JP2012206875A - APPARATUS FOR GROWING SiC - Google Patents
APPARATUS FOR GROWING SiC Download PDFInfo
- Publication number
- JP2012206875A JP2012206875A JP2011072831A JP2011072831A JP2012206875A JP 2012206875 A JP2012206875 A JP 2012206875A JP 2011072831 A JP2011072831 A JP 2011072831A JP 2011072831 A JP2011072831 A JP 2011072831A JP 2012206875 A JP2012206875 A JP 2012206875A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- hole
- temperature measurement
- growth
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 52
- 239000011810 insulating material Substances 0.000 claims abstract description 37
- 239000002994 raw material Substances 0.000 claims abstract description 20
- 238000005092 sublimation method Methods 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 238000005498 polishing Methods 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 230000003746 surface roughness Effects 0.000 claims description 5
- 239000013078 crystal Substances 0.000 abstract description 32
- 239000000126 substance Substances 0.000 abstract description 10
- 230000008021 deposition Effects 0.000 abstract description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 49
- 229910010271 silicon carbide Inorganic materials 0.000 description 49
- 238000000859 sublimation Methods 0.000 description 8
- 230000008022 sublimation Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【課題】昇華法によるSiCの結晶成長において、温度測定用の穴に昇華した物質が析出することを抑制して、精度の良い温度測定が長時間可能なSiC成長装置を提供する。
【解決手段】種基板15及びSiC原料18を収容する成長容器14と、該成長容器14を囲う断熱材11と、該断熱材11に設けた温度測定用の穴21を通して、前記成長容器内14の温度を測定する温度測定器13と、前記SiC原料18を加熱するヒーター17とを備え、昇華法により、前記SiC原料18を加熱して昇華させ、前記種基板15上にSiC16を結晶成長させるSiC成長装置10であって、前記温度測定用の穴21の内周は、前記断熱材11の他の部分よりもかさ密度が高く、かつ、研磨された内壁部12が形成されたものであるSiC成長装置。
【選択図】図1The present invention provides an SiC growth apparatus capable of performing accurate temperature measurement for a long time by suppressing deposition of sublimated substances in a hole for temperature measurement in SiC crystal growth by a sublimation method.
A growth vessel 14 containing a seed substrate 15 and a SiC raw material 18, a heat insulating material 11 surrounding the growth vessel 14, and a temperature measurement hole 21 provided in the heat insulating material 11, the inside of the growth vessel 14 is provided. And a heater 17 for heating the SiC raw material 18. The SiC raw material 18 is heated and sublimated by a sublimation method to grow SiC 16 on the seed substrate 15. In the SiC growth apparatus 10, the inner circumference of the temperature measurement hole 21 has a higher bulk density than the other part of the heat insulating material 11 and a polished inner wall 12 is formed. SiC growth equipment.
[Selection] Figure 1
Description
本発明は、昇華法によってSiCの結晶成長を行うSiC成長装置に関する。 The present invention relates to a SiC growth apparatus that performs SiC crystal growth by a sublimation method.
近年、電気自動車や電気冷暖房器具にインバーター回路が多用されるにいたり、電力ロスが少なく、半導体Si結晶を用いた素子より耐圧を高くとれるという特性から、SiC(炭化珪素)の半導体結晶が求められている。
半導体用途のSiC結晶の成長には、一般的に昇華法が用いられている(特許文献1、2参照)。昇華法は、成長容器内で2000℃前後ないしそれ以上の高温で、原材料である固体のSiCを昇華させて、種基板上にSiCを結晶成長させる方法である。
In recent years, as inverter circuits are frequently used in electric vehicles and electric air-conditioning appliances, SiC (silicon carbide) semiconductor crystals have been demanded because of their low power loss and higher breakdown voltage than elements using semiconductor Si crystals. ing.
In general, a sublimation method is used for the growth of SiC crystals for semiconductor applications (see Patent Documents 1 and 2). The sublimation method is a method in which solid SiC as a raw material is sublimated at a high temperature of about 2000 ° C. or higher in a growth vessel to grow SiC on a seed substrate.
成長容器は、石英管内かチャンバー内に配置されて、高真空状態にし、活性の低いガスを供給しながら、SiCの昇華速度を上げるために大気圧より低い圧力に制御される。また、成長容器は通気性があり、成長容器内外の圧力は等しくなる。
成長容器の外側には、成長容器内の熱が失われるのを抑制するために断熱材が配置されている。断熱材には、パイロメーターで温度測定するための穴が少なくとも一つ設けられ、その穴からは多少の熱がもれる。
The growth vessel is placed in a quartz tube or in a chamber and is controlled to a pressure lower than atmospheric pressure in order to increase the sublimation rate of SiC while supplying a gas having a low vacuum and a low activity. Further, the growth vessel is air permeable, and the pressure inside and outside the growth vessel becomes equal.
A heat insulating material is disposed outside the growth vessel in order to prevent the heat in the growth vessel from being lost. The heat insulating material is provided with at least one hole for measuring the temperature with a pyrometer, and some heat is leaked from the hole.
このようなSiCの結晶成長は、原料を昇華させるために高温が必要で、成長装置は高温での温度制御を行う。また、昇華した物質の圧力を安定させるために、成長容器内の圧力、温度が安定していることが重要である。 Such SiC crystal growth requires a high temperature to sublimate the raw material, and the growth apparatus performs temperature control at a high temperature. Further, in order to stabilize the pressure of the sublimated substance, it is important that the pressure and temperature in the growth vessel are stable.
昇華法によるSiCの結晶成長は、昇華によるものであるため、Siの結晶を作製するチョクラルスキー法や、GaAs等の結晶を作製するLPE(液相エピタキシャル成長)法などと比較して、相対的に成長速度が非常に遅い。従って、長い時間をかけて成長させることとなる。ただし、近年の制御機器、コンピュータ、パソコン等の発達で、圧力、温度の調節を長期間行うことは、容易である。 Since SiC crystal growth by the sublimation method is based on sublimation, it is relatively compared to the Czochralski method for producing Si crystals and the LPE (liquid phase epitaxial growth) method for producing crystals such as GaAs. The growth rate is very slow. Therefore, it takes a long time to grow. However, with the recent development of control devices, computers, personal computers, etc., it is easy to adjust the pressure and temperature for a long time.
昇華法において、昇華を開始すると、成長容器の外部に昇華した気体が漏れ、成長容器の外側に配置されている断熱材の温度測定用の穴を通過する。
断熱材と成長容器の間は、成長容器と同様の温度であるが、断熱材の温度測定用の穴の付近は温度が低くなっているため、昇華した気体が、穴を通過する際に析出する。析出した物質は、主にはSiCの結晶であるが、一度表面に析出すると、更に成長を続け、図3に示すように多結晶化し、図4に示すように温度測定用の穴をふさぐこととなる。このため、温度測定が困難になり、温度調節器に正確な温度データを送れなくなる。これによって、成長容器内の温度の制御ができず、成長させる結晶の品質や、生産性に影響を及ぼしてしまう。
図3は、SiC成長装置の温度測定用の穴の内壁への多結晶の成長を説明するための図である。図4は、多結晶の成長によりつまりかけた温度測定用の穴を観察した図である。
In the sublimation method, when sublimation is started, the sublimated gas leaks to the outside of the growth vessel, and passes through a hole for temperature measurement of a heat insulating material disposed outside the growth vessel.
The temperature between the heat insulating material and the growth vessel is the same as that of the growth vessel, but the temperature near the hole for measuring the temperature of the heat insulating material is low, so that the sublimated gas is deposited when passing through the hole. To do. The deposited material is mainly SiC crystals, but once it is deposited on the surface, it continues to grow and becomes polycrystallized as shown in FIG. 3, and the temperature measurement hole is closed as shown in FIG. It becomes. For this reason, temperature measurement becomes difficult, and accurate temperature data cannot be sent to the temperature controller. As a result, the temperature inside the growth vessel cannot be controlled, which affects the quality of the crystal to be grown and the productivity.
FIG. 3 is a view for explaining the growth of polycrystals on the inner wall of the hole for temperature measurement of the SiC growth apparatus. FIG. 4 is a view observing a hole for temperature measurement which is applied by growing a polycrystal.
本発明は、上記問題点に鑑みてなされたものであって、昇華法によるSiCの結晶成長において、温度測定用の穴に昇華した物質が析出することを抑制して、精度の良い温度測定が長時間可能なSiC成長装置を提供することを目的とする。 The present invention has been made in view of the above problems, and in the crystal growth of SiC by the sublimation method, it is possible to suppress the precipitation of the sublimated substance in the hole for temperature measurement, and to perform accurate temperature measurement. An object of the present invention is to provide a SiC growth apparatus that can be used for a long time.
上記目的を達成するために、本発明は、種基板及びSiC原料を収容する成長容器と、該成長容器を囲う断熱材と、該断熱材に設けた温度測定用の穴を通して、前記成長容器内の温度を測定する温度測定器と、前記SiC原料を加熱するヒーターとを備え、昇華法により、前記SiC原料を加熱して昇華させ、前記種基板上にSiCを結晶成長させるSiC成長装置であって、前記温度測定用の穴の内周は、前記断熱材の他の部分よりもかさ密度が高く、かつ、研磨された内壁部が形成されたものであることを特徴とするSiC成長装置を提供する。 In order to achieve the above object, the present invention provides a growth vessel containing a seed substrate and a SiC raw material, a heat insulating material surrounding the growth vessel, and a temperature measurement hole provided in the heat insulating material. A SiC growth apparatus that includes a temperature measuring device that measures the temperature of the SiC and a heater that heats the SiC raw material, heats the SiC raw material by a sublimation method, and sublimates SiC to grow SiC on the seed substrate. The SiC growth apparatus characterized in that the inner circumference of the hole for temperature measurement has a bulk density higher than that of the other part of the heat insulating material and a polished inner wall part is formed. provide.
このように、断熱材の他の部分よりもかさ密度が高く、かつ、研磨された内壁部であれば、その表面に昇華した物質が析出しにくいため、長時間の成長でも温度測定用の穴がふさがることを防止できる。また、断熱材のその他の部分は、通常の材質を用いることができるため、コストアップも少ない。従って、長時間の成長でも精度良く温度測定を行うことができるため成長容器内の温度を良好に制御でき、高品質のSiC結晶を生産性良く成長させることができる装置となる。 In this way, if the bulk density is higher than the other parts of the heat insulating material and the polished inner wall part, the sublimated substance is unlikely to be deposited on the surface. Can be blocked. Moreover, since the other part of a heat insulating material can use a normal material, there is also little cost increase. Therefore, since the temperature can be accurately measured even during long-time growth, the temperature in the growth vessel can be controlled well, and a high-quality SiC crystal can be grown with high productivity.
このとき、前記内壁部のかさ密度は、0.1〜2.0g/cm3であることが好ましい。
このようなかさ密度であれば、内壁部への昇華した物質の析出をより効果的に抑制することができる装置となる。
At this time, the bulk density of the inner wall portion is preferably 0.1 to 2.0 g / cm 3 .
If it is such a bulk density, it becomes an apparatus which can suppress precipitation of the sublimated substance to an inner wall part more effectively.
このとき、前記内壁部の表面粗さRaは、5μm未満であることが好ましい。
このような表面粗さであれば、表面が十分に平滑であるため昇華した物質の析出をより効果的に抑制することができる装置となる。
At this time, the surface roughness Ra of the inner wall portion is preferably less than 5 μm.
With such a surface roughness, since the surface is sufficiently smooth, the apparatus can more effectively suppress the precipitation of sublimated substances.
このとき、前記温度測定用の穴の断面形状は、丸又は多角形であることが好ましい。
このような断面形状であれば、温度測定用の穴及び内壁部の形成が容易な装置となる。
At this time, the cross-sectional shape of the temperature measurement hole is preferably a circle or a polygon.
With such a cross-sectional shape, a device for easily forming a hole for temperature measurement and an inner wall portion is obtained.
このとき、前記内壁部の材質は、グラファイトとすることができる。
このような材質であれば、高温下でも長時間使用でき、表面の平滑化も容易であるため、温度測定用の穴の閉塞を確実に防止できる装置となる。
At this time, the material of the inner wall portion may be graphite.
Such a material can be used for a long time even at a high temperature, and the surface can be easily smoothed. Therefore, the device can reliably prevent the temperature measurement hole from being blocked.
また、前記内壁部は、前記断熱材の温度測定用の穴の内周にペースト状のカーボンをコートし、表面を研磨して形成されたものとすることができる。
内壁部がこのように形成されたものであれば、形成が容易で、昇華した物質がより析出しにくい表面となり、温度測定用の穴の閉塞を確実に防止できる装置となる。
Further, the inner wall portion may be formed by coating paste-like carbon on the inner periphery of the temperature measurement hole of the heat insulating material and polishing the surface.
If the inner wall portion is formed in this way, the surface is easy to form and the sublimated substance is more difficult to precipitate, and the device can reliably prevent the temperature measurement hole from being blocked.
また、前記内壁部は、前記断熱材の温度測定用の穴の内周にペースト状のカーボンを含浸させて固体化させた後、表面を研磨して形成されたものとすることができる。
内壁部がこのように形成されたものであれば、形成が容易で、昇華した物質がより析出しにくい表面となり、温度測定用の穴の閉塞を確実に防止できる装置となる。
Further, the inner wall portion may be formed by impregnating paste-like carbon into the inner periphery of the temperature measurement hole of the heat insulating material and solidifying it, and then polishing the surface.
If the inner wall portion is formed in this way, the surface is easy to form and the sublimated substance is more difficult to precipitate, and the device can reliably prevent the temperature measurement hole from being blocked.
このとき、前記温度測定用の穴は、前記断熱材に2つ設けられたものであることが好ましい。
このような温度測定用の穴が2つ設けられたものであれば、成長容器内の温度をより正確に検出することができ、この場合も、本発明の内壁部であれば穴が閉塞することがないため、より精度の良い温度制御が可能な装置となる。
At this time, it is preferable that two holes for temperature measurement are provided in the heat insulating material.
If two such holes for temperature measurement are provided, the temperature in the growth vessel can be detected more accurately, and in this case as well, the hole is blocked if it is the inner wall portion of the present invention. Therefore, it becomes an apparatus capable of temperature control with higher accuracy.
以上のように、本発明によれば、長時間の成長でも精度良く温度測定を行うことができるため成長容器内の温度を良好に制御でき、高品質のSiC結晶を生産性良く成長させることができる装置となる。 As described above, according to the present invention, the temperature in the growth vessel can be controlled well because the temperature can be accurately measured even during long-time growth, and a high-quality SiC crystal can be grown with high productivity. It becomes a device that can.
以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
図1は、本発明のSiC成長装置の一例を示す概略断面図である。
Hereinafter, the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a schematic cross-sectional view showing an example of the SiC growth apparatus of the present invention.
図1に示す本発明のSiC成長装置10は、種基板15及びSiC原料18を収容する成長容器14と、該成長容器14を囲う断熱材11と、該断熱材11に設けた温度測定用の穴21を通して、成長容器14内の温度を測定する温度測定器13と、SiC原料18を加熱するヒーター17とを備えている。
成長容器14は、種基板15を配置する成長室20と、SiC原料18を配置する昇華室19とからなり、例えば耐熱性のあるグラファイトで形成される。また、結晶成長の際には、不図示の石英管又はチャンバー内に成長容器14をセットして、真空排気しながらAr等の不活性ガスを供給することにより、不活性ガス雰囲気の減圧下で結晶成長を行う。
An
The
ヒータ17は、RH(抵抗加熱)又はRF(高周波)加熱を行うものを用いることができる。また、温度測定器13としては、パイロメーターを用いることで、成長容器14の外部から、断熱材11の温度測定用の穴21を通して、非接触で温度測定を精度良く行うことができる。
As the
そして、本発明の装置10では、温度測定用の穴21の内周は、断熱材11の他の部分よりもかさ密度が高く、かつ、研磨された内壁部12が形成されたものである。
断熱材11は、炭素繊維の成形材等で作製され、成長容器等よりも密度が低く、かつ、表面が粗い。また、温度測定用の穴の付近は、断熱材の内側よりも温度が低くなっている。このため、従来では、成長容器から漏れ出たSiC原料の昇華した物質やガスが、温度測定用の穴の内壁表面に微小な結晶として析出しやすく、それを種として多結晶が結晶成長して、最後には穴をふさいでしまっていた。これに対する対策として、温度測定用の穴を大きく設けるという方法もあるが、当該穴から漏れ出る熱が大きくなり、温度制御が不安定になったり、より大きな電力が必要となる。本発明では、温度測定用の穴21の内周に、断熱材11の他の部分よりもかさ密度が高く、研磨された内壁部12が形成されているため、穴21の内壁の表面に昇華した物質等が析出することを効果的に抑制でき、長時間の結晶成長でも穴21がふさがることがない。このため、温度測定用の穴21を最低限の大きさにできるため、熱の漏れは低減される。以上より、本発明であれば、成長容器の温度を安定して正確に測定でき、精度の良い温度制御が可能な装置となる。
And in the
The heat insulating material 11 is made of a carbon fiber molding material or the like, has a density lower than that of the growth vessel or the like, and has a rough surface. Further, the temperature in the vicinity of the hole for temperature measurement is lower than that inside the heat insulating material. For this reason, conventionally, the sublimated substance or gas of the SiC raw material leaking from the growth vessel is likely to be precipitated as a fine crystal on the inner wall surface of the temperature measurement hole, and the polycrystalline is grown as a seed. Finally, the hole was blocked. As a countermeasure against this, there is a method of providing a large hole for temperature measurement, but heat leaking from the hole becomes large, temperature control becomes unstable, and a larger electric power is required. In the present invention, the inner wall portion 12 having a higher bulk density and polished than the other portions of the heat insulating material 11 is formed on the inner circumference of the
このような内壁部12の材質は、耐熱性が高く、表面の平滑化が容易であるグラファイトとすることできる。例えば、断熱材11の他の部分よりかさ密度の高い密度のグラファイト部材を断熱材11に設けた穴21にはめ込んで固定し、表面を研磨する等により内壁部12を形成できる。この際、グラファイト部材に予め穴を開けておいても、はめ込んで固定した後に穴を開けてもよい。
上記のような内壁部12であれば、かさ密度を高く形成することが容易で、平滑化も効率的にできる。また、上記のように断熱材12とは別体としてはめ込み式の内壁部12とすれば、交換が容易で、たとえ内壁部12が劣化しても断熱材11は繰り返し使用可能であるため、低コストの装置にできる。
The material of the inner wall portion 12 can be made of graphite having high heat resistance and easy surface smoothing. For example, the inner wall portion 12 can be formed by fitting a graphite member having a higher bulk density than other portions of the heat insulating material 11 into the
If it is the above inner wall part 12, it is easy to form a bulk density high and smoothing can also be performed efficiently. Further, as described above, if the inner wall portion 12 of the fitting type is separate from the heat insulating material 12, the replacement is easy, and the heat insulating material 11 can be used repeatedly even if the inner wall portion 12 deteriorates. Can be a cost device.
また、内壁部12は、断熱材11の温度測定用の穴21の内周にペースト状のカーボンをコートし、表面を研磨して形成することもでき、または、穴21の内周にペースト状のカーボンを含浸させて固体化させた後、表面を研磨して形成することもできる。いずれの場合にも、ペースト状のカーボンを固体化する際には、熱処理等を施すことができ、固体化後には所望の穴形状になるように表面を加工してもよい。
このような方法でも、かさ密度が高く、十分に平滑な内壁部12とすることが容易にできる。
また、いずれの場合にも、研磨の際には、温度測定用の穴21の周囲の表面(穴21の内壁に直交する面)も研磨して鏡面にすれば、穴21の閉塞防止をより確実に達成できるため好ましい。
The inner wall portion 12 can also be formed by coating the inner periphery of the
Even with such a method, it is possible to easily obtain a sufficiently smooth inner wall portion 12 having a high bulk density.
In any case, if the surface around the
このような内壁部12のかさ密度としては、0.1〜2.0g/cm3とすることが好ましい。
このような範囲のかさ密度であれば、多結晶の形成を十分に防止することができ、上記のような方法で容易に形成できる。
The bulk density of the inner wall portion 12 is preferably 0.1 to 2.0 g / cm 3 .
When the bulk density is in such a range, the formation of polycrystals can be sufficiently prevented, and can be easily formed by the method described above.
また、内壁部12の表面粗さRaは、5μm未満が好ましく、特に、3μm以下、さらに1μm以下であることがより好ましい。
内壁部12を治具等によって研磨して鏡面にし、上記のような表面粗さとすることで、表面への結晶の析出を確実に抑制することができる。
Further, the surface roughness Ra of the inner wall portion 12 is preferably less than 5 μm, particularly preferably 3 μm or less, and more preferably 1 μm or less.
By polishing the inner wall portion 12 with a jig or the like to give a mirror surface and having the above surface roughness, it is possible to reliably suppress the precipitation of crystals on the surface.
温度測定用の穴21の断面形状としても、特に限定されないが、丸、又は、三角形を含む多角形であれば、穴21を通して温度測定を良好にでき、さらに、研磨等が施しやすく、内壁部12の形成も容易である。
The cross-sectional shape of the
また、このような温度測定用の穴21は、図1のように種基板15が配置される側のみに形成してもよいが、穴21を2つ設けるのが好ましく、反対側のSiC原料18側にも設けて上下両側から温度測定してもよい。この場合、一方にのみ内壁部12を形成しても良いが、2つの温度測定用の穴21に本発明のような内壁部12を形成するのが好ましい。
上下両側から温度測定することで、昇華室19と成長室20の温度をそれぞれ正確に求めることができるため、より効率的な結晶成長を行うことができる装置となる。なお、穴21を設ける位置としては上記に限られない。
Further, such a
By measuring the temperature from both the upper and lower sides, the temperatures of the
このような本発明のSiC成長装置を用いて、図2に示すフローで昇華法によるSiC結晶成長を行うことができる。図2は、昇華法によるSiC結晶成長を行う際のフロー図である。 Using such a SiC growth apparatus of the present invention, it is possible to perform SiC crystal growth by the sublimation method according to the flow shown in FIG. FIG. 2 is a flowchart for performing SiC crystal growth by the sublimation method.
まず、SiC原料18としてSiCの粉末原材料を成長容器14の昇華室19に収容し(図2(a))、SiC単結晶の種基板15を成長室20に配置し(図2(b))、成長容器14の蓋を閉じる(図2(c))。
そして、成長容器14を炉内にセットし、Ar雰囲気にして、高真空状態にする(図2(d))。その後、ヒーター17で加熱して2000℃以上の温度にまで昇温して、温度測定用の穴21を通して温度測定器13により成長容器14内の温度を測定し、該測定結果を基にヒーター17の出力を制御して温度を調節しながらSiC原料を昇華させ(図2(e))、種基板15上にSiC結晶16を成長させる(図2(f))。当該結晶成長時には、成長室20内の温度が昇華室19内の温度より低くなるように温度制御する。
First, a SiC powder raw material as a SiC
Then, the
この際、本発明の装置であれば、長時間の結晶成長を行っても、温度測定用の穴がふさがることがないため、連続して正確な温度測定を行うことができる。従って、精度の良い温度制御を行いながら結晶性の良いSiCを生産性良く成長させることができる装置となる。 At this time, if the apparatus of the present invention is used, the temperature measurement hole will not be blocked even if the crystal growth is performed for a long time, so that accurate temperature measurement can be performed continuously. Therefore, an apparatus capable of growing SiC with good crystallinity with high productivity while performing temperature control with high accuracy.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図1に示すようなSiC成長装置を用いて、昇華法によりSiC結晶成長を200時間行った。
用いた装置の温度測定用の穴は、カーボンコート材の断熱材に穴を形成した後、穴の内壁を密度の高いカーボンでコートして他の部分よりもかさ密度を高くし、その表面を研磨して鏡面に仕上げた。
この結果、200時間通して、正確な温度測定を行うことができた。結晶成長後、温度測定用の穴の表面の汚れは確認できたが、穴全体が析出物で閉塞するほどの堆積は起きなかった。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
Using an SiC growth apparatus as shown in FIG. 1, SiC crystal growth was performed for 200 hours by the sublimation method.
The hole for measuring the temperature of the equipment used was to form a hole in the heat insulating material of the carbon coating material, and then coat the inner wall of the hole with high density carbon to make the bulk density higher than other parts, and the surface Polished to a mirror finish.
As a result, it was possible to perform accurate temperature measurement over 200 hours. After the crystal growth, contamination of the surface of the hole for temperature measurement could be confirmed, but deposition so as to block the entire hole with the precipitate did not occur.
(比較例)
実施例と同様の装置を用いて、ただし、温度測定用の穴は断熱材に穴を形成したのみで、カーボンコート、研磨を行わないで形成した。その後、実施例と同様に、昇華法により、SiC結晶成長を行った。
この結果、多結晶の成長により短時間で温度測定用の穴が閉塞し、200時間行う前に結晶成長を停止した。同様の成長を複数回行った場合、20%の割合で成長中に温度測定用の穴が閉塞し、200時間の成長を行うことができなかった。
(Comparative example)
The same apparatus as in the example was used, except that the hole for temperature measurement was formed by merely forming a hole in the heat insulating material, without performing carbon coating and polishing. Thereafter, similarly to the example, SiC crystal growth was performed by a sublimation method.
As a result, the hole for temperature measurement was closed in a short time due to the growth of the polycrystal, and the crystal growth was stopped before performing for 200 hours. When the same growth was performed a plurality of times, the hole for temperature measurement was blocked during the growth at a rate of 20%, and the growth for 200 hours could not be performed.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
10…SiC成長装置、 11…断熱材、 12…内壁部、 13…温度測定器、
14…成長容器、 15…種基板、 16…SiC結晶、 17…ヒーター、
18…SiC原料、 19…昇華室、 20…成長室、 21…温度測定用の穴。
DESCRIPTION OF
14 ... Growth vessel, 15 ... Seed substrate, 16 ... SiC crystal, 17 ... Heater,
18 ... SiC raw material, 19 ... Sublimation chamber, 20 ... Growth chamber, 21 ... Hole for temperature measurement.
Claims (8)
The SiC growth apparatus according to any one of claims 1 to 7, wherein two holes for temperature measurement are provided in the heat insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011072831A JP5423709B2 (en) | 2011-03-29 | 2011-03-29 | SiC growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011072831A JP5423709B2 (en) | 2011-03-29 | 2011-03-29 | SiC growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012206875A true JP2012206875A (en) | 2012-10-25 |
JP5423709B2 JP5423709B2 (en) | 2014-02-19 |
Family
ID=47186964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011072831A Active JP5423709B2 (en) | 2011-03-29 | 2011-03-29 | SiC growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5423709B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098330A1 (en) * | 2013-12-27 | 2015-07-02 | 住友電気工業株式会社 | Apparatus for producing silicon carbide single crystal, and method for producing silicon carbide single crystal |
KR101634673B1 (en) | 2015-05-07 | 2016-06-29 | 주식회사 썸백 | Manufacturing Apparatus For Bulk Single Crystal of Compound Semiconductor |
WO2019176447A1 (en) * | 2018-03-16 | 2019-09-19 | 信越半導体株式会社 | Production method and production device of silicon carbide single crystal |
JP2020040845A (en) * | 2018-09-06 | 2020-03-19 | 昭和電工株式会社 | SiC SINGLE CRYSTAL MANUFACTURING APPARATUS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6458987A (en) * | 1987-08-31 | 1989-03-06 | Sumitomo Electric Industries | Heat-insulating method of high temperature furnace |
JPH07276549A (en) * | 1994-04-08 | 1995-10-24 | Nippon Carbon Co Ltd | Heat insulation material |
JP2003002794A (en) * | 2001-06-15 | 2003-01-08 | Bridgestone Corp | Silicon carbide single crystal and method for producing the same |
JP2008290885A (en) * | 2007-05-22 | 2008-12-04 | Denso Corp | Silicon carbide single crystal manufacturing apparatus and manufacturing method |
-
2011
- 2011-03-29 JP JP2011072831A patent/JP5423709B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6458987A (en) * | 1987-08-31 | 1989-03-06 | Sumitomo Electric Industries | Heat-insulating method of high temperature furnace |
JPH07276549A (en) * | 1994-04-08 | 1995-10-24 | Nippon Carbon Co Ltd | Heat insulation material |
JP2003002794A (en) * | 2001-06-15 | 2003-01-08 | Bridgestone Corp | Silicon carbide single crystal and method for producing the same |
JP2008290885A (en) * | 2007-05-22 | 2008-12-04 | Denso Corp | Silicon carbide single crystal manufacturing apparatus and manufacturing method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098330A1 (en) * | 2013-12-27 | 2015-07-02 | 住友電気工業株式会社 | Apparatus for producing silicon carbide single crystal, and method for producing silicon carbide single crystal |
KR101634673B1 (en) | 2015-05-07 | 2016-06-29 | 주식회사 썸백 | Manufacturing Apparatus For Bulk Single Crystal of Compound Semiconductor |
WO2019176447A1 (en) * | 2018-03-16 | 2019-09-19 | 信越半導体株式会社 | Production method and production device of silicon carbide single crystal |
JP2019156708A (en) * | 2018-03-16 | 2019-09-19 | 信越半導体株式会社 | Production method and production device of silicon carbide single crystal |
TWI860287B (en) * | 2018-03-16 | 2024-11-01 | 日商信越半導體股份有限公司 | Method for manufacturing silicon carbide single crystal |
JP2020040845A (en) * | 2018-09-06 | 2020-03-19 | 昭和電工株式会社 | SiC SINGLE CRYSTAL MANUFACTURING APPARATUS |
JP7242987B2 (en) | 2018-09-06 | 2023-03-22 | 株式会社レゾナック | SiC single crystal manufacturing equipment |
US11761113B2 (en) | 2018-09-06 | 2023-09-19 | Resonac Corporation | SiC single crystal manufacturing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5423709B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3396029B1 (en) | Sic single crystal production method and production apparatus | |
US20120304916A1 (en) | Method of producing silicon carbide single crystal | |
JP6813779B2 (en) | Single crystal manufacturing equipment and single crystal manufacturing method | |
JP5423709B2 (en) | SiC growth equipment | |
TWI774929B (en) | Manufacturing method of silicon carbide single crystal | |
JP2018168023A (en) | Device and method for manufacturing silicon carbide single crystal ingot | |
US9982365B2 (en) | Method for producing SiC single crystal | |
US9951441B2 (en) | Method for producing SiC substrate | |
CN104278322A (en) | Method of manufacturing silicon carbide single crystal and silicon carbide single crystal substrate | |
JP2018140903A (en) | Method for manufacturing silicon carbide single crystal ingot | |
JP2012254892A (en) | Manufacturing method and manufacturing device for single crystal | |
JP2010275190A (en) | Method for producing silicon carbide single crystal | |
US10815586B2 (en) | Gallium-arsenide-based compound semiconductor crystal and wafer group | |
JP2017154953A (en) | Silicon carbide single crystal manufacturing equipment | |
CN106167916B (en) | The manufacturing method of SiC single crystal | |
JP2006096578A (en) | Method for producing silicon carbide single crystal and silicon carbide single crystal ingot | |
JP5573753B2 (en) | SiC growth equipment | |
JP2010275166A (en) | Method for producing silicon carbide single crystal | |
WO2011135669A1 (en) | PROCESS FOR PRODUCTION OF SiC SUBSTRATE | |
TWI875366B (en) | A crystal growth apparatus with multiple deposition sites in and method using the same | |
TW201938854A (en) | Production method and production device of silicon carbide single crystal | |
JP6501494B2 (en) | Method and apparatus for manufacturing silicon carbide single crystal ingot | |
KR102665191B1 (en) | Single crystal growth device and single crystal growth method of using the same | |
US20150075419A1 (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JP6627984B2 (en) | Method and apparatus for producing SiC single crystal, and seed shaft used for producing SiC single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5423709 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |