[go: up one dir, main page]

JP2012220215A - Withstand voltage test method for plant joint part of long power cable - Google Patents

Withstand voltage test method for plant joint part of long power cable Download PDF

Info

Publication number
JP2012220215A
JP2012220215A JP2011083072A JP2011083072A JP2012220215A JP 2012220215 A JP2012220215 A JP 2012220215A JP 2011083072 A JP2011083072 A JP 2011083072A JP 2011083072 A JP2011083072 A JP 2011083072A JP 2012220215 A JP2012220215 A JP 2012220215A
Authority
JP
Japan
Prior art keywords
withstand voltage
power cable
joint part
voltage test
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011083072A
Other languages
Japanese (ja)
Inventor
Noriaki Horiguchi
規昭 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viscas Corp
Original Assignee
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viscas Corp filed Critical Viscas Corp
Priority to JP2011083072A priority Critical patent/JP2012220215A/en
Publication of JP2012220215A publication Critical patent/JP2012220215A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform, in small test voltage generation facilities, a withstand voltage test for a plant joint part of a long power cable formed by joining and elongating a required number of unit power cables having a continuously manufacturable length at a plant.SOLUTION: A plant joint part 1 to be tested includes a joint part external semiconducting layer 9 electrically edge-cut from the external semiconducting layers of both-side unit power cables 2A and 2B of the plant joint part, in the outer periphery of a reinforced insulation body 8, and a tentative shielding layer 10 in the outer periphery thereof. A withstand voltage test of the plant joint part is performed by applying a test voltage to the tentative shielding layer 10, with conductors 3 of the long power cables grounded.

Description

本発明は、一連続で製造可能な長さの単位電力ケーブルを所要本数、工場でジョイントして長尺化してなる長尺電力ケーブルの、工場ジョイント部の耐電圧試験方法に関するものである。   The present invention relates to a withstand voltage test method for a factory joint portion of a long power cable obtained by lengthening a required number of unit power cables that can be manufactured in a continuous manner at a factory.

海底ケーブル等は長距離を一連続で布設する必要があることから、工場から出荷されるケーブルの長さは例えば数10km以上と極めて長くなる。しかし電力ケーブルの場合、一連続で製造可能なケーブルの長さは数kmから10数km程度であるため、長さ数10km以上というような長尺電力ケーブルは、一連続で製造可能な長さの単位電力ケーブルを所要本数、工場でジョイントして長尺化することにより製造される。   Since submarine cables and the like need to be laid for a long distance, the length of cables shipped from the factory is extremely long, for example, several tens of kilometers or more. However, in the case of power cables, the length of cables that can be manufactured continuously is about several kilometers to several tens of kilometers, so long power cables that are several tens of kilometers or longer are long enough to be manufactured continuously. It is manufactured by joining the required number of unit power cables in the factory and lengthening them.

このような長尺電力ケーブルの場合も、工場出荷前に健全性確認のため耐電圧試験を行う必要がある。個々の単位電力ケーブルについては、製造した段階で(ジョイント前に)従来の試験電圧発生設備で耐電圧試験を行い、健全性を確認することが可能である。しかし、最も健全性確認が必要なのは、機械的に一連続で製造可能な単位電力ケーブルよりも、工場ジョイント部である。工場ジョイント部の耐電圧試験は、複数本の単位電力ケーブルをジョイントして長尺化した長尺電力ケーブルの状態でしか行うことができない。   Even in the case of such a long power cable, it is necessary to conduct a withstand voltage test to confirm the soundness before shipment from the factory. About each unit electric power cable, it is possible to confirm a soundness by performing a withstand voltage test with the conventional test voltage generation equipment at the stage of manufacture (before a joint). However, it is the factory joint part that needs the most soundness check rather than a unit power cable that can be manufactured mechanically in one continuous operation. The withstand voltage test of the factory joint part can be performed only in the state of a long power cable obtained by jointing a plurality of unit power cables.

一般に、中間に複数のジョイント部を含む電力ケーブルの耐電圧試験は、電力ケーブルの導体に試験電圧を印加することにより行われる(特許文献1参照)。   In general, a withstand voltage test of a power cable including a plurality of joint portions in the middle is performed by applying a test voltage to a conductor of the power cable (see Patent Document 1).

特開平5−87864号公報JP-A-5-87864

しかし、電力ケーブルの導体に試験電圧を印加して耐電圧試験を行う方法は、電力ケーブルの長さに応じて容量の大きい試験電圧発生設備が必要となるため、全長が数10km以上にもなる長尺電力ケーブルの場合は、この方法で耐電圧試験を行うためには、容量の極めて大きい試験電圧発生設備が必要となる。その上、交流の耐電圧試験においては補償リアクトルも必要となる。このため、長さ数10kmから100km程度の長尺電力ケーブルについて100kV以上の高電圧試験を行うとなると、一般的な試験電圧発生設備では対応できず、新規に試験電圧発生設備を建設する必要も出てくる。その費用は数億円以上にもなり、簡単には耐電圧試験を行うことはできない。   However, the method of performing a withstand voltage test by applying a test voltage to the conductor of the power cable requires a test voltage generating facility with a large capacity according to the length of the power cable, so the total length is several tens of kilometers or more. In the case of a long power cable, in order to conduct a withstand voltage test by this method, a test voltage generating facility having an extremely large capacity is required. In addition, a compensation reactor is also required in the AC withstanding voltage test. For this reason, when a high voltage test of 100 kV or higher is performed on a long power cable with a length of about 10 km to 100 km, it cannot be handled by a general test voltage generation facility, and it is necessary to construct a new test voltage generation facility. Come out. The cost is over several hundred million yen, and it is not easy to conduct a withstand voltage test.

本発明の目的は、長尺電力ケーブルの工場ジョイント部の耐電圧試験を容量の小さい試験電圧発生設備で行える方法を提供することにある。   An object of the present invention is to provide a method capable of performing a withstand voltage test on a factory joint portion of a long power cable with a test voltage generating facility having a small capacity.

本発明に係る耐電圧試験方法は、一連続で製造可能な長さの単位電力ケーブルを所要本数、工場でジョイントして長尺化してなる長尺電力ケーブルの、工場ジョイント部の耐電圧試験方法であって、試験すべき工場ジョイント部の補強絶縁体の外周に、当該工場ジョイント部の両側の少なくも一方の単位電力ケーブルの外部半導電層と電気的に縁切りされたジョイント部外部半導電層を設け、その外周に仮遮蔽層を設け、長尺電力ケーブルの導体を接地した状態で、前記仮遮蔽層に試験電圧を印加することにより工場ジョイント部の耐電圧試験を行うことを特徴とするものである。   The withstand voltage test method according to the present invention is a withstand voltage test method for a factory joint part of a long power cable obtained by joining a unit power cable having a length that can be manufactured continuously and lengthening by joining at the factory. The outer semiconductive layer of the joint part electrically separated from the outer semiconductive layer of at least one unit power cable on both sides of the factory joint part on the outer periphery of the reinforcing insulator of the factory joint part to be tested And a temporary shielding layer is provided on the outer periphery thereof, and a withstand voltage test of the factory joint portion is performed by applying a test voltage to the temporary shielding layer in a state where the conductor of the long power cable is grounded. Is.

本発明に係る耐電圧試験方法は、ジョイント部外部半導電層の端部外周から単位電力ケーブルの絶縁体の外周にかけて、半導電部と絶縁部とからなるストレスリリーフコーンを設け、縁切り部の電界を緩和した状態で耐電圧試験を行うこともできる。   The withstand voltage test method according to the present invention provides a stress relief cone composed of a semiconductive portion and an insulating portion from the outer periphery of the end of the joint portion external semiconductive layer to the outer periphery of the insulator of the unit power cable, The withstand voltage test can also be performed in a state where the above is relaxed.

この場合、ストレスリリーフコーンの半導電部は半導電テープ巻きにより形成し、絶縁部は絶縁テープ巻きにより形成することができる。   In this case, the semiconductive portion of the stress relief cone can be formed by semiconductive tape winding, and the insulating portion can be formed by insulating tape winding.

また、ストレスリリーフコーンは、半導電部と絶縁部が一体に形成されたゴム成型体からなるものであってもよい。   Further, the stress relief cone may be formed of a rubber molded body in which the semiconductive portion and the insulating portion are integrally formed.

本発明によれば、長尺電力ケーブルの導体を接地した状態で、単位電力ケーブルの外部半導電層と縁切りされた工場ジョイント部の仮遮蔽層に試験電圧を印加するので、長尺電力ケーブルの全長に電圧を印加する方法に比べ、容量の小さい試験電圧発生設備で耐電圧試験を行うことができる。   According to the present invention, since the test voltage is applied to the temporary shielding layer of the factory joint section cut off from the outer semiconductive layer of the unit power cable with the conductor of the long power cable grounded, The withstand voltage test can be performed with a test voltage generating facility having a small capacity as compared with a method in which a voltage is applied to the entire length.

また、縁切り部にストレスリリーフコーンを取り付けることにより、縁切り部の電界を緩和することができるので、試験電圧の高い耐電圧試験を行うことができる。   Further, by attaching a stress relief cone to the edge cut portion, the electric field at the edge cut portion can be relaxed, so that a withstand voltage test with a high test voltage can be performed.

本発明に係る試験方法の一実施例を示す断面図。Sectional drawing which shows one Example of the test method which concerns on this invention. 本発明に係る試験方法の他の実施例を示す断面図。Sectional drawing which shows the other Example of the test method which concerns on this invention. 本発明に係る試験方法のさらに他の実施例を示す断面図。Sectional drawing which shows the further another Example of the test method which concerns on this invention. 本発明に係る試験方法のさらに他の実施例を示す断面図。Sectional drawing which shows the further another Example of the test method which concerns on this invention.

図1は本発明の一実施例を示す。図において、1は一連続で製造可能な長さの単位電力ケーブル(CVケーブル)を所要本数、工場でジョイントして長尺化してなる長尺電力ケーブルのうちの一つの工場ジョイント部を示し、2A、2Bはその工場ジョイント部1で接続された単位電力ケーブルを示す。単位電力ケーブル2A、2Bは同じ構造で、導体3、絶縁体4、外部半導電層5、金属遮蔽層6等から構成されている(他の構成部材は図示省略)。工場ジョイント部1は、導体接続部7、補強絶縁体8等から構成されている(他の構成部材は図示省略)。   FIG. 1 shows an embodiment of the present invention. In the figure, 1 shows a factory joint part of one of the long power cables formed by joining the required number of unit power cables (CV cables) of a length that can be manufactured in a continuous manner at the factory. Reference numerals 2A and 2B denote unit power cables connected by the factory joint section 1. The unit power cables 2A and 2B have the same structure and are composed of a conductor 3, an insulator 4, an external semiconductive layer 5, a metal shielding layer 6 and the like (other components are not shown). The factory joint part 1 is comprised from the conductor connection part 7, the reinforcement insulator 8, etc. (other structural members are abbreviate | omitting illustration).

工場ジョイント部1の耐電圧試験を行うため、単位電力ケーブル2A、2Bの端部は金属遮蔽層6、外部半導電層5を段剥ぎして絶縁体4を所要長露出させる。また補強絶縁体8の外周には半導電テープ巻きによりジョイント部外部半導電層9が設けられる。ジョイント部外部半導電層9は、その両端部がケーブル絶縁体4の外周に位置するように設けられるが、ケーブル外部半導電層5とは電気的に縁切りされる。つまり、ジョイント部外部半導電層9の端部とケーブル外部半導電層5の端部との間には試験電圧に耐えられるだけの絶縁間隔が設けられる。また、ジョイント部外部半導電層9の外周には金属箔等により仮遮蔽層10が設けられる。   In order to conduct a withstand voltage test of the factory joint portion 1, the end portions of the unit power cables 2A and 2B are stripped of the metal shielding layer 6 and the external semiconductive layer 5 to expose the insulator 4 for a required length. Further, a joint portion external semiconductive layer 9 is provided on the outer periphery of the reinforcing insulator 8 by semiconductive tape winding. The joint portion outer semiconductive layer 9 is provided so that both ends thereof are located on the outer periphery of the cable insulator 4, but is electrically separated from the cable outer semiconductive layer 5. That is, an insulation interval sufficient to withstand the test voltage is provided between the end portion of the joint portion outer semiconductive layer 9 and the end portion of the cable outer semiconductive layer 5. In addition, a temporary shielding layer 10 is provided on the outer periphery of the joint portion outer semiconductive layer 9 with a metal foil or the like.

工場ジョイント部1に上記のような処理を施した上で、長尺電力ケーブルの導体3及び金属遮蔽層6を接地し、仮遮蔽層10を試験電圧発生設備11に接続して、仮遮蔽層10に試験電圧を印加することにより工場ジョイント部1の耐電圧試験を行う。   After the factory joint section 1 is treated as described above, the conductor 3 and the metal shielding layer 6 of the long power cable are grounded, the temporary shielding layer 10 is connected to the test voltage generating facility 11, and the temporary shielding layer is connected. The withstand voltage test of the factory joint part 1 is performed by applying a test voltage to 10.

このようにすると、仮遮蔽層10だけに試験電圧を印加すればよいので、試験電圧発生設備11は、長尺電力ケーブルの導体全長に試験電圧を印加する場合に比べれば、容量の極めて小さなもので済み、大幅なコストダウンを図ることができる。   In this way, since the test voltage only needs to be applied to the temporary shielding layer 10, the test voltage generating equipment 11 has a very small capacity compared to the case where the test voltage is applied to the entire conductor length of the long power cable. This can save a lot of cost.

以上の試験により工場ジョイント部の健全性が確認されたら、仮遮蔽層10及びジョイント部外部半導電層9を除去して、正規のジョイント部外部半導電層及び金属遮蔽層を設けて工場ジョイント部を完成させる。また耐電圧試験の結果、工場ジョイント部が不合格となった場合はその工場ジョイント部を切除して再ジョイントを行う。   When the soundness of the factory joint part is confirmed by the above test, the temporary shielding layer 10 and the joint part external semiconductive layer 9 are removed, and the regular joint part external semiconductive layer and the metal shielding layer are provided to provide the factory joint part. To complete. If the factory joint part fails as a result of the withstand voltage test, the factory joint part is cut out and rejoined.

図2は本発明の他の実施例を示す。図1の実施例では補強絶縁体8の外周のジョイント部外部半導電層9を、その両側の単位電力ケーブル2A、2Bの外部半導電層5と縁切りしたが、この実施例は、ジョイント部外部半導電層9の一端側だけを一方の単位電力ケーブル2Aの外部半導電層5と縁切りし、他端側は他方の単位電力ケーブル2Bの外部半導電層5と縁切りせずに、耐電圧試験を行う場合である。   FIG. 2 shows another embodiment of the present invention. In the embodiment of FIG. 1, the joint portion outer semiconductive layer 9 on the outer periphery of the reinforcing insulator 8 is cut off from the outer semiconductive layers 5 of the unit power cables 2A and 2B on both sides thereof. Only one end side of the semiconductive layer 9 is cut off from the outer semiconductive layer 5 of one unit power cable 2A, and the other end side is not cut off from the outer semiconductive layer 5 of the other unit power cable 2B. This is the case.

このような構成で耐電圧試験を行えるのは例えば次のような場合である。すなわち、長尺電力ケーブルの全長(数10km)のうち、試験すべき工場ジョイント部から当該長尺電力ケーブルの一端までの長さが他端までの長さよりも格段に短い場合、例えば工場ジョイント部1の片方の単位電力ケーブル2Bが長尺電力ケーブルの最も端に位置する場合などである。この場合は、図2のような構成で耐電圧試験を行っても、試験電圧発生設備の容量は1本の単位電力ケーブル2B(長さ数km)について耐電圧試験を行う場合とほぼ同じで済むので、長尺電力ケーブルの導体全長に試験電圧を印加する場合に比べれば、試験電圧発生設備の容量を格段に小さくできる。   For example, the withstand voltage test can be performed in such a configuration as follows. That is, out of the total length (several tens of kilometers) of the long power cable, when the length from the factory joint to be tested to one end of the long power cable is much shorter than the length to the other end, for example, the factory joint For example, one unit power cable 2B of 1 is located at the end of the long power cable. In this case, even if the withstand voltage test is performed in the configuration as shown in FIG. 2, the capacity of the test voltage generating facility is almost the same as the case where the withstand voltage test is performed on one unit power cable 2B (length of several kilometers). Therefore, the capacity of the test voltage generating facility can be remarkably reduced as compared with the case where the test voltage is applied to the entire conductor length of the long power cable.

図3は本発明のさらに他の実施例を示す。図1の試験方法では、試験電圧が印加されるジョイント部外部半導電層9の端部付近で等電位線の曲率が大きく間隔が狭くなるため、その部分に電界が集中しやすい。試験電圧が100kV程度以下の場合は、縁切り部のケーブル絶縁体4の露出長さを100mm以上にすれば、図1の試験方法でも耐電圧試験は可能である。しかし試験電圧が100kV〜200kVと高くなると、図1の試験方法ではジョイント部外部半導電層9の端部付近の電界が強くなって、工場ジョイント部が健全であったとしても耐電圧試験で破壊したり、放電が発生し、部分放電測定を併用した耐電圧試験を行うことが難しくなる。   FIG. 3 shows still another embodiment of the present invention. In the test method of FIG. 1, since the curvature of the equipotential line is large and the interval is narrow near the end of the joint portion semiconductive layer 9 to which the test voltage is applied, the electric field tends to concentrate on that portion. When the test voltage is about 100 kV or less, the withstand voltage test can be performed even with the test method of FIG. However, when the test voltage increases to 100kV to 200kV, the electric field near the end of the joint outer semiconductive layer 9 becomes stronger in the test method of FIG. Or discharge occurs, making it difficult to conduct a withstand voltage test using partial discharge measurement.

そこで図3の実施例では、ジョイント部外部半導電層9の端部外周から単位電力ケーブル2A、2Bの絶縁体4の外周にかけて、半導電部12aと絶縁部12bとからなるストレスリリーフコーン12を設けた上で、耐電圧試験を行うようにしたものである。半導電部12aは半導電テープ巻きにより形成し、絶縁部12bは絶縁テープ巻きにより形成する。半導電部12aはその一部がジョイント部外部半導電層9の端部外周に位置するように形成され、半導電部12aと絶縁部12bの界面はジョイント部外部半導電層9の端部から離れるに従い内径が徐々に大きくなるテーパー状(ラッパ状)に形成される。このようにすると、縁切り部を通る等電位線は曲がりが緩やかになり、縁切り部の電界が緩和されるので、試験電圧が100kV〜200kVの場合でも絶縁破壊を発生させることなく耐電圧試験を行うことができる。   Therefore, in the embodiment of FIG. 3, the stress relief cone 12 composed of the semiconductive portion 12a and the insulating portion 12b is provided from the outer periphery of the end portion of the joint outer semiconductive layer 9 to the outer periphery of the insulator 4 of the unit power cables 2A and 2B. In addition, a withstand voltage test is performed. The semiconductive portion 12a is formed by semiconductive tape winding, and the insulating portion 12b is formed by insulating tape winding. The semiconductive portion 12 a is formed so that a part thereof is located on the outer periphery of the end portion of the joint portion external semiconductive layer 9, and the interface between the semiconductive portion 12 a and the insulating portion 12 b extends from the end portion of the joint portion external semiconductive layer 9. It is formed in a tapered shape (trumpet shape) in which the inner diameter gradually increases as the distance increases. In this way, the equipotential line passing through the edge cut portion is gently bent and the electric field at the edge cut portion is relaxed, so that a withstand voltage test is performed without causing dielectric breakdown even when the test voltage is 100 kV to 200 kV. be able to.

図4は本発明のさらに他の実施例を示す。図3の実施例のようにストレスリリーフコーン12をテープ巻きにより形成すると、試験電圧がさらに高くなった場合、テープ巻きにより生じる三角ボイド部から部分放電が発生しやすくなり、部分放電測定を併用した耐電圧試験を正常に行うことが難しくなる。   FIG. 4 shows still another embodiment of the present invention. When the stress relief cone 12 is formed by tape winding as in the embodiment of FIG. 3, when the test voltage is further increased, partial discharge is likely to occur from the triangular void portion caused by tape winding, and the partial discharge measurement is used in combination. It becomes difficult to perform a withstand voltage test normally.

そこで図4の実施例では、ストレスリリーフコーン12を半導電部12aと絶縁部12bが一体に形成されたゴム成型体で構成したものである。ゴムの材料としてはシリコーンゴムやエチレンプロピレンゴムを使用するとよい。このストレスリリーフコーン12は一体物であるため、単位電力ケーブル2A、2Bをジョイントする前に、ゴム弾性に逆らって拡径した状態でケーブル上に外装しておき、工場ジョイント部1を形成した後、図示の位置に引き戻して、ゴム弾性により縮径させることで、所定の位置に装着する。このようなストレスリリーフコーン12を用いれば、200kV以上の試験電圧でも耐電圧試験を行うことができる。   Therefore, in the embodiment of FIG. 4, the stress relief cone 12 is constituted by a rubber molded body in which the semiconductive portion 12a and the insulating portion 12b are integrally formed. Silicone rubber or ethylene propylene rubber may be used as the rubber material. Since this stress relief cone 12 is a unitary body, before the unit power cables 2A and 2B are joined, they are sheathed on the cable in a state of expanding the diameter against the rubber elasticity and after the factory joint portion 1 is formed. Then, it is pulled back to the position shown in the drawing and reduced in diameter by rubber elasticity to be mounted at a predetermined position. If such a stress relief cone 12 is used, a withstand voltage test can be performed even at a test voltage of 200 kV or higher.

なお、試験電圧がさらに高くなり、図4のような一体物のストレスリリーフコーン12を用いても縁切り部で閃絡が発生するおそれのある場合は、ケーブル外部半導電層5側にも同様のストレスリリーフコーンを設けるとよい。   In the case where the test voltage is further increased and there is a possibility that a flashover may occur at the edge cut portion even when the integrated stress relief cone 12 as shown in FIG. 4 is used, the same applies to the cable external semiconductive layer 5 side. A stress relief cone may be provided.

1:工場ジョイント部
2A、2B:単位電力ケーブル
3:ケーブル導体
4:ケーブル絶縁体
5:ケーブル外部半導電層
6:金属遮蔽層
7:導体接続部
8:補強絶縁体
9:ジョイント部外部半導電層
10:仮遮蔽層
11:試験電圧発生設備
12:ストレスリリーフコーン
12a:半導電部
12b:絶縁部
1: Factory joint part 2A, 2B: Unit power cable 3: Cable conductor 4: Cable insulator 5: Cable outer semiconductive layer 6: Metal shielding layer 7: Conductor connecting part 8: Reinforced insulator 9: Joint part outer semiconductive Layer 10: Temporary shielding layer 11: Test voltage generating facility 12: Stress relief cone 12a: Semiconductive portion 12b: Insulating portion

Claims (4)

一連続で製造可能な長さの単位電力ケーブルを所要本数、工場でジョイントして長尺化してなる長尺電力ケーブルの、工場ジョイント部の耐電圧試験方法であって、試験すべき工場ジョイント部の補強絶縁体の外周に、当該工場ジョイント部の両側の少なくも一方の単位電力ケーブルの外部半導電層と電気的に縁切りされたジョイント部外部半導電層を設け、その外周に仮遮蔽層を設け、長尺電力ケーブルの導体を接地した状態で、前記仮遮蔽層に試験電圧を印加することにより工場ジョイント部の耐電圧試験を行うことを特徴とする長尺電力ケーブルの工場ジョイント部の耐電圧試験方法。   A withstand voltage test method for factory joints of long power cables obtained by joining and lengthening the required number of unit power cables of a length that can be manufactured in a continuous manner at the factory joint part to be tested On the outer periphery of the reinforced insulation, a joint external semiconductive layer electrically cut from the external semiconductive layer of at least one unit power cable on both sides of the factory joint is provided, and a temporary shielding layer is provided on the outer periphery. And withstanding the conductor of the long power cable, a withstand voltage test of the factory joint part is performed by applying a test voltage to the temporary shielding layer. Voltage test method. ジョイント部外部半導電層の端部外周から単位電力ケーブルの絶縁体の外周にかけて、半導電部と絶縁部とからなるストレスリリーフコーンを設け、縁切り部の電界を緩和した状態で耐電圧試験を行うことを特徴とする請求項1記載の長尺電力ケーブルの工場ジョイント部の耐電圧試験方法。   A stress relief cone consisting of a semiconductive part and an insulating part is provided from the outer periphery of the end of the semiconductive layer of the joint part to the outer periphery of the insulator of the unit power cable, and a withstand voltage test is performed with the electric field at the edge cut part relaxed. The withstand voltage test method for a factory joint part of a long power cable according to claim 1. ストレスリリーフコーンの半導電部は半導電テープ巻きにより形成され、絶縁部は絶縁テープ巻きにより形成されることを特徴とする請求項2記載の長尺電力ケーブルの工場ジョイント部の耐電圧試験方法。   3. The withstand voltage test method for a factory joint portion of a long power cable according to claim 2, wherein the semiconductive portion of the stress relief cone is formed by semiconductive tape winding, and the insulating portion is formed by insulating tape winding. ストレスリリーフコーンは、半導電部と絶縁部が一体に形成されたゴム成型体からなることを特徴とする請求項2記載の長尺電力ケーブルの工場ジョイント部の耐電圧試験方法。   3. The withstand voltage test method for a factory joint portion of a long power cable according to claim 2, wherein the stress relief cone is made of a rubber molded body in which a semiconductive portion and an insulating portion are integrally formed.
JP2011083072A 2011-04-04 2011-04-04 Withstand voltage test method for plant joint part of long power cable Pending JP2012220215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083072A JP2012220215A (en) 2011-04-04 2011-04-04 Withstand voltage test method for plant joint part of long power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083072A JP2012220215A (en) 2011-04-04 2011-04-04 Withstand voltage test method for plant joint part of long power cable

Publications (1)

Publication Number Publication Date
JP2012220215A true JP2012220215A (en) 2012-11-12

Family

ID=47271907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083072A Pending JP2012220215A (en) 2011-04-04 2011-04-04 Withstand voltage test method for plant joint part of long power cable

Country Status (1)

Country Link
JP (1) JP2012220215A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880584A (en) * 2015-06-11 2015-09-02 国网上海市电力公司 Insulation lead wire for 10kV power-frequency voltage-withstand test
CN108107295A (en) * 2018-01-03 2018-06-01 长园电力技术有限公司 A kind of cable flexible joint test tool and method
CN110007179A (en) * 2018-10-25 2019-07-12 童志勇 A kind of cable intermediate joint electric performance test tooling and method
CN110068298A (en) * 2019-05-30 2019-07-30 中国电力科学研究院有限公司 Detect the device and method of sea cable factory connector XLPE thickness of insulating layer
EP4155740A1 (en) * 2021-09-23 2023-03-29 Nexans Partial discharge test of factory joints

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116495A (en) * 1974-08-01 1976-02-09 Sumitomo Electric Industries Kaiteikeeburuno jointobutaiatsushikenhoho
JPH0442719A (en) * 1990-06-05 1992-02-13 Showa Electric Wire & Cable Co Ltd Forming method of mold stress cone
JPH09247837A (en) * 1996-03-08 1997-09-19 Sumitomo Electric Ind Ltd Insulated straight connection of power cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116495A (en) * 1974-08-01 1976-02-09 Sumitomo Electric Industries Kaiteikeeburuno jointobutaiatsushikenhoho
JPH0442719A (en) * 1990-06-05 1992-02-13 Showa Electric Wire & Cable Co Ltd Forming method of mold stress cone
JPH09247837A (en) * 1996-03-08 1997-09-19 Sumitomo Electric Ind Ltd Insulated straight connection of power cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880584A (en) * 2015-06-11 2015-09-02 国网上海市电力公司 Insulation lead wire for 10kV power-frequency voltage-withstand test
CN108107295A (en) * 2018-01-03 2018-06-01 长园电力技术有限公司 A kind of cable flexible joint test tool and method
CN110007179A (en) * 2018-10-25 2019-07-12 童志勇 A kind of cable intermediate joint electric performance test tooling and method
CN110007179B (en) * 2018-10-25 2021-04-30 童志勇 Cable intermediate joint electrical performance testing tool and method
CN110068298A (en) * 2019-05-30 2019-07-30 中国电力科学研究院有限公司 Detect the device and method of sea cable factory connector XLPE thickness of insulating layer
EP4155740A1 (en) * 2021-09-23 2023-03-29 Nexans Partial discharge test of factory joints

Similar Documents

Publication Publication Date Title
US9306382B2 (en) Joints for high voltage cables insulated with impregnated paper or paper-polypropylene laminate (PPL)
JP2012220215A (en) Withstand voltage test method for plant joint part of long power cable
JP4751918B2 (en) Air termination connection and assembly method of air termination connection
US20190027907A1 (en) Method of manufacturing a cold shrinkable termination and assembly
CN103534766A (en) Improved bushings foil design
US10049790B2 (en) Electrical cable
CN106300214A (en) Cold-contraction type cable termination, cold-contraction type terminal assembly and the method for termination cable
Illias et al. Distribution of electric field in medium voltage cable joint geometry
JP5697918B2 (en) Cable connection
JP6575341B2 (en) Insulation structure and insulation member
RU2689383C1 (en) INTERPHASE REMOTE STRUT OF OVERHEAD TRANSMISSION LINES WITH VOLTAGE OF 35-220 kV
EP3128630B1 (en) Method for electrical separation of the metallic sheath a hvdc mi cable
KR101550030B1 (en) Insulator combined use outer case for insulation joint box of ultra high voltage power cable
CN113544924B (en) Intermediate connection part of power cable and construction method thereof
RU2686458C1 (en) Flexible high-voltage cable
CN109473242B (en) A kind of cable insulation tool and its installation method
KR102304368B1 (en) Apparatus and method for joining sleeve for cable joint assembly
JP5924468B2 (en) Prefab joint for DC CV cable
EP4336687A1 (en) A method of building an insulation system of a power cable
JP7399988B2 (en) power cable termination system
JP6038892B2 (en) Dead front cable terminal with insulation shield
JP5963174B2 (en) Power cable connection structure
US20170229210A1 (en) Harness for electrical connection between a plurality of devices
KR101877527B1 (en) Insulation protection pipes and insulation joint boxes for extra high voltage cables having the same
KR20220030452A (en) Bushing device for heavy electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140922