JP2012216471A - Method for manufacturing fuel cell structure - Google Patents
Method for manufacturing fuel cell structure Download PDFInfo
- Publication number
- JP2012216471A JP2012216471A JP2011082059A JP2011082059A JP2012216471A JP 2012216471 A JP2012216471 A JP 2012216471A JP 2011082059 A JP2011082059 A JP 2011082059A JP 2011082059 A JP2011082059 A JP 2011082059A JP 2012216471 A JP2012216471 A JP 2012216471A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- cell structure
- holding member
- electrode layer
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 90
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000003792 electrolyte Substances 0.000 claims abstract description 22
- 239000007800 oxidant agent Substances 0.000 claims abstract description 18
- 230000001590 oxidative effect Effects 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract 4
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 22
- 239000007787 solid Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 239000007791 liquid phase Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 229910052963 cobaltite Inorganic materials 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 229910002075 lanthanum strontium manganite Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FVROQKXVYSIMQV-UHFFFAOYSA-N [Sr+2].[La+3].[O-][Mn]([O-])=O Chemical compound [Sr+2].[La+3].[O-][Mn]([O-])=O FVROQKXVYSIMQV-UHFFFAOYSA-N 0.000 description 1
- PACGUUNWTMTWCF-UHFFFAOYSA-N [Sr].[La] Chemical compound [Sr].[La] PACGUUNWTMTWCF-UHFFFAOYSA-N 0.000 description 1
- UNPDDPPIJHUKSG-UHFFFAOYSA-N [Sr].[Sm] Chemical compound [Sr].[Sm] UNPDDPPIJHUKSG-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、燃料電池構造体の製造方法に関し、特に、吸気部と、前記吸気部から分岐した複数の分岐部と、前記複数の分岐部の下流端が合流する排気部とを含む気体流路を有する燃料電池構造体の製造方法に関する。 The present invention relates to a method of manufacturing a fuel cell structure, and in particular, a gas flow path including an intake portion, a plurality of branch portions branched from the intake portion, and an exhaust portion where downstream ends of the plurality of branch portions merge. The present invention relates to a method for manufacturing a fuel cell structure having
燃料電池は平面状の単セルをセパレータと呼ばれる部材を挟んで積層するスタック構造が最も一般的である。燃料電池の構造としては、上記のスタック構造の他にチューブ状の単セルを多数並べる構造もある。 A fuel cell is most commonly a stack structure in which planar single cells are stacked with a member called a separator interposed therebetween. As a structure of the fuel cell, there is a structure in which a large number of tube-shaped single cells are arranged in addition to the above-described stack structure.
上記の単セルは、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだ構成である。 The above unit cell typically oxidizes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), etc., with a fuel electrode (anode). The structure is sandwiched from both sides with the agent electrode (cathode).
上述したいずれの構造も、単セルを多数配列し、燃料ガスと酸化剤ガスを供給する配管等を組み立てる必要があり、接続部が多い複雑な構造になる。このため量産性が悪く、また部品点数も多いことから高コストになっていた。さらに、接続部からのガス漏れを防ぐシールが不十分である場合には、接続部からのガス漏れによって発電効率が低下してしまうという問題があった。 In any of the structures described above, it is necessary to assemble a large number of single cells and assemble a pipe for supplying fuel gas and oxidant gas, and the structure becomes complicated. For this reason, the mass productivity is poor and the number of parts is large, so that the cost is high. Furthermore, when the seal which prevents the gas leak from a connection part is inadequate, there existed a problem that electric power generation efficiency fell by the gas leak from a connection part.
ここで、特許文献1〜特許文献5で開示されている燃料電池セルの製造方法を採用した場合、これらの製造方法では犠牲層を利用しているため燃料電池セルの量産性は若干向上するが、吸気部と、前記吸気部から分岐した複数の分岐部と、前記複数の分岐部の下流端が合流する排気部とを含む気体流路を有する燃料電池を製造するには、燃料電池セルの製造以外に配管等の組み立てが必要になるため、当該燃料電池の量産性は依然として悪いままである。 Here, when the manufacturing method of the fuel cell disclosed in Patent Documents 1 to 5 is adopted, the mass productivity of the fuel cell is slightly improved because a sacrificial layer is used in these manufacturing methods. In order to manufacture a fuel cell having a gas flow path including an intake section, a plurality of branch sections branched from the intake section, and an exhaust section where downstream ends of the plurality of branch sections merge, Since assembly of piping and the like is necessary in addition to manufacturing, the mass productivity of the fuel cell remains poor.
本発明は、上記の状況に鑑み、量産性に優れた燃料電池構造体の製造方法を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a method for manufacturing a fuel cell structure excellent in mass productivity.
上記目的を達成するために本発明に係る燃料電池構造体の製造方法は、吸気部と、前記吸気部から分岐した複数の分岐部と、前記複数の分岐部の下流側が合流する排気部とを含む気体流路の形状に対応する外形形状を有する犠牲部材の表面に、燃料極層、電解質層、及び酸化剤極層の三層を少なくとも含む多層膜構造である燃料電池構造体を形成する構造体形成工程と、前記構造体形成工程の途中又は完了後において前記犠牲部材を除去する除去工程とを備える構成とする。 In order to achieve the above object, a method of manufacturing a fuel cell structure according to the present invention includes an intake section, a plurality of branch sections branched from the intake section, and an exhaust section where downstream sides of the plurality of branch sections merge. A structure in which a fuel cell structure having a multilayer structure including at least three layers of a fuel electrode layer, an electrolyte layer, and an oxidant electrode layer is formed on the surface of a sacrificial member having an outer shape corresponding to the shape of the gas flow path. A body forming step and a removing step of removing the sacrificial member during or after the structure forming step.
このような製造方法によると、吸気部と、前記吸気部から分岐した複数の分岐部と、前記複数の分岐部の下流側が合流する排気部とを含む気体流路を有する複雑な形状の燃料電池構造体を継ぎ目無く一体的に形成することができるので、組み立て工程が不要になり、量産性が向上する。また、従来のスタック構造では必要であったセパレータ、スペーサ等が不要になるので、燃料電池構造体の軽量小型化、高密度化、低価格化の面でも有利である。 According to such a manufacturing method, the fuel cell having a complicated shape having a gas flow path including an intake portion, a plurality of branch portions branched from the intake portion, and an exhaust portion where downstream sides of the plurality of branch portions merge. Since the structure can be integrally formed without a seam, an assembling process is not required, and mass productivity is improved. Further, since a separator, a spacer, and the like, which are necessary in the conventional stack structure, are unnecessary, it is advantageous in terms of reducing the weight, size, density, and cost of the fuel cell structure.
また、前記構造体形成工程において、第1保持部材の吸気口に対して、前記吸気部に対応する前記犠牲部材の端部が挿入され、第2保持部材の排気口に対して、前記排気部に対応する前記犠牲部材の端部が挿入され、前記第1保持部材及び前記第2保持部材と前記犠牲部材との接続境界を完全に覆う層が形成された後に、前記除去工程が実行されるようにしてもよい。 Further, in the structure forming step, an end of the sacrificial member corresponding to the intake portion is inserted into the intake port of the first holding member, and the exhaust portion is inserted into the exhaust port of the second holding member. After the end of the sacrificial member corresponding to is inserted and a layer that completely covers the connection boundary between the first holding member and the second holding member and the sacrificial member is formed, the removing step is executed. You may do it.
これにより、燃料電池構造体(製造途中のものを含む)が第1保持部材及び第2保持部材に接続保持されているので、薄膜である燃料電池構造体に過大な力をかけずに燃料電池構造体をハンドリングすることができる。なお、第1保持部材及び第2保持部材は一体構造であってもよい。 As a result, the fuel cell structure (including those in the middle of manufacture) is connected and held to the first holding member and the second holding member, so that the fuel cell can be applied without applying excessive force to the fuel cell structure that is a thin film. The structure can be handled. The first holding member and the second holding member may have an integrated structure.
また、前記電解質層が、前記電解質層よりも内側に形成される前記燃料極層又は前記酸化剤極層の外表面全面を覆い、且つ、前記第1保持部材及び前記第2保持部材と前記電解質層よりも内側に形成される前記燃料極層又は前記酸化剤極層との接続境界を完全に覆うように、形成されるようにしてもよい。 Further, the electrolyte layer covers the entire outer surface of the fuel electrode layer or the oxidizer electrode layer formed inside the electrolyte layer, and the first holding member, the second holding member, and the electrolyte You may make it form so that the connection boundary with the said fuel electrode layer or the said oxidizing agent electrode layer formed inside a layer may be covered completely.
これにより、第1保持部材及び第2保持部材と緻密でガスを通さない電解質層とによる気密性が高いガスシールを実現することができる。さらに、外部との配管接続は、比較的低温に維持できる第1保持部材の吸気口及び第2保持部材の排気口で行えるので、ガスシールが容易であり信頼性を高めることができる。 Thereby, it is possible to realize a gas seal having high airtightness by the first holding member and the second holding member and the dense electrolyte layer that does not allow gas to pass therethrough. Furthermore, since piping connection with the outside can be performed at the intake port of the first holding member and the exhaust port of the second holding member that can be maintained at a relatively low temperature, gas sealing is easy and reliability can be improved.
また、前記除去工程が、前記構造体形成工程の途中において前記犠牲部材を熱処理により除去する工程であるようにしてもよい。 The removing step may be a step of removing the sacrificial member by heat treatment in the middle of the structure forming step.
これにより、除去工程を簡素化することができる。 Thereby, a removal process can be simplified.
また、前記犠牲部材を、前記分岐部同士の結合点が形成されるような形状にするようにしてもよい。 In addition, the sacrificial member may be shaped to form a connection point between the branch portions.
これにより、燃料電池構造体の機械強度が向上する。 Thereby, the mechanical strength of the fuel cell structure is improved.
本発明に係る燃料電池構造体の製造方法によると、組み立て工程が不要になり、量産性が向上する。 According to the method for manufacturing a fuel cell structure according to the present invention, an assembling process becomes unnecessary, and mass productivity is improved.
本発明の実施形態について図面を参照して以下に説明する。尚、本発明は、後述する実施形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described later.
図1は本発明の一実施形態に係る製造方法によって得られる燃料電池構造体の斜視図である。但し、図1においては集電パターンの図示を省略している。また、図2は本発明の一実施形態に係る製造方法によって得られる燃料電池構造体の図1に示す断面A−A’での断面図である。 FIG. 1 is a perspective view of a fuel cell structure obtained by a manufacturing method according to an embodiment of the present invention. However, the current collection pattern is not shown in FIG. FIG. 2 is a cross-sectional view of the fuel cell structure obtained by the manufacturing method according to one embodiment of the present invention, taken along the section A-A ′ shown in FIG. 1.
吸気口1及び排気口2を有するセラミック製の保持部材3に、ここではSOFC(Solid Oxide Fuel Cell)を構成する多層膜(以下、SOFC膜という)からなる燃料電池構造体4が接続されている。 A fuel cell structure 4 made of a multilayer film (hereinafter referred to as SOFC film) constituting a SOFC (Solid Oxide Fuel Cell) is connected to a ceramic holding member 3 having an intake port 1 and an exhaust port 2. .
燃料電池構造体4は、吸気部と、前記吸気部から分岐した複数の分岐部と、前記複数の分岐部の下流端が合流する排気部とを含む気体流路を有している。保持部材3の吸気口1に前記吸気部の上流端がつながっており、前記排気部の下流端に保持部材3の排気口2がつながっている。上記のように、前記吸気部及び前記排気部よりも流路が狭い分岐部を複数設けることにより、比較的小さな空間内で燃料電池における反応面積を十分に確保することができる。 The fuel cell structure 4 has a gas flow path including an intake portion, a plurality of branch portions branched from the intake portion, and an exhaust portion where downstream ends of the plurality of branch portions merge. The upstream end of the intake portion is connected to the intake port 1 of the holding member 3, and the exhaust port 2 of the holding member 3 is connected to the downstream end of the exhaust portion. As described above, by providing a plurality of branch portions whose flow paths are narrower than those of the intake portion and the exhaust portion, a sufficient reaction area in the fuel cell can be ensured in a relatively small space.
SOFC膜は内側から燃料極層(アノード層)5、固体酸化物電解質層6、酸化剤極層(カソード層)7の順で積層された三層膜である。固体酸化物電解質層6は、ガスを通さず酸素イオンのみを通す必要があることから緻密な構造であり、例えば公知のランタンガレード系電解質(LSGM)、イットリア安定化ジルコニア(YSZ)、セリア系電解質(GDC)等を用いることができる。一方、燃料極層5及び酸化剤極層7は反応ガスを通す必要があることから多孔質であり、燃料極層5には、例えばNiO−LSGM、NiO−YSZ、NiO−GDC等が用いられ、酸化剤極層7には、例えばランタンストロンチウムマンガナイト(LSM)、ランタンストロンチウムコバルタイト(LSC)、サマリウムストロンチウムコバルタイト(SSC)等が用いられる。各層は数μmから数十μmの厚さであるが、構造体としての強度を確保するために、三層のうちいずれか(例えば燃料極層5)をより厚くし、そのより厚くした層を支持体層としてもよい。 The SOFC film is a three-layer film in which a fuel electrode layer (anode layer) 5, a solid oxide electrolyte layer 6, and an oxidant electrode layer (cathode layer) 7 are laminated in this order from the inside. The solid oxide electrolyte layer 6 has a dense structure because it is necessary to pass only oxygen ions without passing gas. For example, a known lanthanum galade electrolyte (LSGM), yttria stabilized zirconia (YSZ), ceria An electrolyte (GDC) or the like can be used. On the other hand, the fuel electrode layer 5 and the oxidant electrode layer 7 are porous because the reaction gas needs to pass therethrough. For the fuel electrode layer 5, for example, NiO-LSGM, NiO-YSZ, NiO-GDC or the like is used. For the oxidant electrode layer 7, for example, lanthanum strontium manganite (LSM), lanthanum strontium cobaltite (LSC), samarium strontium cobaltite (SSC) or the like is used. Each layer has a thickness of several μm to several tens of μm, but in order to ensure the strength as a structure, one of the three layers (for example, the fuel electrode layer 5) is made thicker, and the thicker layer is formed. It is good also as a support body layer.
燃料ガス(例えば水素ガス)を保持部材3の吸気口1から燃料電池構造体4内の気体流路(燃料極層5側)に導入し、酸化剤ガス(例えば酸素や空気)を燃料電池構造体4の周囲(酸化剤極7側)に供給することにより、発電が行われる。そして、発電の際に生成された水(水蒸気)を含むガスが排気ガスとして保持部材3の排気口2から排出される。 A fuel gas (for example, hydrogen gas) is introduced from the intake port 1 of the holding member 3 into a gas flow path (on the fuel electrode layer 5 side) in the fuel cell structure 4, and an oxidant gas (for example, oxygen or air) is introduced into the fuel cell structure. Electric power is generated by supplying it to the periphery of the body 4 (oxidant electrode 7 side). And the gas containing the water (water vapor | steam) produced | generated in the case of electric power generation is discharged | emitted from the exhaust port 2 of the holding member 3 as exhaust gas.
保持部材3にはアノード集電パターン8及びカソード集電パターン9を形成し、燃料電池構造体4にも同様にアノード集電パターン8及びカソード集電パターン9を形成する。なお、アノード集電パターン8及びカソード集電パターン9は、保持部材3のアノード集電パターン8と燃料電池構造体4のアノード集電パターン8とが電気的に接続され、保持部材3のカソード集電パターン9と燃料電池構造体4のカソード集電パターン9とが電気的に接続されるようなパターンレイアウトとする。また、アノード集電パターン8及びカソード集電パターン9はそれぞれ導電性材料からなる。 An anode current collection pattern 8 and a cathode current collection pattern 9 are formed on the holding member 3, and an anode current collection pattern 8 and a cathode current collection pattern 9 are similarly formed on the fuel cell structure 4. The anode current collection pattern 8 and the cathode current collection pattern 9 are electrically connected to the anode current collection pattern 8 of the holding member 3 and the anode current collection pattern 8 of the fuel cell structure 4. The pattern layout is such that the electricity pattern 9 and the cathode current collection pattern 9 of the fuel cell structure 4 are electrically connected. The anode current collection pattern 8 and the cathode current collection pattern 9 are each made of a conductive material.
続いて本発明の一実施形態に係る製造方法について図3〜図7を参照して説明する。図3は、本発明の一実施形態に係る製造方法によって得られる燃料電池構造体の第1工程完了時点での図2に示す断面A−A’での断面図である。図4は、本発明の一実施形態に係る製造方法によって得られる燃料電池構造体の第2工程完了時点での図2に示す断面A−A’での断面図である。図5は、本発明の一実施形態に係る製造方法によって得られる燃料電池構造体の第3工程完了時点での図2に示す断面A−A’での断面図である。図6は、本発明の一実施形態に係る製造方法によって得られる燃料電池構造体の第4工程完了時点での図2に示す断面A−A’での断面図である。図7は、本発明の一実施形態に係る製造方法によって得られる燃料電池構造体の第5工程完了時点での図2に示す断面A−A’での断面図である。 Then, the manufacturing method which concerns on one Embodiment of this invention is demonstrated with reference to FIGS. FIG. 3 is a cross-sectional view taken along a cross-section A-A ′ shown in FIG. 2 when the first step of the fuel cell structure obtained by the manufacturing method according to the embodiment of the present invention is completed. FIG. 4 is a cross-sectional view taken along a cross-section A-A ′ shown in FIG. 2 when the second step of the fuel cell structure obtained by the manufacturing method according to the embodiment of the present invention is completed. FIG. 5 is a cross-sectional view taken along the section A-A ′ shown in FIG. 2 when the third step of the fuel cell structure obtained by the manufacturing method according to the embodiment of the present invention is completed. 6 is a cross-sectional view taken along a cross-section A-A ′ shown in FIG. 2 when the fourth step of the fuel cell structure obtained by the manufacturing method according to the embodiment of the present invention is completed. FIG. 7 is a cross-sectional view taken along the section A-A ′ shown in FIG. 2 when the fifth step of the fuel cell structure obtained by the manufacturing method according to the embodiment of the present invention is completed.
保持部材3として、例えば未焼成のセラミック材料で成型された成型体を用意する。当該成型体は、吸気口1及び排気口2を有し、さらに保持部材3及び燃料電池構造体4からなる構造物を収容容器などに設置するための固定部を有する形状である。例えば、保持部材3の板形状部(図1参照)の長手方向側面部に対応するスリット状のレールが前記収容容器に設けられていれば、前記板形状部の長手方向側面部が前記固定部となる。また、例えば、前記構造物を固定するためのネジ穴が前記収容容器に形成されていれば、保持部材3の前記ネジ穴に対応する箇所に貫通穴を設け、当該貫通穴を前記固定部とすればよい。 As the holding member 3, for example, a molded body molded from an unfired ceramic material is prepared. The molded body has an intake port 1 and an exhaust port 2 and further has a fixing portion for installing a structure made up of the holding member 3 and the fuel cell structure 4 in a storage container or the like. For example, if a slit-like rail corresponding to the longitudinal side surface portion of the plate-shaped portion (see FIG. 1) of the holding member 3 is provided in the container, the longitudinal side surface portion of the plate-shaped portion is the fixed portion. It becomes. Further, for example, if a screw hole for fixing the structure is formed in the storage container, a through hole is provided at a position corresponding to the screw hole of the holding member 3, and the through hole is connected to the fixing portion. do it.
さらに、犠牲部材10として、例えば熱可塑性樹脂で成型された成型物を用意する。当該成型物は、燃料電池構造体4の気体流路の形状に対応する外形形状を有する。 Further, as the sacrificial member 10, for example, a molded product molded with a thermoplastic resin is prepared. The molded product has an outer shape corresponding to the shape of the gas flow path of the fuel cell structure 4.
次に、第1工程において、アノード集電パターン8を保持部材3の吸気口1の上流部及び排気口2の下流部並びにそれらの周辺にスクリーン印刷等で形成し、犠牲部材10の表面にもアノード集電パターン8をスクリーン印刷等で形成し、その後、保持部材3の吸気口1及び排気口2に対して犠牲部材10の両端部を挿入する。これにより、図3に示す状態になる。なお、犠牲部材10に形成したアノード集電パターン8は紙面の奥側に位置しているため、図3では隠れている。 Next, in the first step, the anode current collection pattern 8 is formed by screen printing or the like on the upstream portion of the intake port 1, the downstream portion of the exhaust port 2, and the periphery thereof, and also on the surface of the sacrificial member 10. The anode current collection pattern 8 is formed by screen printing or the like, and then both ends of the sacrificial member 10 are inserted into the intake port 1 and the exhaust port 2 of the holding member 3. As a result, the state shown in FIG. 3 is obtained. The anode current collection pattern 8 formed on the sacrificial member 10 is hidden in FIG. 3 because it is located on the far side of the page.
次に、第2工程において、燃料極層5(図2参照)の材料と多孔質にするための造孔材であるポリマ粒子等とを溶媒に拡散した液相ペースト5’を、犠牲部材10の露出面全面並びに保持部材3の吸気口1の下流部外周及び排気口2の上流部外周にディッピング等の方法で塗布し、液相ペースト5’によって保持部材3と犠牲部材10との接続境界が完全に覆われるようにする。これにより、図4に示す状態になる。燃料極層5(図2参照)を支持体層とするために、液相ペースト5’の塗布回数を増やして液相ペースト5’の厚みを増やすこともできる。 Next, in the second step, a liquid phase paste 5 ′ obtained by diffusing the material of the fuel electrode layer 5 (see FIG. 2) and polymer particles, which are pore-forming materials for making it porous, into a solvent is used as a sacrificial member 10. Is applied to the entire exposed surface of the holding member 3 and the outer periphery of the downstream portion of the intake port 1 and the outer periphery of the upstream portion of the exhaust port 2 by a method such as dipping, and the connection boundary between the holding member 3 and the sacrificial member 10 by the liquid phase paste 5 ′. To be completely covered. As a result, the state shown in FIG. 4 is obtained. In order to use the fuel electrode layer 5 (see FIG. 2) as the support layer, the thickness of the liquid phase paste 5 'can be increased by increasing the number of times the liquid phase paste 5' is applied.
次に、第3工程において、液相ペースト5’を乾燥させた後、犠牲部材10を除去してから、適切な条件(例えば1200〜1500℃)で液相ペースト5’及び保持部材3を焼成する。これにより、図5に示す状態になる。犠牲部材10を除去する方法としては、例えば、犠牲部材10の融点以上に加熱して犠牲部材10を液状にして保持部材3の吸気口1及び排気口2から排出する方法、あるいは、犠牲部材10の融点より高温に徐々に加熱して犠牲部材10を液相ペースト5’中の造孔材と共に焼失させる方法がある。なお、セラミックは焼成時に体積が大きく収縮するので、この体積収縮によって壊れないようにするために、燃料極5の材料と保持部材3の材料とで焼成時の収縮率が揃うように各材料の配合を調整することが望ましい。 Next, in the third step, after the liquid phase paste 5 ′ is dried, the sacrificial member 10 is removed, and then the liquid phase paste 5 ′ and the holding member 3 are fired under appropriate conditions (for example, 1200 to 1500 ° C.). To do. As a result, the state shown in FIG. 5 is obtained. As a method for removing the sacrificial member 10, for example, a method of heating the sacrificial member 10 to a temperature higher than the melting point of the sacrificial member 10 to make the sacrificial member 10 liquid and discharging it from the intake port 1 and the exhaust port 2 of the holding member 3. There is a method in which the sacrificial member 10 is burned off together with the pore former in the liquid phase paste 5 ′ by gradually heating to a temperature higher than the melting point. Since the volume of ceramic is greatly shrunk during firing, in order to prevent breakage due to this volume shrinkage, the material of the fuel electrode 5 and the material of the holding member 3 have the same shrinkage rate during firing. It is desirable to adjust the formulation.
次に、第4工程において、固体酸化物電解質層6を溶媒に拡散した液相ペーストを、燃料極層5の外表面全面並びに保持部材3の吸気口1の下流部外周及び排気口2の上流部外周にディッピング等の方法で塗布し、当該液相ペーストによって保持部材3と燃料極層5との接続境界が完全に覆われるようにし、その後焼成する。これにより、図6に示す状態になり、保持部材3と燃料電池構造体4(図2参照)との接続部において、保持部材3と緻密でガスを通さない固体酸化物電解質層6とによる気密性が高いガスシールを実現することができる。 Next, in the fourth step, the liquid phase paste obtained by diffusing the solid oxide electrolyte layer 6 in the solvent is applied to the entire outer surface of the fuel electrode layer 5, the outer periphery of the downstream portion of the intake port 1 of the holding member 3, and the upstream of the exhaust port 2. It is applied to the outer periphery by dipping or the like, and the connection boundary between the holding member 3 and the fuel electrode layer 5 is completely covered with the liquid phase paste, and then fired. As a result, the state shown in FIG. 6 is obtained, and in the connection portion between the holding member 3 and the fuel cell structure 4 (see FIG. 2), the holding member 3 and the solid oxide electrolyte layer 6 that is dense and impervious to gas are sealed. A highly functional gas seal can be realized.
次に、第5工程において、酸化剤極層7の材料と多孔質にするための造孔材であるポリマ粒子等とを溶媒に拡散した液相ペーストを、固体酸化物電解質層6の外表面のうち固体酸化物電解質層内側の燃料極層形成領域に対応する領域にディッピング等の方法で塗布し、その後焼成する。これにより、図7に示す状態になる。 Next, in the fifth step, the liquid phase paste obtained by diffusing the material of the oxidant electrode layer 7 and polymer particles, which are pore forming materials for making the porous material, into the solvent is used as the outer surface of the solid oxide electrolyte layer 6. Of these, it is applied to a region corresponding to the fuel electrode layer forming region inside the solid oxide electrolyte layer by a method such as dipping and then fired. As a result, the state shown in FIG. 7 is obtained.
最後に、カソード集電パターン9を保持部材3及び燃料電池構造体4にスクリーン印刷等で形成すると、図2に示す構造物が完成する。 Finally, when the cathode current collection pattern 9 is formed on the holding member 3 and the fuel cell structure 4 by screen printing or the like, the structure shown in FIG. 2 is completed.
上述した本発明の一実施形態に係る製造方法では、燃料電池構造体4を内側から燃料極層5、固体酸化物電解質層6、酸化剤極層7の順で積層された三層膜(SOFC膜)としたが、逆の順で積層することも当然可能である。逆の順で積層した場合、酸化剤ガスを保持部材3の吸気口1から燃料電池構造体4内の気体流路に導入し、燃料ガスを燃料電池構造体4の周囲に供給すればよい。 In the manufacturing method according to the embodiment of the present invention described above, the fuel cell structure 4 is formed from the inner side in the order of the fuel electrode layer 5, the solid oxide electrolyte layer 6, and the oxidant electrode layer 7. However, it is of course possible to laminate in the reverse order. When the layers are stacked in the reverse order, the oxidant gas may be introduced from the intake port 1 of the holding member 3 into the gas flow path in the fuel cell structure 4 and supplied to the periphery of the fuel cell structure 4.
また、SOFC膜の三層のうちいずれかをより厚くし、そのより厚くした層を支持体層とすることができることを上記の説明において既に述べたが、SOFC膜以外に第4のセラミック膜を支持体層として構成することもできる。例えば、犠牲部材上に最初にこの支持体層を形成・焼成し、その後のSOFC膜を形成・焼成すればよい。但し、この場合、第4のセラミック膜は反応ガスの拡散を阻害しないように多孔質に形成する必要がある。 In addition, as described above in the above description, it is possible to make any one of the three layers of the SOFC film thicker and use the thicker layer as a support layer. It can also be configured as a support layer. For example, the support layer may be first formed and fired on the sacrificial member, and then the SOFC film may be formed and fired. However, in this case, the fourth ceramic film needs to be formed porous so as not to inhibit the diffusion of the reaction gas.
また、上述した本発明の一実施形態に係る製造方法では、燃料極層5を焼成した後に他の層を形成したが、犠牲部材10の材料を溶解あるいはガス化して保持部材3の吸気口1及び排気口2から排出することができれば、多孔質の燃料極層5だけでなく、緻密な固体酸化物電解質層6も含めた二層あるいはさらに酸化剤極層7も含めた三層を塗布してから複数層をまとめて焼成する工程を採用することもできる。 Further, in the manufacturing method according to the embodiment of the present invention described above, the fuel electrode layer 5 is fired and another layer is formed. However, the material of the sacrificial member 10 is dissolved or gasified to suck the inlet 1 of the holding member 3. If it can be discharged from the exhaust port 2, not only the porous fuel electrode layer 5 but also two layers including the dense solid oxide electrolyte layer 6 or three layers including the oxidant electrode layer 7 are applied. It is also possible to employ a process in which a plurality of layers are fired together.
また、上述した本発明の一実施形態に係る製造方法で得られる燃料電池構造体4では、気体流路の各分岐部が平行に配置されていたが、例えば図8に示すような網目形状を有する犠牲部材を用いることによって、分岐部同士の結合点を設け、燃料電池構造体の機械強度を向上させてもよい。なお、図面上は図8に示す犠牲部材上に多層膜を形成する空間が無いように見えるが、実際には、多層膜の膜厚が犠牲部材の外形形状に比べて非常に小さいため、何ら問題なく多層膜を形成することができる。 Further, in the fuel cell structure 4 obtained by the manufacturing method according to the embodiment of the present invention described above, each branch portion of the gas flow path is arranged in parallel. For example, a mesh shape as shown in FIG. By using the sacrificial member, the junction between the branch portions may be provided, and the mechanical strength of the fuel cell structure may be improved. Although it appears that there is no space for forming a multilayer film on the sacrificial member shown in FIG. 8 in the drawing, the film thickness of the multilayer film is actually much smaller than the outer shape of the sacrificial member. A multilayer film can be formed without problems.
また、上述した本発明の一実施形態に係る製造方法では、吸気口1及び排気口2を有する保持部材3を用いたが、吸気口1及び排気口2を有する保持部材3の代わりに図9及び図10に示すような吸気口1を有する第1保持部材31と排気口2を有する第2保持部材32を用いるようにしてもよい。この場合、第1保持部材31と第2保持部材32とが互いに独立しているため、燃料極5の材料と第1保持部材31及び第2保持部材2の材料との間での焼成時の収縮率差による破損が起こりにくくなる。 Further, in the manufacturing method according to the embodiment of the present invention described above, the holding member 3 having the intake port 1 and the exhaust port 2 is used, but instead of the holding member 3 having the intake port 1 and the exhaust port 2, FIG. Further, a first holding member 31 having an intake port 1 and a second holding member 32 having an exhaust port 2 as shown in FIG. 10 may be used. In this case, since the first holding member 31 and the second holding member 32 are independent from each other, the material of the fuel electrode 5 and the material of the first holding member 31 and the second holding member 2 are fired. Damage due to shrinkage difference is less likely to occur.
また、吸気口1及び排気口2を一つずつ有する保持部材3の代わりに図11に示すような吸気口1及び排気口2をそれぞれ複数有する保持部材33を用いるようにしてもよい。この場合、複数の燃料電池構造体4を同時に形成することができる。さらに、アノード集電パターン8及びカソード集電パターン9を複数の燃料電池構造体4が直列接続されるようなレイアウト(図11中の矢印部分において紙面の奥側でアノード集電パターン8とカソード集電パターン9とを接続するレイアウト)にすることにより、高電圧出力を実現することができる。 Further, instead of the holding member 3 having one intake port 1 and one exhaust port 2, a holding member 33 having a plurality of intake ports 1 and a plurality of exhaust ports 2 as shown in FIG. 11 may be used. In this case, a plurality of fuel cell structures 4 can be formed simultaneously. Further, a layout in which a plurality of fuel cell structures 4 are connected in series with the anode current collection pattern 8 and the cathode current collection pattern 9 (the anode current collection pattern 8 and the cathode current collection pattern at the back of the page in the arrow portion in FIG. 11). By adopting a layout that connects to the electric pattern 9, a high voltage output can be realized.
また、上述した本発明の一実施形態に係る製造方法では、犠牲部材10を熱処理により除去したが、例えば、犠牲部材10の材料によっては犠牲部材10をエッチング処理により除去することも可能である。この場合、SOFC膜が完成した後(全ての焼成が終了した後)に犠牲部材10を除去してもよい。 In the manufacturing method according to the embodiment of the present invention described above, the sacrificial member 10 is removed by the heat treatment. However, for example, depending on the material of the sacrificial member 10, the sacrificial member 10 can be removed by an etching process. In this case, the sacrificial member 10 may be removed after the SOFC film is completed (after all firing is completed).
1 吸気口
2 排気口
3、33 保持部材
4 燃料電池構造体
5 燃料極層
5’ 液相ペースト
6 固体酸化物電解質層
7 酸化剤極層
8 アノード集電パターン
9 カソード集電パターン
10 犠牲部材
31 第1保持部材
32 第2保持部材
DESCRIPTION OF SYMBOLS 1 Intake port 2 Exhaust port 3, 33 Holding member 4 Fuel cell structure 5 Fuel electrode layer 5 'Liquid phase paste 6 Solid oxide electrolyte layer 7 Oxidant electrode layer 8 Anode current collection pattern 9 Cathode current collection pattern 10 Sacrificial member 31 First holding member 32 Second holding member
Claims (5)
前記構造体形成工程の途中又は完了後において前記犠牲部材を除去する除去工程とを備えることを特徴とする燃料電池構造体の製造方法。 A fuel is provided on the surface of the sacrificial member having an outer shape corresponding to the shape of a gas flow path including an intake portion, a plurality of branch portions branched from the intake portion, and an exhaust portion where downstream sides of the plurality of branch portions meet. A structure forming step of forming a fuel cell structure having a multilayer structure including at least three layers of an electrode layer, an electrolyte layer, and an oxidant electrode layer;
A removal step of removing the sacrificial member in the middle of or after completion of the structure formation step.
前記除去工程が実行されることを特徴とする請求項1に記載の燃料電池構造体の製造方法。 In the structure forming step, an end portion of the sacrificial member corresponding to the intake portion is inserted into the intake port of the first holding member, and corresponds to the exhaust portion with respect to the exhaust port of the second holding member. After the end portion of the sacrificial member is inserted and a layer that completely covers the connection boundary between the first holding member and the second holding member and the sacrificial member is formed,
The method for manufacturing a fuel cell structure according to claim 1, wherein the removing step is performed.
前記電解質層よりも内側に形成される前記燃料極層又は前記酸化剤極層の外表面全面を覆い、且つ、前記第1保持部材及び前記第2保持部材と前記電解質層よりも内側に形成される前記燃料極層又は前記酸化剤極層との接続境界を完全に覆うように、形成されることを特徴とする請求項2に記載の燃料電池構造体の製造方法。 The electrolyte layer is
Covering the entire outer surface of the fuel electrode layer or the oxidizer electrode layer formed inside the electrolyte layer, and formed inside the first holding member, the second holding member and the electrolyte layer. 3. The method of manufacturing a fuel cell structure according to claim 2, wherein the fuel cell structure is formed so as to completely cover a connection boundary with the fuel electrode layer or the oxidant electrode layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011082059A JP2012216471A (en) | 2011-04-01 | 2011-04-01 | Method for manufacturing fuel cell structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011082059A JP2012216471A (en) | 2011-04-01 | 2011-04-01 | Method for manufacturing fuel cell structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012216471A true JP2012216471A (en) | 2012-11-08 |
Family
ID=47269070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011082059A Withdrawn JP2012216471A (en) | 2011-04-01 | 2011-04-01 | Method for manufacturing fuel cell structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012216471A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013045772A (en) * | 2011-08-25 | 2013-03-04 | Robert Bosch Gmbh | Inactive support type cylindrical fuel cell |
-
2011
- 2011-04-01 JP JP2011082059A patent/JP2012216471A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013045772A (en) * | 2011-08-25 | 2013-03-04 | Robert Bosch Gmbh | Inactive support type cylindrical fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8968956B2 (en) | Fuel cell repeat unit and fuel cell stack | |
KR100976506B1 (en) | Electrode support for solid oxide fuel cell, unit cell and stack manufacturing method using same | |
EP3432395B1 (en) | Electrochemical element, electrochemical module, electrochemical device, and energy system | |
CA2988369C (en) | Solid oxide fuel cell | |
KR102745790B1 (en) | Metal support for electrochemical device, electrochemical device, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell and method for manufacturing metal support | |
JP2017174516A (en) | Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method of manufacturing electrochemical element | |
JP2018174117A (en) | Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element | |
JP2013012397A (en) | Solid oxide fuel cell and fuel cell module | |
JP2011527820A (en) | Solid oxide fuel cell with transition cross section for improved anode gas management at open end | |
JP7018807B2 (en) | Manufacturing method of metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and metal plate | |
JP7368402B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack | |
JP7261762B2 (en) | Electrochemical device, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and electrochemical device manufacturing method | |
JP5116182B1 (en) | Fuel cell structure | |
CN110402514A (en) | Substrate with electrode layer for metal-supported electrochemical element, electrochemical element, electrochemical module, solid oxide fuel cell, and manufacturing method | |
JP5331252B2 (en) | Flat tube type solid oxide cell stack | |
JP5362605B2 (en) | Solid oxide fuel cell | |
JP6180628B2 (en) | High temperature unit cell with porous gas induction channel layer | |
JP2012181927A (en) | Solid oxide fuel cell and fuel cell module | |
JP2013157190A (en) | Solid oxide fuel cell, cell stack device, fuel cell module, and fuel cell device | |
JP7202060B2 (en) | Electrochemical elements, electrochemical modules, electrochemical devices, energy systems, and solid oxide fuel cells | |
JP2012216471A (en) | Method for manufacturing fuel cell structure | |
JP7097735B2 (en) | Manufacturing methods for metal plates, electrochemical elements, electrochemical modules, electrochemical devices, energy systems, solid oxide fuel cells, and metal plates | |
JP2013257973A (en) | Solid oxide fuel cell stack | |
JP7645683B2 (en) | Annular spacer, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and solid oxide electrolysis cell | |
JP5062786B1 (en) | Fuel cell structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140603 |