
JP2009047112A (en) Abnormality diagnosis device for internal combustion engine
JP2008111342A (en) Control device of internal combustion engine
JP2016217262A (en) Control device for internal combustion engine
US9109524B2 (en) Controller for internal combustion engine
JP2010127257A (en) Cetane number determination device
WO2014054095A1 (en) Internal combustion engine
JP2008223516A (en) Failure diagnosis device of exhaust gas recirculation device for engine
JP6394365B2 (en) Fuel reformer for internal combustion engine
JP2009191650A (en) Control device of internal combustion engine
JP2010163932A (en) Catalyst degradation diagnostic device for internal combustion engine
JP2010001846A (en) Abnormality diagnosis apparatus for internal combustion engine
JP2009138695A (en) Internal combustion engine
JP4920077B2 (en) Control device for internal combustion engine
JP2009108681A (en) Abnormality diagnostic device for exhaust gas sensor
JP2013015105A (en) Knock determination apparatus for internal combustion engine
JP5071271B2 (en) Compression self-ignition internal combustion engine
US20130311070A1 (en) Controller for internal combustion engine
JP2009144555A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805