[go: up one dir, main page]

JP2012223723A - Control device and control method of seawater desalination system - Google Patents

Control device and control method of seawater desalination system Download PDF

Info

Publication number
JP2012223723A
JP2012223723A JP2011094677A JP2011094677A JP2012223723A JP 2012223723 A JP2012223723 A JP 2012223723A JP 2011094677 A JP2011094677 A JP 2011094677A JP 2011094677 A JP2011094677 A JP 2011094677A JP 2012223723 A JP2012223723 A JP 2012223723A
Authority
JP
Japan
Prior art keywords
pretreatment
polysaccharide
control
desalination system
seawater desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011094677A
Other languages
Japanese (ja)
Other versions
JP5587240B2 (en
Inventor
Koji Kageyama
晃治 陰山
Misaki Sumikura
みさき 隅倉
Takahiro Tate
隆広 舘
Hideyuki Tadokoro
秀之 田所
Toshiaki Arato
利昭 荒戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011094677A priority Critical patent/JP5587240B2/en
Priority to CN2012101160140A priority patent/CN102743975A/en
Publication of JP2012223723A publication Critical patent/JP2012223723A/en
Application granted granted Critical
Publication of JP5587240B2 publication Critical patent/JP5587240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

【課題】
海水又はかん水に含まれるファウリング成分の量に応じて半透膜のファウリングを低減できるように前処理を制御することで,運転コストが低くかつ安定して淡水を得られる海水淡水化システムを実現すること。
【解決手段】
本発明は、上記課題を解決するために、半透膜で海水又はかん水を淡水化する半透膜処理装置と、該半透膜処理装置より前段に配置され、該半透膜処理装置に供給される海水又はかん水を前処理する前処理装置と、該前処理装置で処理された処理水に含まれる多糖類の濃度を計測する前処理水多糖類計測手段と、該前処理水多糖類計測手段による前処理水多糖類濃度計測値及び予め与えられた目標信号に基づいて、前記前処理装置の操作量を算出して該前処理装置への制御信号を出力する制御手段とを備えていることを特徴とする。
【選択図】図1
【Task】
A seawater desalination system that can obtain fresh water stably and at low operating costs by controlling pretreatment so that fouling of the semipermeable membrane can be reduced according to the amount of fouling components contained in seawater or brine. Realize.
[Solution]
In order to solve the above-described problems, the present invention provides a semipermeable membrane treatment apparatus that desalinates seawater or brine with a semipermeable membrane, and is disposed upstream of the semipermeable membrane treatment apparatus and is supplied to the semipermeable membrane treatment apparatus. Pretreatment device for pretreating the seawater or brine to be treated, pretreatment water polysaccharide measurement means for measuring the concentration of polysaccharide contained in the treatment water treated by the pretreatment device, and measurement of the pretreatment water polysaccharide Control means for calculating an operation amount of the pretreatment device based on a pretreatment water polysaccharide concentration measurement value by means and a target signal given in advance and outputting a control signal to the pretreatment device. It is characterized by that.
[Selection] Figure 1

Description

本発明は海水淡水化システムの制御装置及びその制御方法に係り、特に、海水やかん水から淡水を得るために半透膜を用いたものに好適な海水淡水化システムの制御装置及びその制御方法に関する。   TECHNICAL FIELD The present invention relates to a control device for a seawater desalination system and a control method therefor, and more particularly to a control device for a seawater desalination system suitable for one using a semipermeable membrane to obtain fresh water from seawater or brine and the control method therefor. .

近年、半透膜、特に逆浸透膜を用いた海水淡水化システムでは、膜のファウリング(原水に含まれる難溶性成分や高分子の溶質、コロイド、微小固形物などが膜に沈着して透過流束を低下させる現象)が、大きな問題となる事例が報告されている。   In recent years, seawater desalination systems using semipermeable membranes, especially reverse osmosis membranes, fouling membranes (slightly soluble components in raw water, polymer solutes, colloids, micro solids, etc. are deposited on the membrane and permeate. Cases in which the phenomenon of lowering the flux) is a major problem have been reported.

海水に含まれるファウリング原因成分を除去するため、これまでに凝集処理、凝集沈澱処理、砂ろ過処理、マルチメディアフィルタ処理、加圧浮上分離処理、精密膜ろ過処理、限外膜ろ過処理など、様々な前処理技術が適用されてきた。特に、海水に含まれるファウリング成分の濃度は、季節や時刻、天候によって大きく変動するため、その変動に応じた前処理の運転制御が、半透膜のファウリングの面及び環境負荷低減の面から重要となっている。   In order to remove fouling-causing components contained in seawater, so far, coagulation treatment, coagulation sedimentation treatment, sand filtration treatment, multimedia filter treatment, pressurized flotation separation treatment, precision membrane filtration treatment, ultramembrane filtration treatment, etc. Various pretreatment techniques have been applied. In particular, since the concentration of fouling components contained in seawater varies greatly depending on the season, time, and weather, the pretreatment operation control according to the fluctuations is necessary for fouling of the semipermeable membrane and reducing the environmental load. It has become important since.

前処理のうち、凝集剤を用いる凝集処理や凝集沈澱処理の場合、凝集剤は、注入率一定制御や濁度比例制御により注入量が制御されてきた。また、海水淡水化では、粒子性物質の指標であるSDI(Silt Density Index)が広く使用されているが、このSDIの値に基づいた制御も実施されている。   Among the pretreatments, in the case of agglomeration treatment using a flocculant or a coagulation precipitation treatment, the injection amount of the flocculant has been controlled by constant injection rate control or turbidity proportional control. In seawater desalination, SDI (Silt Density Index), which is an index of particulate matter, is widely used, and control based on this SDI value is also implemented.

一方、膜のファウリングは、濁質粒子のみではなく、低分子の有機物も原因であると報告されている。例えば、非特許文献1には、有機物のうち特に粘着性を持つ多糖類を含むTEP(Transparent Exopolymer Particles)が、ファウリングの生成に大きく寄与していると記載されている。   On the other hand, it has been reported that membrane fouling is caused not only by turbid particles but also by low molecular weight organic substances. For example, Non-Patent Document 1 describes that TEP (Transparent Exopolymer Particles) containing polysaccharides that are particularly sticky among organic substances greatly contribute to the generation of fouling.

このTEPは、通常、海水中の低分子の多糖類が凝集して粒子状、或いはコロイド状になることで形成されるが、植物プランクトンなどが限外ろ過膜などの前処理によって剪断され、体外に流出した多糖類が凝集することでも形成される。また、TEPの濃度の変化は、海水の濁度変化と相関が低い。例えば、海水温が高く日照量が多い時期には、海水中の濁度に関係なく海水中のTEP濃度が増加する。   This TEP is usually formed by agglomeration of low-molecular-weight polysaccharides in seawater into particles or colloids, but phytoplankton is sheared by pretreatment such as ultrafiltration membranes, and is extracorporeal. It is also formed by agglomeration of the polysaccharide that flows out into In addition, changes in TEP concentration have a low correlation with changes in seawater turbidity. For example, when the seawater temperature is high and the amount of sunlight is high, the TEP concentration in the seawater increases regardless of the turbidity in the seawater.

従って、従来の注入率一定制御や濁度比例制御及びSDIの値に基づいた凝集剤注入制御では、海水中に含まれる多糖類の濃度変化に応じた制御が不可能であり、半透膜のファウリングが早く進行する場合が生じる。   Therefore, with conventional injection rate constant control, turbidity proportional control, and flocculant injection control based on the SDI value, control according to changes in the concentration of polysaccharides contained in seawater is impossible, and the semipermeable membrane There are cases where fouling progresses quickly.

竹内、「RO海水淡水化の前処理とファウリング」、日本海水学会誌 63巻,p 367-371(2009)Takeuchi, “RO seawater desalination pretreatment and fouling”, Journal of the Seawater Society of Japan 63, p 367-371 (2009)

上述した半透膜のファウリングが早く進行するのを回避するため、注入率一定制御の場合には比率を大きく、濁度比例制御の場合にはオフセットの値を大きくするなどの方策をとることは可能であるが、いずれも過剰に凝集剤を注入することとなり、薬品コストや汚泥処分コストが増大する問題が生じる。   In order to avoid the above-mentioned fouling of the semipermeable membrane from proceeding quickly, measures such as increasing the ratio in the case of constant injection rate control and increasing the offset value in the case of turbidity proportional control should be taken. However, in any case, the coagulant is excessively injected, and there is a problem that the chemical cost and the sludge disposal cost increase.

また、凝集剤を用いた処理では、海水中の成分をフロック化して沈澱、ろ過、或いは浮上して分離するが、フロック化には核となる濁質の存在が必要である。   In the treatment using the flocculant, the components in the seawater are flocculated and separated by precipitation, filtration or levitation. However, the flocculation requires the presence of turbidity as a core.

また、原水となる海水に濁質が少ない場合には、フロックの成長が不十分となり、多糖類やTEPなどファウリング原因成分がフロックの中に十分に巻き込まれず、海水から分離することが困難であった。   In addition, when the raw seawater is low in turbidity, the growth of flocs is insufficient, and fouling-causing components such as polysaccharides and TEP are not sufficiently entrained in the flocs, making it difficult to separate from the seawater. there were.

その結果、前処理でファウリング成分が十分に除去できず、半透膜のファウリングが早く進行する場合が生じるという問題がある。   As a result, there is a problem in that the fouling component cannot be sufficiently removed by the pretreatment, and the fouling of the semipermeable membrane proceeds quickly.

本発明は上述の点に鑑みなされたもので、その目的とするところは、海水又はかん水に含まれるファウリング成分の量に応じて半透膜のファウリングを低減できるように前処理を制御し、運転コストが低く、かつ安定して淡水が得られる海水淡水化システムの制御装置及びその制御方法を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to control the pretreatment so that the fouling of the semipermeable membrane can be reduced according to the amount of the fouling component contained in seawater or brine. Another object of the present invention is to provide a control device and a control method for a seawater desalination system that can operate at low cost and can stably obtain fresh water.

本発明の海水淡水化システムの制御装置は、上記目的を達成するために、半透膜で海水又はかん水を淡水化する半透膜処理装置と、該半透膜処理装置より前段に配置され、該半透膜処理装置に供給される海水又はかん水を前処理する前処理装置と、該前処理装置で処理された処理水に含まれる多糖類の濃度を計測する前処理水多糖類計測手段と、該前処理水多糖類計測手段による前処理水多糖類濃度計測値及び予め与えられた目標信号に基づいて、前記前処理装置の操作量を算出して該前処理装置への制御信号を出力する制御手段とを備えていることを特徴とする。   In order to achieve the above object, the control device for the seawater desalination system of the present invention is disposed in a stage preceding the semipermeable membrane treatment device for desalinating seawater or brine with a semipermeable membrane, and the semipermeable membrane treatment device, A pretreatment device for pretreating seawater or brine supplied to the semipermeable membrane treatment device, and a pretreatment water polysaccharide measuring means for measuring the concentration of the polysaccharide contained in the treated water treated by the pretreatment device; , Based on a pretreatment water polysaccharide concentration measurement value by the pretreatment water polysaccharide measuring means and a target signal given in advance, an operation amount of the pretreatment device is calculated and a control signal is output to the pretreatment device And a control means for performing the above.

また、本発明の海水淡水化システムの制御方法は、上記目的を達成するために、海水又はかん水を前処理装置で処理した処理水を半透膜処理装置の半透膜で淡水化するにあたり、前記前処理装置の処理水に含まれる多糖類の濃度を前処理水多糖類計測手段で計測し、その多糖類濃度の計測値と予め与えられた目標信号とを比較し、その比較値に基づいて前記前処理装置の操作量を計算して制御手段で制御することを特徴とする。   Moreover, in order to achieve the above object, the control method of the seawater desalination system of the present invention desalinates the treated water obtained by treating seawater or brine with a pretreatment device with a semipermeable membrane of a semipermeable membrane treatment device. The concentration of the polysaccharide contained in the treated water of the pretreatment device is measured by the pretreatment water polysaccharide measuring means, the measured value of the polysaccharide concentration is compared with a target signal given in advance, and based on the comparison value The operation amount of the pre-processing device is calculated and controlled by the control means.

本発明によれば、海水又はかん水に含まれるファウリング成分の量に応じて半透膜のファウリングを低減できるように前処理を制御し、運転コストが低く、かつ安定して淡水が得られる効果がある。   According to the present invention, the pretreatment is controlled so as to reduce the fouling of the semipermeable membrane according to the amount of the fouling component contained in the seawater or brine, and the fresh water can be obtained stably at a low operating cost. effective.

本発明の海水淡水化システムの制御装置の実施例1を示すフロー図である。1 is a flowchart showing Example 1 of a control device for a seawater desalination system according to the present invention. 本発明の海水淡水化システムの制御装置の実施例1に組込まれる評価指標比較手段、評価指標演算手段、摂動発生手段の位置づけを説明するためのフロー図である。It is a flowchart for demonstrating the position of the evaluation parameter | index comparison means, evaluation parameter | index calculation means, and perturbation generation | occurrence | production means incorporated in Example 1 of the control apparatus of the seawater desalination system of this invention. 本発明の海水淡水化システムの制御装置の実施例1における多糖類濃度と半透膜ろ過抵抗の増加速度との関係を示す特性図である。It is a characteristic view which shows the relationship between the polysaccharide density | concentration in Example 1 of the control apparatus of the seawater desalination system of this invention, and the increase rate of semipermeable membrane filtration resistance. 本発明の海水淡水化システムの制御装置の実施例2を示すフロー図である。It is a flowchart which shows Example 2 of the control apparatus of the seawater desalination system of this invention. 本発明の海水淡水化システムの制御装置の実施例3を示すフロー図である。It is a flowchart which shows Example 3 of the control apparatus of the seawater desalination system of this invention. 本発明の海水淡水化システムの制御装置の実施例4を示すフロー図である。It is a flowchart which shows Example 4 of the control apparatus of the seawater desalination system of this invention.

以下、本発明の海水淡水化システムの制御装置を種々の実施例に基いて詳細に説明する。尚、各実施例を通して、同一の符号は同等のものを示している。   Hereinafter, the control apparatus of the seawater desalination system of this invention is demonstrated in detail based on various Examples. In addition, the same code | symbol has shown the equivalent throughout each Example.

図1は、本発明の海水淡水化システムの制御装置の実施例1におけるフローを示すものである。   FIG. 1 shows a flow in Example 1 of a control device for a seawater desalination system of the present invention.

該図に示す如く、実施例1における海水淡水化システムの制御装置は、半透膜で海水1を淡水化する半透膜処理装置12と、半透膜処理装置12の前段に配置され、該半透膜処理装置12に供給される海水1を前処理する前処理装置10と、前処理装置10の処理水に含まれる多糖類の濃度を計測する前処理水多糖類計測手段14と、前処理水多糖類計測手段14による前処理水多糖類濃度計測値である多糖類濃度情報18と予め与えられた目標信号22に基いて、上記前処理装置10の操作量を算出して前処理装置制御信号24を出力する制御手段20とから概略構成されている。また、前処理装置10は、凝集剤を注入する凝集剤注入装置27と、固形物を分離するための固形物分離装置29とを備えている。   As shown in the figure, the control device of the seawater desalination system in Example 1 is disposed in the front stage of the semipermeable membrane treatment device 12 that desalinates the seawater 1 with a semipermeable membrane, and the semipermeable membrane treatment device 12, A pretreatment device 10 for pretreating seawater 1 supplied to the semipermeable membrane treatment device 12, a pretreatment water polysaccharide measuring means 14 for measuring the concentration of polysaccharides contained in the treated water of the pretreatment device 10, Based on the polysaccharide concentration information 18 which is the pretreatment water polysaccharide concentration measurement value by the treatment water polysaccharide measuring means 14 and the target signal 22 given in advance, the operation amount of the pretreatment device 10 is calculated and the pretreatment device. A control unit 20 that outputs a control signal 24 is schematically configured. Further, the pretreatment device 10 includes a flocculant injection device 27 for injecting the flocculant and a solid material separation device 29 for separating the solid material.

そして、前処理装置10から流出する前処理水16は、半透膜処理装置12に流入するが、その中に含まれる多糖類の濃度が前処理水多糖類濃度計測手段14で計測される。前処理水多糖類濃度計測手段14は、オンラインでリアルタイムに計測できることが望ましいが、本実施例ではオフラインであっても良い。   The pretreated water 16 flowing out from the pretreatment device 10 flows into the semipermeable membrane treatment device 12, and the concentration of the polysaccharide contained therein is measured by the pretreated water polysaccharide concentration measuring means 14. Although it is desirable that the pretreatment water polysaccharide concentration measuring means 14 can be measured online in real time, it may be offline in this embodiment.

前処理水多糖類濃度計測手段14で計測された前処理水16の多糖類濃度情報18は、目標信号22が予め与えられている制御手段20に与えられる。制御手段20では、前処理装置10の操作量を算出し、前処理装置制御信号24を出力する。ここで、目標信号22は数値として、前処理水16に含まれる多糖類の目標濃度であっても良く、半透膜処理装置12の安定運転期間であっても良い。或いは目標信号22は、運転条件探索指標の項目として海水淡水化システム全体の運転コスト、或いは海水淡水化システム全体の環境負荷を選べるようにしても良い。   The polysaccharide concentration information 18 of the pretreated water 16 measured by the pretreated water polysaccharide concentration measuring means 14 is given to the control means 20 to which the target signal 22 is given in advance. The control means 20 calculates an operation amount of the preprocessing device 10 and outputs a preprocessing device control signal 24. Here, the target signal 22 may be a target concentration of the polysaccharide contained in the pretreated water 16 as a numerical value, or may be a stable operation period of the semipermeable membrane treatment apparatus 12. Alternatively, the target signal 22 may select the operating cost of the entire seawater desalination system or the environmental load of the entire seawater desalination system as an item of the operating condition search index.

上述した半透膜処理装置12には、複数本の半透膜ユニットを複数段形成する半透膜の他に、ポンプ類、動力回収装置、及びそれらを接続する配管が含まれ、半透膜には、その使い方と材質によって逆浸透膜と正浸透膜があるが、本実施例の半透膜は、それらのいずれであっても良い。また、前処理装置10としては、凝集処理、凝集沈澱処理、砂ろ過処理、マルチメディアフィルタ処理、加圧浮上分離処理、精密膜ろ過処理、限外膜ろ過処理のいずれでも良く、それらの組合せでも良い。但し、半透膜処理装置12には、微粒子など固形物の流入を抑制するように、固形物を分離するための砂ろ過処理、マルチメディアフィルタ処理、精密膜ろ過処理、限外膜ろ過処理のいずれかの固形物分離装置29は必要である。   The semipermeable membrane processing apparatus 12 described above includes a pump, a power recovery device, and a pipe connecting them, in addition to the semipermeable membrane that forms a plurality of semipermeable membrane units in a plurality of stages. There are a reverse osmosis membrane and a forward osmosis membrane depending on the usage and material, but the semipermeable membrane of this embodiment may be any of them. Further, the pretreatment device 10 may be any of agglomeration treatment, agglomeration sedimentation treatment, sand filtration treatment, multimedia filter treatment, pressurized flotation separation treatment, precision membrane filtration treatment, and ultramembrane filtration treatment, or a combination thereof. good. However, the semipermeable membrane treatment device 12 is equipped with sand filtration, multimedia filter treatment, precision membrane filtration treatment, and ultrafiltration treatment for separating solid matter so as to suppress inflow of solid matter such as fine particles. Any solids separation device 29 is necessary.

制御手段20の中には、図2に示すように、評価指標比較手段40、評価指標演算手段38、摂動発生手段36が備えられ、目標信号22によって使い分けられる。以下、これについて説明する。   As shown in FIG. 2, the control unit 20 includes an evaluation index comparison unit 40, an evaluation index calculation unit 38, and a perturbation generation unit 36, which are used properly depending on the target signal 22. This will be described below.

例えば、目標信号22が前処理水16に含まれる多糖類の濃度であった場合、制御手段20の評価指標比較手段40では、目標信号22と多糖類濃度情報18が比較される。目標信号22に対して多糖類濃度情報18が大きい場合には、前処理装置10でより多くの多糖類を除去するよう前処理装置制御信号24が出力される。逆に、目標信号22に対して多糖類濃度情報18が小さい場合には、前処理装置10での多糖類の除去を緩和するように前処理装置制御信号24が出力される。   For example, when the target signal 22 is a polysaccharide concentration contained in the pretreated water 16, the evaluation signal comparing means 40 of the control means 20 compares the target signal 22 with the polysaccharide concentration information 18. When the polysaccharide concentration information 18 is larger than the target signal 22, the preprocessing device control signal 24 is output so that the preprocessing device 10 removes more polysaccharides. Conversely, when the polysaccharide concentration information 18 is smaller than the target signal 22, the preprocessing device control signal 24 is output so as to alleviate the removal of the polysaccharide in the preprocessing device 10.

前処理装置10が凝集処理や凝集沈澱処理の場合、前処理装置制御信号24は凝集剤注入装置27における凝集剤の注入量となり、目標信号22に対して多糖類濃度情報18が大きい場合には、凝集剤注入装置27での凝集剤の注入量を増加する。前処理装置10が砂ろ過処理、マルチメディアフィルタ処理、精密膜ろ過処理、限外膜ろ過処理のいずれかである場合、前処理装置制御信号24は洗浄開始信号となり、目標信号22に対して多糖類濃度情報18が大きい場合には、空気や水を用いた物理逆洗のトリガー信号を発生する。前処理装置10が加圧浮上分離処理である場合、前処理装置制御信号24は加圧圧力、或いは溶解空気量となり、目標信号22に対して多糖類濃度情報18が大きい場合には、加圧圧力、或いは溶解空気量を増大する。   When the pretreatment device 10 is agglomeration treatment or agglomeration precipitation treatment, the pretreatment device control signal 24 is the amount of flocculant injected in the flocculant injection device 27, and when the polysaccharide concentration information 18 is larger than the target signal 22. Then, the injection amount of the flocculant in the flocculant injection device 27 is increased. When the pretreatment device 10 is any one of sand filtration processing, multimedia filter treatment, precision membrane filtration processing, and ultramembrane filtration processing, the pretreatment device control signal 24 becomes a cleaning start signal, and is more than the target signal 22. When the saccharide concentration information 18 is large, a trigger signal for physical backwashing using air or water is generated. When the pretreatment device 10 is a pressure levitation separation process, the pretreatment device control signal 24 is a pressure pressure or dissolved air amount, and when the polysaccharide concentration information 18 is larger than the target signal 22, the pressure is increased. Increase pressure or amount of dissolved air.

例えば、目標信号22が半透膜処理装置12の安定運転期間の場合、制御手段20の評価指標演算手段38では、多糖類濃度情報18に基づいて、今後膜の薬品洗浄、或いは交換までの期間を評価指標として予測計算する。   For example, when the target signal 22 is the stable operation period of the semipermeable membrane treatment apparatus 12, the evaluation index calculation means 38 of the control means 20 is based on the polysaccharide concentration information 18 until the future chemical cleaning or replacement of the membrane. Is used as an evaluation index.

まず、多糖類濃度情報18からファウリングによる半透膜の膜差圧増加速度、或いはろ過抵抗増加速度を計算する。図3に示すように、多糖類の濃度が高いほど膜差圧やろ過抵抗の増加速度は大きいが、その関係は図3のように非線形(曲線)となり、膜やその他の条件によって形状は異なる。   First, the rate of increase in the membrane differential pressure of the semipermeable membrane or the rate of increase in filtration resistance due to fouling is calculated from the polysaccharide concentration information 18. As shown in FIG. 3, the higher the polysaccharide concentration, the greater the rate of increase in membrane differential pressure and filtration resistance, but the relationship becomes nonlinear (curved) as shown in FIG. 3, and the shape varies depending on the membrane and other conditions. .

非線形であるため、この計算で用いる数式は、二次関数の形式で与えたほうが良いが、一次関数や他の関数で近似しても良い。また、予めファウリングによる膜差圧やろ過抵抗の増加速度に関するテーブルを生成しておき、多糖類濃度情報18をあてはめ、テーブルにない範囲の値については内挿、或いは外挿で求める処理でも良い。   Since it is non-linear, the mathematical formula used in this calculation should be given in the form of a quadratic function, but it may be approximated by a linear function or another function. Alternatively, a table relating to the membrane differential pressure due to fouling and the rate of increase in filtration resistance may be generated in advance, the polysaccharide concentration information 18 may be applied, and values not in the table may be obtained by interpolation or extrapolation. .

予め膜を薬品洗浄、或いは交換するしきい値の膜差圧、或いはろ過抵抗を与えておき、現時点での半透膜の膜差圧、或いはろ過抵抗との差分を上記のファウリング増加速度で除算することによって、半透膜処理装置12の安定運転期間の予測値を計算することができる。この安定運転期間の予測値は、現時点での水質(=多糖類濃度情報18で与えられる多糖類の濃度)が、今後継続した場合の値に相当する。   The membrane differential pressure or filtration resistance of the threshold value for chemical cleaning or replacement of the membrane is given in advance, and the difference from the current membrane differential pressure or filtration resistance of the semipermeable membrane is calculated at the above fouling increase rate. By dividing, the predicted value of the stable operation period of the semipermeable membrane treatment device 12 can be calculated. The predicted value of the stable operation period corresponds to a value when the current water quality (= concentration of polysaccharide given by the polysaccharide concentration information 18) continues in the future.

更に、制御手段20の評価指標比較手段40では、以上の手順で求めた安定運転期間の予測値を、目標信号22として与えた安定運転期間と比較する。目標信号22に対して安定運転期間の予測値が小さい場合には、前処理装置10でより多くの多糖類を除去するよう前処理装置制御信号24が出力される。逆に、目標信号22に対して安定運転期間の予測値が大きい場合には、前処理装置10での多糖類の除去を緩和するように前処理装置制御信号24が出力される。   Further, the evaluation index comparison unit 40 of the control unit 20 compares the predicted value of the stable operation period obtained by the above procedure with the stable operation period given as the target signal 22. When the predicted value of the stable operation period is smaller than the target signal 22, the pretreatment device control signal 24 is output so that the pretreatment device 10 removes more polysaccharides. Conversely, when the predicted value of the stable operation period is larger than the target signal 22, the pretreatment device control signal 24 is output so as to alleviate the removal of the polysaccharide in the pretreatment device 10.

前処理装置10が凝集処理や凝集沈澱処理の場合、前処理装置制御信号24は凝集剤の注入量となり、目標信号22に対して安定運転期間の予測値が小さい場合には、凝集剤注入装置27での凝集剤の注入量を増加する。前処理装置10が砂ろ過処理、マルチメディアフィルタ処理、精密膜ろ過処理、限外膜ろ過処理のいずれかである場合、前処理装置制御信号24は洗浄開始信号となり、目標信号22に対して安定運転期間の予測値が小さい場合には、空気や水を用いた物理逆洗のトリガーを発生する。前処理装置10が加圧浮上分離処理である場合、前処理装置制御信号24は加圧圧力、或いは溶解空気量となり、目標信号22に対して安定運転期間の予測値が小さい場合には、加圧圧力、或いは溶解空気量を増大する。   When the pretreatment device 10 is agglomeration treatment or agglomeration sedimentation treatment, the pretreatment device control signal 24 is the amount of the flocculant injected, and when the predicted value of the stable operation period is smaller than the target signal 22, Increase the dose of flocculant at 27. When the pretreatment device 10 is one of sand filtration processing, multimedia filter treatment, precision membrane filtration processing, and ultramembrane filtration processing, the pretreatment device control signal 24 becomes a cleaning start signal and is stable with respect to the target signal 22. When the predicted value of the operation period is small, a physical backwash trigger using air or water is generated. When the pretreatment device 10 is a pressurized flotation separation process, the pretreatment device control signal 24 is a pressurized pressure or a dissolved air amount, and when the predicted value of the stable operation period is smaller than the target signal 22, Increase pressure or dissolved air volume.

例えば、目標信号22が海水淡水化システム全体の運転コストの場合、制御手段20は、運転コストを低減できる操作条件に運転を移行するように働く。まず、制御手段20の評価指標演算手段38では、多糖類濃度情報18に基づいて、今後見込まれる海水淡水化システム全体の運転コストを予測計算する。初めに多糖類濃度情報18からファウリングによる半透膜の膜差圧増加速度、或いはろ過抵抗増加速度の予測値を計算する。多糖類の濃度が高いほど膜差圧やろ過抵抗の増加速度は大きいが、その関係は一般に非線形(曲線)となる。非線形であるため、この計算で用いる数式は二次関数の形式で与えたほうが良いが、一次関数や他の関数を用いても良い。また、あらかじめファウリングによる膜差圧やろ過抵抗の増加速度に関するテーブルを生成しておき、多糖類濃度情報18をあてはめ、テーブルにない範囲の値については内挿、或いは外挿で求める処理でも良い。   For example, when the target signal 22 is the operating cost of the entire seawater desalination system, the control means 20 works to shift the operation to an operating condition that can reduce the operating cost. First, the evaluation index calculation means 38 of the control means 20 predicts and calculates the expected operating cost of the seawater desalination system as a whole based on the polysaccharide concentration information 18. First, from the polysaccharide concentration information 18, a predicted value of the membrane differential pressure increase rate of the semipermeable membrane or the filtration resistance increase rate due to fouling is calculated. The higher the polysaccharide concentration, the greater the rate of increase in membrane differential pressure and filtration resistance, but the relationship is generally non-linear (curved). Since it is non-linear, the mathematical formula used in this calculation should be given in the form of a quadratic function, but a linear function or another function may be used. Alternatively, a table relating to the membrane differential pressure due to fouling and the rate of increase in filtration resistance may be generated in advance, the polysaccharide concentration information 18 may be applied, and values not in the table may be obtained by interpolation or extrapolation. .

予め膜を薬品洗浄、或いは交換するしきい値の膜差圧、或いはろ過抵抗を与えておき、現時点での半透膜の膜差圧、或いはろ過抵抗との差分を上記のファウリング増加速度で除算することによって、半透膜処理装置12の安定運転期間の予測値を計算することができる。この安定運転期間の予測値は、現時点での水質(=多糖類濃度情報18で与えられる多糖類の濃度)が、今後継続した場合の値に相当する。   The membrane differential pressure or filtration resistance of the threshold value for chemical cleaning or replacement of the membrane is given in advance, and the difference from the current membrane differential pressure or filtration resistance of the semipermeable membrane is calculated at the above fouling increase rate. By dividing, the predicted value of the stable operation period of the semipermeable membrane treatment device 12 can be calculated. The predicted value of the stable operation period corresponds to a value when the current water quality (= concentration of polysaccharide given by the polysaccharide concentration information 18) continues in the future.

半透膜として逆浸透膜を用いる場合、半透膜を加圧する高圧ポンプの動力が海水淡水化システム全体の動力の大半を占める。高圧ポンプの動力コストは、膜差圧とろ過流量の値から計算できる。膜差圧は、膜差圧増加速度、或いはろ過抵抗増加速度の予測値と現時点の膜差圧の値から計算することができ、ろ過流量の値と動力単価(\/kWh)を用いることで、安定運転期間全体での動力コスト予測値を計算できる。   When a reverse osmosis membrane is used as the semipermeable membrane, the power of the high-pressure pump that pressurizes the semipermeable membrane occupies most of the power of the entire seawater desalination system. The power cost of the high-pressure pump can be calculated from the values of the membrane differential pressure and the filtration flow rate. The membrane differential pressure can be calculated from the predicted value of the membrane differential pressure increase rate or the filtration resistance increase rate and the current value of the membrane differential pressure. By using the filtration flow rate value and the power unit price (\ / kWh) In addition, it is possible to calculate a power cost prediction value for the entire stable operation period.

更に、現在の凝集剤注入量を安定運転期間全体で積算し、薬品単価(\/ton)を掛け合わせることで、薬品コスト予測値を計算できる。安定運転期間だけ経過した後には、膜の薬品洗浄、或いは交換が必要となるため、そこで薬品洗浄コスト、或いは膜交換コストが発生する。   Furthermore, the chemical cost prediction value can be calculated by integrating the current amount of the flocculant injected over the entire stable operation period and multiplying by the chemical unit price (\ / ton). After the stable operation period has elapsed, chemical cleaning or replacement of the membrane is required, and therefore chemical cleaning cost or membrane replacement cost is generated.

以上の動力コスト予測値、薬品コスト予測値、薬品洗浄コスト、或いは膜交換コストの総和をとり、安定運転期間全体で得られた淡水2の総量で除算することで、淡水2の1m3あたりの運転コストを求めることができる。 More power cost prediction value, chemical cost prediction value, chemical cleaning costs, or take the total film replacement cost, is divided by the total amount of fresh water 2 obtained in whole stable operation period, the freshwater 2 per 1 m 3 The operating cost can be determined.

尚、上述の運転コストの計算内容には、凝集剤注入など前処理で発生する汚泥の処分コストを加えても良い。また、膜交換に至るまでの薬品洗浄可能回数が分かっているか、或いは仮定できる場合には、膜交換コストを薬品洗浄可能回数で除算した値を、薬品洗浄コストに上乗せして考慮しても良い。   In addition, you may add the disposal cost of the sludge which generate | occur | produces by pre-processing, such as a flocculant injection | pouring, to the calculation content of the above-mentioned operation cost. In addition, if the number of possible chemical cleanings up to membrane replacement is known or can be assumed, the value obtained by dividing the membrane replacement cost by the number of possible chemical cleanings may be added to the chemical cleaning cost. .

以上の運転コストを計算する手段として、評価指標演算手段38が備えられ、運転コストは、評価指標演算手段38から評価指標計算値44として出力される。   As a means for calculating the above operating cost, an evaluation index calculating means 38 is provided, and the operating cost is output from the evaluation index calculating means 38 as an evaluation index calculation value 44.

更に、制御手段20の摂動発生手段36では、前処理装置制御信号24として出力している現時点の操作条件に、一方向の摂動を与える。この摂動を与える頻度は、定期的であっても不定期であってもよい。   Further, the perturbation generating means 36 of the control means 20 gives a one-way perturbation to the current operation condition output as the preprocessing device control signal 24. The frequency of the perturbation may be regular or irregular.

例えば、操作量が凝集剤注入量の場合、摂動は凝集剤注入量の増加、或いは減少の一方とし、摂動の幅は、前処理水16の多糖類濃度情報18に影響が認められる程度の変化で良い。この摂動の結果、多糖類濃度情報18として制御手段20に与えられる多糖類の濃度が変化し、評価指標演算手段38によって運転コストを計算することができる。制御手段20の評価指標比較手段40で、この値を摂動前の運転コストと比較し、大小を判定する。摂動前の運転コストに比べて摂動後の運転コストが低ければ、摂動発生手段36において、先に摂動を与えたのと同じ側に更に摂動を与え、次時刻の操作量42とする。運転コストが増加に転じるまで摂動を加える。運転コストが増加に転じるところまで達すれば、その1回前の条件に運転条件を定めて、次回の摂動のタイミングまでその運転を継続する。一番はじめに摂動を与えた結果、摂動前の運転コストに比べて摂動後の運転コストが高ければ、摂動を与えたのと反対の側に摂動を与える。それでも運転コストが高ければ、もとの運転条件に戻し、次回の摂動のタイミングまでその運転を継続する。以上の手順を実施することで、運転コストを低減できる条件での海水淡水化システムの運転が可能となる。   For example, when the operation amount is the flocculant injection amount, the perturbation is one of the increase or decrease of the flocculant injection amount, and the width of the perturbation changes so as to affect the polysaccharide concentration information 18 of the pretreatment water 16. Good. As a result of this perturbation, the polysaccharide concentration given to the control means 20 as the polysaccharide concentration information 18 changes, and the operation cost can be calculated by the evaluation index calculation means 38. The evaluation index comparison means 40 of the control means 20 compares this value with the operating cost before perturbation, and determines the magnitude. If the operation cost after the perturbation is lower than the operation cost before the perturbation, the perturbation generating means 36 gives a further perturbation to the same side as the one where the perturbation was given earlier, and sets the manipulated variable 42 at the next time. Add perturbation until the operating cost starts to increase. If the operating cost reaches an increase, the operating condition is set to the previous condition, and the operation is continued until the next perturbation timing. As a result of giving perturbation first, if the operation cost after perturbation is higher than the operation cost before perturbation, the perturbation is given on the opposite side of the perturbation. If the operating cost is still high, the original operating condition is restored and the operation is continued until the next perturbation timing. By performing the above procedure, the seawater desalination system can be operated under conditions that can reduce the operating cost.

前処理装置10が砂ろ過処理,マルチメディアフィルタ処理、精密膜ろ過処理、限外膜ろ過処理のいずれかである場合、前処理装置制御信号24は洗浄開始信号となる。前処理装置10が加圧浮上分離処理である場合、前処理装置制御信号24は加圧圧力、或いは溶解空気量となる。   When the pretreatment device 10 is any one of sand filtration processing, multimedia filter processing, precision membrane filtration processing, and ultramembrane filtration processing, the pretreatment device control signal 24 is a cleaning start signal. When the pretreatment device 10 is a pressure floating separation process, the pretreatment device control signal 24 is a pressure or a dissolved air amount.

例えば、目標信号22が海水淡水化システム全体の環境負荷の場合、制御手段20は、環境負荷を低減できる操作条件に運転を移行するように働く。この場合、制御手段20の中の評価指標演算手段38では、上述の動力単価(\/kWh)の代わりに環境負荷動力原単位(kg-CO2/kWh)、薬品単価(\/ton)の代わりに環境負荷薬品原単位(kg-CO2/ton)、薬品洗浄コストの代わりに環境負荷薬品洗浄原単位(kg-CO2/回)、膜交換コストの代わりに環境負荷膜交換原単位(kg-CO2/回)を用い、評価指標44として環境負荷計算値を出力する。 For example, when the target signal 22 is the environmental load of the entire seawater desalination system, the control means 20 works to shift the operation to an operation condition that can reduce the environmental load. In this case, in the evaluation index calculation means 38 in the control means 20, instead of the power unit price (\ / kWh) described above, the environmental load power unit (kg-CO 2 / kWh) and the chemical unit price (\ / ton) are set. Instead, environmental load chemical unit consumption (kg-CO 2 / ton), instead of chemical cleaning cost, environmental load chemical cleaning basic unit (kg-CO 2 / time), instead of membrane replacement cost, environmental load membrane replacement basic unit ( kg-CO 2 / time), and an environmental load calculation value is output as the evaluation index 44.

上述の運転コストの場合と同様の手順で、摂動を反復して次時刻の操作量42を求めることで、結果として、環境負荷を低減できる条件での海水淡水化システムの運転が可能となる。   By repeating the perturbation and obtaining the manipulated variable 42 at the next time in the same procedure as in the case of the operation cost described above, the seawater desalination system can be operated under conditions that can reduce the environmental load.

このように、実施例1の構成をとることで、海水淡水化システムで用いられる半透膜のファウリングや性能低下を抑制できるため、安定して淡水を需要家へ供給することができる。また、半透膜の薬品洗浄頻度や交換頻度を低減でき、洗浄用の薬品や廃棄する膜モジュールを削減することができる。その結果、環境負荷の排出量と運転コストを低減することができることは勿論、海水の水質変動に応じた過不足ない前処理を実現できるため、薬品コストや汚泥処分コストを低減することができる。   Thus, since the fouling of a semipermeable membrane used with a seawater desalination system and a performance fall can be suppressed by taking the structure of Example 1, fresh water can be supplied stably to a consumer. Moreover, the chemical cleaning frequency and replacement frequency of the semipermeable membrane can be reduced, and the cleaning chemicals and the membrane module to be discarded can be reduced. As a result, it is possible not only to reduce the amount of environmental loads and operating costs, but also to realize pre-processing that is not excessive or deficient according to the water quality fluctuations of seawater, so that chemical costs and sludge disposal costs can be reduced.

図4は、本発明の海水淡水化システムの制御装置の実施例2におけるフローを示すものである。   FIG. 4 shows the flow in Example 2 of the control apparatus of the seawater desalination system of this invention.

該図に示す如く、実施例2における海水淡水化システムの制御装置は、その構成は、図1及び図2に示した実施例1と略同様であるが、実施例2における前処理装置10には、凝集剤を注入する処理、即ち凝集処理、或いは凝集沈澱処理を含むものとする。そして、実施例2では、実施例1の構成に加え、凝集剤を注入する前の海水1に、固形微粒子を注入する固形微粒子注入装置26を備えている。固形微粒子としては、粉末活性炭、ゼオライト粉末、アルミナ粉末,磁性体粒子が、多糖類をその表面に吸着する働きも期待できるため有効である。   As shown in the figure, the configuration of the control device of the seawater desalination system in the second embodiment is substantially the same as that of the first embodiment shown in FIGS. Includes a process of injecting a flocculant, that is, a coagulation process or a coagulation precipitation process. And in Example 2, in addition to the structure of Example 1, the solid particle injection | pouring apparatus 26 which inject | pours a solid particle into the seawater 1 before inject | pouring a flocculant is provided. As solid fine particles, powdered activated carbon, zeolite powder, alumina powder, and magnetic particles are effective because they can also be expected to adsorb polysaccharides on their surfaces.

固形微粒子注入装置26は、固形微粒子タンクと固形微粒子注入ポンプ(図示せず)から構成され、スラリーとして注入する場合には、今後するための水などの液体タンク、混合槽、攪拌機も備えている。固形微粒子注入装置26には、制御装置20から固形微粒子注入装置制御信号28が与えられ、固形微粒子の注入量が調整される。   The solid fine particle injection device 26 is composed of a solid fine particle tank and a solid fine particle injection pump (not shown). When injecting as a slurry, the solid fine particle injection device 26 is also provided with a liquid tank such as water for the future, a mixing tank, and a stirrer. . The solid particulate injection device 26 is given a solid particulate injection device control signal 28 from the control device 20 to adjust the injection amount of the solid particulates.

凝集剤を注入する前処理では、濁質を核としてフロックが生成され、その中にファウリング成分である多糖類が巻き込まれ、そのフロックを沈澱、或いはろ過、或いは浮上分離することで海水1から除去することができる。   In the pretreatment for injecting the flocculant, flocs are generated with turbidity as the core, and polysaccharides as fouling components are entrained in the flocs, and the flocs are precipitated, filtered, or separated from the seawater 1 by floating. Can be removed.

しかし、海水1の濁度が極めて低い場合には、フロックの生成が不良となってフロックに取り込まれる多糖類の量が減少し、結果として、半透膜処理装置12まで多糖類が残存し、ファウリングが発生する可能性が高まる。   However, when the turbidity of the seawater 1 is extremely low, the amount of polysaccharide taken into the floc is reduced due to poor floc generation, and as a result, the polysaccharide remains up to the semipermeable membrane treatment device 12, Increases the possibility of fouling.

このような場合に、固形微粒子を凝集処理より前段で海水1に注入すると、フロックの核となる物質が増加し、フロックの生成不良を改善することができる。その結果、フロックの中に取り込まれる多糖類の量も増加し、半透膜処理装置12のファウリングを低減することが可能となる。但し、固形微粒子を注入すると汚泥発生量が増える。従って、固形微粒子の注入量を適切に制御しなければ、固形微粒子の薬剤コストの増大のほかに、汚泥処分コストも増大することになる。   In such a case, if the solid fine particles are injected into the seawater 1 before the agglomeration treatment, the substance that becomes the core of the flocs increases, and the generation failure of flocs can be improved. As a result, the amount of polysaccharide incorporated into the floc increases, and fouling of the semipermeable membrane treatment apparatus 12 can be reduced. However, when solid particles are injected, the amount of sludge generated increases. Therefore, unless the injection amount of the solid fine particles is appropriately controlled, the sludge disposal cost also increases in addition to the increase in the chemical cost of the solid fine particles.

また、固形微粒子注入後の固形微粒子注入水3は、半透膜処理装置12に到達する前に濁質を分離する必要があるため、固形微粒子の注入量が過剰な場合には、濁質分離装置の運転コストも増大する。粉末の性状によっては、温水洗浄や蒸気洗浄、加熱などの処理によって有機物を除去して再利用できるものもあるが、その場合でも再生コストを要するため、固形微粒子の注入量は必要最小限に抑制する必要がある。   In addition, since the solid fine particle injection water 3 after the solid fine particle injection needs to separate the turbidity before reaching the semipermeable membrane treatment apparatus 12, the turbid separation is performed when the injection amount of the solid fine particles is excessive. The operating cost of the device also increases. Depending on the properties of the powder, some organic substances can be removed and reused by washing with hot water, steam, heating, etc., but even in that case, regeneration costs are required, so the amount of solid particles injected is kept to a minimum. There is a need to.

そこで、制御手段20では、前処理装置10の操作量に加えて固形微粒子注入装置26の操作量を算出し、前処理装置制御信号24とともに固形微粒子注入装置制御信号28を出力する。ここで、目標信号22は、数値として前処理水16に含まれる多糖類の目標濃度であっても良く、半透膜処理装置12の安定運転期間であっても良い。或いは目標信号22は運転条件探索指標の項目として、海水淡水化システム全体の運転コスト、或いは海水淡水化システム全体の環境負荷を選べるようにしても良い。   Therefore, the control means 20 calculates the operation amount of the solid particle injection device 26 in addition to the operation amount of the pretreatment device 10, and outputs the solid particle injection device control signal 28 together with the pretreatment device control signal 24. Here, the target signal 22 may be a target concentration of the polysaccharide contained in the pretreatment water 16 as a numerical value, or may be a stable operation period of the semipermeable membrane treatment device 12. Alternatively, the target signal 22 may select the operating cost of the entire seawater desalination system or the environmental load of the entire seawater desalination system as an item of the operating condition search index.

例えば、目標信号22が前処理水16に含まれる多糖類の濃度であった場合、制御手段20の評価指標比較手段40では、目標信号22と多糖類濃度情報18が比較される。   For example, when the target signal 22 is a polysaccharide concentration contained in the pretreated water 16, the evaluation signal comparing means 40 of the control means 20 compares the target signal 22 with the polysaccharide concentration information 18.

目標信号22に対して多糖類濃度情報18が大きい場合には、前処理装置10でより多くの多糖類を除去するように、前処理装置制御信号24と固形微粒子注入装置制御信号28が出力される。逆に、目標信号22に対して多糖類濃度情報18が小さい場合には、前処理装置10での多糖類の除去を緩和するように、前処理装置制御信号24と固形微粒子注入装置制御信号28が出力される。前処理装置10が凝集処理や凝集沈澱処理の場合、前処理装置制御信号24は、凝集剤の注入量となる。   When the polysaccharide concentration information 18 is larger than the target signal 22, the pretreatment device control signal 24 and the solid particulate injection device control signal 28 are output so that more polysaccharide is removed by the pretreatment device 10. The Conversely, when the polysaccharide concentration information 18 is smaller than the target signal 22, the pretreatment device control signal 24 and the solid particulate injection device control signal 28 so as to alleviate the removal of the polysaccharide in the pretreatment device 10. Is output. When the pretreatment device 10 is agglomeration treatment or agglomeration precipitation treatment, the pretreatment device control signal 24 is an injection amount of a flocculant.

目標信号22に対して多糖類濃度情報18が大きい場合には、多糖類をより多く除去する必要があるため、凝集剤注入量の増加と固形微粒子注入量の増加を実施することになる。逆に、目標信号22に対して多糖類濃度情報18が小さい場合には、多糖類を過剰に除去してしまっているため、凝集剤注入量の減少と固形微粒子注入量の減少を実施することになる。   When the polysaccharide concentration information 18 is larger than the target signal 22, it is necessary to remove more polysaccharides, so that an increase in the flocculant injection amount and an increase in the solid fine particle injection amount are performed. Conversely, when the polysaccharide concentration information 18 is smaller than the target signal 22, the polysaccharide has been removed excessively, so that the amount of flocculant injected and the amount of solid fine particles injected are reduced. become.

多糖類を減らすか、或いは増加させるための凝集剤注入量と固形微粒子注入量の組合せは複数存在するため、予め凝集剤注入量、固形微粒子注入量が多糖類の除去に及ぼす影響を数式モデルとして備えておき、そのモデルにしたがって計算で最も適切な運転条件を求めても良い。一意の運転条件に絞るため、数式モデルには凝集剤の薬品単価(\/ton)と固形微粒子の薬品単価(\/ton)を備えておき、薬品コストの総和が最小となるような演算を実施することが良い。   Since there are multiple combinations of flocculant injection amount and solid fine particle injection amount to reduce or increase polysaccharides, the influence of the flocculant injection amount and solid fine particle injection amount on the removal of polysaccharides as a mathematical model in advance It is also possible to obtain the most appropriate operating condition by calculation according to the model. In order to focus on unique operating conditions, the formula model has a chemical unit price (\ / ton) for the flocculant and a chemical unit price (\ / ton) for the solid particulates, and performs calculations that minimize the total chemical cost. It is good to carry out.

更に、凝集剤や固形微粒子の注入の結果として生じる汚泥の処分コストも演算に含まれるよう、汚泥処分費用単価(\/ton)も考慮することが望ましい。或いは、一意の運転条件に絞るため、数式モデルには、凝集剤の環境負荷薬品原単位(kg-CO2/ton)と固形微粒子の環境負荷薬品原単位(kg-CO2/ton)を備えておき、環境負荷の総和が最小となるような演算を実施することが良い。 Furthermore, it is desirable to consider the sludge disposal cost unit price (\ / ton) so that the disposal cost of sludge generated as a result of the injection of the flocculant and solid fine particles is included in the calculation. Alternatively, in order to focus on unique operating conditions, the mathematical model is equipped with an environmental impact chemical unit (kg-CO 2 / ton) for flocculants and an environmental impact chemical unit (kg-CO 2 / ton) for solid particles. It is preferable to perform an operation that minimizes the total environmental load.

更に、凝集剤や固形微粒子の注入の結果として生じる汚泥の処分で生じる環境負荷も演算に含まれるよう、環境負荷汚泥処分原単位(kg-CO2/ton)も考慮することが望ましい。 Furthermore, it is desirable to consider the environmental load sludge disposal unit (kg-CO 2 / ton) so that the environmental load caused by the disposal of sludge generated as a result of the injection of the flocculant and solid fine particles is included in the calculation.

数式モデルを用いない場合には、摂動発生手段36を用い、以下の手順で、フィードバック的に凝集剤注入量と固形微粒子注入量の適切な組合せを求めることができる。   When the mathematical model is not used, the perturbation generator 36 can be used to obtain an appropriate combination of the flocculant injection amount and the solid fine particle injection amount in a feedback manner according to the following procedure.

目標信号22に対して多糖類濃度情報18が大きい場合、まず前処理装置制御信号24としての凝集剤注入量を増加方向の摂動として摂動発生手段36によって与える。この摂動を与える周期は、定期的であっても不定期であってもよく、摂動の幅は前処理水16の多糖類濃度情報18に影響が認められる程度の変化で良い。評価指標演算手段38では、このときの凝集剤注入量の増加量(ton)と凝集剤の薬品単価(\/ton)の積を多糖類の濃度減少量(mg/L)で除算することにより、評価指標計算値44として凝集剤による多糖類濃度低減コスト(\/(mg/L))を求める。ここで、凝集剤注入量の増加量(ton)と凝集剤の薬品単価(\/ton)の積に凝集剤注入量の増加量(ton)と凝集剤起源の汚泥処分費用単価(\/ton)の積も加算してから、多糖類の濃度減少量(mg/L)で除算することが望ましい。   When the polysaccharide concentration information 18 is larger than the target signal 22, first, the amount of flocculant injected as the preprocessing device control signal 24 is given by the perturbation generating means 36 as perturbation in the increasing direction. The period for giving the perturbation may be regular or irregular, and the width of the perturbation may be a change that allows the polysaccharide concentration information 18 of the pretreatment water 16 to be affected. In the evaluation index calculation means 38, the product of the increase amount (ton) of the flocculant injection amount and the chemical unit price (\ / ton) of the flocculant at this time is divided by the polysaccharide concentration decrease amount (mg / L). The polysaccharide concentration reduction cost (¥ / (mg / L)) by the flocculant is obtained as the evaluation index calculation value 44. Here, the product of the increase in the flocculant injection amount (ton) and the chemical unit price of the flocculant (\ / ton) is the product of the increase in the flocculant injection amount (ton) and the sludge disposal cost unit cost (\ / ton) It is desirable to add the product of) and then divide by the decrease in polysaccharide concentration (mg / L).

次に、固形微粒子注入装置制御信号28としての固形微粒子注入量を、増加方向の摂動として摂動発生手段36によって与える。この摂動を与える周期は、定期的であっても不定期であってもよく、摂動の幅は、前処理水16の多糖類濃度情報18に影響が認められる程度の変化で良い。評価指標演算手段38では、このときの固形微粒子注入量の増加量(ton)と固形微粒子の薬品単価(\/ton)の積を多糖類の濃度減少量(mg/L)で除算することにより、評価指標計算値44として固形微粒子による多糖類濃度低減コスト(\/(mg/L))を求める。ここで、固形微粒子注入量の増加量(ton)と固形微粒子の薬品単価(\/ton)の積に、固形微粒子注入量の増加量(ton)と固形微粒子起源の汚泥処分費用単価(\/ton)の積も加算してから多糖類の濃度減少量(mg/L)で除算することが望ましい。   Next, the solid particle injection amount as the solid particle injection device control signal 28 is given by the perturbation generating means 36 as perturbation in the increasing direction. The period for giving the perturbation may be regular or irregular, and the width of the perturbation may be a change that allows the polysaccharide concentration information 18 of the pretreatment water 16 to be affected. The evaluation index calculation means 38 divides the product of the increase amount (ton) of the solid fine particle injection amount and the chemical unit price (\ / ton) of the solid fine particle at this time by the concentration decrease amount (mg / L) of the polysaccharide. Then, the polysaccharide concentration reduction cost (¥ / (mg / L)) by the solid fine particles is obtained as the evaluation index calculation value 44. Here, the product of the increase in the amount of solid particulate injection (ton) and the chemical unit price of solid particles (\ / ton), the increase in the amount of solid particulate injection (ton) and the unit cost of sludge disposal from solid particulates (\ / It is desirable to add the product of ton) and then divide by the decrease in polysaccharide concentration (mg / L).

以上の手順で求めた凝集剤による多糖類濃度低減コストと固形微粒子による多糖類濃度低減コストを、評価指標比較手段40で比較する。凝集剤による多糖類濃度低減コストが、固形微粒子による多糖類濃度低減コストより小さい場合には、固形微粒子注入量を摂動前の値に戻し、凝集剤注入量の摂動後の値を、次時刻の操作量42として用いて運転を継続する。逆に、凝集剤による多糖類濃度低減コストが、固形微粒子による多糖類濃度低減コストより大きい場合には、凝集剤注入量を摂動前の値に戻し、固形微粒子注入量の摂動後の値を次時刻の操作量42として用いて運転を継続する。   The evaluation index comparing means 40 compares the polysaccharide concentration reduction cost by the flocculant obtained by the above procedure with the polysaccharide concentration reduction cost by the solid fine particles. If the polysaccharide concentration reduction cost by the flocculant is smaller than the polysaccharide concentration reduction cost by the solid fine particles, the solid fine particle injection amount is returned to the value before the perturbation, and the value after the perturbation of the flocculant injection amount is The operation is continued using the operation amount 42. Conversely, if the polysaccharide concentration reduction cost by the flocculant is greater than the polysaccharide concentration reduction cost by the solid fine particles, the flocculant injection amount is returned to the value before the perturbation, and the value after the perturbation of the solid fine particle injection amount is The operation is continued using the operation amount 42 of the time.

この手順を目標信号22に対して多糖類濃度情報18が等しいか、或いは小さくなるまで実行することにより、前処理水16に含まれる多糖類の濃度として与えられる目標信号22を満足する運転が、より低コストで実現できる。或いは、運転コストよりも環境負荷が重視される場合には、評価指標演算手段38において、上述の凝集剤の薬品単価(\/ton)を凝集剤の環境負荷薬品原単位(kg-CO2/ton)、凝集剤による多糖類濃度低減コスト(\/(mg/L))を、凝集剤による多糖類濃度減少環境負荷(kg-CO2/(mg/L))、凝集剤起源の汚泥処分費用単価(\/ton)を、凝集剤起源の汚泥処分環境負荷原単位(kg-CO2/ton)、固形微粒子の薬品単価(\/ton)を、固形微粒子の環境負荷薬品原単位(kg-CO2/ton)、固形微粒子による多糖類濃度低減コスト(\/(mg/L))を、固形微粒子による多糖類濃度減少環境負荷(kg-CO2/(mg/L))、固形微粒子起源の汚泥処分費用単価(\/ton)を、固形微粒子起源の汚泥処分環境負荷原単位(kg-CO2/ton)と読み替えて演算することにより、前処理水16に含まれる多糖類の濃度として与えられる目標信号22を満足する運転が、より低い環境負荷で実現できる。 By performing this procedure until the polysaccharide concentration information 18 is equal to or smaller than the target signal 22, an operation that satisfies the target signal 22 given as the concentration of the polysaccharide contained in the pretreated water 16 is performed. It can be realized at a lower cost. Alternatively, when the environmental load is more important than the operating cost, the evaluation index calculation means 38 calculates the chemical unit price (\ / ton) of the above flocculant as the environmental load chemical unit (kg-CO 2 / kg) of the flocculant. ton), cost of reducing polysaccharide concentration by coagulant (\ / (mg / L)), environmental load of reducing polysaccharide concentration by coagulant (kg-CO 2 / (mg / L)), disposal of coagulant-derived sludge Cost unit price (\ / ton), sludge disposal environmental load basic unit (kg-CO 2 / ton) derived from flocculant, solid unit chemical unit price (\ / ton), solid particulate environmental load basic unit (kg -CO 2 / ton), polysaccharide concentration reduction cost due to solid fine particles (\ / (mg / L)), polysaccharide concentration reduction environmental load due to solid fine particles (kg-CO 2 / (mg / L)), solid fine particles By calculating the sludge disposal cost unit price (\ / ton) of origin as the sludge disposal environmental impact unit (kg-CO 2 / ton) of solid particulates, the concentration of polysaccharides contained in the pretreated water 16 is calculated. Goal given as Operation that satisfies the 22, can be realized at lower environmental impact.

例えば、目標信号22が海水淡水化システム全体の運転コストの場合、制御手段20は、運転コストを低減できる操作条件に運転を移行するように働く。実施例1で述べた評価指標演算手段38の手順で、現時点での多糖類濃度情報18に基づいた運転コストを、評価指標計算値44として計算することが可能である。この運転コストの低減を図る際に、調整できる因子は、凝集剤注入量と固形微粒子注入量の2つであり、次時刻の操作量42としてのこれらの適切な組合せを得るためには、以下の手順を実施する。   For example, when the target signal 22 is the operating cost of the entire seawater desalination system, the control means 20 works to shift the operation to an operating condition that can reduce the operating cost. The operation cost based on the polysaccharide concentration information 18 at the present time can be calculated as the evaluation index calculation value 44 by the procedure of the evaluation index calculation means 38 described in the first embodiment. There are two factors that can be adjusted when reducing the operating cost, namely, the flocculant injection amount and the solid fine particle injection amount. In order to obtain an appropriate combination as the operation amount 42 at the next time, Perform the procedure.

まず、前処理装置制御信号24としての凝集剤注入量に増加、或いは減少の一方向の摂動を摂動発生手段36によって与える。摂動を与える周期は、定期的であっても不定期であってもよい。摂動の幅は、前処理水16の多糖類濃度情報18に影響が認められる程度の変化でよい。   First, the perturbation generating means 36 gives a perturbation in one direction to increase or decrease the coagulant injection amount as the preprocessing device control signal 24. The period for giving the perturbation may be regular or irregular. The width of the perturbation may be a change such that an influence is recognized in the polysaccharide concentration information 18 of the pretreatment water 16.

この摂動の結果、多糖類濃度情報18として制御手段20に与えられる多糖類の濃度が変化し、評価指標演算手段38で上述の手順をとることにより、運転コストを評価指標計算値44として計算することができる。   As a result of the perturbation, the polysaccharide concentration given to the control means 20 as the polysaccharide concentration information 18 changes, and the operation cost is calculated as the evaluation index calculation value 44 by taking the above-described procedure in the evaluation index calculation means 38. be able to.

次に、凝集剤注入量を摂動前の値に戻し、固形微粒子注入装置制御信号28としての固形微粒子注入量に増加、或いは減少の一方向の摂動を摂動発生手段36によって与える。摂動を与える周期は、定期的であっても不定期であってもよい。摂動の幅は、前処理水16の多糖類濃度情報18に影響が認められる程度の変化でよい。   Next, the perfusion agent injection amount is returned to the value before the perturbation, and the perturbation generating means 36 gives a perturbation in one direction to increase or decrease the solid particle injection amount as the solid particle injection device control signal 28. The period for giving the perturbation may be regular or irregular. The width of the perturbation may be a change such that an influence is recognized in the polysaccharide concentration information 18 of the pretreatment water 16.

この摂動の結果、多糖類濃度情報18として制御手段20に与えられる多糖類の濃度が変化し、評価指標演算手段38で上述の手順をとることにより、運転コストを評価指標計算値44として計算することができる。   As a result of the perturbation, the polysaccharide concentration given to the control means 20 as the polysaccharide concentration information 18 changes, and the operation cost is calculated as the evaluation index calculation value 44 by taking the above-described procedure in the evaluation index calculation means 38. be able to.

以上のように求めた摂動後の運転コストを、摂動前の運転コストと評価指標比較手段40で比較し、大小を判定する。摂動前の運転コストに比べて摂動後の運転コストが低ければ、凝集剤注入量、及び固形微粒子注入量のいずれについても摂動を与えたのと同じ側にさらに摂動を与え、運転コストが増加に転じるまで摂動を加える。運転コストが増加するところまで達すれば、その1回前の条件に運転条件を定め、それを次時刻の操作量42として出力し、次回の摂動のタイミングまでその運転を継続する。一番はじめに摂動を与えた結果、摂動前の運転コストに比べて摂動後の運転コストが高ければ、摂動を与えたのと反対の側に摂動を与える。それでも運転コストが高ければ、元の運転条件に戻し、次回の摂動のタイミングまでその運転を継続する。以上の手順を実施することで、運転コストを低減できる条件での海水淡水化システムの運転が可能となる。   The operation cost after perturbation obtained as described above is compared with the operation cost before perturbation by the evaluation index comparison means 40, and the magnitude is determined. If the operation cost after perturbation is lower than the operation cost before perturbation, the perturbation is given to the same side where the perturbation is given for both the flocculant injection amount and the solid particulate injection amount, and the operation cost increases. Add perturbation until it turns. When the operating cost increases, the operating condition is set as the previous condition, and it is output as the operation amount 42 at the next time, and the operation is continued until the next perturbation timing. As a result of giving perturbation first, if the operation cost after perturbation is higher than the operation cost before perturbation, the perturbation is given on the opposite side of the perturbation. If the operation cost is still high, the original operation condition is restored and the operation is continued until the next perturbation timing. By performing the above procedure, the seawater desalination system can be operated under conditions that can reduce the operating cost.

例えば、目標信号22が海水淡水化システム全体の環境負荷の場合、制御手段20は、環境負荷を低減できる操作条件に運転を移行するように働く。この場合、制御手段20の中の評価指標演算手段38では、上述の動力単価(\/kWh)の代わりに環境負荷動力原単位(kg-CO2/kWh)、薬品単価(\/ton)の代わりに環境負荷薬品原単位(kg-CO2/ton)、薬品洗浄コストの代わりに環境負荷薬品洗浄原単位(kg-CO2/回)、膜交換コストの代わりに環境負荷膜交換原単位(kg-CO2/回)を用い、上述の運転コストの場合と同様の手順で演算と摂動を反復して実施する。その結果、環境負荷を低減できる条件での海水淡水化システムの運転が可能となる。 For example, when the target signal 22 is the environmental load of the entire seawater desalination system, the control means 20 works to shift the operation to an operation condition that can reduce the environmental load. In this case, in the evaluation index calculation means 38 in the control means 20, instead of the power unit price (\ / kWh) described above, the environmental load power unit (kg-CO 2 / kWh) and the chemical unit price (\ / ton) are set. Instead, environmental load chemical unit consumption (kg-CO 2 / ton), instead of chemical cleaning cost, environmental load chemical cleaning basic unit (kg-CO 2 / time), instead of membrane replacement cost, environmental load membrane replacement basic unit ( (kg-CO 2 / time) and repeat the calculation and perturbation in the same procedure as in the case of the above operating cost. As a result, the seawater desalination system can be operated under conditions that can reduce the environmental load.

このように、実施例2の構成をとることで、上述した実施例1と同様な効果を得ることができる。   Thus, by taking the structure of Example 2, the same effect as Example 1 mentioned above can be acquired.

図5は、本発明の海水淡水化システムの制御装置の実施例3におけるフローを示すものである。   FIG. 5 shows the flow in Example 3 of the control apparatus of the seawater desalination system of this invention.

該図に示す如く、実施例3における海水淡水化システムの制御装置は、その構成は、図1及び図2に示した実施例1と略同様であるが、実施例3における前処理装置10の一つとして、砂ろ過処理、マルチメディアフィルタ処理、加圧浮上分離処理のいずれかを用いるものである。   As shown in the figure, the configuration of the control apparatus for the seawater desalination system in the third embodiment is substantially the same as that of the first embodiment shown in FIGS. One is to use one of sand filtration, multimedia filter, and pressurized flotation separation.

前処理装置10から流出する前処理水16は、半透膜処理装置12に流入するが、その中に含まれる多糖類の濃度が前処理水多糖類濃度計測手段14で計測されると同時に、濁度が濁度計測装置30によって計測され、濁度情報32として制御手段20に与えられる。制御手段20には、目標信号22と濁度目標値34が予め与えられている。そして、制御手段20では、前処理装置10の操作量を算出し、前処理装置制御信号24を出力する。ここで、目標信号22は数値として、前処理水16に含まれる多糖類の目標濃度であっても良く、半透膜処理装置12の安定運転期間であっても良い。或いは、目標信号22は運転条件探索指標の項目として、海水淡水化システム全体の運転コスト、或いは海水淡水化システム全体の環境負荷を選べるようにしても良い。濁度目標値34は、半透膜処理装置12に流入する前処理水16の濁度目標値である。   The pretreated water 16 flowing out from the pretreatment device 10 flows into the semipermeable membrane treatment device 12, and at the same time, the concentration of the polysaccharide contained therein is measured by the pretreatment water polysaccharide concentration measuring means 14, Turbidity is measured by the turbidity measuring device 30 and given to the control means 20 as turbidity information 32. The control means 20 is provided with a target signal 22 and a turbidity target value 34 in advance. Then, the control means 20 calculates an operation amount of the preprocessing device 10 and outputs a preprocessing device control signal 24. Here, the target signal 22 may be a target concentration of the polysaccharide contained in the pretreated water 16 as a numerical value, or may be a stable operation period of the semipermeable membrane treatment apparatus 12. Alternatively, the target signal 22 may select the operating cost of the entire seawater desalination system or the environmental load of the entire seawater desalination system as an item of the operating condition search index. The turbidity target value 34 is a turbidity target value of the pretreatment water 16 flowing into the semipermeable membrane treatment device 12.

この実施例3では、実施例1や実施例2の形態と異なり、半透膜処理装置12に流入する前処理水16の濁度も考慮に入れている。   In the third embodiment, unlike the first and second embodiments, the turbidity of the pretreatment water 16 flowing into the semipermeable membrane treatment apparatus 12 is also taken into consideration.

即ち、半透膜処理装置12は、現実的には中空糸膜やスパイラル膜が用いられることが多く、その表面の狭いチャンネルの中を並行流として前処理水16が流れる。その際に、濁質が存在すると狭いチャンネルの閉塞が生じ、半透膜の性能が低下する。チャンネルの閉塞のみならず、半透膜の表面に付着、或いは沈澱した濁質が存在すると、更に半透膜の性能が低下する。従って、半透膜処理装置12に流入する前処理水16からは、多糖類のみならず濁質も十分に除去されていることが望ましい。   That is, as for the semipermeable membrane treatment apparatus 12, a hollow fiber membrane or a spiral membrane is often used in practice, and the pretreated water 16 flows in a narrow channel on the surface as a parallel flow. At that time, if turbidity is present, narrow channels are blocked and the performance of the semipermeable membrane is reduced. The presence of suspended or adhering turbidity on the surface of the semipermeable membrane as well as the blockage of the channel further deteriorates the performance of the semipermeable membrane. Therefore, it is desirable that not only polysaccharides but also turbidity be sufficiently removed from the pretreatment water 16 flowing into the semipermeable membrane treatment apparatus 12.

前処理装置10の最終段の固形物分離装置29として精密膜ろ過処理、或いは限外膜ろ過処理が用いられる場合には、膜の損傷が発生しない限り、濁質はほぼ完全に除去される。しかし、沈澱処理や砂ろ過処理,マルチメディアフィルタ処理,加圧浮上分離処理が固形物分離装置29として用いられる場合には、運転条件によっては濁質が前処理水16に残留し、半透膜処理装置12に流入する可能性がある。   When a precision membrane filtration process or an ultrafiltration process is used as the final solids separation device 29 of the pretreatment device 10, the turbidity is almost completely removed unless the membrane is damaged. However, when precipitation treatment, sand filtration treatment, multimedia filter treatment, or pressurized flotation separation treatment is used as the solid matter separation device 29, turbidity may remain in the pretreated water 16 depending on operating conditions, and a semipermeable membrane. There is a possibility of flowing into the processing device 12.

前処理装置10が凝集沈澱処理であり、固形物分離装置29として沈澱処理しか備えていない場合、制御手段20の評価指標比較手段40では、まず濁度情報32として与えられる現時点での濁度を濁度目標値34と比較する。濁度目標値34に対して現時点での濁度が高い場合には、凝集処理が不十分であるため、前処理装置制御信号24として出力する凝集剤の注入量を増大する。逆に、濁度目標値34に対して現時点での濁度が低い場合には、凝集処理が過剰であるため、前処理装置制御信号24として出力する凝集剤の注入量を減少する。この手順で求められた凝集剤注入量を、対濁度適正凝集剤注入量と呼ぶこととする。   In the case where the pretreatment device 10 is a coagulation precipitation process and the solid matter separation device 29 includes only the precipitation treatment, the evaluation index comparison means 40 of the control means 20 first determines the current turbidity given as the turbidity information 32. Compare with turbidity target value 34. When the current turbidity is higher than the turbidity target value 34, the agglomeration process is insufficient, and the injection amount of the aggregating agent output as the pretreatment device control signal 24 is increased. Conversely, when the current turbidity is lower than the turbidity target value 34, the agglomeration process is excessive, and the injection amount of the aggregating agent output as the pretreatment device control signal 24 is reduced. The flocculant injection amount obtained by this procedure will be referred to as a turbidity appropriate flocculant injection amount.

この対濁度適正凝集剤注入量以上の凝集剤を注入することで、半透膜処理装置12に流入する前処理水16の濁度を、濁度目標値34より低い値に抑制できる。これと同時に、濁度のみではなく、多糖類によるファウリングの抑制も凝集剤処理で必要である。   The turbidity of the pretreatment water 16 flowing into the semipermeable membrane treatment device 12 can be suppressed to a value lower than the turbidity target value 34 by injecting a flocculant equal to or greater than the appropriate turbidity coagulant injection amount. At the same time, not only turbidity but also suppression of fouling by polysaccharides is necessary in the flocculant treatment.

例えば、目標信号22が前処理水16に含まれる多糖類の濃度であった場合、制御手段20の評価指標比較手段40では、目標信号22と多糖類濃度情報18が比較される。目標信号22に対して多糖類濃度情報18が大きい場合には、前処理装置10でより多くの多糖類を除去するよう前処理装置制御信号24が出力される。   For example, when the target signal 22 is a polysaccharide concentration contained in the pretreated water 16, the evaluation signal comparing means 40 of the control means 20 compares the target signal 22 with the polysaccharide concentration information 18. When the polysaccharide concentration information 18 is larger than the target signal 22, the preprocessing device control signal 24 is output so that the preprocessing device 10 removes more polysaccharides.

この実施例3の場合、前処理装置10は凝集処理や凝集沈澱処理であるため、目標信号22に対して多糖類濃度情報18が大きい場合には、前処理装置制御信号24として凝集剤の注入量を増大する。逆に、目標信号22に対して多糖類濃度情報18が小さい場合、前処理装置10で多糖類の除去は過剰となっているが、対濁度適正凝集剤注入量よりも凝集剤を減らすと濁度の除去が不十分となるため、対濁度適正凝集剤注入量を下限としてそれ以上の値となるよう凝集剤注入量を制御する。   In the case of this Example 3, since the pretreatment device 10 is an agglomeration treatment or an aggregation precipitation treatment, when the polysaccharide concentration information 18 is larger than the target signal 22, the flocculant is injected as the pretreatment device control signal 24. Increase the amount. On the contrary, when the polysaccharide concentration information 18 is smaller than the target signal 22, the removal of the polysaccharide is excessive in the preprocessing device 10, but if the flocculant is reduced below the turbidity appropriate flocculant injection amount. Since the removal of turbidity becomes insufficient, the injection amount of the flocculant is controlled so that the turbidity appropriate flocculant injection amount is set to a lower limit.

目標信号22が前処理水16に含まれる多糖類の濃度ではなく、海水淡水化システム全体の運転コストの場合、或いは海水淡水化システム全体の環境負荷の場合であっても、同様に凝集剤注入量の下限は、対濁度適正凝集剤注入量の値とすることで、濁質によるチャンネルの閉塞や半透膜の性能低下を抑制することができる。   Even if the target signal 22 is not the concentration of the polysaccharide contained in the pretreated water 16 but the operating cost of the entire seawater desalination system or the environmental load of the entire seawater desalination system, the coagulant injection is similarly performed. By setting the lower limit of the amount to the value of the turbidity-appropriate coagulant injection amount, it is possible to suppress channel blockage due to turbidity and performance degradation of the semipermeable membrane.

このように、実施例3の構成をとることで、上述した実施例1、或いは実施例2と同様な効果を得ることができる。   As described above, by adopting the configuration of the third embodiment, the same effects as those of the first embodiment or the second embodiment described above can be obtained.

図6は、本発明の海水淡水化システムの制御装置の実施例4におけるフローを示すものである。   FIG. 6 shows the flow in Example 4 of the control apparatus of the seawater desalination system of this invention.

該図に示す如く、実施例4における海水淡水化システムの制御装置は、その構成は、図5に示した実施例3と略同様であるが、実施例4の前処理装置10には、凝集剤を注入する処理、即ち凝集処理、或いは凝集沈澱処理が含まれ、そして、凝集剤を注入する前の海水1に、固形微粒子を注入する固形微粒子注入装置26を備えているものである。固形微粒子としては、粉末活性炭、ゼオライト粉末、アルミナ粉末、磁性体粒子が、多糖類をその表面に吸着する働きも期待できるため有効である。   As shown in the figure, the configuration of the control device for the seawater desalination system in Example 4 is substantially the same as that of Example 3 shown in FIG. A process for injecting the agent, that is, an agglomeration process or an agglomeration precipitation process is included, and a solid particle injection device 26 for injecting solid particles into the seawater 1 before injecting the aggregating agent is provided. As solid fine particles, powdered activated carbon, zeolite powder, alumina powder, and magnetic particles are effective because they can also be expected to adsorb polysaccharides on their surfaces.

固形微粒子注入装置26は、固形微粒子タンクと固形微粒子注入ポンプ(図示せず)から構成され、スラリーとして注入する場合には、混合するための水などの液体タンク、混合槽、攪拌機も備える。固形微粒子注入装置26には、制御装置20から固形微粒子注入装置制御信号28が与えられ、固形微粒子の注入量が調整される。   The solid fine particle injecting device 26 includes a solid fine particle tank and a solid fine particle injecting pump (not shown). When injecting as a slurry, the solid fine particle injecting device 26 also includes a liquid tank for mixing water, a mixing tank, and a stirrer. The solid particulate injection device 26 is given a solid particulate injection device control signal 28 from the control device 20 to adjust the injection amount of the solid particulates.

凝集剤を注入する前処理では、濁質を核としてフロックが生成され、その中にファウリング成分である多糖類が巻き込まれ、そのフロックを沈澱、或いはろ過、或いは浮上分離することで海水1から除去することができる。しかし、海水1の濁度が極めて低い場合には、フロックの生成が不良となってフロックに取り込まれる多糖類の量が減少し、結果として半透膜処理装置12まで多糖類が残存してファウリングが発生する可能性が高まる。   In the pretreatment for injecting the flocculant, flocs are generated with turbidity as the core, and polysaccharides as fouling components are entrained in the flocs, and the flocs are precipitated, filtered, or separated from the seawater 1 by floating. Can be removed. However, when the turbidity of the seawater 1 is very low, the generation of flocs is poor and the amount of polysaccharides taken into the flocs decreases, resulting in the polysaccharide remaining up to the semipermeable membrane treatment device 12 and fouling. The possibility that a ring will occur increases.

このような場合に、固形微粒子を凝集処理より前段で海水1に注入すると、フロックの核となる物質が増加し、フロックの生成不良を改善することができる。その結果、フロックの中に取り込まれる多糖類の量も増加し、半透膜処理装置12のファウリングを低減することが可能となる。但し、固形微粒子を注入すると汚泥発生量が増える。従って、固形微粒子の注入量を適切に制御しなければ、固形微粒子の薬剤コストの増大のほかに、汚泥処分コストも増大することになる。   In such a case, if the solid fine particles are injected into the seawater 1 before the agglomeration treatment, the substance that becomes the core of the flocs increases, and the generation failure of flocs can be improved. As a result, the amount of polysaccharide incorporated into the floc increases, and fouling of the semipermeable membrane treatment apparatus 12 can be reduced. However, when solid particles are injected, the amount of sludge generated increases. Therefore, unless the injection amount of the solid fine particles is appropriately controlled, the sludge disposal cost also increases in addition to the increase in the chemical cost of the solid fine particles.

また、固形微粒子注入後の固形微粒子注入水3は半透膜処理装置12に到達する前に濁質を分離する必要があるため、固形微粒子の注入量が過剰な場合には濁質分離装置の運転コストも増大する。粉末の性状によっては、温水洗浄や蒸気洗浄、加熱などの処理によって有機物を除去して再利用できるものもあるが、その場合でも再生コストを要するため固形微粒子の注入量は必要最小限に抑制する必要がある。   In addition, since the solid fine particle injection water 3 after the solid fine particle injection needs to separate the turbidity before reaching the semipermeable membrane treatment device 12, when the injection amount of the solid fine particles is excessive, the turbidity separation device Operating costs also increase. Depending on the properties of the powder, some organic substances can be removed and reused by treatment such as hot water cleaning, steam cleaning, and heating. There is a need.

前処理装置10から流出する前処理水16は、半透膜処理装置12に流入するが、その中に含まれる多糖類の濃度が前処理水多糖類濃度計測手段14で計測され多糖類情報18として、また、濁度が濁度計測装置30によって計測され濁度情報32として、制御手段20に与えられる。ここで、多糖類と濁度の計測は同時であっても、前後が逆であっても良い。   The pretreated water 16 flowing out from the pretreatment device 10 flows into the semipermeable membrane treatment device 12, and the concentration of the polysaccharide contained therein is measured by the pretreatment water polysaccharide concentration measuring means 14 and polysaccharide information 18 is obtained. In addition, the turbidity is measured by the turbidity measuring device 30 and given to the control means 20 as turbidity information 32. Here, the polysaccharide and the turbidity may be measured at the same time or may be reversed.

一方、制御手段20には、目標信号22と濁度目標値34が予め与えられており、制御手段20では、前処理装置10と固形微粒子注入装置26の操作量を算出し、前処理装置制御信号24と固形微粒子注入装置制御信号28を出力する。ここで、目標信号22は数値として、前処理水16に含まれる多糖類の目標濃度であっても良く、半透膜処理装置12の安定運転期間であっても良い。或いは、目標信号22は運転条件探索指標の項目として、海水淡水化システム全体の運転コスト、或いは海水淡水化システム全体の環境負荷を選べるようにしても良い。濁度目標値34は、半透膜処理装置12に流入する前処理水16の濁度目標値である。   On the other hand, a target signal 22 and a turbidity target value 34 are given in advance to the control means 20, and the control means 20 calculates the operation amounts of the pretreatment device 10 and the solid particulate injection device 26 to control the pretreatment device. A signal 24 and a solid particulate injection device control signal 28 are output. Here, the target signal 22 may be a target concentration of the polysaccharide contained in the pretreated water 16 as a numerical value, or may be a stable operation period of the semipermeable membrane treatment apparatus 12. Alternatively, the target signal 22 may select the operating cost of the entire seawater desalination system or the environmental load of the entire seawater desalination system as an item of the operating condition search index. The turbidity target value 34 is a turbidity target value of the pretreatment water 16 flowing into the semipermeable membrane treatment device 12.

この実施例4では、実施例2と異なり、半透膜処理装置12に流入する前処理水16の濁度も考慮に入れている。半透膜処理装置12は、現実的には中空糸膜やスパイラル膜が用いられることが多く、その表面の狭いチャンネルの中を並行流として前処理水16が流れる。その際に、濁質が存在すると狭いチャンネルの閉塞が生じ、半透膜の性能が低下する。チャンネルの閉塞のみならず、半透膜の表面に付着、或いは沈澱した濁質が存在すると、更に半透膜の性能が低下する。従って、半透膜処理装置12に流入する前処理水16からは、多糖類のみならず濁質も十分に除去されていることが望ましい。   In the fourth embodiment, unlike the second embodiment, the turbidity of the pretreated water 16 flowing into the semipermeable membrane treatment apparatus 12 is also taken into consideration. In practice, a hollow fiber membrane or a spiral membrane is often used for the semipermeable membrane treatment device 12, and the pretreated water 16 flows in a narrow channel on the surface as a parallel flow. At that time, if turbidity is present, narrow channels are blocked and the performance of the semipermeable membrane is reduced. The presence of suspended or adhering turbidity on the surface of the semipermeable membrane as well as the blockage of the channel further deteriorates the performance of the semipermeable membrane. Therefore, it is desirable that not only polysaccharides but also turbidity be sufficiently removed from the pretreatment water 16 flowing into the semipermeable membrane treatment apparatus 12.

前処理装置10の最終段の固形物分離装置29として精密膜ろ過処理、或いは限外膜ろ過処理が用いられる場合には、膜の損傷が発生しない限り、濁質はほぼ完全に除去される。しかし、沈澱処理や砂ろ過処理,マルチメディアフィルタ処理、加圧浮上分離処理が固形物分離装置として用いられる場合には、運転条件によっては濁質が前処理水16に残留し、半透膜処理装置12に流入する可能性がある。そこで、残留する濁質を適切に除去できるよ、凝集剤の注入率を制御する必要がある。   When a precision membrane filtration process or an ultrafiltration process is used as the final solids separation device 29 of the pretreatment device 10, the turbidity is almost completely removed unless the membrane is damaged. However, when precipitation treatment, sand filtration treatment, multimedia filter treatment, or pressurized flotation separation treatment is used as a solid matter separation device, turbidity may remain in the pretreated water 16 depending on operating conditions, and semipermeable membrane treatment. There is a possibility of flowing into the device 12. Therefore, it is necessary to control the injection rate of the flocculant so that the remaining turbidity can be appropriately removed.

そのため、制御手段20の評価指標比較手段40では、まず、濁度情報32として与えられる現時点での濁度を濁度目標値34と比較する。濁度目標値34に対して現時点での濁度が高い場合には、凝集処理が不十分であるため、前処理装置制御信号24として出力する凝集剤の注入量を増大する。逆に、濁度目標値34に対して現時点での濁度が低い場合には、凝集処理が過剰であるため、前処理装置制御信号24として出力する凝集剤の注入量を減少する。この手順で求められた凝集剤注入量を対濁度適正凝集剤注入量と呼ぶこととする。   Therefore, the evaluation index comparison means 40 of the control means 20 first compares the current turbidity given as the turbidity information 32 with the turbidity target value 34. When the current turbidity is higher than the turbidity target value 34, the agglomeration process is insufficient, and the injection amount of the aggregating agent output as the pretreatment device control signal 24 is increased. Conversely, when the current turbidity is lower than the turbidity target value 34, the agglomeration process is excessive, and the injection amount of the aggregating agent output as the pretreatment device control signal 24 is reduced. The flocculant injection amount obtained by this procedure will be referred to as the turbidity appropriate flocculant injection amount.

この対濁度適正凝集剤注入量以上の凝集剤を注入することで、半透膜処理装置12に流入する前処理水16の濁度を濁度目標値34より低い値に抑制できる。これと同時に、濁度のみではなく多糖類によるファウリングの抑制も凝集処理で必要である。例えば、目標信号22が前処理水16に含まれる多糖類の濃度であった場合、制御手段20の評価指標比較手段40では、目標信号22と多糖類濃度情報18が比較される。目標信号22に対して多糖類濃度情報18が大きい場合には、前処理装置10で、より多くの多糖類を除去するよう前処理装置制御信号24と固形微粒子注入装置制御信号28が出力される。逆に、目標信号22に対して多糖類濃度情報18が小さい場合には、前処理装置10での多糖類の除去を緩和するように前処理装置制御信号24と固形微粒子注入装置制御信号28が出力される。目標信号22に対して多糖類濃度情報18が大きい場合には、多糖類をより多く除去する必要があるため、凝集剤注入量の増加と固形微粒子注入量の増加を実施することになる。逆に、目標信号22に対して多糖類濃度情報18が小さい場合には、多糖類を過剰に除去してしまっているため、凝集剤注入量の減少と固形微粒子注入量の減少を実施することになる。但し、対濁度適正凝集剤注入量よりも凝集剤を減らすと、濁度の除去が不十分となるため、対濁度適正凝集剤注入量を下限とし、それ以上の値となるよう凝集剤注入量を制御する。   The turbidity of the pretreatment water 16 flowing into the semipermeable membrane treatment device 12 can be suppressed to a value lower than the turbidity target value 34 by injecting a flocculant equal to or greater than the turbidity appropriate flocculant injection amount. At the same time, not only turbidity but also suppression of fouling by polysaccharides is necessary in the aggregation treatment. For example, when the target signal 22 is a polysaccharide concentration contained in the pretreated water 16, the evaluation signal comparing means 40 of the control means 20 compares the target signal 22 with the polysaccharide concentration information 18. When the polysaccharide concentration information 18 is larger than the target signal 22, the pretreatment device 10 outputs a pretreatment device control signal 24 and a solid particulate injection device control signal 28 so as to remove more polysaccharides. . Conversely, when the polysaccharide concentration information 18 is smaller than the target signal 22, the pretreatment device control signal 24 and the solid particulate injection device control signal 28 are set so as to alleviate the removal of the polysaccharide in the pretreatment device 10. Is output. When the polysaccharide concentration information 18 is larger than the target signal 22, it is necessary to remove more polysaccharides, so that an increase in the flocculant injection amount and an increase in the solid fine particle injection amount are performed. Conversely, when the polysaccharide concentration information 18 is smaller than the target signal 22, the polysaccharide has been removed excessively, so that the amount of flocculant injected and the amount of solid fine particles injected are reduced. become. However, if the amount of flocculant is reduced below the appropriate turbidity coagulant injection amount, the removal of turbidity becomes insufficient. Control the injection volume.

多糖類を所望の濃度とするための凝集剤注入量と固形微粒子注入量の組合せは複数存在するため、予め凝集剤注入量、固形微粒子注入量が多糖類の除去に及ぼす影響を数式モデルとして備えておき、そのモデルにしたがって計算で最も適切な運転条件を求めても良い。一意の運転条件に絞るため、数式モデルには凝集剤の薬品単価(\/ton)と固形微粒子の薬品単価(\/ton)を備えておき、薬品コストの総和が最小となるような演算を実施することが良い。   Since there are multiple combinations of the flocculant injection amount and solid fine particle injection amount to bring the polysaccharide to the desired concentration, the effects of the flocculant injection amount and solid fine particle injection amount on the removal of polysaccharides are provided in advance as a mathematical model. In addition, the most appropriate operating condition may be obtained by calculation according to the model. In order to focus on unique operating conditions, the formula model has a chemical unit price (\ / ton) for the flocculant and a chemical unit price (\ / ton) for the solid particulates, and performs calculations that minimize the total chemical cost. It is good to carry out.

更に、凝集剤や固形微粒子の注入の結果として生じる汚泥の処分コストも演算に含まれるよう、汚泥処分費用単価(\/ton)も考慮することが望ましい。或いは、一意の運転条件に絞るため、数式モデルには、凝集剤の環境負荷薬品原単位(kg-CO2/ton)と固形微粒子の環境負荷薬品原単位(kg-CO2/ton)を備えておき、環境負荷の総和が最小となるような演算を実施することが良い。更に、凝集剤や固形微粒子の注入の結果として生じる汚泥の処分で生じる環境負荷も演算に含まれるよう、環境負荷汚泥処分原単位(kg-CO2/ton)も考慮することが望ましい。 Furthermore, it is desirable to consider the sludge disposal cost unit price (\ / ton) so that the disposal cost of sludge generated as a result of the injection of the flocculant and solid fine particles is included in the calculation. Alternatively, in order to focus on unique operating conditions, the mathematical model is equipped with an environmental impact chemical unit (kg-CO 2 / ton) for flocculants and an environmental impact chemical unit (kg-CO 2 / ton) for solid particles. It is preferable to perform an operation that minimizes the total environmental load. Furthermore, it is desirable to consider the environmental load sludge disposal unit (kg-CO 2 / ton) so that the environmental load caused by the disposal of sludge generated as a result of the injection of the flocculant and solid fine particles is included in the calculation.

このように、実施例4の構成をとることで、上述した各実施例と同様な効果を得ることができる。   Thus, the effect similar to each Example mentioned above can be acquired by taking the structure of Example 4. FIG.

1…海水、2…淡水、3…固形微粒子注入水、10…前処理装置、12…半透膜処理装置、14…前処理水多糖類濃度計測手段、16…前処理水、18…多糖類濃度情報、20…制御手段、22…目標信号、24…前処理装置制御信号、26…固形微粒子注入装置、27…凝集剤注入装置、28…固形微粒子注入装置制御信号、29…固形物分離装置、30…濁度計測装置、32…濁度情報、34…濁度目標値、36…摂動発生手段、38…評価指標演算手段、40…評価指標比較手段、42…次時刻の操作量、44…評価指標計算値。   DESCRIPTION OF SYMBOLS 1 ... Seawater, 2 ... Fresh water, 3 ... Solid fine particle injection water, 10 ... Pretreatment apparatus, 12 ... Semipermeable membrane treatment apparatus, 14 ... Pretreatment water polysaccharide concentration measuring means, 16 ... Pretreatment water, 18 ... Polysaccharide Concentration information, 20 ... control means, 22 ... target signal, 24 ... pretreatment device control signal, 26 ... solid particulate injection device, 27 ... flocculant injection device, 28 ... solid particulate injection device control signal, 29 ... solid matter separation device , 30 ... Turbidity measuring device, 32 ... Turbidity information, 34 ... Turbidity target value, 36 ... Perturbation generating means, 38 ... Evaluation index calculating means, 40 ... Evaluation index comparing means, 42 ... Manipulation amount at next time, 44 ... Evaluation index calculated value.

Claims (13)

半透膜で海水又はかん水を淡水化する半透膜処理装置と、該半透膜処理装置より前段に配置され、該半透膜処理装置に供給される海水又はかん水を前処理する前処理装置と、該前処理装置で処理された処理水に含まれる多糖類の濃度を計測する前処理水多糖類計測手段と、該前処理水多糖類計測手段による前処理水多糖類濃度計測値及び予め与えられた目標信号に基づいて、前記前処理装置の操作量を算出して該前処理装置への制御信号を出力する制御手段とを備えていることを特徴とする海水淡水化システムの制御装置。   A semipermeable membrane treatment device that desalinates seawater or brine with a semipermeable membrane, and a pretreatment device that is disposed upstream of the semipermeable membrane treatment device and pretreats seawater or brine supplied to the semipermeable membrane treatment device A pretreatment water polysaccharide measuring means for measuring the concentration of polysaccharide contained in the treated water treated by the pretreatment device, a pretreatment water polysaccharide concentration measurement value by the pretreatment water polysaccharide measurement means, and A control device for a seawater desalination system, comprising control means for calculating an operation amount of the pretreatment device based on a given target signal and outputting a control signal to the pretreatment device. . 請求項1に記載の海水淡水化システムの制御装置において、
前記前処理装置は、少なくとも凝集剤を注入する凝集剤注入装置及び海水又はかん水から固形物を分離する固形物分離装置を備えていることを特徴とする海水淡水化システムの制御装置。
In the control apparatus of the seawater desalination system according to claim 1,
The said pre-processing apparatus is equipped with the coagulant | flocculant injection apparatus which inject | pours a coagulant | flocculant at least, and the solid substance separator which isolate | separates a solid substance from seawater or brackish water, The control apparatus of the seawater desalination system characterized by the above-mentioned.
請求項2に記載の海水淡水化システムの制御装置において、
前記固形物分離装置は、砂ろ過処理、マルチメディアフィルタ処理、精密膜ろ過処理、限外膜ろ過処理のいずれかであることを特徴とする海水淡水化システムの制御装置。
In the control apparatus of the seawater desalination system according to claim 2,
The apparatus for controlling a seawater desalination system, wherein the solid matter separation device is any one of sand filtration, multimedia filter, precision membrane filtration, and ultramembrane filtration.
請求項1に記載の海水淡水化システムの制御装置において、
前記制御手段は、定期的或いは非定期的に前記前処理装置の操作量に摂動を与える摂動発生手段と、評価指標として運転コスト或いは環境負荷を計算する評価指標演算手段と、摂動を与える前後の評価指標の大小を比較し、該評価指標が小さくなる操作量を次時刻の操作量として出力する評価指標比較手段とを備えていることを特徴とする海水淡水化システムの制御装置。
In the control apparatus of the seawater desalination system according to claim 1,
The control means includes a perturbation generating means for perturbing the manipulated variable of the preprocessing device periodically or irregularly, an evaluation index calculating means for calculating an operating cost or an environmental load as an evaluation index, and before and after the perturbation is given. A control device for a seawater desalination system, comprising: an evaluation index comparing means for comparing the magnitudes of the evaluation indices and outputting an operation amount at which the evaluation index becomes smaller as an operation amount at the next time.
請求項1に記載の海水淡水化システムの制御装置において、
前記前処理装置として砂ろ過処理、マルチメディアフィルタ処理、加圧浮上分離処理のいずれかを用い、前記前処理装置の処理水に含まれる濁度を計測する濁度計測手段と、該濁度計測手段による濁度計測値、前記前処理水多糖類計測手段による前処理水多糖類濃度計測値、予め与えられた目標信号及び予め与えられた濁度目標値に基づいて、前記前処理装置の操作量を算出して該前処理装置への制御信号を出力する制御手段とを備えていることを特徴とする海水淡水化システムの制御装置。
In the control apparatus of the seawater desalination system according to claim 1,
The turbidity measuring means for measuring the turbidity contained in the treated water of the pretreatment device using any one of sand filtration treatment, multimedia filter treatment, and pressurized flotation separation treatment as the pretreatment device, and the turbidity measurement Based on the turbidity measurement value by the means, the pretreatment water polysaccharide concentration measurement value by the pretreatment water polysaccharide measurement means, the pre-given target signal and the pre-given turbidity target value, the operation of the pretreatment device A control device for a seawater desalination system, comprising control means for calculating a quantity and outputting a control signal to the pretreatment device.
請求項1に記載の海水淡水化システムの制御装置において、
前記前処理装置の前段に固形微粒子注入装置を備え、前記前処理水多糖類計測手段による前処理水多糖類濃度計測値及び予め与えられた目標信号に基づいて、前記前処理装置と前記固形微粒子注入装置の操作量を算出して該前処理装置と前記固形微粒子注入装置への制御信号を出力する制御手段を備えていることを特徴とする海水淡水化システムの制御装置。
In the control apparatus of the seawater desalination system according to claim 1,
A solid particulate injection device is provided in the preceding stage of the pretreatment device, and the pretreatment device and the solid particulates are based on a pretreatment water polysaccharide concentration measurement value by the pretreatment water polysaccharide measurement means and a predetermined target signal. A control device for a seawater desalination system, comprising control means for calculating an operation amount of an injection device and outputting a control signal to the pretreatment device and the solid particulate injection device.
請求項5に記載の海水淡水化システムの制御装置において、
前記前処理装置の前段に固形微粒子注入装置を備え、前記濁度計測手段による濁度計測値、前記前処理水多糖類計測手段による前処理水多糖類濃度計測値、予め与えられた目標信号及び予め与えられた濁度目標値に基づいて、前記前処理装置と前記固形微粒子注入装置の操作量を算出して該前処理装置と前記固形微粒子注入装置への制御信号を出力する制御手段を備えていることを特徴とする海水淡水化システムの制御装置。
In the control apparatus of the seawater desalination system according to claim 5,
A solid particulate injection device is provided in the previous stage of the pretreatment device, the turbidity measurement value by the turbidity measurement means, the pretreatment water polysaccharide concentration measurement value by the pretreatment water polysaccharide measurement means, a target signal given in advance, and Control means for calculating an operation amount of the pretreatment device and the solid particulate injection device based on a turbidity target value given in advance and outputting a control signal to the pretreatment device and the solid particulate injection device A control device for a seawater desalination system.
請求項6又は7に記載の海水淡水化システムの制御装置において、
前記固形微粒子注入装置の固形微粒子として粉末活性炭、ゼオライト粉末、アルミナ粉末、磁性体粒子のうち少なくとも1種を用いることを特徴とする海水淡水化システムの制御装置。
In the control apparatus of the seawater desalination system according to claim 6 or 7,
A control apparatus for a seawater desalination system, wherein at least one of powdered activated carbon, zeolite powder, alumina powder, and magnetic particles is used as the solid particulates of the solid particulate injection device.
海水又はかん水を前処理装置で処理した処理水を半透膜処理装置の半透膜で淡水化するにあたり、前記前処理装置の処理水に含まれる多糖類の濃度を前処理水多糖類計測手段で計測し、その多糖類濃度の計測値と予め与えられた目標信号とを比較し、その比較値に基づいて前記前処理装置の操作量を計算して制御手段で制御することを特徴とする海水淡水化システムの制御方法。   In desalinating the treated water obtained by treating seawater or brine with a pretreatment device with the semipermeable membrane of the semipermeable membrane treatment device, the concentration of the polysaccharide contained in the treated water of the pretreatment device is measured by the pretreatment water polysaccharide measuring means. The measured value of the polysaccharide concentration is compared with a target signal given in advance, and the operation amount of the pretreatment device is calculated based on the comparison value and controlled by the control means. Control method of seawater desalination system. 請求項9に記載の海水淡水化システムの制御方法において、
前記制御手段は、定期的或いは非定期的に前記前処理装置の操作量に摂動を与える摂動発生手段と、評価指標として運転コスト或いは環境負荷を計算する評価指標演算手段と、摂動を与える前後の評価指標の大小を比較し、該評価指標が小さくなる操作量を次時刻の操作量として出力する評価指標比較手段とを備え、
前記目標信号が処理水に含まれる多糖類の濃度であり、前記評価指標比較手段で前記目標信号と前記前処理水多糖類計測手段での多糖類濃度情報が比較され、前記目標信号に対して前記多糖類濃度情報が大きい場合には、前記制御手段から前記前処理装置に対して多糖類を除去するよう前処理装置制御信号が出力されると共に、前記目標信号に対して前記多糖類濃度情報が小さい場合には、前記制御手段から前記前処理装置に対して多糖類の除去を緩和するよう前処理装置制御信号が出力されることを特徴とする海水淡水化システムの制御方法。
In the control method of the seawater desalination system according to claim 9,
The control means includes a perturbation generating means for perturbing the manipulated variable of the preprocessing device periodically or irregularly, an evaluation index calculating means for calculating an operating cost or an environmental load as an evaluation index, and before and after the perturbation is given. Evaluation index comparison means for comparing the magnitude of the evaluation index and outputting the operation amount at which the evaluation index becomes smaller as the operation amount at the next time;
The target signal is the concentration of polysaccharide contained in the treated water, the evaluation index comparing means compares the target signal with the polysaccharide concentration information in the pretreated water polysaccharide measuring means, and for the target signal When the polysaccharide concentration information is large, a preprocessing device control signal is output from the control means so as to remove the polysaccharide from the preprocessing device, and the polysaccharide concentration information is output with respect to the target signal. The control method of the seawater desalination system according to claim 1, wherein the control means outputs a pretreatment device control signal to the pretreatment device so as to alleviate the removal of polysaccharides.
請求項10に記載の海水淡水化システムの制御方法において、
前記前処理装置が凝集処理或いは凝集沈殿処理の場合、前記前処理装置制御信号は凝集剤の注入量であり、前記目標信号に対して前記多糖類濃度情報が大きい場合には、前記凝集剤の注入量を増加し、
或いは前記前処理装置が砂ろ過処理、マルチメディアフィルタ処理、精密膜ろ過処理、限外膜ろ過処理のいずれかである場合、前記前処理装置制御信号は洗浄開始信号であり、前記目標信号に対して前記多糖類濃度情報が大きい場合には、空気或いは水を用いた逆洗のトリガー信号を発生し、
若しくは前記前処理装置が加圧浮上分離処理の場合、前記前処理装置制御信号は加圧圧力或いは溶解空気量であり、前記目標信号に対して前記多糖類濃度情報が大きい場合には、加圧圧力或いは溶解空気量を増大することを特徴とする海水淡水化システムの制御方法。
In the control method of the seawater desalination system according to claim 10,
When the pretreatment device is a coagulation treatment or a coagulation sedimentation treatment, the pretreatment device control signal is an injection amount of the coagulant, and when the polysaccharide concentration information is larger than the target signal, Increase the injection volume,
Alternatively, when the pretreatment device is one of sand filtration processing, multimedia filter processing, precision membrane filtration processing, and ultramembrane filtration processing, the pretreatment device control signal is a cleaning start signal, and the target signal When the polysaccharide concentration information is large, a trigger signal for backwashing using air or water is generated,
Alternatively, when the pretreatment device is a pressure levitation separation process, the pretreatment device control signal is a pressure or dissolved air amount, and when the polysaccharide concentration information is larger than the target signal, the pressure is increased. A method for controlling a seawater desalination system, characterized by increasing the pressure or the amount of dissolved air.
請求項9に記載の海水淡水化システムの制御方法において、
前記制御手段は、定期的或いは非定期的に前記前処理装置の操作量に摂動を与える摂動発生手段と、評価指標として運転コスト或いは環境負荷を計算する評価指標演算手段と、摂動を与える前後の評価指標の大小を比較し、該評価指標が小さくなる操作量を次時刻の操作量として出力する評価指標比較手段とを備え、
前記目標信号が前記半透膜処理装置の安定運転期間であり、前記評価指標演算手段で前記前処理水多糖類計測手段での多糖類濃度情報に基づいて、半透膜の薬品洗浄或いは交換までの安定運転期間を評価指標として予測計算され、かつ、前記評価指標比較手段では、前記安定運転期間の予測値と前記目標信号として与えた安定運転期間が比較され、前記目標信号に対して前記安定運転期間の予測値が小さい場合には、前記制御手段から前記前処理装置に対して多糖類を除去するよう前処理装置制御信号が出力されると共に、前記目標信号に対して前記安定運転期間の予測値が大きい場合には、前記制御手段から前記前処理装置に対して多糖類の除去を緩和するよう前処理装置制御信号が出力されることを特徴とする海水淡水化システムの制御方法。
In the control method of the seawater desalination system according to claim 9,
The control means includes a perturbation generating means for perturbing the manipulated variable of the preprocessing device periodically or irregularly, an evaluation index calculating means for calculating an operating cost or an environmental load as an evaluation index, and before and after the perturbation is given. Evaluation index comparison means for comparing the magnitude of the evaluation index and outputting the operation amount at which the evaluation index becomes smaller as the operation amount at the next time;
The target signal is a stable operation period of the semipermeable membrane treatment device, and the chemical evaluation or semi-permeable membrane chemical cleaning or replacement is performed based on the polysaccharide concentration information in the pretreatment water polysaccharide measurement means in the evaluation index calculation means. And the evaluation index comparison means compares the predicted value of the stable operation period with the stable operation period given as the target signal and compares the stable signal with the target signal. When the predicted value of the operation period is small, a preprocessing device control signal is output from the control means to remove the polysaccharide from the preprocessing device, and the stable operation period of the target signal is output. When the predicted value is large, the control means outputs a pretreatment device control signal so as to alleviate the removal of polysaccharides to the pretreatment device. Law.
請求項12に記載の海水淡水化システムの制御方法において、
前記前処理装置が凝集処理或いは凝集沈殿処理の場合、前記前処理装置制御信号は凝集剤の注入量であり、前記目標信号に対して前記安定運転期間の予測値が小さい場合には、前記凝集剤の注入量を増加し、
或いは前記前処理装置が砂ろ過処理、マルチメディアフィルタ処理、精密膜ろ過処理、限外膜ろ過処理のいずれかである場合、前記前処理装置制御信号は洗浄開始信号であり、前記目標信号に対して前記安定運転期間の予測値が小さい場合には、空気或いは水を用いた逆洗のトリガー信号を発生し、
若しくは前記前処理装置が加圧浮上分離処理の場合、前記前処理装置制御信号は加圧圧力或いは溶解空気量であり、前記目標信号に対して前記安定運転期間の予測値が小さい場合には、加圧圧力或いは溶解空気量を増大することを特徴とする海水淡水化システムの制御方法。
In the control method of the seawater desalination system according to claim 12,
When the pretreatment device is a coagulation treatment or a coagulation sedimentation treatment, the pretreatment device control signal is an injection amount of a coagulant, and when the predicted value of the stable operation period is smaller than the target signal, the aggregation Increase the dose of the agent,
Alternatively, when the pretreatment device is one of sand filtration processing, multimedia filter processing, precision membrane filtration processing, and ultramembrane filtration processing, the pretreatment device control signal is a cleaning start signal, and the target signal If the predicted value of the stable operation period is small, a trigger signal for backwashing using air or water is generated,
Alternatively, when the pretreatment device is a pressurized flotation separation process, the pretreatment device control signal is a pressurized pressure or an amount of dissolved air, and when the predicted value of the stable operation period is smaller than the target signal, A control method for a seawater desalination system, characterized by increasing a pressurized pressure or an amount of dissolved air.
JP2011094677A 2011-04-21 2011-04-21 Control device and control method for seawater desalination system Active JP5587240B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011094677A JP5587240B2 (en) 2011-04-21 2011-04-21 Control device and control method for seawater desalination system
CN2012101160140A CN102743975A (en) 2011-04-21 2012-04-19 Control device of seawater desalination system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011094677A JP5587240B2 (en) 2011-04-21 2011-04-21 Control device and control method for seawater desalination system

Publications (2)

Publication Number Publication Date
JP2012223723A true JP2012223723A (en) 2012-11-15
JP5587240B2 JP5587240B2 (en) 2014-09-10

Family

ID=47024677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011094677A Active JP5587240B2 (en) 2011-04-21 2011-04-21 Control device and control method for seawater desalination system

Country Status (2)

Country Link
JP (1) JP5587240B2 (en)
CN (1) CN102743975A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181583A1 (en) * 2013-05-10 2014-11-13 水ing株式会社 Apparatus for seawater desalination and method therefor
JP2016013537A (en) * 2014-06-09 2016-01-28 三菱レイヨン株式会社 Humin-containing wastewater treatment method and humin-containing wastewater treatment equipment
JP2016087564A (en) * 2014-11-07 2016-05-23 水ing株式会社 Seawater desalination apparatus and method therefor
JP2018012062A (en) * 2016-07-21 2018-01-25 水ing株式会社 Reverse Osmosis Membrane Supply Water Membrane Occlusion Evaluation Method, Membrane Occlusion Evaluation Device, and Water Treatment Device Operation Management Method Using the Membrane Occlusion Evaluation Method
CN113260447A (en) * 2018-10-19 2021-08-13 克朗斯股份公司 Membrane filter arrangement and method for regulating same by means of fuzzy logic and/or artificial neural networks
CN113975974A (en) * 2021-10-04 2022-01-28 张英华 Reverse-osmosis seawater desalination membrane core reverse-blowing equipment and control method
JP7033841B2 (en) 2016-07-21 2022-03-11 水ing株式会社 Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
JP2022138621A (en) * 2021-03-10 2022-09-26 横河電機株式会社 Control device, control method, and control program
JP2023062669A (en) * 2021-10-21 2023-05-08 ドゥサン エナービリティー カンパニー リミテッド Apparatus for controlling reverse osmosis membrane seawater desalination plant and method therefor
CN118183945A (en) * 2024-04-07 2024-06-14 浙江国一润天环保科技有限公司 Multistage closed circuit desalination system based on reverse osmosis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075835A1 (en) * 2013-11-25 2015-05-28 栗田工業株式会社 Control method and control program for water treatment facility and water treatment system
CN105441285A (en) * 2016-01-15 2016-03-30 温州青大农业开发有限公司 Fresh bamboo wine production process
JP6942252B2 (en) * 2018-06-18 2021-09-29 三菱電機株式会社 Driving support device and driving support method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2006320794A (en) * 2005-05-17 2006-11-30 Hitachi Ltd Water purification equipment and operation method thereof
JP2008068199A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Aggregation apparatus and aggregation method
JP2010058080A (en) * 2008-09-05 2010-03-18 Sumitomo Electric Ind Ltd Method for treating seawater and seawater treatment apparatus
JP2010131469A (en) * 2008-10-30 2010-06-17 Kurita Water Ind Ltd Membrane separation method
JP2011177604A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Seawater desalination apparatus
JP2012020266A (en) * 2010-07-16 2012-02-02 Sumitomo Electric Ind Ltd Separation membrane for seawater desalination pretreatment, apparatus for pretreatment of seawater desalination, and apparatus for seawater desalination and method for seawater desalination
JP2013013863A (en) * 2011-07-05 2013-01-24 Hitachi Plant Technologies Ltd Sea water desalination system and method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2006320794A (en) * 2005-05-17 2006-11-30 Hitachi Ltd Water purification equipment and operation method thereof
JP2008068199A (en) * 2006-09-14 2008-03-27 Kurita Water Ind Ltd Aggregation apparatus and aggregation method
JP2010058080A (en) * 2008-09-05 2010-03-18 Sumitomo Electric Ind Ltd Method for treating seawater and seawater treatment apparatus
JP2010131469A (en) * 2008-10-30 2010-06-17 Kurita Water Ind Ltd Membrane separation method
JP2011177604A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Seawater desalination apparatus
JP2012020266A (en) * 2010-07-16 2012-02-02 Sumitomo Electric Ind Ltd Separation membrane for seawater desalination pretreatment, apparatus for pretreatment of seawater desalination, and apparatus for seawater desalination and method for seawater desalination
JP2013013863A (en) * 2011-07-05 2013-01-24 Hitachi Plant Technologies Ltd Sea water desalination system and method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014181583A1 (en) * 2013-05-10 2017-02-23 水ing株式会社 Seawater desalination apparatus and method
WO2014181583A1 (en) * 2013-05-10 2014-11-13 水ing株式会社 Apparatus for seawater desalination and method therefor
JP2016013537A (en) * 2014-06-09 2016-01-28 三菱レイヨン株式会社 Humin-containing wastewater treatment method and humin-containing wastewater treatment equipment
JP2016087564A (en) * 2014-11-07 2016-05-23 水ing株式会社 Seawater desalination apparatus and method therefor
JP2018012062A (en) * 2016-07-21 2018-01-25 水ing株式会社 Reverse Osmosis Membrane Supply Water Membrane Occlusion Evaluation Method, Membrane Occlusion Evaluation Device, and Water Treatment Device Operation Management Method Using the Membrane Occlusion Evaluation Method
JP7033841B2 (en) 2016-07-21 2022-03-11 水ing株式会社 Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
CN113260447A (en) * 2018-10-19 2021-08-13 克朗斯股份公司 Membrane filter arrangement and method for regulating same by means of fuzzy logic and/or artificial neural networks
JP7359178B2 (en) 2021-03-10 2023-10-11 横河電機株式会社 Control device, control method, and control program
JP2022138621A (en) * 2021-03-10 2022-09-26 横河電機株式会社 Control device, control method, and control program
US12174594B2 (en) 2021-03-10 2024-12-24 Yokogawa Electric Corporation Control apparatus, control method, and recording medium having control program recorded thereon
CN113975974A (en) * 2021-10-04 2022-01-28 张英华 Reverse-osmosis seawater desalination membrane core reverse-blowing equipment and control method
JP7434475B2 (en) 2021-10-21 2024-02-20 ドゥサン エナービリティー カンパニー リミテッド Device and method for controlling a reverse osmosis membrane seawater desalination plant
JP2023062669A (en) * 2021-10-21 2023-05-08 ドゥサン エナービリティー カンパニー リミテッド Apparatus for controlling reverse osmosis membrane seawater desalination plant and method therefor
CN118183945A (en) * 2024-04-07 2024-06-14 浙江国一润天环保科技有限公司 Multistage closed circuit desalination system based on reverse osmosis

Also Published As

Publication number Publication date
CN102743975A (en) 2012-10-24
JP5587240B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5587240B2 (en) Control device and control method for seawater desalination system
Brehant et al. Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination
Costa et al. Performance and cost estimation of nanofiltration for surface water treatment in drinking water production
Alventosa-deLara et al. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance
Guerra et al. Impact of operating conditions on permeate flux and process economics for cross flow ceramic membrane ultrafiltration of surface water
US9470080B2 (en) Method and system for recovering oil from an oil-bearing formation
Peters et al. Exploring the limitations of osmotically assisted reverse osmosis: Membrane fouling and the limiting flux
Brehant et al. Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination
Rahimpour et al. Development of pilot scale nanofiltration system for yeast industry wastewater treatment
Liyanaarachchi et al. Mass balance for a novel RO/FO hybrid system in seawater desalination
Kim et al. Evaluation of new compact pretreatment system for high turbidity seawater: fiber filter and ultrafiltration
Valizadeh et al. Scale-up economic assessment and experimental analysis of MF–RO integrated membrane systems in oily wastewater treatment plants for reuse application
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
Sutariya et al. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends
KR101786821B1 (en) Water treatment apparatus with gravity-driven type
JP7033841B2 (en) Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
JP2013022574A (en) Desalination apparatus using reverse osmosis membrane
JP2013193075A (en) Desalination system
Chang et al. Comparison of SAR (sodium adsorption ratio) between RO and NF processes for the reclamation of secondary effluent
KR20140004969A (en) Immersion type-pressure type hybrid membrane filtration system and operation method thereof
Mortensen et al. Evaluation of membrane processes for reducing total dissolved solids discharged to the Truckee River
Xu et al. Study of critical flux in ultrafiltration of seawater: New measurement and sub-and super-critical flux operations
Leong et al. Performance of a vibratory shear membrane filtration system during the treatment of magnetic ion exchange process concentrate
JP2016010737A (en) Seawater desalination process control method and seawater desalination system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5587240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150