JP2012230956A - Cut core - Google Patents
Cut core Download PDFInfo
- Publication number
- JP2012230956A JP2012230956A JP2011096960A JP2011096960A JP2012230956A JP 2012230956 A JP2012230956 A JP 2012230956A JP 2011096960 A JP2011096960 A JP 2011096960A JP 2011096960 A JP2011096960 A JP 2011096960A JP 2012230956 A JP2012230956 A JP 2012230956A
- Authority
- JP
- Japan
- Prior art keywords
- cut
- core
- ribbon
- cut core
- chamfered portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims abstract description 36
- 238000005520 cutting process Methods 0.000 claims abstract description 12
- 238000003475 lamination Methods 0.000 claims abstract description 6
- 238000005498 polishing Methods 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 238000010030 laminating Methods 0.000 description 9
- 238000004804 winding Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、各種トランス、リアクトル・チョークコイル等に用いられるカットコアに関する。 The present invention relates to a cut core used for various transformers, reactors, choke coils, and the like.
従来から、リアクトルやトランス等に用いられる磁心として、巻磁心を切断してU型、C型、E型等の形状となしたカットコアが用いられている。カットコアを用いる場合、ボビン等に導線を巻回して構成したコイルにカットコアを挿入することでリアクトル等を作製することができるため、巻き線工程の簡略化や自動化が容易である。一般的に、カットコアは、ケイ素鋼板やアモルファス合金などの金属薄帯を巻回し、巻回された金属薄帯を樹脂に含浸した後、切断して得られる。 2. Description of the Related Art Conventionally, as a magnetic core used for a reactor, a transformer, or the like, a cut core in which a wound magnetic core is cut into a U shape, a C shape, an E shape, or the like has been used. When a cut core is used, a reactor or the like can be manufactured by inserting the cut core into a coil formed by winding a conductive wire around a bobbin or the like, so that the winding process can be simplified and automated. Generally, a cut core is obtained by winding a metal ribbon such as a silicon steel plate or an amorphous alloy, impregnating the wound metal ribbon with a resin, and then cutting.
切断後のコアの切断面の角は鋭利であるとともに、切断によるバリが生じている場合もある。そのため、リアクトル等を組み立てる際に、カットコアをコイルに挿入しにくい、コイルをカットコアのエッジで損傷する等の問題があった。そのため、かかるエッジ部分を削る方法に加えて、特許文献1では角をスポット溶接によって溶融させる方法が提案されている。 The corners of the cut surface of the core after cutting are sharp and may have burrs due to cutting. For this reason, when assembling a reactor or the like, there are problems such that it is difficult to insert the cut core into the coil, and the coil is damaged at the edge of the cut core. Therefore, in addition to the method of cutting the edge portion, Patent Document 1 proposes a method of melting corners by spot welding.
金属薄帯を巻回し、樹脂含浸を経て得られるカットコアでは、磁性体として薄帯を用い、樹脂を介して薄帯を積層することによって渦電流損失の低減を図っている。そのため、特許文献1のように薄帯同士を溶接してしまうと、薄帯間で導通してしまい、渦電流損失低減の効果を減殺してしまう。また、エッジ部分を研磨によって面取りする場合にも、研磨方向に各薄帯からのバリが生じて薄帯間の導通を引き起こす恐れがあった。 In a cut core obtained by winding a metal ribbon and impregnating with a resin, the ribbon is used as a magnetic material, and the eddy current loss is reduced by laminating the ribbon through the resin. For this reason, if the ribbons are welded to each other as in Patent Document 1, they are conducted between the ribbons, and the effect of reducing eddy current loss is diminished. Further, even when the edge portion is chamfered by polishing, there is a possibility that burrs are generated from the thin strips in the polishing direction, thereby causing conduction between the thin strips.
そこで本発明では、切断面の縁に面取りを設けたカットコアにおいて、薄帯間の導通抑制に有効な構成を提供することを目的とする。 Therefore, an object of the present invention is to provide a configuration that is effective for suppressing conduction between thin ribbons in a cut core having chamfered edges at a cut surface.
本発明は、巻回された金属薄帯を切断してなるカットコアであって、矩形をなす切断面の四辺のうち、少なくとも、前記金属薄帯の積層方向に垂直な一辺に面取り部を有し、前記面取り部の形成によってカットコアから除去されている部分は、前記切断面に垂直な方向の寸法が前記積層方向の寸法よりも大きいことを特徴とする。かかる構成は、面取り部に露出している金属薄帯間の間隔をよりいっそう大きなものとし、金属薄帯間の導通抑制に寄与する。 The present invention is a cut core formed by cutting a wound metal ribbon, and has a chamfered portion on at least one side perpendicular to the lamination direction of the metal ribbons, among four sides of a rectangular cut surface. The portion removed from the cut core by forming the chamfered portion is characterized in that a dimension in a direction perpendicular to the cut surface is larger than a dimension in the stacking direction. Such a configuration further increases the distance between the metal ribbons exposed in the chamfered portion, and contributes to suppression of conduction between the metal ribbons.
また、前記カットコアにおいて、前記面取り部を、前記切断面の四辺のうち、前記積層方向に垂直な辺のみに有することが好ましい。 In the cut core, it is preferable that the chamfered portion is provided only on a side perpendicular to the stacking direction among the four sides of the cut surface.
さらに、前記カットコアにおいて、前記面取り部を形成する研磨の研磨痕の方向が前記金属薄帯の積層方向に垂直な方向であることが好ましい。かかる構成によれば、面取りのための研磨によってバリが生じて薄帯間が導通することを防ぐことができる。 Furthermore, in the cut core, it is preferable that the direction of polishing traces for forming the chamfered portion is a direction perpendicular to the lamination direction of the metal ribbon. According to such a configuration, it is possible to prevent burrs from being generated by chamfering polishing and conduction between the ribbons.
本発明によれば、切断面の縁に面取りを設けたカットコアにおいて、金属薄帯間の導通抑制に有効な構成を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the structure effective in the conduction | electrical_connection suppression between metal strips can be provided in the cut core which provided the chamfer in the edge of the cut surface.
以下、本発明に係るカットコアの実施形態について図を参照しながら具体的に説明するが、本発明はこれに限定されるものではない。また、各実施形態において説明する構成は、他の実施形態の趣旨を損なわない限りにおいて他の実施形態においても適用することが可能であり、その場合、重複する説明は適宜省略する。 Hereinafter, embodiments of the cut core according to the present invention will be specifically described with reference to the drawings. However, the present invention is not limited thereto. Moreover, the structure demonstrated in each embodiment is applicable also in other embodiment, unless the meaning of other embodiment is impaired, In that case, the overlapping description is abbreviate | omitted suitably.
カットコアの製造には従来からの製造方法を適用すればよい。その例を以下に示す。まず円形状、矩形状等の巻芯に、金属薄帯を所定の形状まで巻回した後、熱処理を行う。金属薄帯としては、アモルファス合金薄帯・ナノ結晶合金用急冷薄帯などの急冷薄帯、ケイ素鋼板などを用いる。このうち、アモルファス合金薄帯などの急冷薄帯は、薄い薄帯を得やすいとともに低損失であるために特に好ましい。熱処理後のコアは熱硬化樹脂を用いた樹脂含浸に供され、樹脂硬化後、切断されU型、C型、E型等の形状のカットコアを得る。切断後のコアの切断面は機械的研磨、化学的研磨のうちどちらか一つ、もしくは両者を併用して行う。切断面の面取りは前記切断後または前記切断面の研磨後のいずれでも良く、切断後がより好ましい。 A conventional manufacturing method may be applied to manufacture the cut core. An example is shown below. First, a metal ribbon is wound around a circular or rectangular core to a predetermined shape, and then heat treatment is performed. As the metal ribbon, a quenching ribbon such as an amorphous alloy ribbon or a quenching ribbon for a nanocrystalline alloy, a silicon steel plate, or the like is used. Among these, a quenched ribbon such as an amorphous alloy ribbon is particularly preferable because it is easy to obtain a thin ribbon and has low loss. The heat-treated core is subjected to resin impregnation using a thermosetting resin. After the resin is cured, the core is cut to obtain a cut core having a U shape, a C shape, an E shape, or the like. The cut surface of the core after cutting is performed by either mechanical polishing or chemical polishing, or a combination of both. The chamfering of the cut surface may be either after the cutting or after the polishing of the cut surface, and more preferably after the cutting.
図1には本発明に係るカットコアの第1の実施形態を示す。図1に示すカットコア1は、巻回された金属薄帯を切断したものである。具体的には、巻回軸方向から見て略矩形状になるように金属薄帯を巻回したコアを、長手方向に二分割したものである。図2には、その切断面2側から見た平面図(a)および側面図(b)を示す。側面図(b)に示された面は、巻回、積層された各金属薄帯のエッジが露出しているカットコアの側面である。図2(a)に示すx方向が金属薄帯の積層方向(薄帯の主面の法線方向)であり、y方向が金属薄帯の幅方向である。二つの切断面2は矩形をなし、それぞれ矩形の四辺のうち薄帯の積層方向xに垂直な二辺(x方向に対向する二辺)に面取り部3を有する。図1、2に示す実施形態では面取り部3は一つの辺全体にわたって形成されている。 FIG. 1 shows a first embodiment of a cut core according to the present invention. A cut core 1 shown in FIG. 1 is obtained by cutting a wound metal ribbon. Specifically, a core in which a metal ribbon is wound so as to be substantially rectangular when viewed from the winding axis direction is divided into two in the longitudinal direction. In FIG. 2, the top view (a) and side view (b) which were seen from the cut surface 2 side are shown. The surface shown in the side view (b) is the side surface of the cut core in which the edges of the wound and laminated metal ribbons are exposed. The x direction shown in FIG. 2 (a) is the lamination direction of the metal ribbon (the normal direction of the main surface of the ribbon), and the y direction is the width direction of the metal ribbon. The two cut surfaces 2 are rectangular, and each of the four sides of the rectangle has chamfered portions 3 on two sides perpendicular to the laminating direction x of the ribbon (two sides facing the x direction). In the embodiment shown in FIGS. 1 and 2, the chamfered portion 3 is formed over the entire side.
図3には、図2の点線部分の面取り部3を拡大した側面図を示してある。図3の図の上下方向の黒線は樹脂を示し、黒線で示された樹脂の間が金属薄帯である。カットコアの切断面の角が側面から見て三角形状に除去されて面取り部3が形成されている。面取りには、切断時のバリの除去とフリンジング磁束によって生じる損失を緩和する目的がある。フリンジング磁束とは、カットコアでギャップを空けた時に薄帯側面を通過する磁束である。この損失低減のためには、表面がフリンジング磁束に直交するような形で磁性体を形成することが最も望ましい。ここで、面取り部3の形成によってカットコアから除去されている部分(以下、除去部ともいう)の、切断面に垂直な方向(z方向)の寸法hが、該除去部の金属薄帯の積層方向(x方向)の寸法wよりも大きくなっている。かかる構成は、面取り部3の面と薄帯面とがなす角度α(鋭角)が45度よりも小さいことを意味する。フリンジングロスを緩和する観点からは面取り部は45度の角度で設けることが好ましいとも考えられるが、45度よりも小さい角度でもある程度のロス低減の効果を得ることはできる。また、金属薄帯を巻回、積層したカットコアの場合、金属薄帯間には樹脂を介在させており、かかる樹脂による絶縁も十分に確保する必要がある。一般に面取りは研磨によって形成されるため、該研磨によって金属薄帯間が導通する危険が高まる。面取りのように薄帯の積層方向に対して斜めに研磨する場合、面取り部を設ける角度を45度よりも小さくすることによって、樹脂を介して面取り部に露出している金属薄帯間の間隔をよりいっそう大きなものとし、金属薄帯間の導通抑制に寄与する効果も得られる。 FIG. 3 shows an enlarged side view of the chamfered portion 3 in the dotted line portion of FIG. The black line in the vertical direction in FIG. 3 indicates a resin, and a metal ribbon is between the resins indicated by the black line. The chamfered portion 3 is formed by removing the corners of the cut surface of the cut core in a triangular shape when viewed from the side. Chamfering has the purpose of alleviating the loss caused by burr removal and fringing magnetic flux at the time of cutting. The fringing magnetic flux is a magnetic flux that passes through the side surface of the ribbon when a gap is opened with a cut core. In order to reduce this loss, it is most desirable to form the magnetic body so that the surface is perpendicular to the fringing magnetic flux. Here, the dimension h in the direction perpendicular to the cut surface (z direction) of the portion removed from the cut core by forming the chamfered portion 3 (hereinafter also referred to as the removed portion) is the thickness of the metal ribbon of the removed portion. It is larger than the dimension w in the stacking direction (x direction). Such a configuration means that the angle α (acute angle) formed by the surface of the chamfered portion 3 and the ribbon surface is smaller than 45 degrees. Although it is considered that the chamfered portion is preferably provided at an angle of 45 degrees from the viewpoint of alleviating fringe gloss, a certain degree of loss reduction effect can be obtained even at an angle smaller than 45 degrees. In the case of a cut core obtained by winding and laminating metal ribbons, a resin is interposed between the metal ribbons, and it is necessary to sufficiently secure insulation by the resin. Since chamfering is generally formed by polishing, the risk of conduction between the metal ribbons increases due to the polishing. When polishing obliquely with respect to the laminating direction of the ribbon as in chamfering, the angle between the metal ribbons exposed to the chamfered portion through the resin is reduced by making the angle at which the chamfered portion is provided smaller than 45 degrees. The effect of contributing to the suppression of conduction between the metal ribbons is also obtained.
除去部の、切断面に垂直な方向(z方向)の寸法h、金属薄帯の積層方向(x方向)の寸法wは、切断面とそれに垂直な面とを除去部上に仮想延長して求めればよい。面取り部3の面と薄帯面とがなす角度(鋭角)が30度以下であれば、面取り部では、積層方向の樹脂厚の2倍以上を確保できるため、より好ましい。また、除去部の金属薄帯の積層方向(x方向)の寸法wはこれを限定するものではないが、必要以上に大きくすると、カットコア同士を一定のギャップを介して付き合わせる面の割合が減ってしまうので、寸法wは切断面のx方向の寸法の5%以下になるようにすることがより好ましい。また、必要以上の面取りを設けることは、面取り工程のコスト増につながるので、除去部の金属薄帯の積層方向(x方向)の寸法wは、例えば0.5mm以下にするとよい。 The dimension h in the direction perpendicular to the cut surface (z direction) and the dimension w in the stacking direction (x direction) of the metal ribbon are virtually extended on the removal part with the cut surface and the surface perpendicular thereto. Find it. If the angle (acute angle) formed by the surface of the chamfered portion 3 and the ribbon surface is 30 degrees or less, it is more preferable because the chamfered portion can ensure twice or more the resin thickness in the stacking direction. In addition, the dimension w in the stacking direction (x direction) of the metal ribbon of the removal portion is not limited to this, but if it is made larger than necessary, the ratio of the surfaces where the cut cores are attached through a certain gap is increased. Therefore, the dimension w is more preferably 5% or less of the dimension in the x direction of the cut surface. Further, providing chamfering more than necessary leads to an increase in the cost of the chamfering process, so the dimension w in the stacking direction (x direction) of the metal ribbon of the removal portion is preferably 0.5 mm or less, for example.
次に、図4には本発明に係るカットコアの第2の実施形態を示す。図4には、その切断面4側から見た平面図を示す。図1および図2に示すカットコア1とは、面取り部に係る構成が異なる。その他の構成に関しては図1および図2に示す実施形態と同様であるので、説明を省略する。図4に示す実施形態では、矩形の切断面の四辺の全てに面取り部5を有する点で図1および図2に示す実施形態と異なる。切断面の四辺全てに面取り部を設けることで、リアクトル等を組み立てる際に、コイルをカットコアのエッジで損傷する等のリスクがより低減される。 Next, FIG. 4 shows a second embodiment of a cut core according to the present invention. In FIG. 4, the top view seen from the cut surface 4 side is shown. The structure which concerns on a chamfering part differs from the cut core 1 shown in FIG. 1 and FIG. Since other configurations are the same as those of the embodiment shown in FIGS. 1 and 2, description thereof will be omitted. The embodiment shown in FIG. 4 differs from the embodiment shown in FIGS. 1 and 2 in that chamfered portions 5 are provided on all four sides of a rectangular cut surface. Providing chamfered portions on all four sides of the cut surface further reduces the risk of damaging the coil at the edge of the cut core when assembling the reactor or the like.
面取り部は図1、図2および図4に示す実施形態以外に、切断面の四辺のうち薄帯の積層方向xに垂直な一辺に設けても良い。矩形をなす切断面の四辺のうち、少なくとも、前記金属薄帯の積層方向に垂直な一辺に面取り部を有していれば、組み立て方法を選択することによって、コイルをカットコアのエッジで損傷する等のリスク低減を図ることができる。この場合、一つのカットコアに形成される複数の切断面に設ける面取り部は、金属薄帯の積層方向(x方向)の同じ一方側に配置するとよい。また、面取りを設ける工程の簡略化等の観点からは、図1および図2に示す実施形態のように、面取り部を、切断面の四辺のうち、積層方向(x方向)に垂直な辺のみに有することが好ましい。 In addition to the embodiments shown in FIGS. 1, 2, and 4, the chamfered portion may be provided on one side of the four sides of the cut surface that is perpendicular to the laminating direction x. If there is a chamfered portion on at least one side perpendicular to the laminating direction of the metal ribbon among the four sides of the rectangular cut surface, the coil is damaged at the edge of the cut core by selecting an assembly method. Risk reduction. In this case, the chamfered portions provided on the plurality of cut surfaces formed in one cut core may be disposed on the same one side in the metal ribbon laminating direction (x direction). Further, from the viewpoint of simplification of the process of providing chamfering, as in the embodiment shown in FIG. 1 and FIG. It is preferable to have.
上述のように面取り部を形成する場合、その研磨の方向が薄帯の積層方向に垂直な方向、すなわち薄帯の幅方向であることが好ましい。面取り部を形成する研磨の研磨痕の方向をかかる方向にすることで、研磨によってバリが生じて薄帯間が導通することを防ぐことができるからである。また、面取り部はカットコア同士を付き合わせる平行面を形成しないので、面取り部の表面粗さを切断面の表面粗さよりも大きくしてもよい。また、切断面に比べて、面取り部の方が表面に露出している部分の樹脂厚が大きくなるので、粗めの砥粒・砥石を用いて研磨しても薄帯間の導通の危険性が少ない。切断面の研磨を粗い砥粒・砥石で行うことで、研磨工程の短縮化に寄与する。 When the chamfered portion is formed as described above, it is preferable that the polishing direction is a direction perpendicular to the laminating direction of the ribbons, that is, the width direction of the ribbons. This is because by setting the direction of the polishing mark of the polishing forming the chamfered portion to be such a direction, it is possible to prevent burrs from being generated by polishing and conduction between the ribbons. Further, since the chamfered portion does not form a parallel surface for attaching the cut cores, the surface roughness of the chamfered portion may be larger than the surface roughness of the cut surface. In addition, since the resin thickness of the chamfered part exposed on the surface is larger than the cut surface, there is a risk of conduction between the ribbons even when polishing with coarse abrasive grains or grinding stones. Less is. Polishing the cut surface with coarse abrasive grains and wheels contributes to shortening the polishing process.
上述の実施形態1と同様のカットコアを作製した。使用した金属薄帯はFe基アモルファス合金薄帯であり、薄帯の厚さは25μmであった。巻回軸方向から見て略矩形状になるように金属薄帯を巻回してコアを得た後、熱処理を行った。熱処理後のコアに対して、熱硬化性樹脂を用いて真空中にて樹脂含浸を行い、樹脂硬化した後、長手方向に二分割してU字状のコアを得た。図2(b)で示す寸法d1が41mm、d2が41mm、切断面の寸法のうち薄帯積層方向の寸法が13mm、それに垂直な方向の寸法が30mmであった。分割後、切断面の四辺のうち、積層方向に垂直な辺を砥石で研磨し、面取り部を形成した。面取り部の金属薄帯の積層方向(x方向)の寸法wは、切断面のx方向の寸法の2.5%以下になるようにした。面取りした状態を側面方向から見た写真を図5に示す。図5では除去部の積層方向(x方向)の寸法wは0.30mm、切断面に垂直な方向(z方向)の寸法hは0.95mmであり、面取り部の面と薄帯面とがなす角度は17.5度であった。かかる構成は、面取り部に露出する樹脂部分の厚さが、積層方向の樹脂部分の厚さの3倍以上になり、面取り部における金属薄帯間の導通抑制に特に有効である。 A cut core similar to that of the first embodiment was produced. The metal ribbon used was a Fe-based amorphous alloy ribbon, and the thickness of the ribbon was 25 μm. A metal ribbon was wound so as to have a substantially rectangular shape when viewed from the winding axis direction to obtain a core, followed by heat treatment. The heat-treated core was impregnated with a resin in a vacuum using a thermosetting resin, cured with resin, and then divided into two in the longitudinal direction to obtain a U-shaped core. The dimension d1 shown in FIG. 2 (b) was 41 mm, d2 was 41 mm, and among the dimensions of the cut surface, the dimension in the laminating direction was 13 mm, and the dimension perpendicular to it was 30 mm. After the division, among the four sides of the cut surface, the side perpendicular to the stacking direction was polished with a grindstone to form a chamfered portion. The dimension w in the stacking direction (x direction) of the metal ribbon at the chamfered portion was set to be 2.5% or less of the dimension in the x direction of the cut surface. A photograph of the chamfered state viewed from the side is shown in FIG. In FIG. 5, the dimension w in the stacking direction (x direction) of the removed portion is 0.30 mm, the dimension h in the direction perpendicular to the cut surface (z direction) is 0.95 mm, and the surface of the chamfered portion and the ribbon surface are The angle formed was 17.5 degrees. Such a configuration is particularly effective for suppressing conduction between the metal ribbons in the chamfered portion because the thickness of the resin portion exposed to the chamfered portion is three times or more the thickness of the resin portion in the stacking direction.
1:カットコア 2、4:切断面 3、5:面取り部 1: Cut core 2, 4: Cut surface 3, 5: Chamfer
Claims (3)
矩形をなす切断面の四辺のうち、少なくとも、前記金属薄帯の積層方向に垂直な一辺に面取り部を有し、
前記面取り部の形成によってカットコアから除去されている部分は、前記切断面に垂直な方向の寸法が前記積層方向の寸法よりも大きいことを特徴とするカットコア。 A cut core formed by cutting a wound metal ribbon,
Of the four sides of the rectangular cut surface, at least a chamfered portion on one side perpendicular to the lamination direction of the metal ribbon,
The cut core characterized in that the portion removed from the cut core by forming the chamfered portion has a dimension in a direction perpendicular to the cut surface that is larger than a dimension in the stacking direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011096960A JP5757407B2 (en) | 2011-04-25 | 2011-04-25 | Cut core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011096960A JP5757407B2 (en) | 2011-04-25 | 2011-04-25 | Cut core |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012230956A true JP2012230956A (en) | 2012-11-22 |
JP5757407B2 JP5757407B2 (en) | 2015-07-29 |
Family
ID=47432305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011096960A Active JP5757407B2 (en) | 2011-04-25 | 2011-04-25 | Cut core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5757407B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021150611A (en) * | 2020-03-23 | 2021-09-27 | 東芝産業機器システム株式会社 | Cut core |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872824U (en) * | 1981-11-12 | 1983-05-17 | 三菱電機株式会社 | transformer |
JPH03231412A (en) * | 1990-02-07 | 1991-10-15 | Murata Mfg Co Ltd | Manufacture of thin-film laminated core |
JPH07254515A (en) * | 1994-03-16 | 1995-10-03 | Kitamura Kiden Kk | Wound core |
JP2005019764A (en) * | 2003-06-27 | 2005-01-20 | Toyota Motor Corp | Reactor device |
JP2008159832A (en) * | 2006-12-25 | 2008-07-10 | Sumitomo Electric Ind Ltd | Reactor |
-
2011
- 2011-04-25 JP JP2011096960A patent/JP5757407B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872824U (en) * | 1981-11-12 | 1983-05-17 | 三菱電機株式会社 | transformer |
JPH03231412A (en) * | 1990-02-07 | 1991-10-15 | Murata Mfg Co Ltd | Manufacture of thin-film laminated core |
JPH07254515A (en) * | 1994-03-16 | 1995-10-03 | Kitamura Kiden Kk | Wound core |
JP2005019764A (en) * | 2003-06-27 | 2005-01-20 | Toyota Motor Corp | Reactor device |
JP2008159832A (en) * | 2006-12-25 | 2008-07-10 | Sumitomo Electric Ind Ltd | Reactor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021150611A (en) * | 2020-03-23 | 2021-09-27 | 東芝産業機器システム株式会社 | Cut core |
JP7402092B2 (en) | 2020-03-23 | 2023-12-20 | 東芝産業機器システム株式会社 | cut core |
Also Published As
Publication number | Publication date |
---|---|
JP5757407B2 (en) | 2015-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5877486B2 (en) | Amorphous metal core, induction device using the same, and method of manufacturing the same | |
KR20160126344A (en) | Transformer core and stacking method therefor | |
WO2012011389A1 (en) | Reactor device | |
KR20150143251A (en) | Core and coil component having the same | |
KR20160028369A (en) | Core and coil device using same | |
JP2020156130A (en) | Rotary electric machine | |
US8466766B2 (en) | Inductor core shaping near an air gap | |
US9123461B2 (en) | Reconfiguring tape wound cores for inductors | |
JP5651924B2 (en) | Stator core and motor | |
US20150332837A1 (en) | Teardrop-shaped magnetic core and coil device using same | |
US12159746B2 (en) | Transformer and reactor cores with new designs and methods for manufacturing | |
JP5757407B2 (en) | Cut core | |
CN110190688B (en) | Soft magnetic thin strip laminate | |
JP6075678B2 (en) | Composite magnetic core, reactor and power supply | |
US20150332825A1 (en) | Reactor | |
JPH0154843B2 (en) | ||
JP2012023079A (en) | Reactor | |
JP5900741B2 (en) | Composite magnetic core, reactor and power supply | |
JP3671171B2 (en) | Coil device and manufacturing method thereof | |
JP2020178411A (en) | Stator core and motor | |
JP2013197570A (en) | Composite magnetic core, reactor, and power supply device | |
JP7556372B2 (en) | Three-phase, three-legged wound core and three-phase, three-legged wound core transformer using the same | |
JP2010225901A (en) | Reactor | |
US11621115B2 (en) | Method for assembling a magnetic core for a transformer | |
JP6890210B2 (en) | Static device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5757407 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |