JP2012224485A - Method for transferring transparent conductive carbon film - Google Patents
Method for transferring transparent conductive carbon film Download PDFInfo
- Publication number
- JP2012224485A JP2012224485A JP2011090980A JP2011090980A JP2012224485A JP 2012224485 A JP2012224485 A JP 2012224485A JP 2011090980 A JP2011090980 A JP 2011090980A JP 2011090980 A JP2011090980 A JP 2011090980A JP 2012224485 A JP2012224485 A JP 2012224485A
- Authority
- JP
- Japan
- Prior art keywords
- carbon film
- transparent conductive
- conductive carbon
- base material
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 193
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 189
- 238000000034 method Methods 0.000 title claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 112
- 238000012546 transfer Methods 0.000 claims abstract description 69
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 80
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 230000003313 weakening effect Effects 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 239000012266 salt solution Substances 0.000 claims description 2
- 239000011260 aqueous acid Substances 0.000 claims 1
- 238000013518 transcription Methods 0.000 claims 1
- 230000035897 transcription Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 175
- 239000011889 copper foil Substances 0.000 description 29
- 239000007789 gas Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- 238000001237 Raman spectrum Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 8
- 238000001069 Raman spectroscopy Methods 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229920002799 BoPET Polymers 0.000 description 5
- 239000002390 adhesive tape Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000000879 optical micrograph Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- -1 FeCl 3 Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Manufacturing Of Electric Cables (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
【課題】成長用基材を再利用するために成長用基材を溶かさずに炭素膜を転写用基材に再現性良く剥離する手法を提供するとともに、連続成膜方法の適用が可能な、炭素膜の剥離方法を提供する。
【解決手段】CVD法で形成した透明導電性炭素膜と成長用基材の間の剥離強度(F)を1N/cm以下に制御することにより、形成した透明導電性炭素膜を成長用基材から剥がれやすくして、転写用基材に転写しやすくする。これにより、成長用基材を溶かさずに、且つダメージを与えずに剥離できるので、形成した透明導電性炭素膜は、成長用基材からは転写用基材へ連続転写・連続加工することが可能となる。
【選択図】図1Provided is a method for reproducibly peeling a carbon film from a transfer substrate without reusing the growth substrate in order to reuse the growth substrate, and a continuous film forming method can be applied. Provided is a carbon film peeling method.
The transparent conductive carbon film formed is controlled by controlling the peel strength (F) between the transparent conductive carbon film formed by the CVD method and the growth substrate to 1 N / cm or less. It can be easily peeled off from the substrate and can be easily transferred to a transfer substrate. As a result, the growth substrate can be peeled off without causing any damage and the formed transparent conductive carbon film can be continuously transferred and processed from the growth substrate to the transfer substrate. It becomes possible.
[Selection] Figure 1
Description
本発明は、透明導電膜、透明電極などに利用するための透明導電性炭素膜の製造方法に関し、特に、成長用基材から剥離して、転写用基材に転写して透明導電性炭素膜を製造する方法に関する。 The present invention relates to a method for producing a transparent conductive carbon film for use in a transparent conductive film, a transparent electrode, and the like. In particular, the transparent conductive carbon film is peeled from a growth substrate and transferred to a transfer substrate. It relates to a method of manufacturing.
透明導電性炭素膜は一層以上の平面状結晶のSP2結合した炭素原子と呼ばれている。透明導電性炭素膜については非特許文献1、2に詳述されている。透明導電性炭素膜は、高い光透過率と電気伝導性のため、透明導電膜や透明電極としての利用が期待されている。 The transparent conductive carbon film is called one or more planar crystal SP2-bonded carbon atoms. The transparent conductive carbon film is described in detail in Non-Patent Documents 1 and 2. The transparent conductive carbon film is expected to be used as a transparent conductive film or a transparent electrode because of its high light transmittance and electrical conductivity.
近年、銅箔表面への化学気相合成法(CVD)による透明導電性炭素膜の形成法が開発された(非特許文献3、4)。この銅箔を基材とする透明導電性炭素膜成膜手法は、熱CVD法によるものであって、原料ガスであるメタンガス等を約1000℃程度で熱的に分解し、銅箔表面に1層から数層の透明導電性炭素膜を形成するものである。
また、最近では、基材温度を500℃以下、圧力を50Pa以下に設定し、かつ含炭素ガス又は含炭素ガスと不活性ガスからなる混合ガスに、基材表面の酸化を抑制するための酸化抑制剤を添加ガスとして加えたガス雰囲気中で、マイクロ波表面波プラズマ法により、前記基材表面上に透明導電性炭素膜を堆積させる方法も提案されている(非特許文献5)
In recent years, a method for forming a transparent conductive carbon film on the surface of a copper foil by chemical vapor deposition (CVD) has been developed (Non-Patent Documents 3 and 4). The transparent conductive carbon film forming method based on this copper foil is based on a thermal CVD method, and methane gas, which is a raw material gas, is thermally decomposed at about 1000 ° C. A transparent conductive carbon film of several layers is formed from the layers.
Further, recently, the base material temperature is set to 500 ° C. or lower, the pressure is set to 50 Pa or lower, and the oxidation for suppressing the oxidation of the base material surface to a carbon-containing gas or a mixed gas composed of a carbon-containing gas and an inert gas. There has also been proposed a method of depositing a transparent conductive carbon film on the substrate surface by a microwave surface wave plasma method in a gas atmosphere in which an inhibitor is added as an additive gas (Non-Patent Document 5).
また、成長用基材に形成された透明導電性炭素膜を透明電極などに利用する際には、成長用基材の上に形成した透明導電性炭素膜を、成長用基材から剥離又は転写用基材に転写して用いることが必要となる。
しかしながら、前述の特許文献3、4などに記載された熱CVD(約1000℃程度)法で、成長用基材の上に形成した透明導電性炭素膜は、成長用基材と透明導電性炭素膜の間の剥離強度または相互作用が強いので、形成された透明導電性炭素膜は、成長用基材から剥がれ難く又は転写用基材に転写し難い。そこで、一般的には、透明導電性炭素膜を転写用基材に転写する時は、エッチング液を用いて成長用基材を溶して剥離している(非特許文献6、特許文献1)。また、形成した透明導電性炭素膜と転写用基材の間に粘着材料などを用いて成長用基材から透明導電性炭素膜を剥がす方法も開発されている(特許文献2)。
In addition, when the transparent conductive carbon film formed on the growth substrate is used as a transparent electrode, the transparent conductive carbon film formed on the growth substrate is peeled off or transferred from the growth substrate. It is necessary to transfer to a substrate for use.
However, the transparent conductive carbon film formed on the growth base material by the thermal CVD (about 1000 ° C.) method described in the above-mentioned Patent Documents 3 and 4 is the same as the growth base material and the transparent conductive carbon film. Since the peel strength or interaction between the films is strong, the formed transparent conductive carbon film is difficult to peel off from the growth substrate or to be transferred to the transfer substrate. Therefore, generally, when the transparent conductive carbon film is transferred to the transfer substrate, the growth substrate is melted and peeled off using an etching solution (Non-patent Document 6, Patent Document 1). . In addition, a method of peeling the transparent conductive carbon film from the growth substrate using an adhesive material between the formed transparent conductive carbon film and the transfer substrate has been developed (Patent Document 2).
前述のとおり、透明導電性炭素膜は、高い光透過率と電気伝導性のため、透明導電膜や透明電極としての利用が期待されており、CVD法により成長用基材に形成した場合、形成された透明導電性炭素膜を透明導電膜や透明電極などに利用する際には、透明導電性炭素膜を成長用基材から転写用基材に転写して用いることが必要となる。 As described above, the transparent conductive carbon film is expected to be used as a transparent conductive film and a transparent electrode because of its high light transmittance and electrical conductivity. When the transparent conductive carbon film is used for a transparent conductive film or a transparent electrode, it is necessary to transfer the transparent conductive carbon film from a growth base material to a transfer base material.
しかしながら、非特許文献6、及び特許文献1に記載された方法、すなわち、エッチング液を用いて、Cu、Niなどの金属製基材を溶して透明導電性炭素膜を剥離する方法では、Cu基材が溶けて再利用ができない。更に、エッチングプロセスからFeCl3、Cu、混合物、液体等の不純物などが発生するので、転写した透明導電性炭素膜の純度が悪化するし、透明導電性炭素膜の特性も悪化する問題があることが判明した。 However, in the method described in Non-Patent Document 6 and Patent Document 1, that is, a method of peeling a transparent conductive carbon film by dissolving a metal substrate such as Cu or Ni using an etching solution, Cu The base material melts and cannot be reused. Furthermore, since impurities such as FeCl 3 , Cu, a mixture, and a liquid are generated from the etching process, there is a problem that the purity of the transferred transparent conductive carbon film is deteriorated and the characteristics of the transparent conductive carbon film are also deteriorated. There was found.
また、特許文献2に記載された方法、すなわち、形成した透明導電性炭素膜と転写用基材の間に粘着材料などを用いて成長用基材から透明導電性炭素膜を剥がす方法では、形成した透明導電性炭素膜は成長用基材から一部しか剥がせないので、透明導電性炭素膜の厚み、電気抵抗(シート抵抗)、透過率の精密制御は問題があることが判明した。 In addition, in the method described in Patent Document 2, that is, a method in which the transparent conductive carbon film is peeled off from the growth substrate using an adhesive material or the like between the formed transparent conductive carbon film and the transfer substrate, Since the transparent conductive carbon film can be peeled only partially from the growth substrate, it has been found that precise control of the thickness, electric resistance (sheet resistance), and transmittance of the transparent conductive carbon film is problematic.
さらに、ロール状の成長用基材を成膜装置に連続的に送り込みながら透明導電性炭素膜を成膜した後、これを転写用のロールで連続的に巻き取る、いわゆる連続成膜方法を適用することができれば、製造効率が向上し、工業的に低コストでの製造が可能となるが、Cu基材がエッチングされてしまったり、Cu基材に透明導電性炭素膜の一部が残存してしまったりする従来の方法では、こうした連続成膜方法の適用は困難である。 In addition, a so-called continuous film forming method is applied in which a transparent conductive carbon film is formed while a roll-shaped growth substrate is continuously fed to a film forming apparatus, and then continuously wound with a transfer roll. If it is possible, the production efficiency is improved and the production at an industrially low cost is possible, but the Cu base material is etched or a part of the transparent conductive carbon film remains on the Cu base material. However, it is difficult to apply such a continuous film forming method with a conventional method.
以上のように、透明導電性炭素膜は、成長用基材の間の相互作用が強いので、従来の方法では転写することが困難であることが判明した。
本発明は、こうした従来技術における問題点を鑑みてなされたものであって、成長用基材を再利用するために成長用基材を溶かさずにCVD法で作製した炭素膜を、成長用基材から転写用基材に、再現性良く剥離、転写する炭素膜の製造方法を提供することを目的とするものである。
As described above, since the transparent conductive carbon film has a strong interaction between the growth base materials, it has been found that it is difficult to transfer the transparent conductive carbon film by the conventional method.
The present invention has been made in view of such problems in the prior art, and a carbon film produced by a CVD method without dissolving a growth substrate in order to reuse the growth substrate is used as a growth substrate. An object of the present invention is to provide a method for producing a carbon film that peels and transfers from a material to a transfer substrate with good reproducibility.
本発明者が前記問題点を解決するために鋭意検討を重ねた結果、プラズマCVD法で形成した透明導電性炭素膜と成長用基材の間の剥離強度(F)を弱める工程を設けて、剥離強度を1N/cm以下に制御することにより、形成した透明導電性炭素膜は成長用基材から剥がれやすくなるので転写用基材に転写しやすくなり、上記目的を達成しうるという知見を得た。 As a result of intensive studies to solve the above problems by the present inventors, a step of weakening the peel strength (F) between the transparent conductive carbon film formed by the plasma CVD method and the growth substrate is provided, By controlling the peel strength to 1 N / cm or less, the formed transparent conductive carbon film is easily peeled off from the growth base material, so that it can be easily transferred to the transfer base material and the above-mentioned object can be achieved. It was.
本発明は該知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]成長用基材上にCVD法により形成された透明導電性炭素膜を、前記成長用基材から剥離して、転写用基材に転写して透明導電性炭素膜を製造する方法において、剥離する前に、前記成長用基材と炭素膜との剥離強度を弱める工程を有することを特徴とする透明導電性炭素膜の製造方法。
[2]前記剥離強度を弱める工程は、剥離強度を1N/cm以下にすることを特徴とする[1]に記載の透明導電性炭素膜の製造方法。
[3]前記剥離強度を弱める工程が、300℃以下で、低温から高温へ、又は高温から低温へ、200℃以上の温度差を所定時間与える工程であることを特徴とする[1]又は[2]に記載の透明導電性炭素膜の製造方法。
[4]前記剥離強度を弱める工程が、液体窒素の溶液に浸漬する工程であることを特徴とする[3]に記載の透明導電性炭素膜の製造方法。
[5]前記剥離工程が、酸又は塩の溶液に浸漬する工程であることを特徴とする[1]〜[3]のいずれかに記載の透明導電性炭素膜の製造方法。
[6]前記酸の水溶液が、0.01M以下の硫酸水溶液であることを特徴とする[5]に記載の透明導電性炭素膜の製造方法。
[7]前記透明導電性炭素膜は、グラフェンであることを特徴とする[1]〜[6]のいずれかに記載の透明導電性炭素膜の製造方法。
[8]前記CVD法を500℃以下のプラズマCVD法で行うことを特徴とする[1]〜[7]のいずれかに記載の透明導電性炭素膜の製造方法。
[9]前記成長用基材が、銅製基材であることを特徴とする[1]〜[8]のいずれかに記載の透明導電性炭素膜の製造方法。
[10]ロール状成長用基材を用い、該成長用基材にCVD法により透明導電性炭素膜を形成し、該透明導電性炭素膜を、前記ロール状成長用基材から剥離し、転写用基材に転写した後、該転写用基材をロールに巻き取ることを連続して行うことを特徴とする[1]〜[9]のいずれかに記載の透明導電性炭素膜の製造方法。
[11][1]〜[10]のいずれかに記載の方法において得られる炭素膜積層体であって、転写用基材/透明導電性炭素膜/成長用基材の3層を有し、該成長用基材と該透明導電性炭素膜との剥離強度が1N/cm以下であることを特徴とする炭素膜積層体。
[12][1]〜[10]のいずれかに記載の方法において得られる炭素膜積層体であって、転写用基材上に剥離転写された透明導電性炭素膜を有する炭素膜積層体。
The present invention has been completed based on this finding. According to the present invention, the following inventions are provided.
[1] In a method for producing a transparent conductive carbon film by peeling a transparent conductive carbon film formed on a growth base material by a CVD method from the growth base material and transferring it to a transfer base material. A method for producing a transparent conductive carbon film, comprising a step of weakening the peeling strength between the growth base material and the carbon film before peeling.
[2] The method for producing a transparent conductive carbon film according to [1], wherein the step of weakening the peel strength sets the peel strength to 1 N / cm or less.
[3] The step of weakening the peel strength is a step of giving a temperature difference of 200 ° C. or more for a predetermined time at a temperature of 300 ° C. or lower and from a low temperature to a high temperature or from a high temperature to a low temperature [1] or [ 2] The manufacturing method of the transparent conductive carbon film as described in 2].
[4] The method for producing a transparent conductive carbon film according to [3], wherein the step of weakening the peel strength is a step of immersing in a liquid nitrogen solution.
[5] The method for producing a transparent conductive carbon film according to any one of [1] to [3], wherein the peeling step is a step of immersing in an acid or salt solution.
[6] The method for producing a transparent conductive carbon film according to [5], wherein the acid aqueous solution is a 0.01 M or less sulfuric acid aqueous solution.
[7] The method for producing a transparent conductive carbon film according to any one of [1] to [6], wherein the transparent conductive carbon film is graphene.
[8] The method for producing a transparent conductive carbon film according to any one of [1] to [7], wherein the CVD method is performed by a plasma CVD method at 500 ° C. or lower.
[9] The method for producing a transparent conductive carbon film according to any one of [1] to [8], wherein the growth base material is a copper base material.
[10] Using a roll growth substrate, forming a transparent conductive carbon film on the growth substrate by a CVD method, peeling the transparent conductive carbon film from the roll growth substrate, and transferring the film The method for producing a transparent conductive carbon film according to any one of [1] to [9], wherein the transfer substrate is continuously wound on a roll after being transferred to the substrate for transfer. .
[11] A carbon film laminate obtained by the method according to any one of [1] to [10], comprising three layers of a transfer substrate / transparent conductive carbon film / growth substrate, A carbon film laminate, wherein a peel strength between the growth substrate and the transparent conductive carbon film is 1 N / cm or less.
[12] A carbon film laminate obtained by the method according to any one of [1] to [10], having a transparent conductive carbon film peel-transferred onto a transfer substrate.
本発明によれば、(1)成長用基材がダメージを受けず又は溶かさずに、透明導電性炭素膜を成長用基材から剥離することが可能となる。(2)透明導電性炭素膜を、成長用基板に残さずに、かつダメージを受けることなく、剥がすことが可能である。(3)形成された透明導電性炭素膜には、エッチングプロセスによる不純物が混入しない。(4)成長用基材は再利用が可能であるために、連続成膜方法への適用が可能である。(5)工業的に低コストで透明導電性炭素膜を剥離することができる、などの効果が得られる。 According to the present invention, (1) the transparent conductive carbon film can be peeled off from the growth base material without damage or dissolution of the growth base material. (2) The transparent conductive carbon film can be peeled off without being left on the growth substrate and without being damaged. (3) Impurities due to the etching process are not mixed into the formed transparent conductive carbon film. (4) Since the growth base material can be reused, it can be applied to a continuous film forming method. (5) The effect that the transparent conductive carbon film can be peeled industrially at low cost is obtained.
本発明の実施形態について、図1を参照して説明する。
図1は、本発明に係る方法を用いて、連続的に炭素膜を製造する工程を示す概略図である。
図1に示すように、本発明の炭素膜の製造方法は、成長用基材(3)を巻きつけた第1ロール(1)を用意する工程、成長用基材を引き出してプラズマCVD装置に導入し、プラズマCVD法で成長用基材の上に透明導電性炭素膜(5)を形成する成膜工程(4)、炭素膜と成長用基材との剥離強度を弱める工程(6)、(7)、炭素膜を成長用基材から転写用基材に剥離、転写する工程(13)、転写された炭素膜を備えた転写用基材をロール10で巻き取る工程を備える。
本発明において、成長用基材は、銅(Cu)、鉄(Fe)、ニッケル(Ni)、アルミニウム(Al)等の金属製基材が用いられる。
An embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a schematic view showing steps of continuously producing a carbon film using the method according to the present invention.
As shown in FIG. 1, the method for producing a carbon film of the present invention includes a step of preparing a first roll (1) around which a growth base material (3) is wound, and pulling out the growth base material into a plasma CVD apparatus. A film forming step (4) for introducing and forming a transparent conductive carbon film (5) on the growth substrate by plasma CVD, a step (6) for reducing the peel strength between the carbon film and the growth substrate, (7) A step (13) of peeling and transferring the carbon film from the growth base material to the transfer base material, and a step of winding the transfer base material provided with the transferred carbon film with the roll 10.
In the present invention, the growth substrate is a metal substrate such as copper (Cu), iron (Fe), nickel (Ni), aluminum (Al), or the like.
また、本発明において、用いられるCVD法は、特に限定されないが、好ましくは、前記の非特許文献5等に記載の低温下でマイクロ波表面波プラズマCVD法を使用することができる。マイクロ波表面波プラズマについては、例えば文献「菅井秀郎,プラズマエレクトロニクス,オーム社 2000年,p.124-125」に詳述されている。これにより、成膜用基板の融点より十分に低い温度にすることができ、かつ大面積に均一なプラズマを発生させることができる。
後述する実施例においては、プラズマをラングミュアプローブ法(シングルプローブ法)により診断した結果、電子密度が1011〜1012/cm3であり、周波数2.45GHzのマイクロ波に対するカットオフ電子密度7.4×1010/cm3を超えており、表面波により発生・維持する表面波プラズマであることを確認した。このラングミュアプローブ法については、例えば文献「菅井秀郎,プラズマエレクトロニクス,オーム社 2000年,p.58」に詳述されている。
In the present invention, the CVD method used is not particularly limited, but preferably, the microwave surface wave plasma CVD method described in Non-Patent Document 5 or the like can be used at a low temperature. The microwave surface wave plasma is described in detail, for example, in the document “Hideo Sakurai, Plasma Electronics, Ohmsha 2000, p.124-125”. Accordingly, the temperature can be sufficiently lower than the melting point of the film formation substrate, and uniform plasma can be generated over a large area.
In the examples described later, the plasma was diagnosed by the Langmuir probe method (single probe method), and as a result, the electron density was 10 11 to 10 12 / cm 3 , and the cut-off electron density for microwaves with a frequency of 2.45 GHz. 4 × 10 10 / cm 3 was exceeded, and it was confirmed that the surface wave plasma was generated and maintained by surface waves. The Langmuir probe method is described in detail, for example, in the document “Hideo Sakurai, Plasma Electronics, Ohmsha 2000, p.58”.
次いで、図1に示すように、成長用基材の上に形成した透明導電性炭素膜(5)を、剥離強度を弱める工程(6)、(7)の少なくとも一方に導入する。
前記工程(6)では、1つの手法として、物理的処理を用いて、透明導電性炭素膜と成長用基材との間の剥離強度(F)を1N/cm以下に実現する。
ここで、「物理的処理」とは、透明導電性炭素膜が形成された成長用基材に、300℃以下で、低温から高温へ、又は高温から低温へ、200℃以上の温度差を所定時間与える処理であり、1回でもよく、或いは、複数回に分けて行ってもよい。
この処理は、金属製基材上に形成される透明導電性炭素膜の熱膨張係数は、成長用基材である金属の熱膨張係数と比較すると、きわめて小さいという知見に基づくものであり、両者が積層された積層体を加熱又は冷却した際に、この熱膨張係数の大きさの差によって、成長用基材と透明導電性炭素膜の剥離強度を弱めることができるものである。
透明導電性炭素膜と成長用基材との間の剥離強度(F)を1N/cm以下にするためには、200℃以上の温度差を与えることが必要である。また、与える温度差は、成長用基材及び透明導電性炭素膜の剥離が可能であれば良く、両者への影響などを考慮すれば、高温側の温度は300℃以下である。
また、低温から高温へ、又は高温から低温へ、200℃以上の温度差を与える手段としては、加熱又は冷却のいかなる方法でも良いが、簡便さから、液体窒素を用いる方法が好ましい。
また、処理時間は、用いる成長用基材の大きさ、加熱手段又は冷却手段の熱容量などにより適宜決められるが、例えば、約−196℃の液体窒素を用いる場合、5秒程度浸漬すればよい。
Next, as shown in FIG. 1, the transparent conductive carbon film (5) formed on the growth substrate is introduced into at least one of the steps (6) and (7) for decreasing the peel strength.
In the step (6), as one method, physical strength is used to achieve a peel strength (F) between the transparent conductive carbon film and the growth substrate of 1 N / cm or less.
Here, “physical treatment” means that a temperature difference of 200 ° C. or more is predetermined on a growth base material on which a transparent conductive carbon film is formed at 300 ° C. or less, from low temperature to high temperature, or from high temperature to low temperature. This is a process of giving time, and may be performed once or may be divided into a plurality of times.
This treatment is based on the knowledge that the coefficient of thermal expansion of the transparent conductive carbon film formed on the metal substrate is very small compared to the coefficient of thermal expansion of the metal that is the growth substrate. When the laminated body in which is laminated is heated or cooled, the peel strength between the growth substrate and the transparent conductive carbon film can be weakened by the difference in the coefficient of thermal expansion.
In order to set the peel strength (F) between the transparent conductive carbon film and the growth substrate to 1 N / cm or less, it is necessary to give a temperature difference of 200 ° C. or more. Moreover, the temperature difference to be applied is not limited as long as the growth substrate and the transparent conductive carbon film can be peeled off, and the temperature on the high temperature side is 300 ° C. or less in consideration of the influence on both.
Moreover, as a means for giving a temperature difference of 200 ° C. or higher from low temperature to high temperature or from high temperature to low temperature, any method of heating or cooling may be used, but from the viewpoint of simplicity, a method using liquid nitrogen is preferable.
The treatment time is appropriately determined depending on the size of the growth substrate used, the heat capacity of the heating means or the cooling means, etc. For example, when liquid nitrogen at about -196 ° C. is used, it may be immersed for about 5 seconds.
前記工程(7)では、もう1つの手法として、化学的処理を用いて、透明導電性炭素膜と成長用基材との間の剥離強度(F)を1N/cm以下に実現する。
ここで、「化学的処理」とは、酸又は塩の水溶液で処理する工程であり、該処理後は、純水で洗う工程と、乾燥する工程とを備える。
酸としては、硫酸、HCl等の強酸、及び燐酸、酢酸などの弱酸を用いることができ、塩としては、KCl、NaCl等を用いることができる。
これらの酸又は塩の水溶液の濃度は、金属製基材にダメージを与えないで、透明導電性炭素膜を容易に剥離できることを条件として、基材に用いる金属の種類、処理時間及び水溶液温度(室温〜50℃)に応じて定められることが必要であり、たとえば、銅製基材を用いる場合、室温〜50℃以下では、以下のとおりである
H2SO4の場合:0.01Mでは12秒以下、0.0001Mでは10分以下
HClの場合:0.05Mでは10分以下、0.0001Mでは120分以下
KClの場合:0.05Mでは60分、
NaClの場合;0.05Mでは180分以下、
In the step (7), as another method, the peel strength (F) between the transparent conductive carbon film and the growth substrate is realized to 1 N / cm or less by using chemical treatment.
Here, “chemical treatment” is a step of treatment with an aqueous solution of an acid or salt, and after the treatment, a step of washing with pure water and a step of drying are provided.
As the acid, a strong acid such as sulfuric acid or HCl, and a weak acid such as phosphoric acid or acetic acid can be used. As the salt, KCl, NaCl or the like can be used.
The concentration of the aqueous solution of these acids or salts is determined on the condition that the transparent conductive carbon film can be easily peeled without damaging the metal substrate, the type of metal used for the substrate, the treatment time, and the aqueous solution temperature ( For example, when using a copper base material, it is as follows at room temperature to 50 ° C. or lower: In the case of H 2 SO 4: 0.01 M, 12 seconds or shorter 10 minutes or less at 0.0001M, HCl: 10 minutes or less at 0.05M, 120 minutes or less at 0.0001M KCl: 60 minutes at 0.05M,
In the case of NaCl;
本発明においては、これらの剥離強度を弱める工程(6)、(7)の少なくとも一方を有することを特徴とするものであり、これにより、成長用基材と炭素膜との剥離強度が1N/cm以下である炭素膜積層体が得られる。 The present invention is characterized by having at least one of the steps (6) and (7) for weakening the peel strength, whereby the peel strength between the growth substrate and the carbon film is 1 N / A carbon film laminate having a size of cm or less is obtained.
次いで、成長用基材と炭素膜との剥離強度が弱められた炭素膜積層体は、剥離・転写工程に導入される。
剥離・転写工程は、図1に示すように、ロールプレスにより、圧力、或いは圧力及び熱をかけて、転写用基材/透明導電性炭素膜/成長用基材の3層以上の重ねた炭素膜積層体を作製する工程(圧力・熱付与工程)(11)を経て、透明導電性膜を、成長用基材から転写用基材に剥離、転写する工程(13)とを備える。
Next, the carbon film laminate in which the peeling strength between the growth substrate and the carbon film is weakened is introduced into the peeling / transferring step.
As shown in FIG. 1, the peeling / transfer process is performed by applying pressure or pressure and heat by a roll press, so that three or more layers of the transfer substrate / transparent conductive carbon film / growth substrate are stacked. And a step (13) of peeling and transferring the transparent conductive film from the growth base material to the transfer base material through a step (pressure / heat application step) (11) for producing a film laminate.
圧力・熱付与工程(11)において、圧力、或いは圧力及び熱をかけることにより転写用基材/透明導電性炭素膜/成長用基材の3層を重ねた炭素膜積層体(12)が作製される。該工程(11)における圧力・熱付与手段としては、ロールプレス、圧力プレス(一方向加圧)、ナノインプリント等があり、圧力(低・中程度、5MPa以下)、或いは圧力及び加熱(室温から〜100℃以下)が付与される。 In the pressure / heat application step (11), by applying pressure or pressure and heat, a carbon film laminate (12) in which three layers of transfer substrate / transparent conductive carbon film / growth substrate are stacked is produced. Is done. As the pressure / heat application means in the step (11), there are a roll press, a pressure press (unidirectional press), nanoimprint, etc., pressure (low / medium, 5 MPa or less), or pressure and heating (from room temperature to 100 ° C. or lower).
本発明において、転写用基材(8)は、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエステルフィルム(例えば、DIAFOIL三菱製品)などのプラスチック、ペーパー、ガラス基板との複合材料等が好適である。特に、本発明では、転写用基材の表面処理は必要ないので、プラスチック又はガラス基材の上に形成した有機太陽電池薄膜又は有機EL薄膜を使用することが可能である。 In the present invention, the transfer substrate (8) is preferably a plastic material such as polyethylene terephthalate (PET), polycarbonate (PC), polyester film (for example, DIAFOIL Mitsubishi products), a composite material with paper, a glass substrate, or the like. . In particular, in the present invention, since the surface treatment of the transfer substrate is not necessary, it is possible to use an organic solar cell thin film or an organic EL thin film formed on a plastic or glass substrate.
第3ロール(9)に巻きつけられた転写用基材(8)は、前記工程(13)において、透明導電性炭素膜が転写された後、第4ロール(10)に巻き取られる。一方、剥がされた成長用基材(3)は、第2ロール(2)に巻き取られ、転写用基材(8)上に透明導電性炭素膜(14)が形成された炭素膜積層体が得られる。 The transfer substrate (8) wound around the third roll (9) is wound around the fourth roll (10) after the transparent conductive carbon film is transferred in the step (13). On the other hand, the peeled growth base material (3) is wound around the second roll (2), and the carbon film laminate in which the transparent conductive carbon film (14) is formed on the transfer base material (8). Is obtained.
また、本発明において、転写用基材(8)の表面又はロールプレスの表面にパターンを付けることにより、透明導電性炭素膜の表面にパターンを形成することができる。 In the present invention, a pattern can be formed on the surface of the transparent conductive carbon film by applying a pattern to the surface of the transfer substrate (8) or the surface of the roll press.
本発明では、成長用基材は、ダメージを受けず又は溶かされないので再利用が可能となるので、成長用基材は第1ロール(1)と第2ロール(2)の間で循環することが可能となる。したがって、図1に示すように、工業的な高スループットで、ロールtoロール法で透明導電性炭素膜を連続して形成・加工する製造方法を提供することができる。
なお、図1では、本発明の方法を用いて、透明導電性炭素膜を連続的に製造する工程を示したが、本発明の方法が、これに限られず、例えば、各工程を非連続的におこなう方法や、一部を非連続的に行う等のその他の透明導電性炭素膜の製造方法に適用できるものであることはいうまでもない。
In the present invention, since the growth substrate is not damaged or melted, it can be reused. Therefore, the growth substrate circulates between the first roll (1) and the second roll (2). It becomes possible. Therefore, as shown in FIG. 1, it is possible to provide a manufacturing method for continuously forming and processing a transparent conductive carbon film by a roll-to-roll method at an industrial high throughput.
In addition, in FIG. 1, although the process of manufacturing a transparent conductive carbon film continuously using the method of this invention was shown, the method of this invention is not restricted to this, For example, each process is discontinuous. Needless to say, the present invention can be applied to other transparent conductive carbon film production methods such as the method of carrying out the method, and the method of performing a part of the method in a discontinuous manner.
具体的に、実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
(透明導電性炭素膜の成膜)
本実施例においては、厚さ33μmの銅箔を基材とし、マイクロ波表面波プラズマCVD装置を用いてプラズマCVD処理を施した。図2は、本実施例に用いたマイクロ波表面波プラズマCVD装置を模式的に示す図である。
図2に示すマイクロ波表面波プラズマCVD装置は、上端が開口した金属製の反応容器(110)と、反応容器(110)の上端部に、金属製支持部材(104)を介して気密に取り付けられたマイクロ波を導入するための石英窓(103)と、その上部に取り付けられたスロット付き矩形マイクロ波導波管(102)とから構成されている。
本実施例においては、反応容器(110)の内部に、銅箔基材を設置し、CVD処理を行う。処理手順は以下のとおりである。
Specifically, the present invention will be described based on examples, but the present invention is not limited to these examples.
(Deposition of transparent conductive carbon film)
In this example, a copper foil having a thickness of 33 μm was used as a base material, and a plasma CVD process was performed using a microwave surface wave plasma CVD apparatus. FIG. 2 is a diagram schematically showing the microwave surface wave plasma CVD apparatus used in this example.
The microwave surface wave plasma CVD apparatus shown in FIG. 2 is attached to a metal reaction vessel (110) having an open upper end and an upper end portion of the reaction vessel (110) in an airtight manner via a metal support member (104). It is composed of a quartz window (103) for introducing the generated microwave and a rectangular microwave waveguide (102) with a slot attached to the top thereof.
In the present embodiment, a copper foil base material is placed inside the reaction vessel (110), and a CVD process is performed. The processing procedure is as follows.
マイクロ波表面波プラズマCVD反応容器(110)内のプラズマ発生室(101)に設けられた試料台(106)に、前記銅箔基材(105)を設置した。次に、排気管(108)を通して反応室内を1×10−3Pa以下に排気した。反応室には冷却水管(111)が巻きつけてあり、そこに冷却水を供給して反応室を冷却した。また、試料台は銅でできており、冷却水の給排水管(107)を通して冷却水を供給し、試料の冷却を行った。 The said copper foil base material (105) was installed in the sample stand (106) provided in the plasma generation chamber (101) in a microwave surface wave plasma CVD reaction container (110). Next, the reaction chamber was evacuated to 1 × 10 −3 Pa or less through the exhaust pipe (108). A cooling water pipe (111) is wound around the reaction chamber, and cooling water is supplied thereto to cool the reaction chamber. The sample stage was made of copper, and the cooling water was supplied through the cooling water supply / drain pipe (107) to cool the sample.
石英窓(103)と銅箔基材との距離が130mmになるよう試料台の高さを調整した。
次に、反応室にCVD処理用ガス導入管(109)を通して、CVD処理用ガスを導入した。CVD処理用ガスは、メタンガス5SCCM、アルゴンガス95SCCM、であった。反応室内の圧力を排気管(108)に接続した圧力調整バルブを用いて、2Paに保持した。
マイクロ波パワー10.5kWにてプラズマを発生させ、銅箔基材(105)のプラズマCVD処理を行った。プラズマ処理中の基板の温度は、アルメル−クロメル熱電対を基板表面に接触させることにより測定した。プラズマCVD処理を通じて銅箔基材の温度は500℃以下であった。
以上のプラズマCVD処理の結果、銅箔基材上に透明導電性炭素膜薄膜が積層され、銅箔と透明導電性炭素膜薄膜との積層体が形成されたサンプルを得た。プラズマCVD処理時間としては、6分である。
なお、本実施例では、その後の剥離、転写の状態を観察しやすくするために、通常用いる透明導電性炭素膜よりも膜厚の厚いものを用いた。
The height of the sample stage was adjusted so that the distance between the quartz window (103) and the copper foil base material was 130 mm.
Next, a CVD processing gas was introduced into the reaction chamber through a CVD processing gas introduction pipe (109). The CVD processing gas was methane gas 5 SCCM and argon gas 95 SCCM. The pressure in the reaction chamber was maintained at 2 Pa using a pressure adjusting valve connected to the exhaust pipe (108).
Plasma was generated at a microwave power of 10.5 kW, and a plasma CVD treatment of the copper foil base material (105) was performed. The temperature of the substrate during the plasma treatment was measured by bringing an alumel-chromel thermocouple into contact with the substrate surface. The temperature of the copper foil base material was 500 ° C. or lower throughout the plasma CVD process.
As a result of the above plasma CVD treatment, a sample was obtained in which a transparent conductive carbon film thin film was laminated on a copper foil substrate, and a laminate of the copper foil and the transparent conductive carbon film thin film was formed. The plasma CVD processing time is 6 minutes.
In this example, in order to make it easy to observe the state of subsequent peeling and transfer, a film having a thickness greater than that of the normally used transparent conductive carbon film was used.
銅箔成長用基材と透明導電性炭素膜との間の剥離強度(F)の測定結果を表1に示す。
実施例は、該透明導電性炭素膜と成長用基材との間の剥離強度は1.33N/cmであることが分かった。
Table 1 shows the measurement results of the peel strength (F) between the copper foil growth base and the transparent conductive carbon film.
In the example, it was found that the peel strength between the transparent conductive carbon film and the growth substrate was 1.33 N / cm.
本発明において、剥離強度(F)とは、透明導電性炭素膜と成長用基材との間の強度の指標であり、その測定方法は、以下のとおりである。
1)接着テープ/透明導電性炭素膜/成長用基材の3層の構造のサンプルを作製する。
2)実験台にサンプルを固定し、接着テープ゜の先端に引張り試験装置(島津AGS-X)を用いて引張力(また荷重)をかける。
3)平均荷重を引張り試験装置で測る(参考方法ASTM D-903など、条件は一定の角度(90°)、一定の速度(100mm/min)、接着テープに付着している単位幅あたり(2cm))。
今回、選んだ接着テープ(Scotch 3M、メンディングテープ)は、透明導電性炭素膜との接着強度が強いので、接着テープと透明導電性炭素膜を同時に成長用基材から剥離することができる。この測定方法では透明導電性炭素膜と成長用基材との間の剥離強度を測定しているので、剥離強度(F)(N/cm)=平均荷重(N)/テープ幅(cm)になる。
In the present invention, the peel strength (F) is an index of strength between the transparent conductive carbon film and the growth substrate, and the measurement method is as follows.
1) A sample having a three-layer structure of adhesive tape / transparent conductive carbon film / growth substrate is prepared.
2) Fix the sample on the test bench and apply a tensile force (or load) to the tip of the adhesive tape using a tensile testing device (Shimadzu AGS-X).
3) Measure the average load with a tensile tester (reference method ASTM D-903 etc., conditions are constant angle (90 °), constant speed (100 mm / min), per unit width adhering to adhesive tape (2 cm )).
This time, the selected adhesive tape (Scotch 3M, mending tape) has strong adhesive strength with the transparent conductive carbon film, so that the adhesive tape and the transparent conductive carbon film can be peeled from the growth substrate at the same time. Since this method measures the peel strength between the transparent conductive carbon film and the growth substrate, the peel strength (F) (N / cm) = average load (N) / tape width (cm). Become.
図3は、成膜した透明導電性炭素膜を銅箔成長用基材からPET転写用基材に転写した結果を示す写真である。
図3(A1)及び(A2)は、それぞれ、用意した、銅箔成長用基材の上に形成した透明導電性炭素膜、及びPET転写用基材である。
図3(B1)及び(B2)は、それぞれ、剥離強度を弱める処理を行わずに転写したものであり、転写後に銅箔成長用基材の上に形成した透明導電性炭素膜は残っており、(図3(B1))、転写用基材の上に透明導電性炭素膜は着いていなことが分かった(図3(B2))。
この実験結果から形成した透明導電性炭素膜は成長用基材からPETフィルムに転写することは不可能であり、この問題を解決するために、成長用基材の上に形成した透明導電性炭素膜の処理が必要であることが分かった。
FIG. 3 is a photograph showing the result of transferring the formed transparent conductive carbon film from the copper foil growth base material to the PET transfer base material.
FIGS. 3A1 and 3A2 are a prepared transparent conductive carbon film formed on a copper foil growth base material and a PET transfer base material, respectively.
3 (B1) and 3 (B2) are each transferred without performing a process for reducing the peel strength, and the transparent conductive carbon film formed on the copper foil growth base material after the transfer remains. (FIG. 3 (B1)), it was found that the transparent conductive carbon film was not deposited on the transfer substrate (FIG. 3 (B2)).
The transparent conductive carbon film formed from the experimental results cannot be transferred from the growth base material to the PET film. To solve this problem, the transparent conductive carbon film formed on the growth base material is used. It was found that membrane processing was necessary.
(実施例1:透明導電性炭素膜の剥離転写その1)
前述の、マイクロ波表面波プラズマCVD装置を用いて銅箔成長用基材の上に形成した透明導電性炭素膜を、液体窒素(−196℃)が入った容器の中に約5秒入れ、30℃で約5秒加熱した後、転写用基材/透明導電性炭素膜/成長用基材の3層を重ね合わせた積層体を作成した。最後に、該積層体の成長用基材を取り除いて、転写用基材に透明導電性炭素膜を転写した。
(Example 1: Stripping transfer of transparent conductive carbon film 1)
The above-mentioned transparent conductive carbon film formed on a copper foil growth substrate using a microwave surface wave plasma CVD apparatus is placed in a container containing liquid nitrogen (-196 ° C.) for about 5 seconds, After heating at 30 ° C. for about 5 seconds, a laminate in which three layers of transfer substrate / transparent conductive carbon film / growth substrate were superposed was prepared. Finally, the growth base material of the laminate was removed, and the transparent conductive carbon film was transferred to the transfer base material.
液体窒素処理後に、形成した透明導電性炭素膜は銅箔成長用基材からPET転写用基材に転写可能であることを、図3(D3)、(D4)に示す。この結果から、透明導電性炭素膜はPETフィルムに転写すること(図3(D4))、成長用基材の上に透明導電性炭素膜は残ってないことが分かった(図3(D3))。 FIGS. 3D3 and 3D4 show that the formed transparent conductive carbon film can be transferred from the copper foil growth base material to the PET transfer base material after the liquid nitrogen treatment. From this result, it was found that the transparent conductive carbon film was transferred to the PET film (FIG. 3 (D4)), and no transparent conductive carbon film remained on the growth substrate (FIG. 3 (D3)). ).
光学顕微鏡又はラマン分光光度計で評価を行った。ラマン顕微鏡(Horiba XploRA)を用いて光学顕微鏡で透明導電性炭素膜の表面又は成長用基材の表面(70×60マイクロメーター、対物レンズ100倍)を観察するとともに、ラマンスペクトル(励起波長638nm、範囲250〜3500cm−1、対物レンズ100倍)を測定した。
透明導電性炭素膜のラマン散乱分光による評価で重要なバンドは、2Dバンド(2652cm−1)、Gバンド(1592cm−1)、Dバンド(1322cm−1)、およびD´バンド(1617cm−1)である。Gバンドは正常六員環によるもので、2DバンドはDバンドの倍音によるものである。またDバンドは正常六員環の欠陥に起因するピークである。また、D´バンドも欠陥から誘起されるピークであり、数層から数十層程度の透明導電性炭素膜の積層体の端の部分に起因するものと考えられる。そして、ラマン散乱分光スペクトルの2DバンドとGバンドのピークの強度比から、積層されている透明導電性炭素膜が、グラフェンであるか否かが判断される。
Evaluation was performed with an optical microscope or a Raman spectrophotometer. While observing the surface of the transparent conductive carbon film or the surface of the growth substrate (70 × 60 micrometers, objective lens 100 times) with an optical microscope using a Raman microscope (Horiba XploRA), a Raman spectrum (excitation wavelength: 638 nm, Range 250-3500 cm −1 , objective lens 100 times).
Bands important for evaluation of the transparent conductive carbon film by Raman scattering spectroscopy are 2D band (2652 cm −1 ), G band (1592 cm −1 ), D band (1322 cm −1 ), and D ′ band (1617 cm −1 ). It is. The G band is due to the normal six-membered ring, and the 2D band is due to the overtone of the D band. The D band is a peak due to a defect in a normal six-membered ring. The D ′ band is also a peak induced by defects, and is considered to be caused by the end portion of the laminate of transparent conductive carbon films of several to several tens of layers. Then, from the intensity ratio of the 2D band and the G band peak of the Raman scattering spectrum, it is determined whether or not the laminated transparent conductive carbon film is graphene.
転写前に、銅箔成長用基材の上に形成した透明導電性炭素膜の表面とラマンスペクトルを、それぞれ図4(A)と図4(B)に示す。
転写後に、PET転写用基材の上に転写した透明導電性炭素膜の表面とラマンスペクトルは、それぞれ図4(C)と図4(D)に示す。
図4(B)及び図4(D)では、Gバンドと2Dバンドの両方のピークが観測されており、透明導電性炭素膜によるものであることが明らかである。そして、図4(B)、図4(D)に示したラマンスペクトルの2DバンドとGバンドのピークの強度比、およびD´バンドが観測されていることから、形成された透明導電性炭素膜は、数層から数十層程度のグラフェン膜の積層体が混在する構成を有することが分かった。また、図4(B)と図4(D)を比較した結果、転写前後では、透明導電性炭素膜のラマンスペクトルの特性は相対的に変わらないことが確認された。
FIG. 4 (A) and FIG. 4 (B) show the surface and Raman spectrum of the transparent conductive carbon film formed on the copper foil growth base before transfer, respectively.
The surface and Raman spectrum of the transparent conductive carbon film transferred onto the PET transfer substrate after the transfer are shown in FIG. 4 (C) and FIG. 4 (D), respectively.
In FIGS. 4B and 4D, peaks of both the G band and the 2D band are observed, and it is clear that this is due to the transparent conductive carbon film. Then, the intensity ratio of the 2D band to the G band peak of the Raman spectrum shown in FIGS. 4B and 4D and the D ′ band are observed, so that the formed transparent conductive carbon film is formed. Has a structure in which a stack of graphene films of several to several tens of layers is mixed. Further, as a result of comparing FIG. 4B and FIG. 4D, it was confirmed that the characteristics of the Raman spectrum of the transparent conductive carbon film did not change before and after the transfer.
また、転写後の銅箔成長用基材の表面とラマンスペクトルを図4(E)及び図4(F)に示す。
図4(E)及び図4(F)から明らかなように、転写の後、成長用基材の表面の上には、透明導電性炭素膜が残存せず、かつ散乱ラマンも検出されていない(バックグラウンドレベル)。
Moreover, the surface and Raman spectrum of the copper foil growth base material after transfer are shown in FIG. 4 (E) and FIG. 4 (F).
As is clear from FIGS. 4E and 4F, after the transfer, the transparent conductive carbon film does not remain on the surface of the growth substrate, and no scattered Raman is detected. (Background level).
以上の結果から、透明導電性炭素膜はPETフィルムに転写することを確認し、成長用基材の上に透明導電性炭素膜は残ってないことも確認した。
更に、上記の表1に剥離強度の測定結果を示す。表1の結果から、剥離強度(F)が1.33N/cmから0.7N/cmに減小することが分かった。透明導電性炭素膜と成長用基材の両者の熱膨脹係数における相違として、透明導電性炭素膜と成長用基材との間の相互作用が弱くなると考えられ、結果的にロールプレス法で透明導電性炭素膜はPETフィルムに転写することが可能である。銅箔成長用基材はダメージせずに再利用する可能であることが分かった。
From the above results, it was confirmed that the transparent conductive carbon film was transferred to the PET film, and it was also confirmed that the transparent conductive carbon film did not remain on the growth substrate.
Further, Table 1 shows the measurement results of peel strength. From the results in Table 1, it was found that the peel strength (F) decreased from 1.33 N / cm to 0.7 N / cm. As a difference in the coefficient of thermal expansion between the transparent conductive carbon film and the growth substrate, it is considered that the interaction between the transparent conductive carbon film and the growth substrate is weakened. The carbon film can be transferred to a PET film. It was found that the copper foil growth base material can be reused without being damaged.
(実施例2:透明導電性炭素膜の剥離転写その2)
前述の、マイクロ波表面波プラズマCVD法を用いて銅箔成長用基材の上に形成した透明導電性炭素膜を、硫酸の水溶液(H2SO4、0.01M、室温)で約12秒処理した後、純水(室温)で洗い、30℃で乾燥した。ついで、転写用基材/透明導電性炭素膜/成長用基材の3層を重ね合わせた積層体を作製した。最後に、該積層体の成長用基材を取り除いて、転写用基材に透明導電性炭素膜を転写した。
(Example 2: Release transfer of transparent conductive carbon film 2)
The above-mentioned transparent conductive carbon film formed on the copper foil growth base material using the microwave surface wave plasma CVD method is about 12 seconds in an aqueous solution of sulfuric acid (H 2 SO 4 , 0.01M, room temperature). After the treatment, it was washed with pure water (room temperature) and dried at 30 ° C. Next, a laminate in which three layers of transfer substrate / transparent conductive carbon film / growth substrate were superposed was prepared. Finally, the growth base material of the laminate was removed, and the transparent conductive carbon film was transferred to the transfer base material.
転写した透明導電性炭素膜を、実施例1と同様にして、光学顕微鏡又はラマン分光光度計方法で評価を行った結果、透明導電性炭素膜のラマン特性は転写前後が変わらないことが確認し、透明導電性炭素膜はPETフィルムに転写することが確認し、転写後に成長用基材の上に透明導電性炭素膜は残ってないことも確認できた。 The transferred transparent conductive carbon film was evaluated by the optical microscope or the Raman spectrophotometer method in the same manner as in Example 1. As a result, it was confirmed that the Raman characteristics of the transparent conductive carbon film did not change before and after the transfer. It was confirmed that the transparent conductive carbon film was transferred to the PET film, and it was also confirmed that the transparent conductive carbon film did not remain on the growth substrate after the transfer.
更に、上記の表1に、剥離強度の測定結果を示す。
表1に示すように、透明導電性炭素膜と成長用基材との間に複数の現象(液体が拡散、反応が起こる、ガスが発生するなど)が発生することにより、透明導電性炭素膜と成長用基材との間の相互作用が弱くなり、剥離強度(F)は1.33N/cmから0.50N/cmに削減した(表1)。結果的に、ロールプレス法で透明導電性炭素膜は銅箔成長用基材から転写用基材(PET)に転写することが分かった。
Further, Table 1 shows the measurement results of peel strength.
As shown in Table 1, when a plurality of phenomena (liquid diffusion, reaction, gas generation, etc.) occur between the transparent conductive carbon film and the growth substrate, the transparent conductive carbon film And the growth substrate weakened, and the peel strength (F) was reduced from 1.33 N / cm to 0.50 N / cm (Table 1). As a result, it was found that the transparent conductive carbon film was transferred from the copper foil growth base material to the transfer base material (PET) by the roll press method.
(転写された透明導電性炭素膜の抵抗率及び透過率の測定)
転写された透明導電性炭素膜の抵抗率及び透過率を測定するため、前述のCVD処理の条件を、CVD処理用ガス:メタンガス29.9SCCM、アルゴンガス20SCCM、及び水素ガス10SCCM、反応室内の圧力:3Pa、マイクロ波パワー:13.5kW/3台、処理時間:3分、に変更して、前述の透明導電性炭素膜よりも薄い膜厚のものを、A4サイズの銅箔基材上に形成した。
その後、透明導電性炭素膜が形成された銅箔基材を、2cm角に切断してサンプルを作製し、それぞれを、実施例1及び実施例2と同様にして、転写用基材(PET)に転写し、転写用基材に転写された透明導電性炭素膜の抵抗率(R)と透過率(T)を測定した。
(Measurement of resistivity and transmittance of the transferred transparent conductive carbon film)
In order to measure the resistivity and transmittance of the transferred transparent conductive carbon film, the conditions of the above-mentioned CVD process are as follows: CVD process gas: methane gas 29.9 SCCM, argon gas 20 SCCM, hydrogen gas 10 SCCM, pressure in the reaction chamber : 3 Pa, microwave power: 13.5 kW / 3 units, processing time: 3 minutes, a film having a thickness smaller than the above-mentioned transparent conductive carbon film is placed on an A4 size copper foil base material Formed.
Thereafter, the copper foil base material on which the transparent conductive carbon film was formed was cut into 2 cm squares to prepare samples, and the respective samples were transferred in the same manner as in Example 1 and Example 2 (PET). And the resistivity (R) and transmittance (T) of the transparent conductive carbon film transferred to the transfer substrate were measured.
転写された透明導電性炭素膜の抵抗率及び透過率の測定には、それぞれ、ロレスターGP MCP-T600抵抗率計と島津UV3600分光光度計を用いて測定を行った。各サンプルから得られた結果を、最高値から最小値の範囲として、表2に示す。
表2に示すように、いずれも、抵抗率が低く、かつ透過率が高いことが分かった。
The resistivity and transmittance of the transferred transparent conductive carbon film were measured using a Lorester GP MCP-T600 resistivity meter and a Shimadzu UV3600 spectrophotometer, respectively. The results obtained from each sample are shown in Table 2 as the range from the highest value to the lowest value.
As shown in Table 2, it was found that both had low resistivity and high transmittance.
1:第1ロール
2:第2ロール
3:成長用基材
4:成膜工程
5:銅箔成長用基材の上に形成した透明導電性炭素膜
6:物理的な処理により、剥離強度を弱める工程
7:化学的な処理により、剥離強度を弱める工程
8:転写用基材
9:第3ロール
10:第4ロール
11:ロールプレスで転写用基材/透明導電性炭素膜/成長用基材の3層を重ねた炭素膜積層体を作製する工程(圧力・熱付与工程)
12:転写用基材/透明導電性炭素膜/成長用基材の3層を重ねた炭素膜積層体
13:剥離、転写する工程
14:転写用基材の上に転写した透明導電性炭素膜
101:プラズマ発生室
102:スロット付き矩型マイクロ波導波管
103:マイクロ波を導入するための石英窓
104:石英窓を支持する金属製支持部材
105:基材(銅箔基材)
106:基材を設置するための試料台
107:冷却水の給排水管
108:排気管
109:CVD処理用ガス導入管
110:反応容器
111:冷却水管
1: 1st roll 2: 2nd roll 3: Base material for growth 4: Film-forming process 5: Transparent conductive carbon film formed on the base material for copper foil growth 6: Peel strength by physical treatment Step of weakening 7: Step of weakening peel strength by chemical treatment 8: Substrate for transfer 9: Third roll 10: Fourth roll 11: Substrate for transfer / transparent conductive carbon film / growing base by roll press Process for producing a carbon film laminate with three layers of materials (pressure / heat application process)
12: Carbon film laminate in which three layers of transfer base material / transparent conductive carbon film / growth base material are stacked 13: peeling and transferring step 14: transparent conductive carbon film transferred onto the transfer base material DESCRIPTION OF SYMBOLS 101: Plasma generation chamber 102: Rectangular microwave waveguide with a slot 103: Quartz window for introducing a microwave 104: Metal support member which supports a quartz window 105: Base material (copper foil base material)
106: Sample stage for installing the base material 107: Cooling water supply / drain pipe 108: Exhaust pipe 109: Gas inlet pipe for CVD processing 110: Reaction vessel 111: Cooling water pipe
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011090980A JP2012224485A (en) | 2011-04-15 | 2011-04-15 | Method for transferring transparent conductive carbon film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011090980A JP2012224485A (en) | 2011-04-15 | 2011-04-15 | Method for transferring transparent conductive carbon film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012224485A true JP2012224485A (en) | 2012-11-15 |
Family
ID=47275100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011090980A Withdrawn JP2012224485A (en) | 2011-04-15 | 2011-04-15 | Method for transferring transparent conductive carbon film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012224485A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013084160A3 (en) * | 2011-12-08 | 2013-11-21 | Nokia Corporation | Graphene composite and a method of manufacturing a graphene composite |
KR20150094668A (en) * | 2012-12-07 | 2015-08-19 | 그래핀 프론티어스 엘엘씨 | Method and apparatus for transfer of films among substrates |
CN116281987A (en) * | 2022-12-20 | 2023-06-23 | 广东墨睿科技有限公司 | A kind of graphene-PET roll-to-roll transfer method |
-
2011
- 2011-04-15 JP JP2011090980A patent/JP2012224485A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013084160A3 (en) * | 2011-12-08 | 2013-11-21 | Nokia Corporation | Graphene composite and a method of manufacturing a graphene composite |
US9290389B2 (en) | 2011-12-08 | 2016-03-22 | Nokia Corporation | Graphene composite and a method of manufacturing a graphene composite |
KR20150094668A (en) * | 2012-12-07 | 2015-08-19 | 그래핀 프론티어스 엘엘씨 | Method and apparatus for transfer of films among substrates |
JP2016508891A (en) * | 2012-12-07 | 2016-03-24 | グラフェン・フロンティアズ,リミテッド・ライアビリティ・カンパニー | Method and apparatus for transfer of film between substrates |
KR102203157B1 (en) * | 2012-12-07 | 2021-01-13 | 아익스트론 에스이 | Method and apparatus for transfer of films among substrates |
CN116281987A (en) * | 2022-12-20 | 2023-06-23 | 广东墨睿科技有限公司 | A kind of graphene-PET roll-to-roll transfer method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5692794B2 (en) | Method for producing transparent conductive carbon film | |
AU2021225124B2 (en) | Graphene synthesis | |
Yang et al. | Chemical vapour deposition of graphene: Layer control, the transfer process, characterisation, and related applications | |
JP5686418B2 (en) | Graphene production method, graphene and metal substrate | |
US9023220B2 (en) | Method of manufacturing a graphene monolayer on insulating substrates | |
KR101701369B1 (en) | The methods for liquid precursor based synthesis and transfer of high quality graphene based on continuous roll to roll process and the device therefor | |
Kostogrud et al. | The main sources of graphene damage at transfer from copper to PET/EVA polymer | |
Im et al. | Xenon Flash Lamp‐Induced Ultrafast Multilayer Graphene Growth | |
Chaitoglou et al. | Effect of a balanced concentration of hydrogen on graphene CVD growth | |
Dathbun et al. | Effects of three parameters on graphene synthesis by chemical vapor deposition | |
Hofmann et al. | A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition | |
KR102017251B1 (en) | Method for Preparation of Graphene Thin Film without Transfer Process | |
WO2019220903A1 (en) | Graphite thin film, graphite thin film laminate, and production methods for graphite thin film and graphite thin film laminate | |
Roslyakov et al. | High-temperature annealing of porous anodic aluminium oxide prepared in selenic acid electrolyte | |
Ago et al. | Step-templated CVD growth of aligned graphene nanoribbons supported by a single-layer graphene film | |
JP2012224485A (en) | Method for transferring transparent conductive carbon film | |
CN103352210A (en) | Method for visually displaying distribution of CVD (Chemical Vapor Deposition) graphene surface defects on metal substrate | |
Nagai et al. | 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions | |
Rai et al. | Insight of cleaning, doping and defective effects on the graphene surface by using methanol | |
Gürsoy et al. | Uniform deposition of large-area graphene films on copper using low-pressure chemical vapor deposition technique | |
TWI611461B (en) | Flexible Raman substrate and method for manufacturing the same | |
Comanescu et al. | Micro-Raman spectroscopy of graphene transferred by wet chemical methods | |
Soler et al. | Hot-wire chemical vapor deposition of few-layer graphene on copper substrates | |
CN114171370A (en) | Method for preparing graphene in relatively closed area by solid phase method | |
Tsujimoto et al. | Pit formation with graphene growth on copper foils by ethanol chemical vapor deposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140701 |