JP2012240216A - 3次元造形装置、造形物及び造形物の製造方法 - Google Patents
3次元造形装置、造形物及び造形物の製造方法 Download PDFInfo
- Publication number
- JP2012240216A JP2012240216A JP2011108989A JP2011108989A JP2012240216A JP 2012240216 A JP2012240216 A JP 2012240216A JP 2011108989 A JP2011108989 A JP 2011108989A JP 2011108989 A JP2011108989 A JP 2011108989A JP 2012240216 A JP2012240216 A JP 2012240216A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- regulating body
- modeling apparatus
- region
- dimensional modeling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/35—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
- B29C64/268—Arrangements for irradiation using laser beams; using electron beams [EB]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/772—Articles characterised by their shape and not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
Abstract
【課題】規制体から材料をきれいに引き剥がすことができる3次元造形装置等を提供すること。
【解決手段】本技術に係る3次元造形装置は、ステージと、規制体と、供給ノズルと、移動機構と、照射ユニットとを具備する。規制体は、第1の方向に沿う直線状の領域を含む表面を有し、表面のうち直線状の領域がステージに最も近くなるように、ステージに対面して配置されている。供給ノズルは、エネルギー線のエネルギーで硬化する材料を、ステージ側と直線状の領域との間の領域であるスリット領域に供給する。移動機構は、少なくとも1層分の材料の硬化層を形成するために、第1の方向とは異なる第2の方向に沿って、規制体及びステージを相対的に移動させることが可能である。照射ユニットは、ステージと規制体とが相対的に静止した状態で、供給ノズルによりスリット領域に供給された材料に、エネルギー線を照射する。
【選択図】図1
【解決手段】本技術に係る3次元造形装置は、ステージと、規制体と、供給ノズルと、移動機構と、照射ユニットとを具備する。規制体は、第1の方向に沿う直線状の領域を含む表面を有し、表面のうち直線状の領域がステージに最も近くなるように、ステージに対面して配置されている。供給ノズルは、エネルギー線のエネルギーで硬化する材料を、ステージ側と直線状の領域との間の領域であるスリット領域に供給する。移動機構は、少なくとも1層分の材料の硬化層を形成するために、第1の方向とは異なる第2の方向に沿って、規制体及びステージを相対的に移動させることが可能である。照射ユニットは、ステージと規制体とが相対的に静止した状態で、供給ノズルによりスリット領域に供給された材料に、エネルギー線を照射する。
【選択図】図1
Description
本技術は、光等のエネルギー線により硬化する材料によって、3次元の物体を形成する3次元造形装置、この3次元造形装置により形成された造形物及びその製造方法に関する。
従来から、3次元の造形物を形成する造形装置は、ラピッドプロトタイピングと呼ばれる装置として知られており、業務用として広く使われている。一般的には、3次元造形装置は、造形される対象物の所定の厚さごとの形状データ、つまり各層ごとの形状データに基づき、1層ずつ造形物を形成していく。
3次元造形装置の主な方式の1つとして、例えば光造形方式は、光硬化性樹脂にレーザ光を部分選択的に照射することにより、樹脂の所望の部分を硬化させて描画し、造形物を形成する方式である。
光造形方式の中には、例えば自由液面法及び規制液面法がある。自由液面法では、光硬化性樹脂の液面が空中に露出しており、レーザ光が空気と液面の界面にフォーカスされることで描画される。自由液面法では、樹脂の積層精度(1層ごとの厚さの精度や1層ごとの樹脂の表面状態の精度)が液面の表面精度によって変わるという問題がある。
そこで、規制液面法では、光硬化性樹脂の液面が例えば平坦なガラス面により規制され、そのガラスを介して、レーザ光が液面とガラス面との界面にフォーカスされることで描画される
特許文献1に記載された光造形装置は、規制液面法を採用している。この光造形装置は、ガラスの撓みを防止して、ガラスを平面に保つための位置規制機構を備えている(例えば、特許文献1の明細書段落[0077]等、図7〜10)。
ガラスまたはフィルムを用いた規制液面法では、各層の造形終了後に、硬化された樹脂をガラスから引き剥がす必要がある。しかし、各層の造形面積が大きくなるほど、引き剥がしに必要な力が大きくなり、場合によっては造形物が崩れたり、造形物が台座(造形物が積層されていくステージ)から剥がれたりすることがある。
以上のような事情に鑑み、本技術の目的は、規制体から材料をきれいに引き剥がすことができる3次元造形装置を提供することにあり、また、その3次元造形装置により形成された造形物及びその製造方法を提供することにある。
上記目的を達成するため、本技術に係る3次元造形装置は、ステージと、規制体と、供給ノズルと、移動機構と、照射ユニットとを具備する。
前記規制体は、第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置されている。
前記供給ノズルは、エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給する。
前記移動機構は、少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させることが可能である。
前記照射ユニットは、前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射する。
前記規制体は、第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置されている。
前記供給ノズルは、エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給する。
前記移動機構は、少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させることが可能である。
前記照射ユニットは、前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射する。
規制体の直線状の領域がステージに最も近くなるように規制体が配置されるので、そのスリット領域またはその近傍の領域で材料にエネルギー線が照射されて材料が硬化する。規制体の直線状の領域がステージに最も近くなるように規制体が配置されるので、規制体及びステージが相対的に第2の方向へ移動することで、規制体の直線状の領域は硬化層の積層方向に沿ってステージから相対的に離れていくように移動する。これにより、規制体から材料の硬化層をきれいに剥がすことができる。
前記規制体の前記表面が曲面であってもよい。
前記規制体は、前記曲面としてシリンドリカル面を含むシリンドリカル形状の一部の形状を有してもよい。規制体が、シリンドリカル体の一部の形状を有するので、3次元造形装置の小型化を実現することができる。
前記規制体は、前記エネルギー線を透過させる材料により形成されてもよい。これにより、照射ユニットは、規制体を介してエネルギー線を材料に照射することができるので、照射ユニットの配置の自由度が向上する。
前記移動機構は、前記第2の方向として、鉛直成分を含む方向に沿って、前記規制体と前記ステージとを相対的に移動させてもよい。
前記移動機構は、前記第1の方向に沿う方向で、前記エネルギー線を、前記規制体及び前記ステージに相対的にスキャンさせるスキャン機構を有してもよい。
本技術に係る造形物の製造方法は、ステージと、第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体とを具備する3次元造形装置を用いて、形成される。
エネルギー線のエネルギーで硬化する材料が、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給される。
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線が照射される。
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させられる。
エネルギー線のエネルギーで硬化する材料が、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給される。
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線が照射される。
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させられる。
本技術に係る造形物は、上記の製造方法によって形成される。
以上、本技術によれば、規制体から光硬化性材料をきれいに引き剥がすことができる。
以下、図面を参照しながら、本技術の実施形態を説明する。
[第1の実施形態]
(3次元造形装置の構成)
図1は、本技術の第1の実施形態に係る3次元造形装置を示す側面図である。図2は、この3次元造形装置をZ軸方向で見た側面図である。図3は、3次元造形装置を示す模式的な側面図及びその制御システムの構成を示すブロック図である。図中、X、Y及びZ軸は、互いに直交する3軸である。
図1は、本技術の第1の実施形態に係る3次元造形装置を示す側面図である。図2は、この3次元造形装置をZ軸方向で見た側面図である。図3は、3次元造形装置を示す模式的な側面図及びその制御システムの構成を示すブロック図である。図中、X、Y及びZ軸は、互いに直交する3軸である。
3次元造形装置100は、ベース11と、ベース11に鉛直方向に立設されたY軸移動機構13と、Y軸移動機構13に接続されたZ軸移動機構15と、Z軸移動機構15に接続されたステージ14とを備える。また、3次元造形装置100は、エネルギー線として例えば紫外線等のレーザ光をステージ14に向けて照射する照射ユニット17を備える。また、3次元造形装置100は、ステージ14に対面して配置された規制体10と、レーザ光により硬化する光硬化性樹脂等の材料を、ステージ14と規制体10との間に供給する供給ノズル16とを備える。
Y軸移動機構13は、Y軸移動モータ131(図3参照)と、ベース11に立設された支持柱134と、支持柱134にY軸方向(第2の方向)に沿って敷設されたガイドレール132と、ガイドレール132に接続され、Y軸移動モータ131によりガイドレール132に沿って移動可能な移動ベース133とを有する。
Z軸移動機構15は、Z軸移動モータ151(図3参照)を有し、ステージ14をZ軸方向に移動させることが可能に構成されている。ステージ14は、図2に示すように例えば円形状に形成されているが、四角でも、その他の形状でも構わない。Y軸移動機構13及びZ軸移動機構15によって、ステージ14はY及びZ軸方向に沿って移動可能とされる。Z軸移動機構15により、ステージ14の表面14aと、規制体10の表面10aのうち最もステージ14に近い領域(後述する直線状の領域A1)との距離が制御される。Y軸移動機構13及びZ軸移動機構15は、移動機構として機能する。
規制体10は、供給ノズル16からステージ14の表面14aに供給された材料のZ軸方向に沿う厚さを規制する。図4は、規制体10を拡大して示す図である。規制体10は、シリンドリカル形状の一部の形状を有する(シリンドリカルレンズ形状)。すなわち、ステージ14側に対面する、規制体10の表面10aは曲面であり、その曲面がシリンドリカル面として形成されている。
図2に示すように、規制体10は一方向(X軸方向)に沿って長く形成されている。規制体10は、取り付け具21によって支持柱19に取り付けられている。取り付け具21には、X軸方向(第1の方向)に沿ってスリット21aが形成されており、このスリット21aを介して照射ユニット17からのレーザ光が規制体10に入射される。
規制体10は、ガラス、アクリル、その他の透明材料により形成されている。規制体10は、エネルギー線を所定の透過率で透過させる材料であれば何でもよい。規制体10の表面10aには、材料の接触角を高める、すなわち疏水性の膜(例えばフッ素等)がコーティングされていてもよい。
図4に示すように、ステージ14は、ステージ14側と規制体10の表面10aとの間に、スリット領域Sを形成するように、Z軸移動機構15により配置可能となっている。ステージ14の表面14aと、規制体10の表面10aのうち最もステージ14に近い部分である、X軸方向に沿った直線状の領域A1とが対面することにより、スリット領域Sが形成される。この直線状の領域A1は、規制体10の表面10aの一部である。
この直線状の領域A1の、Y軸方向の幅は0.1〜1mmである。また、後述する照射ユニット17から照射されるレーザ光のスポット径は、1〜100μmである。しかし、直線状の領域A1の幅及びスポット径は、規制体10の大きさ、造形物の大きさ、造形精度などによって適宜変更可能であり、それらの範囲以外の値も取り得る。
供給ノズル16は、X軸に沿って長い形状を有している。供給ノズル16は、規制体10より上部に配置され、例えば図示しない部材により支持部材を介して支持柱19に取り付けられている。供給ノズル16として、その長手方向に沿って、光硬化性材料R(図4参照)を吐出するための図示を省略した複数の穴を有するタイプのノズルが用いられる。あるいは、供給ノズル16として、その長手方向に沿って設けられたスリットを有するスリットコートタイプのノズルが用いられてもよい。
なお、供給ノズル16には、例えばこの供給ノズル16に光硬化性材料Rを導入するための図示しないポンプ、配管、開閉バルブ等が接続されている。
図1に示すように、照射ユニット17は、レーザ光源171と、レーザ光源171から出射されたレーザ光のビームスポットを絞る対物レンズ172とを備える。これらレーザ光源171及び対物レンズ172は、図示しないホルダにより一体的に保持されている。対物レンズ172は、規制体10を介してスリット領域S、または、スリット領域Sを含むその近傍の領域にある光硬化性材料に焦点を合わせる。すなわち、対物レンズ172はレーザ光の焦点が少なくともスリット領域Sにある光硬化性材料Rに合致するような光軸上の位置に配置される。
照射ユニット17により発生するレーザ光が紫外線である場合、光硬化性材料Rとして、紫外線硬化樹脂が用いられる。
また、上記移動機構は、照射ユニット17を一体的にX軸方向に沿って移動させる、X軸移動モータ181(図3参照)を搭載したX軸移動機構(スキャン機構)18を有する。X軸移動機構18により、照射ユニット17は、レーザ光源18から出射されたレーザ光をX軸方向に沿ってスキャンすることができる。
なお、X軸移動機構として、ポリゴンスキャナあるいはガルバノスキャナを用いてもよい。
なお、X軸移動機構として、ポリゴンスキャナあるいはガルバノスキャナを用いてもよい。
上記取り付け具21のスリット21aはX軸方向に沿って長く形成されている。したがって、X軸移動機構18は、レーザ光をスキャンしている時、そのスリット21aを介して規制体10にレーザ光を入射させることができる。
Z軸移動機構15、Y軸移動機構13及びX軸移動機構18は、例えばボールネジ駆動機構、ラックアンドピニオン駆動機構、またはベルト駆動機構などにより実現することができる。
ベース11上であって、ステージ14の下方には廃液タンク5が設けられている。廃液タンク5には、供給ノズル16から吐出され、ステージ14を伝って流れ落ちる余剰の光硬化性材料等が溜められるようになっている。
なお、支持柱134及び支持柱19はそれぞれ2つずつ設けられたが(図2参照)、これらは、ベース11のX軸方向においてほぼ中央位置に1つずつ設けられていてもよい。
図3に示すように、3次元造形装置100は、Z軸移動モータ151の駆動を制御するZ軸移動モータコントローラ28、Y軸移動モータ131の駆動を制御するY軸移動モータコントローラ27、X軸移動モータ181の駆動を制御するX軸移動モータコントローラ25を備える。また、3次元造形装置100は、レーザ光源171から出射されるレーザ光のパワーを制御するレーザパワーコントローラ26を備える。これらの各コントローラ25〜28の動作は、ホストコンピュータ50により統括的に制御される。図示されていないが、3次元造形装置100は、供給ノズル16に接続されたポンプや開閉バルブを駆動するためのコントローラも備えている。
上記ホストコンピュータ50は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えている。CPUの代わりに、FPGA(Field Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)等のPLD(Programmable Logic Device)が用いられてもよい。各コントローラ25〜28は、これらのようなハードウェアを備えるか、またはソフトウェアによりそれぞれ構成される。
典型的には、ホストコンピュータ50及び各コントローラ25〜28は互いに有線により接続されるが、これらコントローラのうち少なくとも1つは無線により3次元造形装置100内の制御システムに接続されてもよい。
(3次元造形装置の動作)
次に、以上のように構成された3次元造形装置100の動作を説明する。図5A〜Cは、その動作を順に示す図である。図6A〜Dは、その動作時における規制体10及びステージ14の間の領域を拡大して示す図である。
次に、以上のように構成された3次元造形装置100の動作を説明する。図5A〜Cは、その動作を順に示す図である。図6A〜Dは、その動作時における規制体10及びステージ14の間の領域を拡大して示す図である。
図5(A)は、3次元造形装置100の静止状態を示し、移動ベース133が初期位置にある状態を示している。実際に造形を実行する前に、光硬化性材料Rである硬化層の1層分の厚さがホストコンピュータ50を介して設定される。そして、例えばZ軸移動モータコントローラ28の制御に応じたZ軸移動機構15の駆動により、ステージ14が、規制体10の最もステージ14に近い部分である直線状の領域A1に接触した時(図5A参照)のステージ14の高さ位置が、Z軸方向での原点として設定される。
なお、この原点の設定時における、ステージ14のY軸方向での位置は、適宜設定可能である。
原点が設定されると、予め設定された、光硬化性材料Rの1層の厚さ分、ステージ14が規制体10から離れる。
ステージ14が規制体10から離れた後、ステージ14はY軸移動機構13により図5Bに示すような所定の位置である造形開始位置に移動する。この造形開始位置とは、ステージ14と規制体10の直線状の領域A1との間のスリット領域Sが形成することができるようなステージ14のY軸に沿った方向での位置である。この造形開始位置は、スリット領域Sが形成できるようなステージ14の位置であれば、形成される造形物のY軸方向での大きさにより適宜設定が変更され得る。
ステージ14が造形開始位置に位置すると、供給ノズル16から光硬化性材料Rが吐出され、規制体10とステージ14との間に、自重により流れ落ちる。これにより、少なくともスリット領域Sに光硬化性材料Rが満たされる。光硬化性材料Rは表面張力によって、規制体10とステージ14との間に保持される。すなわち、規制体10は、直線状の領域A1によって、X軸方向に沿う1次元的な領域で光硬化性材料Rの液面を規制する。この時のスリット領域S及びその周辺の状態を図4に拡大して示す。このような状態から、レーザ光の光硬化性材料Rへの照射、つまり露光が開始される。
照射ユニット17がレーザ光を照射する。レーザ光源171から発生したレーザ光が対物レンズ172及び規制体10を通り、スリット領域Sの光硬化性材料Rに入射する。照射ユニット17は、X軸移動モータコントローラ25の制御によりX軸に沿った方向で移動しながら、造形対象物の1層分の中のX軸方向の1列分のデータに基づき、レーザパワーコントローラ26の制御に応じて、光硬化性材料Rに対して選択的に露光していく(図6A参照)。
具体的には、レーザパワーコントローラ26は、造形物の上記1列分のデータに応じてレーザパワーの変調信号を生成し、これをレーザ光源171に送ることで、1層分中のX軸方向の1列分の光硬化性材料Rが選択的に露光され、硬化される。少なくともスリット領域Sにある光硬化性材料Rが露光される。レーザ光の照射による露光中は、ステージ14は停止している。
造形物の1層分の厚さは、1〜100μmであるが、この範囲に限られず適宜設定可能である。
以上のようにして、図6Aに示すように、1列分の硬化層R0が形成される。
光硬化性材料RのX軸方向に沿った1列分の露光が終了すると、レーザ光の照射動作が停止し、Y軸移動機構13による移動ベース133の移動によって、ステージ14がY軸に沿った方向で後方側(図5(B)における上側)へ所定のピッチ移動する。この時、図6B及びCに示すように、ステージ14とともに硬化物R0が移動することにより、規制体10及びその硬化物R0の間にせん断力が発生し、規制体10と硬化物R0とが剥離される。上記のように規制体10の表面に疎水性の膜が形成されていることにより、この剥離はさらに容易に行われる。
そして、1層目内における次の1列分(最初の1列に隣接する1列)の選択的な露光が上記と同様に行われる(図6D参照)。これにより、その列の硬化物R1が形成される。
3次元造形装置100は、以上のようなレーザ光のX軸方向に沿ったスキャン照射、及び、ステージ14のY軸方向に沿ったステップ送りを繰り返すことにより、図5Cに示すように、1層分の光硬化性材料Rの選択的な硬化層、つまり1層分の硬化層R’を形成する。このように、いわゆるラスタースキャンの要領で1層分の露光処理が行われる。
ステージ14のこのようなY軸に沿った方向における間欠的な移動のピッチは、レーザビームのスポット径にもより、つまり、造形物を形成するときの分解能にもよるが、この移動のピッチは適宜設定可能である。
1層分の光硬化性材料Rへの露光が終了すると、ステージ14が、Z軸方向へ規制体10からさらに離れるように移動する。そして、これまで説明した動作を繰り返すことにより、硬化層R’が積層されていき、任意の形状の造形物が形成されていく。
以上のように、規制体10の直線状の領域A1がステージ14に最も近くなるように規制体10の表面10aがシリンドリカル面に形成されているので、ステージ14がY軸方向に沿って移動することで、規制体10の直線状の領域A1はZ軸方向に沿ってステージ14から相対的に離れていくように移動する。これにより、上述のようにせん断力が発生し、規制体10から材料の硬化物(図6B、Dに示したR0やR1など)をきれいに剥がすことができる。
従来の規制液面法では、フィルムやガラス面の歪みにより造形物の平面度が悪化していたことも問題の1つであった。これに対し本実施形態では、規制体10の表面の形状はシリンドリカル面であり、直線状の領域A1で光硬化性材料の液面が規制される。したがって、光硬化性材料Rが硬化するときの収縮力が規制体10に加えられても、規制体10に変形や歪みが発生しにくく、また、露光前における光硬化性材料Rの粘性による規制体10の変形も防止できる。これにより、硬化層の平面度を高め、また、その厚さを高精度に制御することができる。
本実施形態では、直線状の領域A1で光硬化性材料の液面が規制されるので、粘度の高い樹脂材料を用いても、正確な層厚で造形物を形成することができ、用いる材料の選択の幅が広がる。
従来の規制液面法では、フィルムやガラス面から造形物を引き剥がす工程に時間を要していた。しかし、本実施形態では、露光処理時においてステージ14のY軸に沿った方向でのステップ送りごとに規制体10から造形物が引き剥がされていく。つまり1層分の露光処理と引き剥がし処理の時間帯が重複しているので、造形物の形成にかかる時間を短縮することができる。
本実施形態では、規制体10の直線状の領域A1において、規制体10の、ステージ14側からの引き剥がしが、微小量ずつ断続的に(Y軸方向に沿ったステップ送りごとに)起こる。したがって、引き剥がし力が弱く、硬化物に損傷が加えられることを防止できる。つまり、硬化物が規制体10から剥がれやすい。また、そのように引き剥がし力が弱いので、硬化物がステージ14から剥がれてしまうようなことも起こらない。
本実施形態に係る規制体10が、シリンドリカル体の一部の形状を有するので、例えば規制体10が円筒体である場合に比べ、規制体10のサイズを小さくすることができ、3次元造形装置100の小型化を実現することができる。
本実施形態に係る規制体10は、レーザ光を透過させることができるので、照射ユニット17は規制体10を介してレーザ光を光硬化性材料Rに照射することができる。例えばステージがレーザ光を透過させる材料で構成され、ステージを介してレーザ光を照射する照射ユニットが設けられる場合には、Z軸移動機構側に照射ユニットを配置する必要がある。このような形態に比べ、本実施形態に係る照射ユニット17の配置の自由度が向上する。
[第2の実施形態]
図7は、本技術の第2の実施形態に係る規制体の一部及びその周辺を示す拡大図である。これ以降の説明では、上記実施形態に係る3次元造形装置100が含む部材や機能等について同様のものは説明を簡略化または省略し、異なる点を中心に説明する。
この規制体110は、上記の規制体10の表面10aより狭い、ステージ14に対面する表面110aを有する。その表面110aには、規制体110の直線状の領域A1が含まれ、規制体10とステージ14との間にスリット領域Sが形成されている。
規制体110の表面110aは実質的に平面に形成されている。規制体110の表面110aのY軸方向に沿った幅は、その表面110aにおける露光用のレーザビームの直径より大きく形成されていればよい。例えばその表面110aの幅は、直線状の領域A1のY軸方向に沿った幅の2〜5倍程度に形成される。
このような規制体10を備えた3次元造形装置100によっても、上記第1の実施形態に係る3次元造形装置100と同様の作用効果を得ることができる。
なお、硬化物R0の周りの非硬化物である材料Rの量が、上記第1の実施形態における非硬化物の材料Rの量より少ない。この場合、供給ノズル16からの材料Rの供給周期を上記第1の実施形態における供給周期より短くすればよい。
[その他の実施形態]
本技術は、以上説明した実施形態に限定されず、他の種々の実施形態が実現される。
上記した3次元造形装置は、ステージ14上に形成される造形物に洗浄材料を供給する洗浄ノズルをさらに具備してもよい。これにより造形物に向けて洗浄ノズルから造形物に向けて洗浄材料が吐出され、造形物、すなわち、硬化層の表面をきれいにすることができる。これにより、造形精度が高められる。洗浄ノズルは、洗浄液を噴射する噴射式のノズルでもよいし、上部から硬化層に向けて洗浄液を垂れ流す方式のノズルでもよい。
上記供給ノズル16は複数設けられていてもよい。その場合、それら複数の供給ノズル16は、異なる材料、または異なる色の材料をそれぞれ吐出してもよい。
上記実施形態では、造形時にZ軸方向において、規制体10(あるいは110)が静止し、ステージ14が移動した。このような方式に限られず、Z軸方向において、規制体が移動し、ステージ14が静止していてもよいし、あるいは、それら両方が移動してもよい。
上記実施形態では、造形物の1層分の硬化層を形成するために、ステージ14が鉛直方向に移動した。しかし、造形物の1層分の硬化層を形成するために、規制体及びステージが水平方向に相対的に移動してもよいし、鉛直方向の成分を含み、鉛直方向とは異なる方向、すなわち斜め方向に相対的に移動してもよい。
上記実施形態では、造形物の1層分の硬化層を形成するために、規制体10(あるいは110)及びステージ14が相対的に移動する方向(第2の方向)として、規制体の直線状の領域A1が延びる方向(第1の方向)に直交する方向であった。しかし、第2の方向は、第1の方向とは異なっていればよく、第1の方向に対して斜め方向でもよい。
上記実施形態では、X軸方向におして、規制体10(あるいは110)及びステージ14は静止し、照射ユニット17がX軸方向に沿って移動したが、照射ユニットが静止し、規制体及びステージが一体的にX軸移動してもよい。
造形物の材料は、光硬化性材料に限られず、熱エネルギー、電子線、または超音波により硬化する材料が用いられてもよい。また、材料に応じて照射ユニット17から照射されるエネルギー線も適宜変更可能である。エネルギー線としては、紫外線のほか、赤外線、可視光、電子線、熱線または超音波等が挙げられる。熱線は赤外線でもよく、その場合赤外線レーザによるスポット加熱により硬化処理が行われる。熱線や超音波等は、比較的造形精度が低い造形物を形成する場合に用いられればよい。
規制体は、エネルギー線を所定の透過率で透過する材料に限られず、どのような材料であってもよい。規制体がエネルギー線を透過しない材料である場合は、例えば、ステージがエネルギー線を透過させる材料を有し、ステージに対して規制体が配置される側とは反対側からエネルギー線が照射されてもよい。
上記実施形態に係る3次元造形装置は、2層以上硬化層を積層して造形物を形成した。しかし、3次元造形装置は、少なくとも1層分の硬化層を形成することにより、薄型の造形物を形成してもよい。薄型の造形物は、例えばフィルム、フィルタ等として利用される。
形成された造形物にメッキ等の適切なコーティング処理を行うことにより、この造形物を、設計対象物の模型としてではなく、実際の構造物として利用することができる。これは、薄型の造形物にのみ適用される技術ではなく、上記実施形態の2層以上の硬化層を有する造形物にも適用される。
形成された造形物にメッキ等の適切なコーティング処理を行うことにより、この造形物を、設計対象物の模型としてではなく、実際の構造物として利用することができる。これは、薄型の造形物にのみ適用される技術ではなく、上記実施形態の2層以上の硬化層を有する造形物にも適用される。
以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。
本技術は以下のような構成もとることができる。
(1)ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体と、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給する供給ノズルと、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる移動機構と、
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射する照射ユニットと
を具備する3次元造形装置。
(2)(1)に記載の3次元造形装置であって、
前記規制体の前記表面が曲面である
3次元造形装置。
(3)(2)に記載の3次元造形装置であって、
前記規制体は、前記曲面としてシリンドリカル面を含むシリンドリカル形状の一部の形状を有する
3次元造形装置。
(4)(1)から(3)のうちいずれか1つに記載の3次元造形装置であって、
前記規制体は、前記エネルギー線を透過させる材料により形成されている
3次元造形装置。
(5)(1)から(4)のうちいずれか1つに記載の3次元造形装置であって、
前記移動機構は、前記第2の方向として、鉛直成分を含む方向に沿って、前記規制体と前記ステージとを相対的に移動させる
3次元造形装置。
(6)(1)から(5)のうちいずれか1つに記載の3次元造形装置であって、
前記移動機構は、前記第1の方向に沿う方向で、前記エネルギー線を、前記規制体及び前記ステージに相対的にスキャンさせるスキャン機構を有する
3次元造形装置。
(7)(1)及び(4)から(6)のうちいずれか1つに記載の3次元造形装置であって、
前記規制体の前記表面が平面である
3次元造形装置。
(8)ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体とを具備する3次元造形装置を用いて、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給し、
前記ステージと前記規制体とが相対的に静止した状態で、前記スリット領域に供給された前記材料に、前記エネルギー線を照射し、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる
ことにより形成された造形物。
(9)ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体とを具備する3次元造形装置を用いて、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給し、
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射し、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる
造形物の製造方法。
(1)ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体と、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給する供給ノズルと、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる移動機構と、
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射する照射ユニットと
を具備する3次元造形装置。
(2)(1)に記載の3次元造形装置であって、
前記規制体の前記表面が曲面である
3次元造形装置。
(3)(2)に記載の3次元造形装置であって、
前記規制体は、前記曲面としてシリンドリカル面を含むシリンドリカル形状の一部の形状を有する
3次元造形装置。
(4)(1)から(3)のうちいずれか1つに記載の3次元造形装置であって、
前記規制体は、前記エネルギー線を透過させる材料により形成されている
3次元造形装置。
(5)(1)から(4)のうちいずれか1つに記載の3次元造形装置であって、
前記移動機構は、前記第2の方向として、鉛直成分を含む方向に沿って、前記規制体と前記ステージとを相対的に移動させる
3次元造形装置。
(6)(1)から(5)のうちいずれか1つに記載の3次元造形装置であって、
前記移動機構は、前記第1の方向に沿う方向で、前記エネルギー線を、前記規制体及び前記ステージに相対的にスキャンさせるスキャン機構を有する
3次元造形装置。
(7)(1)及び(4)から(6)のうちいずれか1つに記載の3次元造形装置であって、
前記規制体の前記表面が平面である
3次元造形装置。
(8)ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体とを具備する3次元造形装置を用いて、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給し、
前記ステージと前記規制体とが相対的に静止した状態で、前記スリット領域に供給された前記材料に、前記エネルギー線を照射し、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる
ことにより形成された造形物。
(9)ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体とを具備する3次元造形装置を用いて、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給し、
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射し、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる
造形物の製造方法。
R’…硬化層
A1…直線状の領域
10、110…規制体
10a、110a…規制体の表面
13…Y軸移動機構
15…Z軸移動機構
16…供給ノズル
17…照射ユニット
18…X軸移動機構
18…レーザ光源
50…ホストコンピュータ
100…次元造形装置
A1…直線状の領域
10、110…規制体
10a、110a…規制体の表面
13…Y軸移動機構
15…Z軸移動機構
16…供給ノズル
17…照射ユニット
18…X軸移動機構
18…レーザ光源
50…ホストコンピュータ
100…次元造形装置
Claims (9)
- ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体と、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給する供給ノズルと、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる移動機構と、
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射する照射ユニットと
を具備する造形装置。 - 請求項1に記載の3次元造形装置であって、
前記規制体の前記表面が曲面である
3次元造形装置。 - 請求項2に記載の3次元造形装置であって、
前記規制体は、前記曲面としてシリンドリカル面を含むシリンドリカル形状の一部の形状を有する
3次元造形装置。 - 請求項1に記載の3次元造形装置であって、
前記規制体は、前記エネルギー線を透過させる材料により形成されている
3次元造形装置。 - 請求項1に記載の3次元造形装置であって、
前記移動機構は、前記第2の方向として、鉛直成分を含む方向に沿って、前記規制体と前記ステージとを相対的に移動させる
3次元造形装置。 - 請求項1に記載の3次元造形装置であって、
前記移動機構は、前記第1の方向に沿う方向で、前記エネルギー線を、前記規制体及び前記ステージに相対的にスキャンさせるスキャン機構を有する
3次元造形装置。 - 請求項1に記載の3次元造形装置であって、
前記規制体の前記表面が平面である
3次元造形装置。 - ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体とを具備する3次元造形装置を用いて、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給し、
前記ステージと前記規制体とが相対的に静止した状態で、前記スリット領域に供給された前記材料に、前記エネルギー線を照射し、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる
ことにより形成された造形物。 - ステージと、
第1の方向に沿う直線状の領域を含む表面を有し、前記表面のうち前記直線状の領域が前記ステージに最も近くなるように、前記ステージに対面して配置された規制体とを具備する3次元造形装置を用いて、
エネルギー線のエネルギーで硬化する材料を、前記ステージ側と前記直線状の領域との間の領域であるスリット領域に供給し、
前記ステージと前記規制体とが相対的に静止した状態で、前記供給ノズルにより前記スリット領域に供給された前記材料に、前記エネルギー線を照射し、
少なくとも1層分の前記材料の硬化層を形成するために、前記第1の方向とは異なる第2の方向に沿って、前記規制体及び前記ステージを相対的に移動させる
造形物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011108989A JP2012240216A (ja) | 2011-05-16 | 2011-05-16 | 3次元造形装置、造形物及び造形物の製造方法 |
US13/467,351 US9138939B2 (en) | 2011-05-16 | 2012-05-09 | Three-dimensional modeling apparatus, model, and method of manufacturing a model |
CN201210143630.5A CN102785365B (zh) | 2011-05-16 | 2012-05-09 | 三维造型装置、模型和制造模型的方法 |
US14/812,766 US9597835B2 (en) | 2011-05-16 | 2015-07-29 | Three-dimensional modeling apparatus, model, and method of manufacturing a model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011108989A JP2012240216A (ja) | 2011-05-16 | 2011-05-16 | 3次元造形装置、造形物及び造形物の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012240216A true JP2012240216A (ja) | 2012-12-10 |
Family
ID=47151041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011108989A Withdrawn JP2012240216A (ja) | 2011-05-16 | 2011-05-16 | 3次元造形装置、造形物及び造形物の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US9138939B2 (ja) |
JP (1) | JP2012240216A (ja) |
CN (1) | CN102785365B (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104956672B (zh) * | 2013-04-30 | 2017-07-04 | 惠普发展公司,有限责任合伙企业 | 三维对象构造 |
WO2014176704A1 (en) * | 2013-05-03 | 2014-11-06 | Castanon Diego | Improved stereolithography system |
CA2912721C (en) * | 2013-05-17 | 2016-10-04 | Diego CASTANON | Improved system for three-dimensional printing by selective sintering |
CN103692653B (zh) * | 2013-12-24 | 2015-08-26 | 北京化工大学 | 熔体微分三维打印机 |
US9789652B2 (en) | 2014-02-26 | 2017-10-17 | Nathan Armstrong | Manufacturing system using topology optimization design software, novel three-dimensional printing mechanisms and structural composite materials |
EP3059074A1 (de) * | 2015-02-18 | 2016-08-24 | Technische Universität München | Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts |
DE102015109525A1 (de) * | 2015-06-15 | 2016-12-15 | Cl Schutzrechtsverwaltungs Gmbh | Vorrichtung zum Herstellen von dreidimensionalen Objekten sowie ein zugehöriges Verfahren |
JP6844217B2 (ja) * | 2016-11-24 | 2021-03-17 | ソニー株式会社 | 情報処理装置、造形装置、情報処理方法、およびプログラム |
NL2019998B1 (en) * | 2017-11-30 | 2019-06-07 | Additive Ind Bv | Apparatus for producing an object by means of additive manufacturing |
CN109986011A (zh) * | 2018-01-02 | 2019-07-09 | 通用电气公司 | 锻造头、锻造装置以及增材制造系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010048183A1 (en) * | 2000-05-31 | 2001-12-06 | Sanyo Electric Co., Ltd | Optical shaping apparatus and optical shaping process |
JP5088114B2 (ja) | 2007-12-04 | 2012-12-05 | ソニー株式会社 | 光造形装置 |
JP2011098484A (ja) * | 2009-11-05 | 2011-05-19 | Sony Corp | 3次元光造形装置、3次元光造形方法及び造形物 |
-
2011
- 2011-05-16 JP JP2011108989A patent/JP2012240216A/ja not_active Withdrawn
-
2012
- 2012-05-09 CN CN201210143630.5A patent/CN102785365B/zh not_active Expired - Fee Related
- 2012-05-09 US US13/467,351 patent/US9138939B2/en active Active
-
2015
- 2015-07-29 US US14/812,766 patent/US9597835B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9138939B2 (en) | 2015-09-22 |
US20150328832A1 (en) | 2015-11-19 |
CN102785365A (zh) | 2012-11-21 |
US9597835B2 (en) | 2017-03-21 |
CN102785365B (zh) | 2017-04-12 |
US20120295075A1 (en) | 2012-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012240216A (ja) | 3次元造形装置、造形物及び造形物の製造方法 | |
JP5774825B2 (ja) | 3次元造形装置及び造形物の製造方法 | |
JP5803316B2 (ja) | 構造物の製造方法 | |
JP5018076B2 (ja) | 光造形装置及び光造形方法 | |
JP4957242B2 (ja) | 光造形装置 | |
US9862138B2 (en) | Structure and production method therefor | |
JP2011098484A (ja) | 3次元光造形装置、3次元光造形方法及び造形物 | |
JP2009113293A (ja) | 光造形装置及び光造形方法 | |
US11097482B2 (en) | System and method for forming nano-structures on substrates to provide predetermined physical characteristics to the substrates | |
KR20170107647A (ko) | 3차원 프린터에 의한 조형 장치 및 방법 | |
JP6020672B2 (ja) | 3次元造形装置及び造形物の製造方法 | |
JP2008162189A (ja) | 光造形装置 | |
US20230022029A1 (en) | Three-Dimensional Printing System with Enhanced Flat Field Correction Unit | |
JP2009190291A (ja) | サポートの形成方法、および立体造形物の製造方法 | |
JP6344447B2 (ja) | 3次元造形装置及び造形物の製造方法 | |
JP6841017B2 (ja) | 造形装置および造形物の製造方法 | |
JP2018140643A (ja) | 3次元造形装置及び造形物の製造方法 | |
WO2018096963A1 (ja) | 情報処理装置、造形装置、情報処理方法、およびプログラム | |
KR100606458B1 (ko) | 3차원 조형시스템의 경화장치 | |
JP6862795B2 (ja) | 造形装置及び造形物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140805 |