JP2012227047A - Carbon material for secondary cell and manufacturing method therefor - Google Patents
Carbon material for secondary cell and manufacturing method therefor Download PDFInfo
- Publication number
- JP2012227047A JP2012227047A JP2011094941A JP2011094941A JP2012227047A JP 2012227047 A JP2012227047 A JP 2012227047A JP 2011094941 A JP2011094941 A JP 2011094941A JP 2011094941 A JP2011094941 A JP 2011094941A JP 2012227047 A JP2012227047 A JP 2012227047A
- Authority
- JP
- Japan
- Prior art keywords
- secondary battery
- carbon material
- battery according
- particles
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、一般に二次電池用炭素材及びその製造方法に関し、より詳細には、二次電池用炭素材並びにそれを含む導電剤、負極材、電極合剤、電極及び二次電池、並びに二次電池用炭素材及び二次電池用負極材の製造方法に関する。 The present invention generally relates to a carbon material for a secondary battery and a method for producing the same, and more specifically, a carbon material for a secondary battery, and a conductive agent, a negative electrode material, an electrode mixture, an electrode and a secondary battery including the same, and a secondary battery. The present invention relates to a method for producing a carbon material for a secondary battery and a negative electrode material for a secondary battery.
電子機器類のポータブル化、コードレス化が進むにつれ、二次電池の高容量化、高サイクル特性(長寿命化)等が求められている。特に、携帯電話やビデオカメラ等の小型携帯機器用二次電池として、近年、リチウムイオン二次電池が脚光を浴びており、リチウムイオン二次電池の小型軽量化及び高エネルギー密度化が、より一層求められている。 As electronic devices become more portable and cordless, there is a demand for higher secondary battery capacity, higher cycle characteristics (longer life), and the like. In particular, as secondary batteries for small portable devices such as mobile phones and video cameras, in recent years, lithium ion secondary batteries have attracted attention, and lithium ion secondary batteries have become smaller and lighter and have higher energy density. It has been demanded.
例えば、特許文献1に、リチウムを吸蔵・放出できる負極活物質、導電性炭素材料、及びバインダーを含むリチウム二次電池用負極であり、負極活物質が、粉末X線回折による黒鉛構造の(002)面の面間隔d(002)が0.335〜0.337nmの天然黒鉛または人造黒鉛を用いた黒鉛質材料であり、導電性炭素材料が、平均繊維径1〜200nmで、内部に中空構造を有し、繊維の長さ方向に対して垂直方向にグラフェンシートが積層した構造を持ち、粉末X線回折による黒鉛構造の(002)面の面間隔d(002)が0.336〜0.345nmの範囲にある気相法炭素繊維であり、前記気相法炭素繊維が10μm以上の大きさの凝集体を形成することなく負極全体の0.1〜10質量%含まれているリチウム二次電池用負極が提案され、長サイクル寿命、大電流特性に優れたリチウム二次電池を提供することができると記載されている。 For example, Patent Document 1 discloses a negative electrode for a lithium secondary battery including a negative electrode active material capable of inserting and extracting lithium, a conductive carbon material, and a binder, and the negative electrode active material has a graphite structure (002) by powder X-ray diffraction. ) Is a graphite material using natural graphite or artificial graphite having a surface spacing d (002) of 0.335 to 0.337 nm, and the conductive carbon material has an average fiber diameter of 1 to 200 nm and a hollow structure inside. And has a structure in which graphene sheets are laminated in a direction perpendicular to the length direction of the fiber, and the plane spacing d (002) of the (002) plane of the graphite structure by powder X-ray diffraction is 0.336-0. Lithium secondary, which is a vapor grown carbon fiber in the range of 345 nm, and the vapor grown carbon fiber is contained in an amount of 0.1 to 10% by mass of the whole negative electrode without forming an aggregate having a size of 10 μm or more. Battery negative electrode It has been proposed, it is described that it is possible to provide an excellent lithium secondary battery long cycle life, the large current characteristics.
また、特許文献2には、リチウムイオンの挿入・脱離が可能なケイ素原子または/及び錫原子を含む化合物を含有する粒子と、気相法炭素繊維との混合物を含むことを特徴とする負極材料が提案され、充放電容量が大きく、充放電サイクル特性に優れ、不可逆容量の小さいリチウムイオン二次電池を作製することができ、また、内部抵抗、特に低温における内部抵抗の値が小さなリチウムイオン二次電池を作製することができると記載されている。 Patent Document 2 includes a mixture of particles containing a compound containing a silicon atom and / or tin atom capable of inserting / extracting lithium ions, and vapor grown carbon fiber. Proposal of material, lithium ion secondary battery with large charge / discharge capacity, excellent charge / discharge cycle characteristics, small irreversible capacity, and low internal resistance, especially internal resistance at low temperature It is described that a secondary battery can be manufactured.
しかしながら、電子機器類のポータブル化、コードレス化、そしてコンパクト化が更に進む状況においては、二次電池、特にリチウムイオン二次電池の更なる高容量化、高サイクル特性(長寿命化)等が求められているのが現状である。 However, in situations where electronic devices are becoming more portable, more cordless, and more compact, secondary batteries, especially lithium ion secondary batteries, are required to have higher capacity and higher cycle characteristics (longer life). This is the current situation.
従来の黒鉛又はハードカーボンは、単位質量(体積)当たりの充放電容量に限界があるため、更なる高容量化を実現するための負極活物質としてケイ素(Si)や錫(Sn)を含む金属系活物質が注目されている。しかし、このような高容量金属活物質は、充電時にリチウム(Li)と合金化することにより、体積が充電前に比して最大で400%も膨張する。したがって、高容量金属活物質は、充放電を繰り返すと、Liの吸蔵放出と共に体積が膨張/収縮を繰り返すため、負極活物質が電極から滑落し、或いは負極活物質が割れて損傷するなどして、負極の構造が保持できなくなる。このような劣化現象はサイクル劣化と呼ばれ、負極活物質の電気的孤立及び容量低下を招くこととなる。 Conventional graphite or hard carbon has a limit in charge / discharge capacity per unit mass (volume), so a metal containing silicon (Si) or tin (Sn) as a negative electrode active material for realizing further higher capacity System active materials are attracting attention. However, such a high-capacity metal active material is alloyed with lithium (Li) at the time of charging, so that the volume expands by up to 400% as compared with that before charging. Therefore, when the charge and discharge are repeated, the high capacity metal active material repeatedly expands / contracts with the absorption and release of Li, so that the negative electrode active material slides off from the electrode or the negative electrode active material breaks and is damaged. The structure of the negative electrode cannot be maintained. Such a deterioration phenomenon is called cycle deterioration, which leads to electrical isolation and capacity reduction of the negative electrode active material.
本発明は、上記課題に鑑みて、二次電池として高い放電容量、高い充放電サイクル特性及び高い充放電効率を同時に達成する理想的な負極構造を提供することを目的とする。具体的には、負極活物質の体積膨張の影響を緩和することにより、活物質の滑落・損傷を最小限に抑え、また活物質への電気供給を保持することで、充放電の繰り返しによる容量低下を防止する新規な負極構造を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an ideal negative electrode structure that simultaneously achieves high discharge capacity, high charge / discharge cycle characteristics, and high charge / discharge efficiency as a secondary battery. Specifically, by reducing the volume expansion effect of the negative electrode active material, the sliding and damage of the active material is minimized, and the electric power supply to the active material is maintained, so that the capacity due to repeated charge and discharge is maintained. It aims at providing the novel negative electrode structure which prevents a fall.
本発明者らは、上記目的を達成するために、鋭意研究を重ねた結果、特定の平均粒子厚さと特定の平均アスペクト比を有する板状粒子を含む炭素材を用いることによって、驚くべきことに、二次電池、特にリチウムイオン二次電池の高容量、高充放電サイクル特性及び高充放電効率を同時に達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have surprisingly achieved by using a carbon material containing plate-like particles having a specific average particle thickness and a specific average aspect ratio. The present inventors have found that high capacity, high charge / discharge cycle characteristics and high charge / discharge efficiency of a secondary battery, particularly a lithium ion secondary battery, can be simultaneously achieved, and the present invention has been completed.
すなわち、本発明は以下の第(1)項〜第(14)項に記載の発明を提供する。
(1)平均粒子厚さが2nm〜500nmの範囲内にあり、かつ、平均アスペクト比(平均粒子径/平均粒子厚さ)が10以上である板状粒子を含んで成る二次電池用炭素材。
(2)前記板状粒子の平均粒子径が0.5μm〜500μmの範囲内にある、第(1)項に記載の二次電池用炭素材。
(3)前記板状粒子が熱硬化性樹脂の炭化処理により生成したものである、第(1)項又は第(2)項に記載の二次電池用炭素材。
(4)第(1)項〜第(3)項のいずれか1項に記載の二次電池用炭素材を含む二次電池用導電剤。
(5)第(1)項〜第(3)項のいずれか1項に記載の二次電池用炭素材と、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子とを含んで成り、該粒子が前記板状粒子の間に配置されている二次電池用負極材。
(6)前記金属もしくは半金属が、ケイ素、スズ、ゲルマニウムおよびアルミニウムからなる群より選ばれた少なくとも1種の元素を含む、第(5)項に記載の二次電池用負極材。
(7)第(1)項〜第(3)項のいずれか1項に記載の二次電池用炭素材および/または第(4)項に記載の二次電池用導電剤および/または第(5)項もしくは第(6)項に記載の二次電池用負極材を含む二次電池用電極合剤。
(8)第(7)項に記載の二次電池用電極合剤を含む二次電池用電極。
(9)第(8)項に記載の二次電池用電極を含む二次電池。
(10)リチウムイオン二次電池である、第(9)項に記載の二次電池。
(11)熱可塑性樹脂からなる支持体シートの少なくとも片面上に熱硬化性樹脂の層を設けた積層体を、該支持体シートが実質的に消失するまで炭化処理することを特徴とする、第(1)項に記載の二次電池用炭素材の製造方法。
(12)前記熱硬化性樹脂の層の厚さを調整することにより前記板状粒子の平均粒子厚さを制御する、第(11)項に記載の二次電池用炭素材の製造方法。
(13)熱可塑性樹脂からなる支持体シートの少なくとも片面上に熱硬化性樹脂の層を設けた1以上の積層体と、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子を含む1以上の層とを交互に配置して複合積層体を得、該複合積層体を、該支持体シートが実質的に消失するまで炭化処理することを特徴とする、第(5)項に記載の二次電池用負極材の製造方法。
(14)前記熱硬化性樹脂の層の厚さを調整することにより前記板状粒子の平均粒子厚さを制御する、第(13)項に記載の二次電池用負極材の製造方法。
That is, the present invention provides the inventions described in the following items (1) to (14).
(1) A carbon material for a secondary battery comprising plate-like particles having an average particle thickness in the range of 2 nm to 500 nm and an average aspect ratio (average particle diameter / average particle thickness) of 10 or more. .
(2) The carbon material for a secondary battery according to (1), wherein the plate-like particles have an average particle diameter in the range of 0.5 μm to 500 μm.
(3) The carbon material for a secondary battery according to (1) or (2), wherein the plate-like particles are produced by carbonizing a thermosetting resin.
(4) A conductive agent for a secondary battery comprising the carbon material for a secondary battery according to any one of (1) to (3).
(5) The carbon material for a secondary battery according to any one of items (1) to (3), and carbon, metal, metalloid, or alloy thereof capable of occluding and releasing lithium ions, A negative electrode material for a secondary battery comprising oxide, nitride, or carbide-containing particles, wherein the particles are disposed between the plate-like particles.
(6) The negative electrode material for a secondary battery according to (5), wherein the metal or metalloid contains at least one element selected from the group consisting of silicon, tin, germanium, and aluminum.
(7) The carbon material for the secondary battery according to any one of the items (1) to (3) and / or the conductive agent for the secondary battery according to the item (4) and / or ( An electrode mixture for a secondary battery comprising the negative electrode material for a secondary battery according to item 5) or (6).
(8) A secondary battery electrode comprising the secondary battery electrode mixture according to item (7).
(9) A secondary battery comprising the secondary battery electrode according to item (8).
(10) The secondary battery according to item (9), which is a lithium ion secondary battery.
(11) A laminate in which a thermosetting resin layer is provided on at least one side of a support sheet made of a thermoplastic resin is carbonized until the support sheet substantially disappears, The manufacturing method of the carbon material for secondary batteries as described in (1) term.
(12) The method for producing a carbon material for a secondary battery according to (11), wherein the average particle thickness of the plate-like particles is controlled by adjusting the thickness of the thermosetting resin layer.
(13) One or more laminates in which a thermosetting resin layer is provided on at least one surface of a support sheet made of a thermoplastic resin, and carbon, metal, metalloid, or these capable of occluding and releasing lithium ions One or more layers containing particles containing an alloy, oxide, nitride or carbide are alternately arranged to obtain a composite laminate, and the composite laminate is carbonized until the support sheet substantially disappears. The manufacturing method of the negative electrode material for secondary batteries as described in the item (5).
(14) The method for producing a negative electrode material for a secondary battery according to (13), wherein the average particle thickness of the plate-like particles is controlled by adjusting the thickness of the thermosetting resin layer.
本発明によると、特定の二次電池用炭素材が導電性炭素ネットワークを構成することにより負極活物質の体積膨張の影響が緩和され、その結果、活物質の滑落・損傷が最小限に抑えられ、また活物質への電気供給が保持されることとなり、二次電池の充放電の繰り返しによる容量低下(サイクル劣化)が顕著に抑制される。 According to the present invention, a specific carbon material for a secondary battery constitutes a conductive carbon network, thereby mitigating the influence of volume expansion of the negative electrode active material, and as a result, sliding and damage of the active material can be minimized. In addition, the electric supply to the active material is maintained, and the capacity reduction (cycle deterioration) due to repeated charge and discharge of the secondary battery is remarkably suppressed.
本発明による二次電池用炭素材は、平均粒子厚さが2nm〜500nmの範囲内にあり、かつ、平均アスペクト比(平均粒子径/平均粒子厚さ)が10以上である板状粒子を含んで成る。本発明による二次電池用炭素材は、平均粒子厚さが2nm以上であることにより、表面に化学吸着するLi量が削減され、ひいては不可逆容量(充電容量−放電容量)の増大を抑制することができる。一方、平均粒子厚さが500nm以下であることにより、単位体積当たりの充電容量を十分高く維持することができる。本発明による二次電池用炭素材の平均粒子厚さは20nm〜250nmの範囲内にあることが好ましく、更には60nm〜150nm範囲内にあることがより好ましい。ここで、本発明による平均粒子厚さは、SEM観察による画像中に見える板状粒子30個をランダムに選択し、各粒子の厚さを測定して得られる単純平均値とする。 The carbon material for a secondary battery according to the present invention includes plate-like particles having an average particle thickness in the range of 2 nm to 500 nm and an average aspect ratio (average particle diameter / average particle thickness) of 10 or more. It consists of The carbon material for a secondary battery according to the present invention has an average particle thickness of 2 nm or more, so that the amount of Li chemically adsorbed on the surface is reduced, thereby suppressing an increase in irreversible capacity (charge capacity-discharge capacity). Can do. On the other hand, when the average particle thickness is 500 nm or less, the charge capacity per unit volume can be maintained sufficiently high. The average particle thickness of the carbon material for a secondary battery according to the present invention is preferably in the range of 20 nm to 250 nm, and more preferably in the range of 60 nm to 150 nm. Here, the average particle thickness according to the present invention is a simple average value obtained by randomly selecting 30 plate-like particles visible in an image obtained by SEM observation and measuring the thickness of each particle.
更に、本発明による二次電池用炭素材は、平均アスペクト比(平均粒子径/平均粒子厚さ)が10以上の板状粒子であることにより、高容量活物質が充電時に大きく膨張しても、炭素材が構成する導電ネットワークが切断されることなく保持され、ひいては高容量活物質の滑落が抑えられ、充放電の繰り返しによる容量低下が抑制される。ここで、導電ネットワークとは、高容量活物質と集電体との間で電気をやりとりするために必要な導電性を有する炭素の連結体を意味する。高容量活物質は、充放電により体積が膨張収縮を繰り返し、この膨張収縮により導電ネットワークが切断されると、高容量活物質と集電体との電気のやりとりがなされなくなり、その高容量活物質は充放電をしなくなるため、二次電池の充放電サイクル特性が悪化する。本発明による二次電池用炭素材の板状粒子の平均アスペクト比は20以上であることが好ましく、更には100以上であることがより好ましい。 Furthermore, the carbon material for a secondary battery according to the present invention is a plate-like particle having an average aspect ratio (average particle diameter / average particle thickness) of 10 or more. In addition, the conductive network formed of the carbon material is held without being cut, and thus the high-capacity active material is prevented from slipping, and the capacity reduction due to repeated charge and discharge is suppressed. Here, the conductive network means a connected carbon body having conductivity necessary for exchanging electricity between the high-capacity active material and the current collector. A high-capacity active material repeatedly expands and contracts due to charge and discharge, and when the conductive network is cut by the expansion and contraction, the high-capacity active material and the current collector are no longer able to exchange electricity. Does not charge / discharge, so the charge / discharge cycle characteristics of the secondary battery deteriorate. The average aspect ratio of the plate-like particles of the carbon material for a secondary battery according to the present invention is preferably 20 or more, and more preferably 100 or more.
本発明による二次電池用炭素材は、一般には上記の平均粒子厚さと平均アスペクト比とで定義されるが、これを更に特定すると、その板状粒子の平均粒子径が0.5μm〜500μmの範囲内にあることが好ましい。平均粒子径が上記範囲内にあることにより、炭素材が構成する導電ネットワークがより強固なものとなり、二次電池の充放電の繰り返しによるサイクル特性が一層向上する。ここで、本発明による平均粒子径は、SEM観察による画像中に見える板状粒子30個をランダムに選択し、各板状粒子の長径を測定してこれを粒子径とし、その単純平均値を平均粒子径とする。 The carbon material for a secondary battery according to the present invention is generally defined by the average particle thickness and the average aspect ratio, and more specifically, the average particle diameter of the plate-like particles is 0.5 μm to 500 μm. It is preferable to be within the range. When the average particle diameter is within the above range, the conductive network formed by the carbon material becomes stronger, and the cycle characteristics due to repeated charge / discharge of the secondary battery are further improved. Here, the average particle diameter according to the present invention is a random selection of 30 plate-like particles visible in an image obtained by SEM observation, the major axis of each plate-like particle is measured, and this is used as the particle diameter. Average particle diameter.
上述のような特徴的形状を有する本発明による二次電池用炭素材は、熱可塑性樹脂からなる支持体シートの少なくとも片面上に熱硬化性樹脂の層を設けた積層体を、該支持体シートが実質的に消失するまで炭化処理する方法で都合よく製造することができる。この方法によると、二次電池用炭素材を構成する板状粒子の平均粒子厚さを、熱硬化性樹脂の層の厚さを調整することにより容易に制御することができる。支持体シートに用いる熱可塑性樹脂としては、炭化処理に際して効率よく消失するものであれば特に制限はなく、具体例としては、ポリエチレン、ポリスチレン、ポリアクリロニトリル、アクリロニトリル−スチレン(AS)樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミド、脂環式構造を有するシクロオレフィンポリマー、等が挙げられる。中でも、熱硬化性樹脂が硬化する温度よりも融点が高い樹脂が好ましく、コストと取扱い性の兼ね合いから、ポリプロピレン、シクロオレフィンポリマー、が好ましい。熱可塑性樹脂中には、Tgや形状保持性を維持させるため、脂環式低分子量化合物、結晶核剤、造核剤などを混合したり、支持体シートのブロッキングを防ぐために、アンチブロッキング剤などを混合しても良い。支持体シートの厚さは、概ね数μm〜数百μmの範囲内でよい。支持体シートの厚さは、積層体としての取扱い易さと炭化処理時の消失し易さの観点から適宜設定すればよいが、取り扱い性、熱硬化性樹脂の形状維持性を考慮すると、0.1μm以上が好ましく、さらに好ましくは、0.5μm以上が好ましい。 The carbon material for a secondary battery according to the present invention having the characteristic shape as described above is obtained by providing a laminate in which a thermosetting resin layer is provided on at least one surface of a support sheet made of a thermoplastic resin. Can be conveniently produced by a method of carbonization until substantially disappears. According to this method, the average particle thickness of the plate-like particles constituting the carbon material for a secondary battery can be easily controlled by adjusting the thickness of the thermosetting resin layer. The thermoplastic resin used for the support sheet is not particularly limited as long as it efficiently disappears during the carbonization treatment. Specific examples include polyethylene, polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene. -Styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, polyamide, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, Examples thereof include polyamideimide, polyimide, polyphthalamide, cycloolefin polymer having an alicyclic structure, and the like. Among these, a resin having a melting point higher than the temperature at which the thermosetting resin is cured is preferable, and polypropylene and cycloolefin polymer are preferable in terms of cost and handleability. In order to maintain Tg and shape retention in the thermoplastic resin, an alicyclic low molecular weight compound, a crystal nucleating agent, a nucleating agent, etc. are mixed, or an anti-blocking agent is used to prevent blocking of the support sheet. May be mixed. The thickness of the support sheet may be generally in the range of several μm to several hundred μm. The thickness of the support sheet may be appropriately set from the viewpoint of ease of handling as a laminate and easiness of disappearance during carbonization, but considering the handleability and the shape maintainability of the thermosetting resin, the thickness of the support sheet is 0. It is preferably 1 μm or more, more preferably 0.5 μm or more.
支持体シート上に設けられる熱硬化性樹脂としては、炭化処理に際して効率よく炭化して板状粒子を生成するものであれば特に制限はなく、具体例としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、メラミン樹脂、フラン樹脂及び、アニリン樹脂、およびこれらの変性物、等が挙げられる。積層体の作製に際しては、熱硬化性樹脂を適当な溶媒に溶解して得られる溶液を、浸漬、刷毛塗り、吹付け、等のコーティング方法で支持体シートに適用すればよい。熱硬化性樹脂のコーティング時にその被膜厚(熱硬化性樹脂の厚さ)を調整することにより、炭化処理後に得られる板状粒子の平均粒子厚さを容易に制御することができる。コーティング厚の調整は、熱硬化性樹脂溶液の濃度、コーティング回数、等を適宜変更することにより可能である。 The thermosetting resin provided on the support sheet is not particularly limited as long as it efficiently carbonizes during carbonization to generate plate-like particles. Specific examples include novolak type phenol resins and resol type phenols. Examples thereof include resins, melamine resins, furan resins, aniline resins, and modified products thereof. In preparing the laminate, a solution obtained by dissolving the thermosetting resin in an appropriate solvent may be applied to the support sheet by a coating method such as dipping, brushing, spraying, or the like. By adjusting the film thickness (thermosetting resin thickness) during coating of the thermosetting resin, the average particle thickness of the plate-like particles obtained after carbonization can be easily controlled. The coating thickness can be adjusted by appropriately changing the concentration of the thermosetting resin solution, the number of coatings, and the like.
炭化処理の条件としては、上記熱硬化性樹脂が炭化し、かつ、上記熱可塑性樹脂が実質的に消失するものであれば特に制限はない。一般には、窒素、アルゴン、等の不活性ガスの雰囲気中で、上記積層体を800℃〜2000℃の温度で、10分〜24時間熱処理することにより炭化処理を行うことができる。その後、炭化した熱硬化性樹脂を、ボールミル等の粉砕手法で粉砕し、更に必要に応じて分級処理を施すことにより、所望の平均粒子径を有する板状粒子を得ることができる。 Conditions for the carbonization treatment are not particularly limited as long as the thermosetting resin is carbonized and the thermoplastic resin substantially disappears. Generally, carbonization can be performed by heat-treating the above laminate at a temperature of 800 ° C. to 2000 ° C. for 10 minutes to 24 hours in an atmosphere of an inert gas such as nitrogen or argon. Thereafter, the carbonized thermosetting resin is pulverized by a pulverization method such as a ball mill, and further subjected to a classification treatment as necessary, whereby plate-like particles having a desired average particle diameter can be obtained.
本発明による二次電池用導電剤は、上記二次電池用炭素材を含んでなり、更に必要に応じて導電補助剤を含むことができる。導電補助剤としては、黒鉛、アセチレンブラック、ケッチェンブラック、導電性樹脂、導電性繊維、等、二次電池用として一般に知られているものを使用することができる。 The conductive agent for a secondary battery according to the present invention includes the carbon material for a secondary battery, and may further include a conductive auxiliary agent as necessary. As the conductive auxiliary agent, those generally known for secondary batteries such as graphite, acetylene black, ketjen black, conductive resin, conductive fiber, etc. can be used.
本発明による二次電池用負極材は、上記二次電池用炭素材と、必要に応じて上記導電補助剤と、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子とを含んで成り、該粒子が上記板状粒子の間に配置されていることを特徴とする。リチウムイオンの吸蔵・放出が可能な粒子、すなわち活物質は、リチウム拡散反応、体積膨張の影響緩和等の観点から、一次粒子の平均粒子径が1μm以下であることが好ましく、更には平均粒子径が100nm以下のナノサイズであることがより好ましい。本発明による二次電池用負極材に含まれる活物質の具体例として、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)、アルミニウム(Al)、酸化ケイ素(SiOx)、一酸化スズ(SnO)、二酸化スズ(SnO2)、酸化鉄(Fe2O3)、窒化スズ(SnN)、炭化スズ(SnC)、一酸化ゲルマニウム(GeO)、窒化ゲルマニウム(Ge3N4)、炭化ゲルマニウム(GeC)、酸化アルミニウム(Al2O3)、窒化アルミニウム(AlN)、炭化アルミニウム(Al4C3)、アルミニウムリチウム合金(Al−Li系)等が挙げられるが、これらに限定されるものではない。中でも、より高い容量が達成できる点で、Si、SiOX(X=0.1以上2未満)、Fe2O3等が好ましい。活物質は、単独で使用しても、また2種以上を併用してもよい。 The negative electrode material for a secondary battery according to the present invention includes the carbon material for a secondary battery, the conductive auxiliary agent as necessary, and carbon, metal, metalloid, or an alloy thereof capable of occluding and releasing lithium ions, And particles containing an oxide, nitride or carbide, and the particles are arranged between the plate-like particles. The particles capable of occluding and releasing lithium ions, that is, the active material, preferably have an average primary particle size of 1 μm or less from the viewpoints of lithium diffusion reaction, relaxation of the effects of volume expansion, etc. Is more preferably 100 nm or less in nano size. Specific examples of the active material included in the negative electrode material for a secondary battery according to the present invention include silicon (Si), tin (Sn), germanium (Ge), aluminum (Al), silicon oxide (SiOx), and tin monoxide (SnO). ), Tin dioxide (SnO 2 ), iron oxide (Fe 2 O 3 ), tin nitride (SnN), tin carbide (SnC), germanium monoxide (GeO), germanium nitride (Ge 3 N 4 ), germanium carbide (GeC) ), Aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), aluminum carbide (Al 4 C 3 ), aluminum lithium alloy (Al—Li system), and the like, but are not limited thereto. Among these, Si, SiO x (X = 0.1 or more and less than 2), Fe 2 O 3 and the like are preferable in that a higher capacity can be achieved. An active material may be used independently or may use 2 or more types together.
本願明細書では、本発明による二次電池用炭素材を、主として負極材に含まれる材料として記載しているが、これを正極材に含まれる材料として使用することも可能である。その場合、正極材に含まれる活物質としては、LiCoO2等のコバルト複合酸化物、LiMn2O4、Li2MnO3等のマンガン複合酸化物、LiNiO2、等のニッケル複合酸化物、LiFePO4、LiFeVO4、等の鉄複合酸化物、Li(Ni,Co)O2、Li(Ni,Mn)O2、Li(Co,Mg)O2、Li(Ni,Co,Mn)O2、Li(Ni,Co,Al)O2、Li(Co,Mg,Al)O2、Li(Ni,Co,Mn,Al)O2等の複合酸化物等を使用すればよい。 In the present specification, the carbon material for a secondary battery according to the present invention is mainly described as a material included in the negative electrode material, but it can also be used as a material included in the positive electrode material. In that case, as the active material contained in the positive electrode material, cobalt composite oxide such as LiCoO 2 , manganese composite oxide such as LiMn 2 O 4 and Li 2 MnO 3 , nickel composite oxide such as LiNiO 2 , LiFePO 4 , LiFeVO 4 , and other iron complex oxides, Li (Ni, Co) O 2 , Li (Ni, Mn) O 2 , Li (Co, Mg) O 2 , Li (Ni, Co, Mn) O 2 , Li A composite oxide such as (Ni, Co, Al) O 2 , Li (Co, Mg, Al) O 2 , or Li (Ni, Co, Mn, Al) O 2 may be used.
本発明による二次電池用負極材は、上記二次電池用炭素材と、必要に応じて上記導電補助剤と、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子とを、単純に混合する方法で作製することができる。混合方法としては、乾式法又は湿式法のいずれでもよく、例えば回転ボールミル、遊星ボールミル、ディスパーサー、ホモジナイザー、等が挙げられる。本発明による二次電池用炭素材を用いることにより、一般的な混合方法によって、上記粒子が板状粒子の間に配置された本発明による二次電池用負極材を得ることができる。 The negative electrode material for a secondary battery according to the present invention includes the carbon material for a secondary battery, the conductive auxiliary agent as necessary, and carbon, metal, metalloid, or an alloy thereof capable of occluding and releasing lithium ions, It can be produced by simply mixing particles containing oxide, nitride or carbide. The mixing method may be either a dry method or a wet method, and examples thereof include a rotating ball mill, a planetary ball mill, a disperser, and a homogenizer. By using the carbon material for a secondary battery according to the present invention, a negative electrode material for a secondary battery according to the present invention in which the particles are arranged between plate-like particles can be obtained by a general mixing method.
本発明による二次電池用負極材は、熱可塑性樹脂からなる支持体シートの少なくとも片面上に熱硬化性樹脂の層を設けた1以上の積層体と、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子を含む1以上の層とを交互に配置して複合積層体を得、該複合積層体を、該支持体シートが実質的に消失するまで炭化処理する方法で都合よく製造することができる。この方法によると、二次電池用負極材を構成する板状粒子の平均粒子厚さを、熱硬化性樹脂の層の厚さを調整することにより容易に制御することができる。熱可塑性樹脂、支持体シートの厚さ、熱硬化性樹脂、積層体の作製、コーティング厚の調整等は、先に本発明による二次電池用炭素材の製法について記載したとおりである。リチウムイオンの吸蔵・放出が可能な粒子、すなわち活物質を含む1以上の層は、活物質を適当な分散媒に分散させて得られる分散体(スラリー)を、浸漬、刷毛塗り等のコーティング方法で、同様に熱可塑性樹脂からなる支持体シートに適用して活物質担持シートを得ることにより作製することができる。次いで、必要な枚数の熱硬化性樹脂層を含む積層体と活物質担持シートとを交互に配置して複合積層体を形成することができる。 The negative electrode material for a secondary battery according to the present invention includes one or more laminates in which a thermosetting resin layer is provided on at least one side of a support sheet made of a thermoplastic resin, and carbon capable of inserting and extracting lithium ions. Alternatively, a composite laminate is obtained by alternately arranging one or more layers containing particles containing metal, metalloid or alloys thereof, oxides, nitrides or carbides. It can manufacture conveniently by the method of carbonizing until it lose | disappears substantially. According to this method, the average particle thickness of the plate-like particles constituting the negative electrode material for a secondary battery can be easily controlled by adjusting the thickness of the thermosetting resin layer. The thermoplastic resin, the thickness of the support sheet, the thermosetting resin, the production of the laminate, the adjustment of the coating thickness, and the like are as described above for the method for producing the carbon material for a secondary battery according to the present invention. One or more layers containing particles capable of occluding / releasing lithium ions, that is, one or more layers containing an active material are coated with a dispersion (slurry) obtained by dispersing the active material in an appropriate dispersion medium, such as dipping or brushing. Similarly, it can be produced by obtaining an active material carrying sheet by applying it to a support sheet made of a thermoplastic resin. Subsequently, a laminated body including a required number of thermosetting resin layers and an active material carrying sheet can be alternately arranged to form a composite laminated body.
複合積層体の炭化処理の条件としては、先に本発明による二次電池用炭素材の製法について記載したとおり、上記熱硬化性樹脂が炭化し、かつ、上記熱可塑性樹脂が実質的に消失するものであれば特に制限はない。一般には、窒素、アルゴン、等の不活性ガスの雰囲気中で、上記複合積層体を800℃〜2000℃の温度で、10分〜24時間熱処理することにより炭化処理を行うことができる。炭化した熱硬化性樹脂の間には活物質が配置されており、これをボールミル等の粉砕手法で粉砕し、更に必要に応じて分級処理を施すことにより、所望の平均粒子径を有する板状粒子からなり、リチウムイオンの吸蔵・放出が可能な炭素または金属もしくは半金属もしくはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子とを含んで成り、該粒子が前記板状粒子の間に配置されている負極材を得ることができる。 As the conditions for the carbonization treatment of the composite laminate, as described above for the method for producing the carbon material for a secondary battery according to the present invention, the thermosetting resin is carbonized and the thermoplastic resin is substantially lost. If it is a thing, there will be no restriction | limiting in particular. Generally, carbonization can be performed by heat-treating the composite laminate at a temperature of 800 ° C. to 2000 ° C. for 10 minutes to 24 hours in an atmosphere of an inert gas such as nitrogen or argon. An active material is disposed between the carbonized thermosetting resins, and this is pulverized by a pulverizing method such as a ball mill, and further subjected to a classification treatment as necessary, thereby obtaining a plate shape having a desired average particle diameter. And particles containing carbon or metal or metalloid or alloys thereof, oxides, nitrides or carbides capable of occluding and releasing lithium ions, and the particles are interposed between the plate-like particles. The arranged negative electrode material can be obtained.
本発明による二次電池用電極合剤は、上記二次電池用負極材を含んでなり、更に必要に応じて結着剤、粘度調整剤等を含むことができる。二次電池用電極合剤の調製は、プラネタリーミキサー、三本ロール、等を用いた従来公知の方法を用いればよく、上記二次電池用負極材に、必要に応じて結着剤、水、溶媒を添加し、乾燥することにより、更には必要に応じて粘度調整剤を添加することにより粘度を調整し、その後適当な溶媒又は分散媒で所定粘度としたスラリーとして調製することができる。上記二次電池用負極材を上記二次電池用炭素材と活物質粒子との単純混合で作製する場合には、その際に結着材、水、溶媒、粘度調整剤、等を任意順序で添加することにより、一度に電極合剤を調製してもよい。結着剤としては、カルボキシシメチルセルロース、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン、スチレン・ブタジエン共重合体、ポリイミド樹脂、ポリアミド樹脂、ポリビニルアルコール、ポリビニルブチラール、ポリアクリル酸又はそのアルカリ塩、ポリアミック酸等が挙げられる。これらは、表面修飾などにより改質されたものであってもよい。溶媒又は分散媒としては、均一に混合できる材料であれば特に限定されることはなく、例えば、水、メタノール、エタノール等のアルコール類、N−メチル−2−ピロリドン、アセトニトリル等が挙げられる。これらは、表面修飾などにより改質されたものであってもよい。 The electrode mixture for a secondary battery according to the present invention comprises the above-mentioned negative electrode material for a secondary battery, and may further contain a binder, a viscosity modifier and the like as necessary. The secondary battery electrode mixture may be prepared by using a conventionally known method using a planetary mixer, three rolls, etc., and, if necessary, a binder, water, and the like. The slurry can be prepared by adding a solvent and drying, and further adjusting the viscosity by adding a viscosity modifier as necessary, and then preparing a slurry having a predetermined viscosity with an appropriate solvent or dispersion medium. When the secondary battery negative electrode material is prepared by simply mixing the secondary battery carbon material and the active material particles, the binder, water, solvent, viscosity modifier, etc. are added in any order. You may prepare an electrode mixture at once by adding. Examples of the binder include carboxymethylcellulose, polyvinylidene fluoride resin, polytetrafluoroethylene, styrene / butadiene copolymer, polyimide resin, polyamide resin, polyvinyl alcohol, polyvinyl butyral, polyacrylic acid or an alkali salt thereof, polyamic acid, etc. Is mentioned. These may be modified by surface modification or the like. The solvent or dispersion medium is not particularly limited as long as it is a material that can be uniformly mixed, and examples thereof include water, alcohols such as methanol and ethanol, N-methyl-2-pyrrolidone, and acetonitrile. These may be modified by surface modification or the like.
本発明による二次電池用電極は、上記二次電池用電極合剤を用いて従来公知の方法で作製することができる。具体的には、本発明による二次電池用電極は、上記二次電池用電極合剤を銅箔等の金属箔などの集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させ、そのコーティングを50〜200℃程度で熱処理することにより溶媒又は分散媒を除去することにより作製することができる。 The electrode for a secondary battery according to the present invention can be produced by a conventionally known method using the electrode mixture for a secondary battery. Specifically, in the secondary battery electrode according to the present invention, the secondary battery electrode mixture is coated on a current collector such as a copper foil or other metal foil, and the coating has a thickness of several μm to several hundred μm. And the coating is heat-treated at about 50 to 200 ° C. to remove the solvent or the dispersion medium.
本発明による二次電池は、繰り返し充放電により使用できる化学電池であれば特に限定されることはなく、例えば、リチウムイオン二次電池、鉛蓄電池、ニカド電池等が挙げられ、中でもリチウムイオン二次電池が好ましい。本発明による二次電池は、上記二次電池用電極を用いて従来公知の方法で作製することができる。一般に、上記二次電池用電極(負極用及び正極用)と、電解質とを含み、さらにこれらの負極と正極が短絡しないようにするセパレータを含む。電解質がポリマーと複合化された固体電解質であってセパレータの機能を併せ持つものである場合には、独立したセパレータは不要である。本発明の二次電池の作製に際しては、例えば、上記で得た負極および正極を、所定の形、大きさに切断して用意し、次いで、正極と負極を直接接触しないように、セパレータを介して貼りあわせ、それを単層セルとする。次いで、この単層セルの電極間に、注液などの方法により、電解質を注入する。このようにして得られたセルを、例えば、ポリエステルフィルム/アルミニウムフィルム/変性ポリオレフィンフィルムの三層構造のラミネートフィルムからなる外装体に挿入し封止することにより二次電池が得られる。得られた二次電池は、用途により、単セルとして用いても、複数のセルを繋いだモジュールとして用いてもよい。 The secondary battery according to the present invention is not particularly limited as long as it is a chemical battery that can be used by repeated charging and discharging, and examples thereof include a lithium ion secondary battery, a lead storage battery, a nickel-cadmium battery, etc., among which a lithium ion secondary battery A battery is preferred. The secondary battery according to the present invention can be produced by a conventionally known method using the secondary battery electrode. In general, the battery includes a secondary battery electrode (for negative electrode and positive electrode) and an electrolyte, and further includes a separator that prevents the negative electrode and the positive electrode from being short-circuited. When the electrolyte is a solid electrolyte combined with a polymer and has the function of a separator, an independent separator is not necessary. In producing the secondary battery of the present invention, for example, the negative electrode and the positive electrode obtained above are prepared by cutting into a predetermined shape and size, and then the separator is interposed so that the positive electrode and the negative electrode are not in direct contact with each other. To make a single-layer cell. Next, an electrolyte is injected between the electrodes of the single-layer cell by a method such as injection. A secondary battery is obtained by inserting and sealing the thus obtained cell into an outer package made of a laminate film having a three-layer structure of polyester film / aluminum film / modified polyolefin film, for example. The obtained secondary battery may be used as a single cell or a module in which a plurality of cells are connected depending on the application.
本発明による二次電池用電極がリチウムイオン二次電池用の負極として用いられる場合、本発明によるリチウムイオン二次電池の作製に用いられる正極は、従来公知の方法で作製することができる。例えば、正極活物質に、結着剤、導電剤等を加えて適当な溶媒又は分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させ、そのコーティングを50〜200℃程度で熱処理することにより溶媒又は分散媒を除去すればよい。正極活物質は、従来公知の材料であればよく、例えば、LiCoO2等のコバルト複合酸化物、LiMn2O4等のマンガン複合酸化物、LiNiO2等のニッケル複合酸化物、これら酸化物の混合物、LiNiO2のニッケルの一部をコバルトやマンガンに置換したもの、LiFeVO4、LiFePO4等の鉄複合酸化物、等を使用することができる。 When the secondary battery electrode according to the present invention is used as a negative electrode for a lithium ion secondary battery, the positive electrode used for preparing the lithium ion secondary battery according to the present invention can be manufactured by a conventionally known method. For example, a slurry having a predetermined viscosity is prepared with a suitable solvent or dispersion medium by adding a binder, a conductive agent, etc. to the positive electrode active material, and this is applied to a current collector such as a metal foil, What is necessary is just to remove a solvent or a dispersion medium by forming a coating of micrometer-several hundred micrometer, and heat-processing the coating at about 50-200 degreeC. The positive electrode active material may be a conventionally known material, for example, a cobalt composite oxide such as LiCoO 2 , a manganese composite oxide such as LiMn 2 O 4 , a nickel composite oxide such as LiNiO 2 , and a mixture of these oxides. , LiNiO 2 in which a part of nickel is replaced with cobalt or manganese, iron composite oxides such as LiFeVO 4 and LiFePO 4 , and the like can be used.
本発明によるリチウムイオン二次電池の作製に用いられる正極に用いられる導電剤は本発明による二次電池用導電剤が好ましく、本発明によるリチウムイオン二次電池の作製に用いられる正極と負極とに本発明による二次電池用導電剤が同時に用いられることにより、本発明によるリチウムイオン二次電池は、容量が更に高くなり、かつ、充放電サイクル特性がより優れたものとなる。 The conductive agent used for the positive electrode used in the production of the lithium ion secondary battery according to the present invention is preferably the conductive agent for the secondary battery according to the present invention. For the positive electrode and the negative electrode used for the production of the lithium ion secondary battery according to the present invention. By simultaneously using the conductive agent for a secondary battery according to the present invention, the lithium ion secondary battery according to the present invention has a higher capacity and more excellent charge / discharge cycle characteristics.
電解質としては、公知の電解液、常温溶融塩(イオン液体)、及び有機系若しくは無機系の固体電解質などを用いることができる。公知の電解液としては、例えば、エチレンカーボネートおよびプロピレンカーボネートなどの環状炭酸エステル、エチルメチルカーボネートおよびジエチルカーボネートなどの鎖状炭酸エステルなどが挙げられる。また、常温溶融塩(イオン液体)としては、例えば、イミダゾリウム系塩、ピロリジニウム系塩、ピリジニウム系塩、アンモニウム系塩、ホスホニウム系塩、スルホニウム系塩などが挙げられる。前記固体電解質としては、例えば、ポリエーテル系ポリマー、ポリエステル系ポリマー、ポリイミン系ポリマー、ポリビニルアセタール系ポリマー、ポリアクリロニトリル系ポリマー、ポリフッ化アルケン系ポリマー、ポリ塩化ビニル系ポリマー、ポリ(塩化ビニル−フッ化ビニリデン)系ポリマー、ポリ(スチレン−アクリロニトリル)系ポリマー、及びニトリルゴムなどの直鎖型ポリマーなどに代表される有機系ポリマーゲル;ジルコニアなどの無機セラミックス;ヨウ化銀、ヨウ化銀硫黄化合物、ヨウ化銀ルビジウム化合物などの無機系電解質;などが挙げられる。また、前記電解質にリチウム塩を溶解したものを二次電池用の電解質として用いることができる。また、電解質に難燃性を付与するために難燃性電解質溶解剤を加えることもできる。同様に、電解質の粘度を低下させるために可塑剤を加えることもできる。 As the electrolyte, a known electrolytic solution, a room temperature molten salt (ionic liquid), an organic or inorganic solid electrolyte, and the like can be used. Examples of the known electrolyte include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. Examples of the room temperature molten salt (ionic liquid) include imidazolium salts, pyrrolidinium salts, pyridinium salts, ammonium salts, phosphonium salts, sulfonium salts, and the like. Examples of the solid electrolyte include polyether polymers, polyester polymers, polyimine polymers, polyvinyl acetal polymers, polyacrylonitrile polymers, polyfluorinated alkene polymers, polyvinyl chloride polymers, poly (vinyl chloride-fluoride). Vinylidene) -based polymers, poly (styrene-acrylonitrile) -based polymers, and organic polymer gels represented by linear polymers such as nitrile rubber; inorganic ceramics such as zirconia; silver iodide, silver iodide sulfur compounds, iodine And inorganic electrolytes such as silver rubidium compounds. Moreover, what melt | dissolved lithium salt in the said electrolyte can be used as an electrolyte for secondary batteries. A flame retardant electrolyte solubilizer can also be added to impart flame retardancy to the electrolyte. Similarly, a plasticizer can be added to reduce the viscosity of the electrolyte.
電解質に溶解させるリチウム塩としては、例えば、LiPF6、LiClO4、LiCF3SO3、LiBF4、LiAsF6、LiN(CF3SO2)2、LiN(C2F5SO2)2およびLiC(CF3SO2)3などが挙げられる。上記リチウム塩は、単独で用いても、また2種以上を組み合わせて用いてもよい。上記リチウム塩は、電解質全体に対して、一般に0.1質量%〜89.9質量%、好ましくは1.0質量%〜79.0質量%の含有量で用いられる。電解質のリチウム塩以外の成分は、リチウム塩の含有量が上記範囲内にあることを条件に、適当な量で添加することができる。 Examples of the lithium salt dissolved in the electrolyte include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC ( CF 3 SO 2 ) 3 and the like. The lithium salts may be used alone or in combination of two or more. The lithium salt is generally used in a content of 0.1% by mass to 89.9% by mass, preferably 1.0% by mass to 79.0% by mass, based on the entire electrolyte. Components other than the lithium salt of the electrolyte can be added in an appropriate amount on condition that the content of the lithium salt is within the above range.
上記電解質に用いられるポリマーとしては、電気化学的に安定であり、イオン伝導度が高いものであれば特に制限はなく、例えば、アクリレート系ポリマー、ポリフッ化ビニリデン等を使用することができる。また、重合性官能基を有するオニウムカチオンと重合性官能基を有する有機アニオンとから構成される塩モノマーを含むものから合成されたポリマーは、特にイオン伝導度が高く、充放電特性のさらなる向上に寄与し得る点で、より好ましい。電解質中のポリマー含有量は、好ましくは0.1質量%〜50質量%、より好ましくは1質量%〜40質量%の範囲内である。 The polymer used for the electrolyte is not particularly limited as long as it is electrochemically stable and has high ionic conductivity. For example, an acrylate polymer, polyvinylidene fluoride, or the like can be used. In addition, polymers synthesized from those containing a salt monomer composed of an onium cation having a polymerizable functional group and an organic anion having a polymerizable functional group have particularly high ionic conductivity, which further improves charge / discharge characteristics. It is more preferable at the point which can contribute. The polymer content in the electrolyte is preferably in the range of 0.1 mass% to 50 mass%, more preferably 1 mass% to 40 mass%.
上記難燃性電解質溶解剤としては、自己消火性を示し、かつ、電解質塩が共存した状態で電解質塩を溶解させることができる化合物であれば特に制限はなく、例えば、リン酸エステル、ハロゲン化合物、フォスファゼン等を使用することができる。 The flame retardant electrolyte solubilizer is not particularly limited as long as it is a compound that exhibits self-extinguishing properties and can dissolve the electrolyte salt in the presence of the electrolyte salt. For example, phosphate ester, halogen compound Phosphazene etc. can be used.
上記可塑剤の例としては、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、等が挙げられる。上記可塑剤は、単独で用いても、また2種以上を組み合わせて用いてもよい。 Examples of the plasticizer include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. The above plasticizers may be used alone or in combination of two or more.
本発明によるリチウムイオン二次電池にセパレータを用いる場合、正極と負極の間の短絡を防止することができ、電気化学的に安定である従来公知の材料を使用すればよい。セパレータの例としては、ポリエチレン製セパレータ、ポリプロピレン製セパレータ、セルロース製セパレータ、不織布、無機系セパレータ、グラスフィルター等が挙げられる。電解質にポリマーを含める場合には、その電解質がセパレータの機能を兼ね備える場合もあり、その場合、独立したセパレータは不要である。 When a separator is used in the lithium ion secondary battery according to the present invention, a conventionally known material that can prevent a short circuit between the positive electrode and the negative electrode and is electrochemically stable may be used. Examples of the separator include a polyethylene separator, a polypropylene separator, a cellulose separator, a nonwoven fabric, an inorganic separator, a glass filter, and the like. When a polymer is included in the electrolyte, the electrolyte may also have a separator function, and in that case, an independent separator is unnecessary.
以下、本発明をより具体的に説明するための実施例を提供する。なお、本発明は、その目的及び主旨を逸脱しない範囲で以下の実施例に限定されるものではない。 Hereinafter, an example for explaining the present invention more concretely is provided. In addition, this invention is not limited to a following example in the range which does not deviate from the objective and the main point.
実施例1
1)炭素材1の作製
(熱硬化性樹脂溶液の調製)
熱硬化性樹脂として2gのフェノール樹脂(住友ベークライト(株)製、PR−217)をメタノールに溶解させ、0.2質量%フェノール樹脂溶液を作製した。
(浸漬コーティング)
熱可塑性樹脂からなる支持体シートとして厚さ100μmのポリプロピレンフィルム(長さ30cm×幅20cm)を用意した。この支持体シートを上記フェノール樹脂溶液に常温で5秒浸漬した後、支持体シートを取り出し、周囲雰囲気中で1時間放置して乾燥することにより、支持体シートの両面に熱硬化性樹脂を被覆した熱硬化性樹脂コート支持体シートを得た。
(炭化、粉砕)
得られた熱硬化性樹脂コート支持体シートをアルミナ管に入れ、窒素雰囲気下、1100℃、4時間炭化処理を実施した。得られた炭化物を回転ボールミル(入江商会製1段式−B)で粉砕し(粉砕条件:200rpm、5分間)、得られた粉末状の炭素材を炭素材1とした。
(構造の確認)
走査型電子顕微鏡(SEM)(日本電子株式会社製JSM-7401F)により、得られた粉末状の炭素材1を観察した結果、平均粒子径は約4μmであることを確認した。平均粒子径の測定方法は、作製した炭素材粉末の母体をよく混合した後、約0.03gずつ5か所ランダムにサンプリングして再度混合し、両面テープを貼り付けた板にサンプルを0.05g広げてSEM観察を行い、SEM画像中に見える粒子30個をランダムに観察してそれぞれの粒子径(長径)を測定し、それらの平均値を平均粒子径とした。SEM観察より求めた平均厚さは20nmであった。平均厚さは、両面テープを貼り付けた板にサンプルを0.05g広げてSEM観察を行い、SEM画像中に見える粒子30個をランダムに観察し厚さを求め、それらの平均値を平均厚さと定義した。したがって、炭素材1の平均アスペクト比は200であった。
Example 1
1) Production of carbon material 1 (Preparation of thermosetting resin solution)
As a thermosetting resin, 2 g of a phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-217) was dissolved in methanol to prepare a 0.2 mass% phenol resin solution.
(Dip coating)
A polypropylene film (length 30 cm × width 20 cm) having a thickness of 100 μm was prepared as a support sheet made of a thermoplastic resin. After immersing this support sheet in the above phenolic resin solution at room temperature for 5 seconds, the support sheet is taken out and left to stand in an ambient atmosphere for 1 hour to dry, thereby covering the both sides of the support sheet with a thermosetting resin. Thus obtained thermosetting resin coated support sheet was obtained.
(Carbonization, grinding)
The obtained thermosetting resin-coated support sheet was placed in an alumina tube, and carbonized at 1100 ° C. for 4 hours in a nitrogen atmosphere. The obtained carbide was pulverized with a rotating ball mill (Irie Shokai 1-stage type-B) (pulverization conditions: 200 rpm, 5 minutes), and the obtained powdery carbon material was used as carbon material 1.
(Confirmation of structure)
As a result of observing the obtained powdery carbon material 1 with a scanning electron microscope (SEM) (JSM-7401F manufactured by JEOL Ltd.), it was confirmed that the average particle size was about 4 μm. The average particle size was measured by mixing the base of the produced carbon material powder well, sampling at about 0.03 g each at 5 locations, mixing again, and placing the sample on a plate with double-sided tape attached to the plate. SEM observation was performed with a spread of 05 g, and 30 particles visible in the SEM image were randomly observed to measure the respective particle diameters (major axis), and the average value thereof was taken as the average particle diameter. The average thickness obtained from SEM observation was 20 nm. For the average thickness, 0.05 g of the sample was spread on a plate with a double-sided tape attached, and SEM observation was performed. The thickness was determined by randomly observing 30 particles visible in the SEM image. Defined. Therefore, the average aspect ratio of the carbon material 1 was 200.
2)リチウムイオン二次電池用電極合剤の作製
1)で得た板状粒子、市販のナノ活物質であるケイ素粉末(Si、平均一次粒子径:50nm、Nanostructured & amorphous materials製)、市販の結着剤であるカルボキシメチルセルロース(CMC)(ダイセルファインケム株式会社製CMCダイセル2200)、導電助剤としてアセチレンブラック(電気化学工業製デンカブラック)を質量比30:100:4:20で混合し、必要に応じ濃縮し粘度を調整し、リチウムイオン二次電池用電極合剤を得た。具体的には、まずCMCを所定量の水に溶解して2質量%水溶液を調製した。次いで、そのCMC水溶液に、上記板状粒子、活物質及び導電助剤を上記質量比になるように所定量添加し、自転・公転ミキサーで攪拌混合した。攪拌混合に際して、最終粘度が5000mPa・secとなるように、自転・公転ミキサーに水を少量ずつ添加した。
2) Production of electrode mixture for lithium ion secondary battery 1) Plate-like particles obtained in 1), commercially available nano-active material silicon powder (Si, average primary particle diameter: 50 nm, manufactured by Nanostructured & amorphous materials), commercially available Mixing carboxymethyl cellulose (CMC) (CMC Daicel 2200 manufactured by Daicel Finechem Co., Ltd.) as a binder and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) in a mass ratio of 30: 100: 4: 20 is necessary. Depending on the concentration, the viscosity was adjusted to obtain an electrode mixture for a lithium ion secondary battery. Specifically, first, CMC was dissolved in a predetermined amount of water to prepare a 2% by mass aqueous solution. Next, predetermined amounts of the plate-like particles, the active material, and the conductive auxiliary agent were added to the CMC aqueous solution so as to have the mass ratio described above, and the mixture was stirred and mixed with a rotation / revolution mixer. During the stirring and mixing, water was added little by little to the rotation / revolution mixer so that the final viscosity was 5000 mPa · sec.
3)リチウムイオン二次電池用電極(負極)の作製
上記のリチウムイオン二次電池用電極合剤を20μm厚の銅箔に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって加圧成形し、φ13mmの径で打ち抜き、リチウムイオン二次電池用電極を得た。得られた電極の表面をSEMで観察したところ、板状粒子間に活物質が配置されていることが確認された。
3) Production of Lithium Ion Secondary Battery Electrode (Negative Electrode) The above lithium ion secondary battery electrode mixture was applied to a 20 μm thick copper foil, and then vacuum dried at 110 ° C. for 1 hour. After vacuum drying, it was pressure-formed by a roll press and punched out with a diameter of 13 mm to obtain an electrode for a lithium ion secondary battery. When the surface of the obtained electrode was observed with an SEM, it was confirmed that an active material was disposed between the plate-like particles.
4)リチウムイオン二次電池の作製
上記で作製したリチウムイオン二次電池用電極(負極)、セパレータ(ポリプロピレン製多孔質フィルム:直径φ16、厚さ25μm)、作用極としてリチウム金属(直径φ12、厚さ1mm)の順で、宝泉製2032型コインセル内の所定の位置に配置した。さらに、電解液としてエチレンカーボネートとジエチレンカーボネートの混合液(体積比が1:1)に、過塩素酸リチウムを1[モル/リットル]の濃度で溶解させたものを注液し、リチウムイオン二次電池を作製した。
4) Production of lithium ion secondary battery Electrode for lithium ion secondary battery (negative electrode) produced above, separator (polypropylene porous film: diameter φ16, thickness 25 μm), lithium metal (diameter φ12, thickness as working electrode) 1 mm) in the order of 20 mm type coin cell made by Hosen. Further, an electrolytic solution in which lithium perchlorate is dissolved at a concentration of 1 [mol / liter] in a mixed solution of ethylene carbonate and diethylene carbonate (volume ratio is 1: 1) is injected into a lithium ion secondary solution. A battery was produced.
5)初期充放電特性評価
充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vに達した時点から、2.5Vで定電圧放電を行い、電流密度が1.25mA/gになるまでに放電した電気量を放電容量とした。なお、充放電特性の評価は、充放電特性評価装置(北斗電工(株)製:HJR−1010mSM8)を用いて行った。
また、以下の式により初回の充放電効率を定義した。
初回充放電効率(%)=初回放電容量(mAh/g)/初回充電容熱硬化性樹脂コート支持体シート量(mAh/g)×100
以上の評価方法を用いて、4)で作製したリチウムイオン二次電池を評価した結果、初期放電容量は1523mAh/g、初回充放電効率(%)は86%であった。
5) Evaluation of initial charge / discharge characteristics As for the charge capacity, constant current charge was performed with a current density at the time of charge of 25 mA / g. The amount of electricity charged up to 25 mA / g was taken as the charge capacity. On the other hand, with respect to the discharge capacity, constant current discharge was performed with a current density at the time of discharge of 25 mA / g, and constant voltage discharge was performed at 2.5 V from the time when the potential reached 2.5 V, and the current density was 1.25 mA. The amount of electricity discharged up to / g was taken as the discharge capacity. In addition, evaluation of the charging / discharging characteristic was performed using the charging / discharging characteristic evaluation apparatus (Hokuto Denko Co., Ltd. product: HJR-1010mSM8).
The initial charge / discharge efficiency was defined by the following equation.
Initial charge / discharge efficiency (%) = initial discharge capacity (mAh / g) / initial charge capacity thermosetting resin-coated support sheet amount (mAh / g) × 100
As a result of evaluating the lithium ion secondary battery produced in 4) using the above evaluation method, the initial discharge capacity was 1523 mAh / g, and the initial charge / discharge efficiency (%) was 86%.
6)サイクル性評価
初期充放電特性評価条件を50回繰り返し測定した後に得られた放電容量を50サイクル目の放電容量とした。また、以下の式によりサイクル性(50サイクル容量維持率)を定義した。
サイクル性(%、50サイクル容量維持率)=50サイクル目の放電容量(mAh/g)/初回放電容量(mAh/g)×100
以上の評価方法を用いて、4)で作製したリチウムイオン二次電池を評価した結果、サイクル性(%、50サイクル容量維持率)が90%以上であることを確認した。
炭素材1の構造パラメータおよび実施例1の電極特性を表1にまとめて示す。
6) Cyclic evaluation The discharge capacity obtained after repeatedly measuring the initial charge / discharge characteristic evaluation conditions 50 times was taken as the discharge capacity of the 50th cycle. Moreover, the cycle property (50 cycle capacity maintenance rate) was defined by the following formula.
Cycle performance (%, 50 cycle capacity retention rate) = 50th cycle discharge capacity (mAh / g) / initial discharge capacity (mAh / g) × 100
As a result of evaluating the lithium ion secondary battery produced in 4) using the above evaluation method, it was confirmed that the cycle performance (%, 50 cycle capacity retention rate) was 90% or more.
Table 1 summarizes the structural parameters of the carbon material 1 and the electrode characteristics of Example 1.
実施例2
フェノール樹脂溶液の濃度を1質量%としたことを除き、実施例1の手順を繰り返すことにより炭素材2を調製し、電極特性を測定した。炭素材2の構造パラメータおよび実施例2の電極特性を表1に示す。
Example 2
A carbon material 2 was prepared by repeating the procedure of Example 1 except that the concentration of the phenol resin solution was 1% by mass, and the electrode characteristics were measured. Table 1 shows the structural parameters of the carbon material 2 and the electrode characteristics of Example 2.
実施例3
フェノール樹脂を15gのレゾール樹脂(住友ベークライト(株)製、PR−51723)に変更し、メタノールをメタノール/アセトン(質量比1:1)混合溶媒に変更し、1.5質量%レゾール樹脂溶液を作製したこと、及びナノ活物質として酸化珪素粉末(SiOx、x=1〜1.2、平均一次粒子径:約0.5μm)を使用したことを除き、実施例1の手順を繰り返すことにより炭素材3を調製し、電極特性を測定した。炭素材3の構造パラメータおよび実施例3の電極特性を表1に示す。また、炭素材3のSEM写真を図1に示す。
Example 3
The phenol resin was changed to 15 g of a resole resin (PR-51723, manufactured by Sumitomo Bakelite Co., Ltd.), methanol was changed to a methanol / acetone (mass ratio 1: 1) mixed solvent, and a 1.5% by mass resole resin solution was added. Charcoal was obtained by repeating the procedure of Example 1 except that the silicon oxide powder (SiOx, x = 1 to 1.2, average primary particle size: about 0.5 μm) was used as the nanoactive material. Material 3 was prepared and the electrode characteristics were measured. Table 1 shows the structural parameters of the carbon material 3 and the electrode characteristics of Example 3. Moreover, the SEM photograph of the carbon material 3 is shown in FIG.
実施例4
レゾール樹脂溶液の濃度を5質量%としたことを除き、実施例3の手順を繰り返すことにより炭素材4を調製し、電極特性を測定した。炭素材4の構造パラメータおよび実施例4の電極特性を表1に示す。また、炭素材4のSEM写真を図2に示す。
Example 4
A carbon material 4 was prepared by repeating the procedure of Example 3 except that the concentration of the resole resin solution was 5% by mass, and the electrode characteristics were measured. Table 1 shows the structural parameters of the carbon material 4 and the electrode characteristics of Example 4. Moreover, the SEM photograph of the carbon material 4 is shown in FIG.
実施例5
1)炭素材5の作製
(熱硬化性樹脂溶液の調製)
熱硬化性樹脂として25gのレゾール樹脂(住友ベークライト(株)製、PR−51723)をメタノール/アセトン(質量比1:1)混合溶媒に溶解させ、2.5質量%レゾール樹脂溶液を作製した。
(浸漬コーティング1)
熱可塑性樹脂からなる支持体シートとして厚さ100μmのポリプロピレンフィルム(長さ30cm×幅20cm)を用意した。この支持体シートを上記フェノール樹脂溶液に常温で5秒間浸漬した後、支持体シートを取り出し、周囲雰囲気中で1時間放置して乾燥することにより、支持体シートの両面に熱硬化性樹脂を被覆した熱硬化性樹脂コート支持体シートを得た。
(SnO2分散スラリーの調製)
市販のナノ活物質である二酸化スズ粉末(SnO2;平均一次粒子径100nm未満;Aldrich社製)20gをメタノールに加えた後、超音波破砕機で60分間処理して、2質量%SnO2分散スラリーを得た。
(浸漬コーティング2)
熱可塑性樹脂からなる支持体シートとして厚さ100μmのポリプロピレンフィルム(長さ30cm×幅20cm)を用意した。この支持体シートを上記SnO2分散スラリーに常温で5秒間浸漬した後、支持体シートを取り出し、周囲雰囲気中で1時間放置して乾燥することにより、支持体シートの両面にSnO2分散体を被覆したSnO2担持支持体シートを得た。
(複合積層体)
上記熱硬化性樹脂コート支持体シート10枚とSnO2担持支持体シート10枚とを、交互に配置して合計20枚のシートから成る複合積層体を得た。
(炭化、粉砕)
得られた複合積層体をアルミナ管に入れ、窒素雰囲気下、1100℃、4時間炭化処理を実施した。得られた炭化物を回転ボールミル(入江商会製1段式−B)で粉砕し(粉砕条件:50rpm、20秒間)、得られた粉末状の炭素材を炭素材5とした。実施例1と同様にして、得られた炭素材粉末を観察した結果、厚さ数10〜数100nm、一辺の大きさが数μmの板状炭素核粒子が含有されていることを確認した。SEM観察より求めた板状粒子の平均厚さは195nm、平均粒子径は430μmであった。したがって、炭素材5の平均アスペクト比は2205であった。
炭素材5を用いて、ナノ活物質を省略したことを除き、実施例1の手順を繰り返して電極特性を測定した。得られた炭素材5の構造パラメータおよび実施例5の電極特性を表1にまとめて示す。
Example 5
1) Preparation of carbon material 5 (Preparation of thermosetting resin solution)
As a thermosetting resin, 25 g of a resole resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-51723) was dissolved in a mixed solvent of methanol / acetone (mass ratio 1: 1) to prepare a 2.5% by mass resole resin solution.
(Dip coating 1)
A polypropylene film (length 30 cm × width 20 cm) having a thickness of 100 μm was prepared as a support sheet made of a thermoplastic resin. After immersing this support sheet in the above phenolic resin solution at room temperature for 5 seconds, the support sheet is taken out and left to stand in an ambient atmosphere for 1 hour to dry, thereby covering the both sides of the support sheet with a thermosetting resin. Thus obtained thermosetting resin coated support sheet was obtained.
(Preparation of SnO 2 dispersion slurry)
After adding 20 g of tin dioxide powder (SnO 2 ; average primary particle diameter of less than 100 nm; manufactured by Aldrich), which is a commercially available nano-active material, to methanol, the mixture was treated with an ultrasonic crusher for 60 minutes to disperse 2 mass% SnO 2. A slurry was obtained.
(Dip coating 2)
A polypropylene film (length 30 cm × width 20 cm) having a thickness of 100 μm was prepared as a support sheet made of a thermoplastic resin. After immersing this support sheet in the SnO 2 dispersion slurry at room temperature for 5 seconds, the support sheet is taken out and left to stand in an ambient atmosphere for 1 hour to dry, thereby allowing the SnO 2 dispersion on both sides of the support sheet. A coated SnO 2 carrying support sheet was obtained.
(Composite laminate)
The above 10 thermosetting resin coated support sheets and 10 SnO 2 carrying support sheets were alternately arranged to obtain a composite laminate comprising a total of 20 sheets.
(Carbonization, grinding)
The obtained composite laminate was put in an alumina tube, and carbonized at 1100 ° C. for 4 hours in a nitrogen atmosphere. The obtained carbide was pulverized with a rotating ball mill (Irie Shokai 1-stage type-B) (grinding conditions: 50 rpm, 20 seconds), and the obtained powdery carbon material was used as carbon material 5. As a result of observing the obtained carbon material powder in the same manner as in Example 1, it was confirmed that plate-like carbon core particles having a thickness of several tens to several hundreds of nanometers and a side of several μm were contained. The average thickness of the plate-like particles determined by SEM observation was 195 nm, and the average particle size was 430 μm. Therefore, the average aspect ratio of the carbon material 5 was 2205.
Using the carbon material 5, the procedure of Example 1 was repeated and the electrode characteristics were measured except that the nanoactive material was omitted. Table 1 summarizes the structural parameters of the obtained carbon material 5 and the electrode characteristics of Example 5.
実施例6
レゾール樹脂溶液の濃度を1.5質量%としたこと、及びナノ活物質として酸化珪素粉末(SiOx、x=1〜1.2、平均一次粒子径:約0.5μm)を用いたことを除き、実施例5の手順を繰り返すことにより炭素材6を調製し、電極特性を測定した。炭素材6の構造パラメータおよび実施例6の電極特性を表1に示す。また、実施例6で得られた電極を鋏で裁断し、その断面のSEM写真を図3に示す。
Example 6
Except that the concentration of the resole resin solution was 1.5% by mass and that silicon oxide powder (SiOx, x = 1 to 1.2, average primary particle size: about 0.5 μm) was used as the nano-active material. The carbon material 6 was prepared by repeating the procedure of Example 5, and the electrode characteristics were measured. Table 1 shows the structural parameters of the carbon material 6 and the electrode characteristics of Example 6. Moreover, the electrode obtained in Example 6 was cut with scissors, and an SEM photograph of the cross section is shown in FIG.
比較例1
フェノール樹脂を80gのレゾール樹脂(住友ベークライト(株)製、PR−51723)に変更し、メタノールをメタノール/アセトン(質量比1:1)混合溶媒に変更し、8質量%レゾール樹脂溶液を作製したことを除き、実施例1の手順を繰り返すことにより炭素材7を調製し、電極特性を測定した。炭素材7の構造パラメータおよび比較例1の電極特性を表1に示す。
Comparative Example 1
The phenol resin was changed to 80 g of a resole resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-51723), and methanol was changed to a methanol / acetone (mass ratio 1: 1) mixed solvent to prepare an 8% by mass resole resin solution. The carbon material 7 was prepared by repeating the procedure of Example 1, and the electrode characteristics were measured. Table 1 shows the structural parameters of the carbon material 7 and the electrode characteristics of Comparative Example 1.
比較例2
レゾール樹脂溶液の濃度を1.5質量%に変更したこと、及びナノ活物質として酸化珪素粉末(SiOx、x=1〜1.2、平均一次粒子径:約0.5μm)を使用したことを除き、比較例1の手順を繰り返すことにより炭素材8を調製し、電極特性を測定した。炭素材8の構造パラメータおよび比較例2の電極特性を表1に示す。
Comparative Example 2
That the concentration of the resole resin solution was changed to 1.5% by mass, and that silicon oxide powder (SiOx, x = 1 to 1.2, average primary particle size: about 0.5 μm) was used as the nano-active material. Except for the above, the carbon material 8 was prepared by repeating the procedure of Comparative Example 1, and the electrode characteristics were measured. Table 1 shows the structural parameters of the carbon material 8 and the electrode characteristics of Comparative Example 2.
比較例3
炭素材3を使用せず、導電助剤であるアセチレンブラックの質量比を50としたことを除き、実施例3の手順を繰り返すことにより電極特性を測定した。比較例3の電極特性を表1に示す。
Comparative Example 3
The electrode characteristics were measured by repeating the procedure of Example 3 except that the carbon material 3 was not used and the mass ratio of acetylene black as a conductive additive was 50. Table 1 shows the electrode characteristics of Comparative Example 3.
本発明による二次電池用炭素材は、二次電池として高い放電容量、高い充放電サイクル特性及び高い充放電効率を同時に達成することができ、その産業上の利用可能性は極めて大である。 The carbon material for a secondary battery according to the present invention can simultaneously achieve high discharge capacity, high charge / discharge cycle characteristics, and high charge / discharge efficiency as a secondary battery, and its industrial applicability is extremely large.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011094941A JP5708198B2 (en) | 2011-04-21 | 2011-04-21 | Carbon material for secondary battery and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011094941A JP5708198B2 (en) | 2011-04-21 | 2011-04-21 | Carbon material for secondary battery and manufacturing method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015001830A Division JP2015122316A (en) | 2015-01-07 | 2015-01-07 | Carbonaceous material for secondary battery and production method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012227047A true JP2012227047A (en) | 2012-11-15 |
JP5708198B2 JP5708198B2 (en) | 2015-04-30 |
Family
ID=47276982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011094941A Expired - Fee Related JP5708198B2 (en) | 2011-04-21 | 2011-04-21 | Carbon material for secondary battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5708198B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016531398A (en) * | 2013-07-29 | 2016-10-06 | ザ・ペン・ステイト・リサーチ・ファウンデイションThe Penn State Research Foundation | Elastic gel polymer binder for silicon negative electrode |
JP2017027935A (en) * | 2015-07-16 | 2017-02-02 | 株式会社半導体エネルギー研究所 | Electrode, storage battery, power storage device, and electronic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1012241A (en) * | 1996-06-21 | 1998-01-16 | Mitsui Mining Co Ltd | Negative electrode material for lithium ion secondary battery |
JPH1167212A (en) * | 1997-08-27 | 1999-03-09 | Fuji Photo Film Co Ltd | Secondary battery |
JPH11339778A (en) * | 1998-05-25 | 1999-12-10 | Kao Corp | Method for producing negative electrode for secondary battery |
JP2000003731A (en) * | 1998-06-16 | 2000-01-07 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JP2002298842A (en) * | 2001-03-29 | 2002-10-11 | Sumitomo Bakelite Co Ltd | Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery |
-
2011
- 2011-04-21 JP JP2011094941A patent/JP5708198B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1012241A (en) * | 1996-06-21 | 1998-01-16 | Mitsui Mining Co Ltd | Negative electrode material for lithium ion secondary battery |
JPH1167212A (en) * | 1997-08-27 | 1999-03-09 | Fuji Photo Film Co Ltd | Secondary battery |
JPH11339778A (en) * | 1998-05-25 | 1999-12-10 | Kao Corp | Method for producing negative electrode for secondary battery |
JP2000003731A (en) * | 1998-06-16 | 2000-01-07 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JP2002298842A (en) * | 2001-03-29 | 2002-10-11 | Sumitomo Bakelite Co Ltd | Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016531398A (en) * | 2013-07-29 | 2016-10-06 | ザ・ペン・ステイト・リサーチ・ファウンデイションThe Penn State Research Foundation | Elastic gel polymer binder for silicon negative electrode |
JP2017027935A (en) * | 2015-07-16 | 2017-02-02 | 株式会社半導体エネルギー研究所 | Electrode, storage battery, power storage device, and electronic device |
JP2021077659A (en) * | 2015-07-16 | 2021-05-20 | 株式会社半導体エネルギー研究所 | Manufacturing method for power storage device |
US11289692B2 (en) | 2015-07-16 | 2022-03-29 | Semiconductor Energy Laboratory Co., Ltd. | Electrode, storage battery, power storage device, and electronic device |
JP7174787B2 (en) | 2015-07-16 | 2022-11-17 | 株式会社半導体エネルギー研究所 | Method for manufacturing power storage device |
US12218338B2 (en) | 2015-07-16 | 2025-02-04 | Semiconductor Energy Laboratory Co., Ltd. | Electrode, storage battery, power storage device, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP5708198B2 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220209219A1 (en) | Electrodes and lithium ion cells with high capacity anode materials | |
KR102591512B1 (en) | Negative active material, lithium secondary battery including the material, and method for manufacturing the material | |
CN100456533C (en) | Negative electrode for non-aqueous electrolyte secondary battery, method for producing same, and secondary battery | |
US8048339B2 (en) | Porous anode active material, method of preparing the same, and anode and lithium battery employing the same | |
CN100495769C (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
KR102380023B1 (en) | Secondary Battery | |
JP7427629B2 (en) | A positive electrode and a lithium battery including the positive electrode | |
CN118919883A (en) | Anode, cathode and separator for battery, and manufacturing method and use thereof | |
KR20150137888A (en) | Composite cathode active material, preparation method thereof, and lithium battery comprising the same | |
KR20170028099A (en) | Composite anode active material, lithium battery comprising the same, and method of preparing the composite anode active material | |
CN113544875A (en) | Manufacturing method of all-solid-state battery | |
KR102623063B1 (en) | A composite anode for lithium secondary battery and lithium secondary battery including thereof | |
JP2023520194A (en) | Negative electrode and secondary battery containing the same | |
CN106169574A (en) | Electrode active material and preparation method thereof, electrode and energy storing device | |
CN109417167A (en) | Cladding lithium titanate for lithium ion battery | |
WO2014065082A1 (en) | Carbon material for positive electrode of lithium air battery and lithium air battery | |
CN115152049A (en) | Negative electrode for secondary battery, method for producing the same, and secondary battery | |
JP2015002169A (en) | Secondary battery and electrode for secondary battery | |
US11888151B2 (en) | Method of preparing positive electrode | |
JP4624722B2 (en) | Negative electrode material for lithium secondary battery and manufacturing method thereof, negative electrode for lithium secondary battery using the same, and lithium secondary battery | |
JP5440488B2 (en) | Carbon material for secondary battery | |
JP5708198B2 (en) | Carbon material for secondary battery and manufacturing method thereof | |
KR20190098736A (en) | Cathode composite, method for preparing the same and all solid lithium secondary battery comprising the same | |
JP2024501341A (en) | Negative electrode for lithium secondary batteries and lithium secondary batteries containing the same | |
KR20220131673A (en) | Separator for lithium secondary battery and lithium secondary battery comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140625 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140825 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150107 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5708198 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |