JP2012214612A - Silicone heat dissipation member - Google Patents
Silicone heat dissipation member Download PDFInfo
- Publication number
- JP2012214612A JP2012214612A JP2011080627A JP2011080627A JP2012214612A JP 2012214612 A JP2012214612 A JP 2012214612A JP 2011080627 A JP2011080627 A JP 2011080627A JP 2011080627 A JP2011080627 A JP 2011080627A JP 2012214612 A JP2012214612 A JP 2012214612A
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- average particle
- weight
- silicone
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は高温高湿下においても長期的に熱伝導特性を維持できるとともに、弾性が低く基材に対する追従性、密着性に優れたシリコーン放熱部材に関する。 The present invention relates to a silicone heat dissipating member that can maintain heat conduction characteristics for a long time even under high temperature and high humidity, and has low elasticity and excellent followability and adhesion to a substrate.
電子部材の放熱材料として、各種無機フィラーを混合したシリコーン樹脂を硬化、成型したものが用いられている。放熱特性を向上させるため、これまでに無機フィラーの種類や粒子径、それらを組み合わせる検討が行われているが、未だ放熱特性は十分ではない。また、放熱部材の熱伝導率を向上させようとすると無機フィラーの配合割合は高くなるが、硬化物が硬くなるため基材への追従性、密着性が低下してしまい、かえって放熱特性が低下してしまう問題があった。 As a heat dissipation material for an electronic member, a material obtained by curing and molding a silicone resin mixed with various inorganic fillers is used. In order to improve the heat dissipation characteristics, studies have been made so far on the types and particle diameters of inorganic fillers and combinations thereof, but the heat dissipation characteristics are still insufficient. In addition, when trying to improve the thermal conductivity of the heat radiating member, the blending ratio of the inorganic filler increases, but the cured product becomes hard, so the followability to the base material and the adhesiveness are lowered, and the heat radiating characteristics are lowered. There was a problem.
特許文献1には、異なる平均粒子径を有する2種以上の無機フィラーを用いたシリコーン放熱部材が開示されているが、放熱特性に改善の余地があった。
本発明の課題は、高温高湿下においても長期的に熱伝導特性を維持できるとともに、弾性が低く基材に対する追従性、密着性に優れたシリコーン放熱部材を提供することである。 An object of the present invention is to provide a silicone heat radiating member that can maintain heat conduction characteristics for a long time even under high temperature and high humidity, and has low elasticity and excellent followability and adhesion to a substrate.
本発明は、SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有するオルガノポリシロキサン(a)、1分子中に少なくとも2個のSiH基を含有するオルガノハイドロジェンポリシロキサン(b)、付加反応触媒(c)、平均粒子径が1μm以上であり10μm未満であるアルミナ(d1)、平均粒子径が10μm以上であり25μm未満であるアルミナ(d2)、平均粒子径が30〜70μmであるアルミナ(d3)を含有するシリコーン樹脂組成物を硬化させることによって得られることを特徴とするシリコーン放熱部材である。 The present invention relates to an organopolysiloxane (a) containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, and an organohydrogen containing at least two SiH groups in one molecule. Polysiloxane (b), addition reaction catalyst (c), alumina (d1) having an average particle diameter of 1 μm or more and less than 10 μm, alumina (d2) having an average particle diameter of 10 μm or more and less than 25 μm, average particle diameter It is obtained by hardening the silicone resin composition containing the alumina (d3) whose is 30-70 micrometers. It is a silicone heat radiating member characterized by the above-mentioned.
本発明のシリコーン放熱部材は放熱特性に優れ、高温高湿下においても長期的に熱伝導特性を維持でき、弾性が低く基材に対する追従性、密着性に優れるため、電子部材の放熱材料として適する。 The silicone heat dissipating member of the present invention has excellent heat dissipating properties, can maintain heat conducting properties for a long time even under high temperature and high humidity, and is suitable as a heat dissipating material for electronic members because of its low elasticity and excellent followability and adhesion to the substrate. .
本発明のシリコーン放熱部材は付加型シリコーン樹脂を樹脂成分として含有する。SiH基と反応性を有する炭素−炭素二重結合を1分子中に少なくとも2個含有するオルガノポリシロキサン(a)は、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基などの炭素−炭素二重結合を1分子中に少なくとも2個含有するオルガノポリシロキサンである。オルガノポリシロキサンは例えば主鎖がジオルガノシロキサンの繰返し単位であり、末端がトリオルガノシロキサン構造であるものが例示され、分岐や環状構造を有するものであってもよい。末端や繰返し単位中のケイ素に結合したオルガノ構造としてはメチル基、エチル基、フェニル基などが例示される。具体例としては、両末端にビニル基を有するジメチルポリシロキサンが挙げられる。 The silicone heat dissipating member of the present invention contains an addition type silicone resin as a resin component. Organopolysiloxane (a) containing at least two carbon-carbon double bonds having reactivity with SiH group in one molecule is vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, isobutenyl group, An organopolysiloxane containing at least two carbon-carbon double bonds such as a hexenyl group in one molecule. Examples of the organopolysiloxane include those in which the main chain is a repeating unit of diorganosiloxane and the terminal has a triorganosiloxane structure, and may have a branched or cyclic structure. Examples of the organo structure bonded to silicon in the terminal or repeating unit include a methyl group, an ethyl group, and a phenyl group. Specific examples include dimethylpolysiloxane having vinyl groups at both ends.
1分子中に少なくとも2個のSiH基を含有するオルガノハイドロジェンポリシロキサン(b)は、末端および/または繰返し構造中において、2個以上のSiH基を含有するオルガノポリシロキサンである。オルガノポリシロキサンは例えば主鎖がジオルガノシロキサンの繰返し単位であり、末端がトリオルガノシロキサン構造であるものが例示され、分岐や環状構造を有するものであってもよい。末端や繰返し単位中のケイ素に結合したオルガノ構造としてはメチル基、エチル基、フェニル基、オクチル基などが例示され、これらの2個以上が水素基に置換されたものともいえる。前記オルガノポリシロキサン(a)とオルガノハイドロジェンポリシロキサン(b)の配合比は、(a):(b)=1:1.0〜2.0とすることが好ましく、より好ましくは(a):(b)=1:1.3〜1.6である。 The organohydrogenpolysiloxane (b) containing at least two SiH groups in one molecule is an organopolysiloxane containing two or more SiH groups in the terminal and / or repeating structure. Examples of the organopolysiloxane include those in which the main chain is a repeating unit of diorganosiloxane and the terminal has a triorganosiloxane structure, and may have a branched or cyclic structure. Examples of the organo structure bonded to the terminal or the silicon in the repeating unit include a methyl group, an ethyl group, a phenyl group, and an octyl group, and it can be said that two or more of these are substituted with a hydrogen group. The blending ratio of the organopolysiloxane (a) and the organohydrogenpolysiloxane (b) is preferably (a) :( b) = 1: 1.0 to 2.0, more preferably (a). : (B) = 1: 1.3 to 1.6.
付加反応触媒(c)は、前記(a)成分と前記(b)成分のヒドロシリル化反応を促進させるために添加され、ヒドロシリル化反応の触媒活性を有する公知の金属、金属化合物、金属錯体などを用いることができる。特に白金、白金化合物、それらの錯体を用いることが好ましい。これらの触媒は単独で使用してもよく、2種以上を併用してもよい。また、助触媒を併用してもよい。付加反応触媒(c)の配合量は組成物全体に対して1ppm〜50ppmとすることが好ましく、より好ましくは2〜10ppmである。 The addition reaction catalyst (c) is added to promote the hydrosilylation reaction of the component (a) and the component (b), and a known metal, metal compound, metal complex or the like having catalytic activity for the hydrosilylation reaction is added. Can be used. In particular, it is preferable to use platinum, a platinum compound, or a complex thereof. These catalysts may be used alone or in combination of two or more. A cocatalyst may be used in combination. The addition amount of the addition reaction catalyst (c) is preferably 1 ppm to 50 ppm, more preferably 2 to 10 ppm with respect to the entire composition.
本発明のシリコーン放熱部材は熱伝導性無機フィラーとして異なる粒子径を有する3種類のアルミナを含有する。具体的には平均粒子径が1μm以上であり10μm未満であるアルミナ(d1)、平均粒子径が10μm以上であり25μm未満であるアルミナ(d2)、平均粒子径が30〜70μmであるアルミナ(d3)を含有する。(d1)、(d2)、(d3)の合計を100重量部とした場合、(d1)が10〜30重量部、(d2)が5〜20重量部、(d3)が50〜85重量部となるように配合することが好ましい。また、(d1)、(d2)、(d3)の合計が、シリコーン樹脂組成物全体の85〜95重量%となるように配合することが好ましい。
異なる粒子径を有する3種類のアルミナを配合することにより、熱伝導性無機フィラーの充填率が高くなることが放熱特性に向上に寄与しているものと推察される。一方、充填率が高すぎても硬化物が硬くなってしまい、基材への追従性、密着性が低下するため、適度な充填率が得られているものと推察される。
The silicone heat dissipating member of the present invention contains three types of alumina having different particle diameters as the thermally conductive inorganic filler. Specifically, alumina (d1) having an average particle diameter of 1 μm or more and less than 10 μm, alumina (d2) having an average particle diameter of 10 μm or more and less than 25 μm, alumina having an average particle diameter of 30 to 70 μm (d3) ). When the total of (d1), (d2), and (d3) is 100 parts by weight, (d1) is 10 to 30 parts by weight, (d2) is 5 to 20 parts by weight, and (d3) is 50 to 85 parts by weight. It is preferable to blend so that. Moreover, it is preferable to mix | blend so that the sum total of (d1), (d2), (d3) may be 85 to 95 weight% of the whole silicone resin composition.
By blending three types of alumina having different particle sizes, it is surmised that the increase in the filling rate of the thermally conductive inorganic filler contributes to the improvement of the heat dissipation characteristics. On the other hand, even if the filling rate is too high, the cured product becomes hard, and the followability to the substrate and the adhesion are deteriorated.
本発明の硬化性シリコーン樹脂組成物には前記必須成分の他、各種樹脂、添加剤を配合できる。希釈剤の配合により、粘度、柔軟性等を調整できる。その具体例として、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジ2−エチルヘキシルなどフタル酸エステル系の希釈剤、ジメチルシリコーンオイル、アルキル変性シリコーンオイル、ポリエーテル変性シリコーンオイル等のシリコーンオイル、アジピン酸ジオクチル、アジピン酸ジイソノニル、アゼライン酸ジアルキル、セバシン酸ジブチル、エポキシ化大
豆油、ポリプロピレングリコール、アクリルポリマー、α−オレフィンやその誘導体、植物油由来脂肪酸の2−エチルヘキシルエステル化合物等が挙げられる。
In addition to the above essential components, various resins and additives can be blended in the curable silicone resin composition of the present invention. Viscosity, flexibility, etc. can be adjusted by blending the diluent. Specific examples include phthalate-based diluents such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, silicone oils such as dimethyl silicone oil, alkyl-modified silicone oil, and polyether-modified silicone oil. , Dioctyl adipate, diisononyl adipate, dialkyl azelate, dibutyl sebacate, epoxidized soybean oil, polypropylene glycol, acrylic polymer, α-olefin and derivatives thereof, and 2-ethylhexyl ester compounds of vegetable oil-derived fatty acids.
粘度調整、粘性調整、増量などを目的として、炭酸カルシウム、硅砂、タルク、カーボンブラック、酸化チタン、カオリン、二酸化ケイ素、メラミン等の充填材、硬化樹脂の補強のためにガラス繊維等の補強材、軽量化及び粘度調整などのためにシラスバルーン、ガラスバルーン等の中空体を添加できる。その他、酸化防止剤、顔料、防腐剤などを適宜使用することができる。 For the purpose of adjusting viscosity, adjusting viscosity, increasing weight, etc., fillers such as calcium carbonate, cinnabar, talc, carbon black, titanium oxide, kaolin, silicon dioxide, melamine, reinforcing materials such as glass fiber for reinforcing cured resin, Hollow bodies such as shirasu balloons and glass balloons can be added for weight reduction and viscosity adjustment. In addition, antioxidants, pigments, preservatives, and the like can be used as appropriate.
以下、本発明について実施例、比較例を挙げてより詳細に説明するが、具体例を示すものであって、特にこれらに限定するものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are given and demonstrated in detail about this invention, a specific example is shown and it does not specifically limit to these.
実施例1
粘度3.5Pa・sのポリメチルビニルシロキサン40重量部、SiH基を含有する粘度3.2Pa・sのオルガノハイドロジェンポリシロキサン60重量部に対して、熱伝導性無機フィラーとして、平均粒子径が4μmであるアルミナ(昭和電工株式会社製、商品名CB−P05)160重量部、平均粒子径が20μmであるアルミナ(昭和電工株式会社製、商品名CB−A20S)60重量部、平均粒子径が50μmであるアルミナ(昭和電工株式会社製、商品名CB−A50S)520重量部を混合し、フィラー充填率を88%とした。さらに、硬化遅延を目的として1−エチニル−1−シクロヘキサノール(ECH)を0.015重量部、着色剤としてカーボンブラック(旭カーボン株式会社製、商品名 アサヒサーマル)1重量部を添加し、付加反応触媒として白金−ビニルシロキサン錯体を組成物全体に対して10ppmとなるよう添加、混合することにより、実施例1のシリコーン樹脂組成物を作製した。
Example 1
An average particle diameter of 40 parts by weight of polymethylvinylsiloxane having a viscosity of 3.5 Pa · s and 60 parts by weight of organohydrogenpolysiloxane having a viscosity of 3.2 Pa · s containing SiH groups as a thermally conductive inorganic filler. 160 parts by weight of alumina (made by Showa Denko KK, trade name CB-P05) which is 4 μm, 60 parts by weight of alumina (made by Showa Denko KK, trade name CB-A20S) whose average particle diameter is 20 μm, and the average particle diameter is 520 parts by weight of alumina (trade name CB-A50S, manufactured by Showa Denko KK), which is 50 μm, was mixed to make the filler filling rate 88%. Furthermore, 0.015 parts by weight of 1-ethynyl-1-cyclohexanol (ECH) and 1 part by weight of carbon black (trade name: Asahi Thermal Co., Ltd., manufactured by Asahi Carbon Co., Ltd.) are added as a colorant for the purpose of retarding curing. The silicone resin composition of Example 1 was produced by adding and mixing a platinum-vinylsiloxane complex as a reaction catalyst so as to be 10 ppm with respect to the entire composition.
比較例1
実施例1において、熱伝導性無機フィラーとして平均粒子径が12μmであるアルミナ(日本軽金属株式会社製、商品名V325F)40重量部、平均粒子径が20μmであるアルミナ(昭和電工株式会社製、商品名CB−A20S)120重量部、平均粒子径が50μmであるアルミナ(昭和電工株式会社製、商品名CB−A50S)400重量部を用い、フィラー充填率を85%とした他は実施例1と同様に行い、比較例1のシリコーン樹脂組成物を作製した。
Comparative Example 1
In Example 1, 40 parts by weight of alumina having a mean particle size of 12 μm (product name: V325F, manufactured by Nippon Light Metal Co., Ltd.) and alumina having a mean particle size of 20 μm (made by Showa Denko KK Example 1 except that 120 parts by weight of CB-A20S) and 400 parts by weight of alumina (trade name CB-A50S, manufactured by Showa Denko KK) with an average particle size of 50 μm were used and the filler filling rate was 85%. In the same manner, a silicone resin composition of Comparative Example 1 was produced.
比較例2
実施例1において、熱伝導性無機フィラーとして平均粒子径が4μmであるアルミナ(昭和電工株式会社製、商品名CB−P05)160重量部、平均粒子径が50μmであるアルミナ(昭和電工株式会社製、商品名CB−A50S)400重量部を用い、フィラー充填率を85%とした他は実施例1と同様に行い、比較例2のシリコーン樹脂組成物を作製した。
Comparative Example 2
In Example 1, 160 parts by weight of alumina (made by Showa Denko KK, trade name CB-P05) having an average particle diameter of 4 μm as a thermally conductive inorganic filler, alumina (made by Showa Denko KK) having an average particle diameter of 50 μm , Trade name CB-A50S) A silicone resin composition of Comparative Example 2 was prepared in the same manner as in Example 1 except that 400 parts by weight was used and the filler filling rate was 85%.
比較例3
実施例1において、熱伝導性無機フィラーとして平均粒子径が4μmであるアルミナ(昭和電工株式会社製、商品名CB−P05)370重量部、平均粒子径が20μmであるアルミナ(昭和電工株式会社製、商品名CB−A20S)190重量部を用い、フィラー充填率を85%とした他は実施例1と同様に行い、比較例3のシリコーン樹脂組成物を作製した。
Comparative Example 3
In Example 1, 370 parts by weight of alumina (manufactured by Showa Denko KK, trade name CB-P05) having an average particle diameter of 4 μm as the thermally conductive inorganic filler, alumina (manufactured by Showa Denko KK) having an average particle diameter of 20 μm , Trade name CB-A20S) A silicone resin composition of Comparative Example 3 was produced in the same manner as in Example 1 except that 190 parts by weight and a filler filling rate of 85% were used.
熱伝導率の測定方法
各硬化性シリコーン樹脂組成物を60×120mmに成型し、23℃雰囲気下で迅速熱伝導率計(京都電子工業株式会社製、商品名 QTM-500)を用いて、熱伝導率を測定した。
Measurement method of thermal conductivity Each curable silicone resin composition was molded into 60 x 120 mm, and heat was measured using a rapid thermal conductivity meter (trade name QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.) in an atmosphere at 23 ° C. Conductivity was measured.
実施例のシリコーン放熱部材は、比較例のシリコーン放熱部材よりも熱伝導性に優れていた。 The silicone heat radiating member of the example was superior in thermal conductivity to the silicone heat radiating member of the comparative example.
Claims (3)
The total of (d1), (d2), and (d3) is 85 to 95% by weight of the entire silicone resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011080627A JP2012214612A (en) | 2011-03-31 | 2011-03-31 | Silicone heat dissipation member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011080627A JP2012214612A (en) | 2011-03-31 | 2011-03-31 | Silicone heat dissipation member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012214612A true JP2012214612A (en) | 2012-11-08 |
Family
ID=47267745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011080627A Pending JP2012214612A (en) | 2011-03-31 | 2011-03-31 | Silicone heat dissipation member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012214612A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013147600A (en) * | 2012-01-23 | 2013-08-01 | Shin-Etsu Chemical Co Ltd | Heat-conductive silicone composition and cured product thereof |
WO2016190188A1 (en) * | 2015-05-22 | 2016-12-01 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
JPWO2016190189A1 (en) * | 2015-05-22 | 2017-06-15 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
JP2018123200A (en) * | 2017-01-30 | 2018-08-09 | 富士高分子工業株式会社 | Heat-resistant heat-conductive silicone composition |
CN111788870A (en) * | 2018-03-30 | 2020-10-16 | 太阳油墨制造株式会社 | Heat-dissipating insulating resin composition and printed wiring board using same |
US10968111B2 (en) | 2016-05-16 | 2021-04-06 | Martinswerk Gmbh | Alumina products and uses thereof in polymer compositions with high thermal conductivity |
WO2021261758A1 (en) * | 2020-06-25 | 2021-12-30 | 권장숙 | Thermally conductive silicone compound, method for preparing same, and thermally conductive gel for virtual currency mining comprising same |
KR20220000327A (en) * | 2020-06-25 | 2022-01-03 | 권장숙 | Thermally conductive silicon compound, preparing method and thermally conductive gel for earning virtual currency including the same |
KR20220008047A (en) * | 2020-07-13 | 2022-01-20 | 한국세라믹기술원 | Polysiloxane composite containing ceramic beads of various sizes and method for manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009274929A (en) * | 2008-05-16 | 2009-11-26 | Micron:Kk | Alumina blend particle and resin molding |
-
2011
- 2011-03-31 JP JP2011080627A patent/JP2012214612A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009274929A (en) * | 2008-05-16 | 2009-11-26 | Micron:Kk | Alumina blend particle and resin molding |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013147600A (en) * | 2012-01-23 | 2013-08-01 | Shin-Etsu Chemical Co Ltd | Heat-conductive silicone composition and cured product thereof |
US20180127629A1 (en) * | 2015-05-22 | 2018-05-10 | Momentive Performance Materials Japan Llc | Thermally conductive composition |
JPWO2016190188A1 (en) * | 2015-05-22 | 2017-06-15 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
JPWO2016190189A1 (en) * | 2015-05-22 | 2017-06-15 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
CN107532000A (en) * | 2015-05-22 | 2018-01-02 | 迈图高新材料日本合同公司 | Heat conductivity composition |
KR20180011080A (en) * | 2015-05-22 | 2018-01-31 | 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 | Thermally conductive composition |
KR102544343B1 (en) * | 2015-05-22 | 2023-06-19 | 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 | thermally conductive composition |
US10683444B2 (en) | 2015-05-22 | 2020-06-16 | Momentive Performance Materials Japan Llc | Thermally conductive composition |
TWI705996B (en) * | 2015-05-22 | 2020-10-01 | 日商邁圖高新材料日本合同公司 | Thermally conductive composition |
WO2016190188A1 (en) * | 2015-05-22 | 2016-12-01 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Thermally conductive composition |
CN107532000B (en) * | 2015-05-22 | 2021-07-13 | 迈图高新材料日本合同公司 | Thermally conductive composition |
US10968111B2 (en) | 2016-05-16 | 2021-04-06 | Martinswerk Gmbh | Alumina products and uses thereof in polymer compositions with high thermal conductivity |
US11912584B2 (en) | 2016-05-16 | 2024-02-27 | Martinswerk Gmbh | Alumina products and uses thereof in polymer compositions with high thermal conductivity |
JP2018123200A (en) * | 2017-01-30 | 2018-08-09 | 富士高分子工業株式会社 | Heat-resistant heat-conductive silicone composition |
CN111788870A (en) * | 2018-03-30 | 2020-10-16 | 太阳油墨制造株式会社 | Heat-dissipating insulating resin composition and printed wiring board using same |
KR102388812B1 (en) | 2020-06-25 | 2022-04-21 | 권장숙 | Thermally conductive silicon compound, preparing method and thermally conductive gel for earning virtual currency including the same |
KR20220000327A (en) * | 2020-06-25 | 2022-01-03 | 권장숙 | Thermally conductive silicon compound, preparing method and thermally conductive gel for earning virtual currency including the same |
WO2021261758A1 (en) * | 2020-06-25 | 2021-12-30 | 권장숙 | Thermally conductive silicone compound, method for preparing same, and thermally conductive gel for virtual currency mining comprising same |
KR20220008047A (en) * | 2020-07-13 | 2022-01-20 | 한국세라믹기술원 | Polysiloxane composite containing ceramic beads of various sizes and method for manufacturing the same |
KR102403680B1 (en) * | 2020-07-13 | 2022-05-31 | 한국세라믹기술원 | Polysiloxane composite containing ceramic beads of various sizes and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012214612A (en) | Silicone heat dissipation member | |
US10683444B2 (en) | Thermally conductive composition | |
JP4557136B2 (en) | Thermally conductive silicone rubber composition and molded product | |
JP6394517B2 (en) | Method for improving electrical insulation of heat-resistant silicone gel cured product | |
TWI526499B (en) | Curable polyorganosiloxane composition | |
US20030229174A1 (en) | Heat-conductive silicone rubber composition | |
KR20190104075A (en) | Thermally Conductive Polyorganosiloxane Compositions | |
JP5332437B2 (en) | Hydrophilic organopolysiloxane composition for dental impression material | |
US9631062B2 (en) | Silicone gel composition and silicone gel cured product | |
CN106928725A (en) | conductive curable organic silicon rubber | |
JP2016125001A (en) | Heat-conductive silicone composition, cured product, and composite seat | |
WO2012029538A1 (en) | Polysiloxane composition, and cured product thereof | |
JP6316592B2 (en) | Addition-curing silicone rubber composition used for light transmission from a light source in a lighting fixture | |
JP2009149736A (en) | Heat-conductive silicone gel composition | |
JP5962599B2 (en) | Silicone gel composition with excellent heat resistance | |
JP6468115B2 (en) | Addition-curable silicone rubber composition and cured product | |
JP2015187253A (en) | fluorosilicone rubber composition | |
KR101598788B1 (en) | Thermal conductivity liquid silicone rubber composition and manufacturing method there of | |
JP4557137B2 (en) | Thermally conductive silicone rubber composition and molded product | |
JP5553076B2 (en) | Silicone rubber composition | |
JP2010144130A (en) | Curable organopolysiloxane composition | |
WO2021241097A1 (en) | Thermally conductive addition curing-type silicone composition | |
WO2018139506A1 (en) | Thermally conductive polyorganosiloxane composition | |
JP2018119021A (en) | Self-adhesiveness silicone gel composition, and cured product of the same | |
WO2017018033A1 (en) | Silicone gel composition and silicone gel cured product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150513 |