[go: up one dir, main page]

JP2012230058A - Decompression device of containment vessel - Google Patents

Decompression device of containment vessel Download PDF

Info

Publication number
JP2012230058A
JP2012230058A JP2011099645A JP2011099645A JP2012230058A JP 2012230058 A JP2012230058 A JP 2012230058A JP 2011099645 A JP2011099645 A JP 2011099645A JP 2011099645 A JP2011099645 A JP 2011099645A JP 2012230058 A JP2012230058 A JP 2012230058A
Authority
JP
Japan
Prior art keywords
containment vessel
exhaust pipe
reactor containment
emergency
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011099645A
Other languages
Japanese (ja)
Inventor
Isao Sakaki
勲 榊
Masanori Ino
正典 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011099645A priority Critical patent/JP2012230058A/en
Publication of JP2012230058A publication Critical patent/JP2012230058A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decompression device of a containment vessel capable of venting gas in the containment vessel at any pressure level and further of safely coping with leakage of radioactive materials in a case where the leakage thereof occurs.SOLUTION: A decompression device of a containment vessel comprises: an exhaust pipe 13 that is connected to a containment vessel 2 through a first isolation valve 12 and transfers gas generated in the containment vessel 2 to an exhaust tower 15; a stand-by gas treatment system 11 connected to a middle of the exhaust pipe 13 through a second isolation valve 14; an emergency exhaust pipe 13c that branches from an upstream side of the second isolation valve 14 of the exhaust pipe 13; a plurality of stop valves 18 disposed in series on the emergency exhaust pipe 13c; a radiation monitor 19 disposed downstream of the plurality of stop valves 18 of the emergency exhaust pipe 13c; and control means 20 that fully opens the second isolation valve 14 in response to an output of the radiation monitor 19 and further starts up the stand-by gas treatment system 11.

Description

本発明は、原子炉格納容器の減圧装置に係り、特に、緊急に原子炉圧力容器および原子炉格納容器への代替注水が必要になった場合に、圧力が高くなった原子炉格納容器内を任意の圧力レベルに減圧して、吐出圧の低いポンプによる注水も可能にした原子炉格納容器の減圧装置に関する。   The present invention relates to a depressurization device for a reactor containment vessel, and in particular, in a reactor containment vessel in which the pressure has increased when an emergency water injection to the reactor pressure vessel and the reactor containment vessel is urgently needed. The present invention relates to a depressurization device for a reactor containment vessel that can be decompressed to an arbitrary pressure level and can also be injected with a pump having a low discharge pressure.

沸騰水型原子炉(BWR)、例えば、Mark−I型BWRは、図2に示すように、原子炉圧力容器1が鋼鉄製の原子炉格納容器2の中に内蔵されている。   In a boiling water reactor (BWR), for example, a Mark-I type BWR, a reactor pressure vessel 1 is incorporated in a steel reactor containment vessel 2 as shown in FIG.

Mark−I型BWRの原子炉格納容器2は、原子炉圧力容器1及び再循環系(図示せず)を取り囲むフラスコ型のドライウェル3、その下に同心的に配置されたドーナツ型のサプレッションチャンバー4、ドライウエル3とサプレッションチャンバー4を放射状に連結する複数のベント管5、サプレッションチャンバー4の内部空間でベント管5の先端に連結されたドーナツ型のベントヘッダ6、ベントヘッダ6に接続された複数のダウンカマーパイプ7等の圧力抑制系から構成されている。   The Mark-I type BWR reactor containment vessel 2 includes a reactor pressure vessel 1 and a flask-type dry well 3 surrounding a recirculation system (not shown), and a donut-type suppression chamber concentrically disposed below the flask-type dry well 3. 4, a plurality of vent pipes 5 that radially connect the dry well 3 and the suppression chamber 4, a donut-shaped vent header 6 that is connected to the tip of the vent pipe 5 in the internal space of the suppression chamber 4, and the vent header 6. It is comprised from the pressure suppression system, such as several downcomer pipes 7. FIG.

サプレッションチャンバー4にはプール水が張られており、ダウンカマーパイプ7の先端部分がこの水面下に没している。   The suppression chamber 4 is filled with pool water, and the tip portion of the downcomer pipe 7 is submerged below the surface of the water.

主蒸気系配管8に取り付けられた主蒸気逃がし安全弁9から延びる主蒸気逃がし管10の先端もサプレッションチャンバー4の水面下まで導かれている。   The leading end of the main steam escape pipe 10 extending from the main steam relief safety valve 9 attached to the main steam system pipe 8 is also led to the surface of the suppression chamber 4.

そして、原子炉圧力容器1内の圧力が過度に上昇した場合には、この主蒸気逃がし安全弁9を作動させて原子炉圧力容器1からの蒸気の一部をサプレッションチャンバー4のプール水中に放出して原子炉格納容器2内の圧力上昇が抑制される。   When the pressure in the reactor pressure vessel 1 rises excessively, the main steam relief safety valve 9 is operated to release a part of the steam from the reactor pressure vessel 1 into the pool water of the suppression chamber 4. Thus, the pressure increase in the reactor containment vessel 2 is suppressed.

サプレッションチャンバー4のプール水は、残留熱除去系(RHR)により冷却されて循環しているが、この残留熱除去系が正常に機能しない、主蒸気逃がし安全弁が一旦開いた後機器の故障により閉弁しない、などの事故が重なった場合には、原子炉格納容器2内の圧力、温度が急激に上昇し、最終的には、原子炉格納容器2の設計限界を超える危険性が発生する。   The pool water in the suppression chamber 4 is cooled and circulated by the residual heat removal system (RHR), but this residual heat removal system does not function properly. After the main steam relief valve is opened, it is closed due to equipment failure. When accidents such as failure do not occur, the pressure and temperature in the reactor containment vessel 2 rapidly increase, and finally there is a risk of exceeding the design limit of the reactor containment vessel 2.

このような場合においても、原子炉格納容器2内に放出された放射性物質を含むガス等を安全に処理する設備として非常用ガス処理系(SGTS)11が設けられている。   Even in such a case, an emergency gas processing system (SGTS) 11 is provided as a facility for safely processing a gas containing a radioactive substance released into the reactor containment vessel 2.

非常用ガス処理系(SGTS)11は、図示を省略した湿分除去装置、高性能粒子フィルタ、ヨウ素用チャコールフィルタ、排気ファン等から構成されており、原子炉格納容器2のドライウエル3とサプレッションチャンバー4から、それぞれ第1隔離弁12a,12bを介して導出される排気管13a,13bを合流させた排気管13に、第2隔離弁14を介して連結されている。   The emergency gas treatment system (SGTS) 11 includes a moisture removal device, a high performance particle filter, an iodine charcoal filter, an exhaust fan, and the like (not shown). Via the 2nd isolation valve 14, it connects with the exhaust pipe 13 which joined the exhaust pipes 13a and 13b derived | led-out from the chamber 4 via the 1st isolation valves 12a and 12b, respectively.

原子炉格納容器2から、排気管13によって放出された高圧のガスは、第2隔離弁14で常圧近くの正圧に減圧され、非常用ガス処理系(SGTS)11で核分裂生成物等が除去されて排気塔15から高所放出される。   The high-pressure gas discharged from the reactor containment vessel 2 through the exhaust pipe 13 is reduced to a positive pressure close to normal pressure by the second isolation valve 14, and fission products and the like are generated in the emergency gas processing system (SGTS) 11. It is removed and discharged from the exhaust tower 15 at a high place.

また、第2隔離弁14の上流側で排気管13から緊急排気管13cが分岐している。分岐した緊急排気管13cには、電動弁(MO)16、ラプチャーディスク17が直列に配置され、ラプチャーディスク17の下流側は排気塔15に接続されている。   Further, the emergency exhaust pipe 13 c branches from the exhaust pipe 13 on the upstream side of the second isolation valve 14. A motor-operated valve (MO) 16 and a rupture disk 17 are arranged in series in the branched emergency exhaust pipe 13 c, and the downstream side of the rupture disk 17 is connected to the exhaust tower 15.

非常用ガス処理系(SGTS)11で処理しきれない放射性物質を含む大量の気体が原子炉格納容器2から放出され、原子炉格納容器2の圧力、温度が急激に上昇して原子炉格納容器2が損傷する可能性が考えられる場合には、電動弁16が遠隔操作で開放され、配管内のガス圧が予め設定したラプチャーディスク17の設定破裂圧力に達するとラプチャーディスク17が破裂して高圧の気体を急激に放出して過圧による原子炉格納容器2の破壊が防止される。   A large amount of gas containing a radioactive substance that cannot be processed by the emergency gas processing system (SGTS) 11 is released from the reactor containment vessel 2, and the pressure and temperature of the reactor containment vessel 2 rapidly rise and the reactor containment vessel 2 may be damaged, the motor-operated valve 16 is opened by remote control, and when the gas pressure in the pipe reaches the preset burst pressure of the rupture disk 17, the rupture disk 17 bursts and the pressure is increased. The reactor containment vessel 2 is prevented from being destroyed by overpressure by abruptly releasing the gas.

ところで、このような従来のラプチャーディスク17の破裂により原子炉格納容器2が損傷に至る過圧を防ぐようにした原子炉格納容器の減圧装置では、ラプチャーディスク17の破裂設定圧力が原子炉格納容器2の最高使用圧力以上の圧力に設定されているため、この圧力以下での原子炉格納容器2内のガスベントをすることはできない。   By the way, in such a pressure reduction device for a containment vessel that prevents damage to the reactor containment vessel 2 due to the rupture of the rupture disc 17, the burst set pressure of the rupture disc 17 is set to the reactor containment vessel. Since the pressure is set to be equal to or higher than the maximum operating pressure of 2, gas venting in the reactor containment vessel 2 at a pressure lower than this pressure cannot be performed.

したがって、原子炉冷却材喪失事故(LOCA)時のように、緊急に炉心への代替注水が必要になった場合には、原子炉格納容器の最大使用圧力以上の吐出圧力を持つポンプしか使うことができず、ポンプの調達範囲が制約されるという課題があった。
なお、原子炉格納容器からの排気管を途中で2経路に分岐し、一方の経路には、遠隔操作で開閉動作する止め弁を2個直列に配置し、他方の経路には、ラプチャーディスクと遠隔操作で開閉動作する止め弁を直列に配置し、これら2経路をその下流側で合流させて1本とし、その下流側にオリフィスとワイヤメッシュメタルフィルタを直列に配置した原子炉格納容器の減圧装置が知られている(特許文献1)。
Therefore, in the event of an urgent need for alternative water injection to the reactor core, such as during a reactor coolant loss accident (LOCA), only pumps with discharge pressures greater than the maximum operating pressure of the containment vessel should be used. There was a problem that the pump procurement range was limited.
In addition, the exhaust pipe from the reactor containment vessel is branched into two paths on the way, two stop valves that are opened and closed by remote control are arranged in series on one path, and the rupture disk and the other path are arranged on the other path. Stop valve opened and closed by remote operation is arranged in series, these two paths are merged downstream to make one, and the containment pressure reduction of the reactor containment vessel in which the orifice and wire mesh metal filter are arranged in series downstream An apparatus is known (Patent Document 1).

この原子炉格納容器の減圧装置は、2個の止め弁側を遠隔で操作して、任意の圧力レベルで原子炉格納容器内の気体を放出することは可能である。   In this reactor containment vessel decompression device, it is possible to remotely operate the two stop valves to release the gas in the reactor containment vessel at an arbitrary pressure level.

しかし、止め弁の封止能力はラプチャーディスクと比べれば完璧なものではなく、ワイヤメッシュメタルフィルタも放射性物質を完全に除去するものではないから、通常運転時に止め弁側から微量の放射性物質がリークする可能性がある。   However, the sealing capacity of the stop valve is not perfect compared to the rupture disk, and the wire mesh metal filter does not completely remove radioactive material, so a small amount of radioactive material leaks from the stop valve side during normal operation. there's a possibility that.

特開平3−235093号公報Japanese Patent Laid-Open No. 3-235093

従来のラプチャーディスクの破裂により原子炉格納容器の過圧による損壊を防ぐ減圧装置では、ラプチャーディスクの破裂設定圧力が原子炉格納容器の最高使用圧力以上の圧力に設定されるため、原子炉格納容器への緊急の代替注水が必要になった場合に、原子炉格納容器の最大使用圧力以上の吐出圧力を持つポンプしか使うことができず、ポンプの調達範囲が制約されるという課題があった。   In the conventional decompression device that prevents the rupture disk from rupturing due to the overpressure of the reactor containment vessel, the rupture disc burst setting pressure is set to a pressure higher than the maximum use pressure of the reactor containment vessel. When urgent alternative water injection was required, only pumps with discharge pressures higher than the maximum operating pressure of the containment vessel could be used, and there was a problem that the pump procurement range was limited.

また、排気管を2経路に分岐し、一方の経路にラプチャーディスクを、他方の経路に止め弁を2個直列に配置した減圧装置では、止め弁側から微量の放射性物質がリークする可能性があった。
本発明は、かかる従来の課題を解決するためになされたもので、任意の圧力レベルで、原子炉格納容器内のガスをベントすることができるとともに、放射性物質のリークが生じた場合、非常用ガス処理系(SGTS)を起動させて安全に処理することができるようにした原子炉格納容器の減圧装置を提供することを目的とする。
Further, in a decompression device in which an exhaust pipe is branched into two paths, a rupture disk is arranged in one path, and two stop valves are arranged in series in the other path, a small amount of radioactive material may leak from the stop valve side. there were.
The present invention has been made to solve such a conventional problem, and is capable of venting the gas in the reactor containment vessel at an arbitrary pressure level and in the case where a leak of radioactive material occurs. It is an object of the present invention to provide a reactor containment vessel decompression device that can start a gas processing system (SGTS) and perform safe processing.

上記目的を達成するため、本発明の原子炉格納容器の減圧装置は、原子炉格納容器に第1隔離弁を介して接続され原子炉格納容器内で発生したガスを排気塔に移送する排気管と、 前記排気管の途中に第2隔離弁を介して接続された非常用ガス処理系(SGTS)と、前記排気管の第2隔離弁の上流側から分岐する緊急排気管と、前記緊急排気管に直列に配置された複数の止め弁と、前記緊急排気管の前記複数の止め弁の下流側に配置された放射線モニターと、
前記放射線モニターの出力により第2隔離弁を開放するとともに前記非常用ガス処理系を起動させる制御手段と、を有することを特徴とする。
In order to achieve the above object, a depressurization apparatus for a reactor containment vessel according to the present invention is an exhaust pipe that is connected to the reactor containment vessel via a first isolation valve and transfers gas generated in the reactor containment vessel to an exhaust tower. An emergency gas treatment system (SGTS) connected to the exhaust pipe through a second isolation valve, an emergency exhaust pipe branched from the upstream side of the second isolation valve of the exhaust pipe, and the emergency exhaust A plurality of stop valves arranged in series with the pipe; a radiation monitor arranged downstream of the plurality of stop valves of the emergency exhaust pipe;
And a control means for opening the second isolation valve by the output of the radiation monitor and activating the emergency gas processing system.

前記止め弁は、電動弁、空気作動弁のいずれも使用可能である。電動弁の場合交流電源のほかにバッテリーでも駆動できる構成とし、空気作動弁の場合には、作動空気として原子炉格納容器のガス圧を用いるようにすれば、全交流電源喪失(SBO)の場合でも、原子炉格納容器の圧力低下を図ることが可能になる。   The stop valve can be either an electric valve or an air operated valve. In the case of a motorized valve, it can be driven by a battery in addition to an AC power supply. In the case of an air-operated valve, if the gas pressure in the reactor containment vessel is used as the working air, all AC power is lost (SBO) However, it is possible to reduce the pressure in the reactor containment vessel.

前記排気管の原子炉格納容器側は、原子炉格納容器のドライウエルとサプレッションチャンバーにそれぞれ別の第1隔離弁を介して接続された分岐配管からなる、ものとすることができる。     The reactor containment vessel side of the exhaust pipe may be composed of a branch pipe connected to the dry well of the reactor containment vessel and the suppression chamber via separate first isolation valves.

なお,非常用ガス処理系で処理された処理ガスは、排気管を介して排気塔に移送されて高所放出される。   The processing gas processed in the emergency gas processing system is transferred to an exhaust tower through an exhaust pipe and discharged at a high place.

本発明の原子炉格納容器の保護装置は、原子炉格納容器の最高使用圧力より低い任意の圧力で原子炉格納容器のベントをすることができ、したがって、原子炉冷却材喪失事故(LOCA)時のように、緊急に炉心への代替注水が必要になった場合に、使用可能なポンプの吐出圧力に応じて任意の圧力で原子炉格納容器のベントをすることができ、吐出圧力の低いポンプも使用して最大限の効果的な注水をすることができる。   The reactor containment protection apparatus of the present invention can vent the containment vessel at any pressure lower than the maximum use pressure of the reactor containment vessel, and therefore, during a reactor coolant loss accident (LOCA). When the alternative water injection to the core is urgently needed, the reactor containment vessel can be vented at any pressure according to the discharge pressure of the usable pump. Can also be used for maximum effective water injection.

また、止め弁から放射性物質がリークした場合には、放射線モニターがこれを検知して第2隔離弁を開放するとともに、非常用ガス処理系を起動させるので、排気管内の圧力(原子炉格納容器内の圧力)を減圧させて止め弁からのリークを抑制することができる。   In addition, when radioactive material leaks from the stop valve, the radiation monitor detects this and opens the second isolation valve and activates the emergency gas treatment system, so the pressure in the exhaust pipe (reactor containment vessel) The internal pressure) can be reduced to suppress leakage from the stop valve.

本発明の原子炉格納容器減圧装置の一実施形態の系統図。1 is a system diagram of an embodiment of a reactor containment decompression apparatus according to the present invention. 従来の原子炉格納容器減圧装置の系統図。The system diagram of the conventional reactor containment vessel decompression device.

次に、本発明の原子炉格納容器の減圧装置を、沸騰水型原子炉発電プラント(Mark−I型BWR)の原子炉格納容器に適用した例につき、図1を参照して説明する。   Next, an example in which the reactor containment vessel decompression apparatus of the present invention is applied to a reactor containment vessel of a boiling water reactor power plant (Mark-I type BWR) will be described with reference to FIG.

(実施形態)
図1は、本実施形態の系統図である。
(Embodiment)
FIG. 1 is a system diagram of this embodiment.

なお、図1に示す実施形態の原子炉格納容器は、図2に示した従来の原子炉格納容器と同一構造であるので、図2と共通する部分には、同一符号を付して重複する説明を省略する。   The reactor containment vessel of the embodiment shown in FIG. 1 has the same structure as the conventional reactor containment vessel shown in FIG. Description is omitted.

この実施形態が適用される原子炉格納容器2は、いわゆるMark−I型BWRであって、ドライウエル3と、サプレッションチャンバー4、ベント管5、ベントヘッダ6、ダウンカマーパイプ7等の圧力抑制系から主要部分が構成されている。   The nuclear reactor containment vessel 2 to which this embodiment is applied is a so-called Mark-I type BWR, and includes a dry well 3, a suppression chamber 4, a vent pipe 5, a vent header 6, a downcomer pipe 7 and the like pressure suppression system. The main part consists of

原子炉格納容器2には、それぞれ、ドライウエル3とサプレッションチャンバー4を貫通して内部空間に開口する排気管13a,13bが取り付けられており、それぞれ第1隔離弁12a,12bにより閉鎖されている。これらの隔離弁12a,12bは、原子炉水位低、ドライウエル圧力高あるいは放射能レベル高などの信号によって自動的に閉鎖し、原子炉格納容器2からの放射性物質の流出を防ぐようになっている。また、原子炉格納容器2のサプレッションチャンバー4側に接続された排気管13bの第1隔離弁12bは、サプレッションチャンバー4の満水時には閉鎖され、ドライウエル3側の排気管13aだけが開放される。     The reactor containment vessel 2 is provided with exhaust pipes 13a and 13b that pass through the dry well 3 and the suppression chamber 4 and open to the internal space, and are closed by first isolation valves 12a and 12b, respectively. . These isolation valves 12a and 12b are automatically closed by a signal such as a low reactor water level, a high dry well pressure or a high radioactivity level to prevent the radioactive material from flowing out of the reactor containment vessel 2. Yes. The first isolation valve 12b of the exhaust pipe 13b connected to the suppression chamber 4 side of the reactor containment vessel 2 is closed when the suppression chamber 4 is full, and only the exhaust pipe 13a on the dry well 3 side is opened.

排気管13a,13bは合流し、合流した排気管13には、後述する信号により開放される第2隔離弁14と非常用ガス処理系(SGTS)11が順に配置されている。
第2隔離弁14は、原子炉格納容器2内の圧力とほぼ同圧の排気管13内の高い圧力の気体を、非常用ガス処理系(SGTS)11の高性能粒子フィルタ、ヨウ素用チャコールフィルタが有効に機能する圧力(正圧)まで減圧する。
非常用ガス処理系(SGTS)11で処理されて放射性物質の除去されたガスは排気塔15へ送られて高所放出される。
The exhaust pipes 13a and 13b are joined together, and a second isolation valve 14 and an emergency gas processing system (SGTS) 11 that are opened by a signal to be described later are sequentially arranged in the joined exhaust pipe 13.
The second isolation valve 14 is a high-performance particle filter of an emergency gas treatment system (SGTS) 11, an iodine charcoal filter, and a high-pressure gas in the exhaust pipe 13 having the same pressure as that in the reactor containment vessel 2. The pressure is reduced to a pressure (positive pressure) that effectively functions.
The gas that has been processed by the emergency gas processing system (SGTS) 11 and from which radioactive substances have been removed is sent to the exhaust tower 15 and released at a high place.

排気管13の第2隔離弁14の上流側には、非常用排気管13cが接続され、この非常用排気管13cには、遠隔操作で開閉する2個の止め弁18a,18bが直列に取り付けられ、その下流には止め弁18a,18bのリークを検出する放射線モニター19が配置されている。
これらの止め弁18a,18bは、電動弁、空気作動弁のいずれで構成してもよい。電動弁とした場合には、バッテリー(蓄電池、乾電池)でも駆動できる構成とし、空気作動弁の場合には、作動空気として原子炉格納容器のガス圧を用い、信号系をバッテリー電源でも作動できる構成とすることにより、全交流電源喪失(SBO)の場合でも、機能させることができる。
なお、止め弁18a,18bは、緊急の減圧が必要な場合には同時に開放されるが、下流側の止め弁18bの開度を上流側の止め弁18aの開度より大きくしたり、止め弁18a,18bの両方を半開にしたりしてもよい。また、2段に限らず、必要に応じて3段以上直列に配置するようにしてもよい。
An emergency exhaust pipe 13c is connected to the upstream side of the second isolation valve 14 of the exhaust pipe 13, and two stop valves 18a and 18b that are opened and closed by remote control are attached in series to the emergency exhaust pipe 13c. A radiation monitor 19 for detecting leakage of the stop valves 18a and 18b is disposed downstream thereof.
These stop valves 18a and 18b may be constituted by either an electric valve or an air operated valve. In the case of an electric valve, it can be driven by a battery (storage battery, dry cell). In the case of an air-operated valve, the gas pressure of the reactor containment vessel is used as the operating air, and the signal system can be operated by a battery power supply. Thus, even in the case of total AC power loss (SBO), it can function.
The stop valves 18a and 18b are simultaneously opened when urgent pressure reduction is required, but the opening degree of the downstream stop valve 18b is made larger than the opening degree of the upstream stop valve 18a, or the stop valve Both 18a and 18b may be half open. Further, the number of stages is not limited to two, and three or more stages may be arranged in series as necessary.

制御装置20は、放射線モニター19が止め弁18a,18bからの放射性物質のリークを検出すると、放射線レベルが許容範囲内か否かを判定し、許容値を超えていると判定すると、第2隔離弁14に信号を送り、排気管13内のガス圧を非常用ガス処理系(SGTS)11が処理可能な圧力レベルにまで減圧する所定の開度で第2隔離弁14を開放するとともに、非常用ガス処理系(SGTS)11を起動させる。   When the radiation monitor 19 detects the leakage of radioactive material from the stop valves 18a and 18b, the control device 20 determines whether or not the radiation level is within an allowable range. A signal is sent to the valve 14 to open the second isolation valve 14 at a predetermined opening that reduces the gas pressure in the exhaust pipe 13 to a pressure level that can be processed by the emergency gas processing system (SGTS) 11. The gas processing system (SGTS) 11 is started.

第2隔離弁14の開放により原子炉格納容器2内のガスは、非常用ガス処理系(SGTS)11で処理され排気搭15から放出されるので原子炉格納容器2内及び排気管13内の圧力は減圧されて止め弁18a,18bからの放射性物質のリークが抑制される。   By opening the second isolation valve 14, the gas in the reactor containment vessel 2 is processed by the emergency gas processing system (SGTS) 11 and released from the exhaust tower 15, so that the inside of the reactor containment vessel 2 and the exhaust pipe 13 The pressure is reduced and the leakage of radioactive material from the stop valves 18a and 18b is suppressed.

本発明の原子炉格納容器の減圧装置の止め弁18a,18bは、次のように用いられる。   The stop valves 18a and 18b of the pressure reduction device for the containment vessel of the present invention are used as follows.

例えば、配管破断事故発生後残留熱除去系が正常に機能しない場合等の原子炉格納容器2内の圧力が所定圧以上に上昇した場合には、第1隔離弁12a,12bと第2隔離弁14が開放され、排気管13a,13b等から放出された放射性物質を含む気体が非常用ガス処理系(SGTS)11に送られ、ここで有害な放射性物質が除去された気体は排気塔15から大気中に放出される。その結果、原子炉格納容器2内は減圧されてその健全性が保持される。   For example, when the pressure in the reactor containment vessel 2 rises above a predetermined pressure, such as when the residual heat removal system does not function properly after a pipe breakage accident, the first isolation valves 12a and 12b and the second isolation valve 14 is opened, and the gas containing the radioactive substance released from the exhaust pipes 13a, 13b, etc. is sent to the emergency gas processing system (SGTS) 11, where the gas from which the harmful radioactive substance has been removed is sent from the exhaust tower 15. Released into the atmosphere. As a result, the reactor containment vessel 2 is depressurized to maintain its soundness.

ところで、循環配管等の破断事故のように水蒸気を大量に含む気体によって原子炉格納容器2内の圧力、温度が急激に上昇した場合には、このガスをそのまま非常用ガス処理系(SGTS)11に送ることはできない。非常用ガス処理系(SGTS)11は、特殊加工したチャコールフィルタにより低濃度の放射性物質をも吸着して、高い除去効率を確保するように構成されているため、循環配管等の破断時に放出される水蒸気を大量に含むガスを系内に流すと、吸着性能が急激に劣化する上に、フィルタ自体の耐圧強度が小さいため、ガス流の衝撃により損傷する可能性がある。
したがって、このような場合には、止め弁18a,18bが開放され、緊急度、ガスの圧力レベル等に応じて次のような対応がなされる。
まず、ガス圧が非常用ガス処理系(SGTS)11だけで処理するには高過ぎるが、圧力レベルを少し下げれば、処理可能である場合には、止め弁18a,18bの開放による減圧と、第2隔離弁14による減圧の2段の減圧を行いながら非常用ガス処理系(SGTS)11による処理を行うこともできる。
この場合、止め弁18a,18bから放出されるガスについては放射性物質の除去が行われないが、非常用ガス処理系(SGTS)11により処理したガスには放射性物質が含まれていないので、環境に放出される放射性物質の総量を少なくすることができる。
いくつかの事故が重なり、原子炉格納容器2内の圧力が予め定められた設定圧以上になり原子炉格納容器2が損傷する可能性が考えられる場合には、止め弁18a,18bが全開される。
また、原子炉冷却材喪失事故(LOCA)時のように、原子炉圧力容器内への代替注水を緊急かつ大量に行う必要があるのに、吐出圧力が原子炉格納容器2の最高使用圧力よりも高いポンプだけでは十分な注水が行えない場合には、止め弁18a,18bの開放圧力を低くして、吐出圧の低いポンプによる注水も可能にすることができ、原子炉冷却材喪失事故(LOCA)などを回避することが可能になる。
なお、以上の実施形態では、ラプチャーディスクを使用していないが、本発明はかかる実施形態に限定されるものではなく、例えば排気管13に、緊急排気管13cと並列して第2の緊急排気管を設け、この排気管に従来と同様の止め弁とラプチャーディスクからなる緊急放圧システムを設けることも可能である。
By the way, when the pressure and temperature in the reactor containment vessel 2 are suddenly increased by a gas containing a large amount of water vapor as in a breakage accident of a circulation pipe or the like, this gas is directly used as an emergency gas treatment system (SGTS) 11. Can not be sent to. The emergency gas treatment system (SGTS) 11 is configured to adsorb even low-concentration radioactive material by a specially processed charcoal filter to ensure high removal efficiency. When a gas containing a large amount of water vapor is allowed to flow through the system, the adsorption performance deteriorates rapidly, and the pressure resistance of the filter itself is small, which may cause damage due to the impact of the gas flow.
Therefore, in such a case, the stop valves 18a and 18b are opened, and the following measures are taken according to the degree of urgency, the gas pressure level, and the like.
First, if the gas pressure is too high to be processed only by the emergency gas processing system (SGTS) 11, but can be processed by lowering the pressure level a little, depressurization by opening the stop valves 18a and 18b, The processing by the emergency gas processing system (SGTS) 11 can be performed while performing the two-stage pressure reduction by the second isolation valve 14.
In this case, the radioactive substance is not removed from the gas discharged from the stop valves 18a and 18b, but the gas processed by the emergency gas processing system (SGTS) 11 does not contain the radioactive substance. It is possible to reduce the total amount of radioactive material released into the chamber.
When several accidents overlap and the pressure in the reactor containment vessel 2 exceeds a predetermined set pressure and the reactor containment vessel 2 may be damaged, the stop valves 18a and 18b are fully opened. The
Also, as in the case of the loss of reactor coolant accident (LOCA), it is necessary to perform urgent and large-scale injection of water into the reactor pressure vessel. However, if sufficient water injection cannot be performed with a high pump alone, the opening pressure of the stop valves 18a and 18b can be lowered to enable water injection with a pump with a low discharge pressure. (LOCA) can be avoided.
In the above embodiment, the rupture disk is not used. However, the present invention is not limited to this embodiment. For example, the second emergency exhaust is provided in the exhaust pipe 13 in parallel with the emergency exhaust pipe 13c. It is also possible to provide a pipe and provide an emergency pressure relief system comprising a stop valve and a rupture disk similar to the conventional one on the exhaust pipe.

なお、以上の実施形態は、Mark−I型BWRに本発明を適用した場合について説明したが、本発明はかかる実施形態に限定されるべきものではなく、Mark−II型BWR、Mark−III型BWRあるいはABWRの原子炉格納容器減圧装置についても同様に適用することが可能である。   In the above embodiment, the case where the present invention is applied to the Mark-I type BWR has been described. However, the present invention is not limited to such an embodiment, and the Mark-II type BWR and Mark-III type are not limited thereto. The same can be applied to the reactor containment pressure reducing device of BWR or ABWR.

1……原子炉圧力容器
2……原子炉格納容器
3……ドライウエル
4……サプレッションチャンバー
5……ベント管
6……ベントヘッダ
7……ダウンカマーパイプ
8……主蒸気系配管
9……逃し安全弁
10……排気管
11……非常用ガス処理系(SGTS)
12a,12b……第1隔離弁
13,13a,13b……排気管
13c……緊急排気管
14……第2隔離弁
15……排気塔
16……電動弁
17……ラプチャーディスク
18a,18b……止め弁
19……放射線モニター
20……制御装置
1 ... Reactor pressure vessel 2 ... Reactor containment vessel 3 ... Dry well 4 ... Suppression chamber 5 ... Vent pipe 6 ... Vent header 7 ... Downcomer pipe 8 ... Main steam system pipe 9 ... Relief safety valve 10 …… Exhaust pipe 11 …… Emergency gas treatment system (SGTS)
12a, 12b ...... First isolation valve 13, 13a, 13b ... Exhaust pipe 13c ... Emergency exhaust pipe 14 ... Second isolation valve 15 ... Exhaust tower 16 ... Motor valve 17 ... Rupture disk 18a, 18b ... ... Stop valve 19 ... Radiation monitor 20 ... Control device

Claims (4)

原子炉格納容器に第1隔離弁を介して接続され原子炉格納容器内で発生した気体を排気塔に移送する排気管と、
前記排気管の途中に第2隔離弁を介して接続された非常用ガス処理系と、
前記排気管の第2隔離弁の上流側から分岐する緊急排気管と、
前記緊急排気管に直列に配置された複数の止め弁と、
前記緊急排気管の前記複数の止め弁の下流側に配置された放射線モニターと、
前記放射線モニターの出力により第2隔離弁を開放するとともに前記非常用ガス処理系を起動させる制御手段と、
を有することを特徴とする原子炉格納容器の減圧装置。
An exhaust pipe connected to the reactor containment vessel via a first isolation valve for transferring the gas generated in the reactor containment vessel to the exhaust tower;
An emergency gas treatment system connected via a second isolation valve in the middle of the exhaust pipe;
An emergency exhaust pipe branched from the upstream side of the second isolation valve of the exhaust pipe;
A plurality of stop valves arranged in series with the emergency exhaust pipe;
A radiation monitor disposed downstream of the plurality of stop valves of the emergency exhaust pipe;
Control means for opening the second isolation valve by the output of the radiation monitor and activating the emergency gas processing system;
A depressurizing device for a reactor containment vessel, comprising:
前記排気管の原子炉格納容器側は、原子炉格納容器のドライウエルとサプレッションチャンバーにそれぞれ別の第1隔離弁を介して接続された分岐配管からなることを特徴とする請求項1記載の原子炉格納容器の減圧装置。   2. The atom according to claim 1, wherein the reactor containment side of the exhaust pipe includes a branch pipe connected to a dry well and a suppression chamber of the reactor containment vessel through separate first isolation valves. Pressure reducing device for reactor containment vessel. 原子炉格納容器のサプレッションチャンバー側に接続された前記排気管の第1隔離弁は、サプレッションチャンバーの満水時には閉鎖されることを特徴とする請求項2記載の原子炉格納容器の減圧装置。   3. The reactor containment vessel decompression device according to claim 2, wherein the first isolation valve of the exhaust pipe connected to the suppression chamber side of the reactor containment vessel is closed when the suppression chamber is full. 前記非常用ガス処理系で処理された気体は、排気管を介して排気塔に移送されることを特徴とする請求項1乃至3のいずれか1項記載の原子炉格納容器の減圧装置。   The reactor containment vessel decompression device according to any one of claims 1 to 3, wherein the gas treated in the emergency gas treatment system is transferred to an exhaust tower through an exhaust pipe.
JP2011099645A 2011-04-27 2011-04-27 Decompression device of containment vessel Withdrawn JP2012230058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011099645A JP2012230058A (en) 2011-04-27 2011-04-27 Decompression device of containment vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011099645A JP2012230058A (en) 2011-04-27 2011-04-27 Decompression device of containment vessel

Publications (1)

Publication Number Publication Date
JP2012230058A true JP2012230058A (en) 2012-11-22

Family

ID=47431709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011099645A Withdrawn JP2012230058A (en) 2011-04-27 2011-04-27 Decompression device of containment vessel

Country Status (1)

Country Link
JP (1) JP2012230058A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014105775A1 (en) * 2012-12-28 2014-07-03 Ge-Hitachi Nuclear Energy America Llc Containment vent system with passive mode for boiling water reactors (bwrs) and method thereof
CN104332189A (en) * 2014-09-18 2015-02-04 中国核电工程有限公司 System for finally guaranteeing functions of containment vessel and preventing large-scale radioactive release and method thereof
EP2869307A2 (en) 2013-10-30 2015-05-06 Hitachi-GE Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
WO2015141067A1 (en) * 2014-03-17 2015-09-24 日立Geニュークリア・エナジー株式会社 Ph adjustment system for nuclear reactor containment vessel
JP2018179693A (en) * 2017-04-11 2018-11-15 日立Geニュークリア・エナジー株式会社 Reactor containment vessel venting system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014105775A1 (en) * 2012-12-28 2014-07-03 Ge-Hitachi Nuclear Energy America Llc Containment vent system with passive mode for boiling water reactors (bwrs) and method thereof
US9922734B2 (en) 2012-12-28 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Containment vent system with passive mode for boiling water reactors (BWRS), and method thereof
EP2869307A2 (en) 2013-10-30 2015-05-06 Hitachi-GE Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
US9916908B2 (en) 2013-10-30 2018-03-13 Hitachi-Ge Nuclear Energy, Ltd. Gas supply apparatus and air or nitrogen supply apparatus of nuclear plant
WO2015141067A1 (en) * 2014-03-17 2015-09-24 日立Geニュークリア・エナジー株式会社 Ph adjustment system for nuclear reactor containment vessel
JP2015175775A (en) * 2014-03-17 2015-10-05 日立Geニュークリア・エナジー株式会社 Ph adjusting system for reactor containment vessel
CN104332189A (en) * 2014-09-18 2015-02-04 中国核电工程有限公司 System for finally guaranteeing functions of containment vessel and preventing large-scale radioactive release and method thereof
CN104332189B (en) * 2014-09-18 2017-02-15 中国核电工程有限公司 System for finally guaranteeing functions of containment vessel and preventing large-scale radioactive release and method thereof
JP2018179693A (en) * 2017-04-11 2018-11-15 日立Geニュークリア・エナジー株式会社 Reactor containment vessel venting system

Similar Documents

Publication Publication Date Title
US11646123B2 (en) Three-way valve operational to both transfer steam to a decontamination water tank under one accident situation and discharge the steam to atmosphere under a different accident situation
CA2870859C (en) Defense in depth safety paradigm for nuclear reactor
JP2012230058A (en) Decompression device of containment vessel
US20210151208A1 (en) Alternative circulation cooling method for emergency core cooling system, and nuclear power plant
US5227127A (en) Filtered venting system for reactor containment vessel of nuclear power plant
JP4908561B2 (en) Reactor containment vessel and nuclear power plant using the same
JP5665644B2 (en) Reactor containment decompression device and decompression method
CN109243634A (en) Reactor safety system
JPS58173499A (en) Method and device for discharging systematically radioactivity from protective housing of gas cooled reactor
CN203607101U (en) Ventilating-exhausting system of nuclear power containment vessel
US11862349B2 (en) Injecting reactant into a spent fuel pool to react with radioactive effluent released into the pool from a nuclear reactor containment
JPH03235093A (en) Pressure reduction device of nuclear reactor containment vessel
US20200234836A1 (en) System and method for reducing atmospheric release of radioactive materials caused by severe accident
KR20200119703A (en) system for reducing the release of radioactive material to the atmosphere under severe accident
KR102341217B1 (en) System for reducing the release of radioactive material to the atmosphere
Shih et al. A study of the containment venting strategy for the Fukushima Daiichi accident
JP2017219525A (en) Device for preventing nuclear reactor from leaking radioactivity
CN113593731A (en) Passive containment depressurization filtering system
JPS63289488A (en) Pressure controller for containment vessel of nuclear reactor
CN207182920U (en) Filtration discharge system for severe accidents in underground nuclear power plants
JPH0377096A (en) Vent device of reactor container
CN110970139B (en) Anti-overflow system of voltage stabilizer, pressurized water reactor nuclear power plant and anti-overflow method of voltage stabilizer
JPS6031091A (en) Decompression device for container
JP2685902B2 (en) Primary containment vessel
Bubnova et al. Integrity Assessment of RBMK Physical Safety Barriers during Prolonged Station Power-Unit De-Energization

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701