JP2012203129A - 光導波回路およびその製造方法ならびに光導波回路装置 - Google Patents
光導波回路およびその製造方法ならびに光導波回路装置 Download PDFInfo
- Publication number
- JP2012203129A JP2012203129A JP2011066404A JP2011066404A JP2012203129A JP 2012203129 A JP2012203129 A JP 2012203129A JP 2011066404 A JP2011066404 A JP 2011066404A JP 2011066404 A JP2011066404 A JP 2011066404A JP 2012203129 A JP2012203129 A JP 2012203129A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- refractive index
- optical
- waveguide circuit
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 336
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 230000010287 polarization Effects 0.000 claims abstract description 67
- 238000010438 heat treatment Methods 0.000 claims abstract description 52
- 230000002441 reversible effect Effects 0.000 claims abstract description 28
- 230000001419 dependent effect Effects 0.000 claims abstract description 16
- 230000002427 irreversible effect Effects 0.000 claims description 2
- 238000009966 trimming Methods 0.000 description 57
- 238000000034 method Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- 230000001186 cumulative effect Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005253 cladding Methods 0.000 description 6
- 230000001902 propagating effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0147—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on thermo-optic effects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/126—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/21—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference
- G02F1/225—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour by interference in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/06—Polarisation independent
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Integrated Circuits (AREA)
Abstract
【課題】より容易に小さなPDFSを実現可能な光導波回路およびその製造方法、ならびに、より容易に小さなPDFSを実現可能な光導波回路を用いた光導波回路装置を提供すること。
【解決手段】光導波路からなる光干渉計と、前記光干渉計を構成する光導波路の少なくとも一部に沿って配置された、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる可逆的な屈折率変化を与える加熱と、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる恒久的な屈折率変化を与える加熱とを行う加熱部と、を備え、前記光干渉計は、前記恒久的な屈折率変化を与える加熱が行われたことによって偏波依存周波数シフトが低減されたものである。
【選択図】図1
【解決手段】光導波路からなる光干渉計と、前記光干渉計を構成する光導波路の少なくとも一部に沿って配置された、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる可逆的な屈折率変化を与える加熱と、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる恒久的な屈折率変化を与える加熱とを行う加熱部と、を備え、前記光干渉計は、前記恒久的な屈折率変化を与える加熱が行われたことによって偏波依存周波数シフトが低減されたものである。
【選択図】図1
Description
本発明は、光導波回路およびその製造方法ならびに光導波回路装置に関する。
伝送速度が40Gbpsの差動四値位相変調(Differential Quadrature Phase Shift Keying:DQPSK)、または差動位相変調(DPSK)通信方式において、D(Q)PSK光信号を復調する復調素子として、マッハツェンダー(Mach-Zehnder Interferometer:MZI)型干渉計などの導波路型光干渉計を用いて遅延回路を構成した光導波回路が使用されている。この種の復調素子においては、偏波依存周波数シフト(Polarization Dependent Frequency Shift:PDFS)の許容量は非常に小さく、位相差にして3〜5度程度であると言われている。ここで、PDFSとは、光干渉計によって生じた透過特性のピークが、光導波路を伝搬する光の2つの偏波状態(TM波とTE波)の間で差が生じる現象のことである。
上述した3〜5度程度の許容量は、例えば、FSR(Free Spectral Range)が23GHzの遅延回路を用いる40Gbps−DQPSK通信方式の場合、周波数としては200〜300MHz程度に対応し、きわめて小さい量である。そこで、これまでにPDFSを解消する種々の技術が提案されている(たとえば特許文献1〜7)。
PDFSを解消する技術として、まず、波長板(旋光子)を用いる技術が開示されている。たとえば、特許文献1では、屈折率主軸を光導波路基板の主表面に対して45度傾けた半波長板と、屈折率主軸を光導波路基板の主表面に対して平行にした半波長板(リターダ)とにより構成され、入力された光の偏波状態を90度または−90度だけ回転させる旋光子を用いる技術が開示されている。このような旋光子をMZI干渉計に挿入することにより、MZI干渉計を構成する光カプラにおいて発生した偏波変換光の影響も含めて、PDFSを解消することができる。
また、PDFSを解消する他の技術として、光導波路を局所的に加熱してその屈折率や複屈折率を恒久的に変化させ、PDFSを解消する技術が開示されている。この技術は、高精度にPDFSを調整し、かつその調整された特性を恒久的に維持することができる実用的な手段であり、有用であると考えられている。なお、このように光導波路を加熱してその屈折率や複屈折率を恒久的に変化させることはトリミングと呼ばれることがある。
たとえば、特許文献2では、平面光波回路(Planar Lightwave Circuit:PLC)のチップ上に薄膜ヒータを形成し、かつこのヒータ幅などの構造により光導波路を局所加熱する領域を適切に設定することにより、トリミングによるPDFSの調整量を制御する技術が開示されている。
しかしながら、伝送速度の高速化の要求に応えるために、より容易に小さなPDFSを実現可能な光導波回路およびその製造方法がますます求められている。
本発明は、上記に鑑みてなされたものであって、より容易に小さなPDFSを実現可能な光導波回路およびその製造方法、ならびに、より容易に小さなPDFSを実現可能な光導波回路を用いた光導波回路装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る光導波回路は、光導波路からなる光干渉計と、前記光干渉計を構成する光導波路の少なくとも一部に沿って配置された、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる可逆的な屈折率変化を与える加熱と、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる恒久的な屈折率変化を与える加熱とを行う加熱部と、を備え、前記光干渉計は、前記恒久的な屈折率変化を与える加熱が行われたことによって偏波依存周波数シフトが低減されたものであることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記加熱部は、1つのヒータによって構成されていることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記加熱部は、前記可逆的な屈折率変化を与える加熱を行うヒータと、前記恒久的な屈折率変化を与える加熱を行うヒータとによって構成されていることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記ヒータは、前記光導波路の2つの屈折率主軸において互いに異なる屈折率変化を与えるように、幅および前記光導波路までの距離が設定されていることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記光干渉計は、マッハツェンダー型干渉計であることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、差動位相変調光信号を復調させる復調素子として構成されていることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記可逆的な屈折率変化を与えたときの前記光導波路の屈折率変化の情報をもとに前記恒久的な屈折率変化が与えられたものであることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記屈折率変化の情報は前記光干渉計の偏波依存周波数シフトであることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記光干渉計は中心に対して略対称形に構成されており、前記対称形の略中心に前記光干渉計の偏波依存周波数シフトを低減するための1/2波長板が挿入されていることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、所定の波長における前記光干渉計の偏波依存周波数シフトが200MHz以下であることを特徴とする。
また、本発明に係る光導波回路は、上記の発明において、前記1/2波長板を挟んで2つの前記加熱部が配置されていることを特徴とする。
また、本発明に係る光導波回路装置は、上記の発明に記載の光導波回路と、前記加熱部を制御する制御部と、を備えることを特徴とする。
また、本発明に係る光導波回路装置は、上記の発明に記載の光導波回路と、前記加熱部を制御する制御部と、を備え、前記制御部は、当該光導波回路装置の使用時において、前記1/2波長板を挟んで配置された前記2つの加熱部に略同一の電力を与えて前記可逆的な屈折率変化を与える加熱を行わせることを特徴とする。
また、本発明に係る光導波回路の製造方法は、光導波路からなる光干渉計を備える光導波回路の製造方法であって、前記光干渉計を構成する光導波路の少なくとも一部に、該光導波路の2つの屈折率主軸において互いに異なる可逆的な屈折率変化を与える第1の加熱を行い、前記可逆的な屈折率変化を与える加熱による前記光導波路の屈折率変化の情報をもとに、前記光干渉計の偏波依存周波数シフトを低減するように、前記光導波路の少なくとも一部に該光導波路の2つの屈折率主軸において互いに異なる不可逆的な屈折率変化を与える第2の加熱を行う、ことを含むことを特徴とする。
また、本発明に係る光導波回路の製造方法は、上記の発明において、前記屈折率変化の情報は前記光干渉計の偏波依存周波数シフトであることを特徴とする。
また、本発明に係る光導波回路の製造方法は、上記の発明において、所定の波長における前記光干渉計の偏波依存周波数シフトが200MHz以下になるように前記第2の加熱を行うことを特徴とする。
また、本発明に係る光導波回路の製造方法は、上記の発明において、前記第1の加熱を行った場合の屈折率変化に基づく偏波間位相差変化量と前記第2の加熱を行った場合の屈折率変化に基づく偏波間位相差変化量との相関関係に基づいて、前記第2の加熱を行うべき前記光導波路の領域および加熱量を設定することを特徴とする。
本発明によれば、より容易に小さなPDFSを実現可能な光導波回路を実現できるという効果を奏する。
以下に、図面を参照して本発明に係る光導波回路およびその製造方法ならびに光導波回路装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各層の厚みと幅との関係、各層の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態1)
はじめに、本発明の実施の形態1に係る光導波回路について説明する。本実施の形態1に係る光導波回路は、DQPSK光信号の復調素子として使用できる、シリカガラス系材料からなるPLC型の光導波回路である。
はじめに、本発明の実施の形態1に係る光導波回路について説明する。本実施の形態1に係る光導波回路は、DQPSK光信号の復調素子として使用できる、シリカガラス系材料からなるPLC型の光導波回路である。
図1は、実施の形態1に係る光導波回路の模式的な平面図である。図1に示すように、光導波回路100は、入力光導波路10と、入力光導波路10に接続したY分岐光導波路20と、MZI干渉計30、40と、出力光導波路51〜54と、1/2波長板61、62と、ヒータ71〜78と、とを備えている。
入力光導波路10は、端面100a側に形成された光入力ポートPinに接続しており、端面100bに沿って略直線状に形成されている。
Y分岐光導波路20は、分岐光導波路21、22を備える。分岐光導波路21、22は、端面100b、100cに順次沿って延伸し、さらに屈曲して端面100a側に向かって延伸しており、全体的にU字状に形成されている。
MZI干渉計30は、Y分岐光導波路20の分岐光導波路21に接続しており、入力側カプラ31と、出力側カプラ32と、入力側カプラ31と出力側カプラ32との間を接続する長さが異なるアーム光導波路33、34とを有する。MZI干渉計40は、Y分岐光導波路20の分岐光導波路22に接続しており、入力側カプラ41と、出力側カプラ42と、入力側カプラ41と出力側カプラ42との間を接続する長さが異なるアーム光導波路43、44とを有する。
入力側カプラ31、41および出力側カプラ32、42は、いずれも方向性結合器で構成された2入力×2出力の3dBカプラである。入力側カプラ31、41の一方の入力ポート側がY分岐光導波路20の分岐光導波路21、22と接続している。
アーム光導波路34とアーム光導波路43とは交点P1〜P4で交差している。なお、交点P1〜P4では、各アーム光導波路34、43を導波してきた光はそのままそれぞれの光導波路を導波していくように交差角が調整されている。
MZI干渉計30、40は、順次端面100b、100a、100dに沿うように延伸しており、全体的にU字状かつ紙面左右に対して略対称形に形成されている。
出力光導波路51、52は、MZI干渉計30の出力側カプラ32の各出力ポートに接続し、出力光導波路53、54は、MZI干渉計40出力側カプラ42の各出力ポートに接続している。また、出力光導波路51〜54は、端面100c側に形成された光出力ポートPout1〜Pout4のそれぞれに接続している。
ここで、MZI干渉計30の2つのアーム光導波路33、34には、長い側のアーム光導波路33を伝搬するDQPSK光信号の位相を短い側のアーム光導波路34を伝搬するDQPSK光信号の位相に対してシンボルレートの1ビット(1ビットのタイムスロット:1タイムスロット)に相当する遅延量だけ遅延させる光路長差を持たせてある。例えば、伝送速度が40Gbpsの場合、Iチャネル、Qチャネルそれぞれのシンボルレートは20Gbpsなので、遅延量は50psとする。これにより、MZI干渉計30では、隣接するタイムスロットの光同士が干渉する。同様に、MZI干渉計40の2つのアーム光導波路43、44には、長い側のアーム光導波路43を伝搬するDQPSK光信号の位相を短い側のアーム光導波路44を伝搬するDQPSK光信号の位相に対して1タイムスロットに相当する遅延量だけ遅延させる光路長差を持たせてある。これにより、MZI干渉計40では、隣接するタイムスロットの光同士が干渉する。
また、MZI干渉計30では上記光路長差は、上記1ビットに相当する遅延量に、光信号の位相でπ/4に相当する長さだけ長く設定されている。また、MZI干渉計40では上記光路長差は、上記1ビットに相当する遅延量に、光信号の位相でπ/4に相当する長さだけ短く設定されている。これによって、MZI干渉計30で干渉する隣接するタイムスロットの光の位相と、MZI干渉計40で干渉する隣接するタイムスロットの光の位相とがπ/4ずれるため、MZI干渉計30とMZI干渉計40とではπ/2だけ位相がずれた干渉特性を持つ。
また、MZI干渉計30の短い側のアーム光導波路34の光路長と、MZI干渉計40の短い側のアーム光導波路44の光路長が互いに異なり、かつ、Y分岐光導波路20からMZI干渉計30のアーム光導波路34を経てMZI干渉計30の出力側の出力光導波路51、52に至るまでの光路長と、Y分岐光導波路20からMZI干渉計40のアーム光導波路44を経てMZI干渉計40の出力側の出力光導波路53、54に至るまでの光路長とを全て略等しくしている。
1/2波長板61、62は、MZI干渉計30、40の左右対称の略中心の位置に、アーム光導波路33、34、43、44を横切るように2つが略平行に並べられて配置されている。1/2波長板61は、各アーム光導波路の屈折率主軸に対してその主軸が45度だけ傾斜するように配置される。1/2波長板62は、各アーム光導波路の屈折率主軸に対してその主軸が平行または水平になるように配置される。
1/2波長板61は、入力された光の直交する2つの偏波状態(すなわち、アーム光導波路の屈折率主軸に沿ったTE偏波とTM偏波)を互いに入れ替えて、PDFSを低減する機能を有する。また、1/2波長板62は、入力側カプラ31、41および出力側カプラ32、42等での偏波変換が発生した場合でも、偏波変換光の干渉条件を偏波変換されない通常光の干渉条件と同一として、偏波変換によるPDFSの劣化を抑制する。その結果、特許文献1と同様に、PDFSはより一層低減される。
ヒータ71〜78は、アーム光導波路33、34、43、44上の一部に、各アーム光導波路に沿って形成されている。なお、ヒータ71、73は、1/2波長板61、62を挟んでアーム光導波路33上に配置されている。ヒータ72、74は、1/2波長板61、62を挟んでアーム光導波路34上に配置されている。ヒータ75、77は、1/2波長板61、62を挟んでアーム光導波路43上に配置されている。ヒータ76、78は、1/2波長板61、62を挟んでアーム光導波路44上に配置されている。
ヒータ71〜78は、アーム光導波路33、34、43、44のトリミングを行うため、および、このトリミングの前に、トリミングによるPDFSの変化の方向および変化量を予め調査するために可逆的な屈折率変化を与えるために用いられる。なお、1/2波長板61、62によってPDFSは低減されている。しかし、このようにPDFSを低減しても、各光導波路の構造の設計誤差、製造誤差や、1/2波長板61、62の製造誤差等によって発生するPDFSが存在するので、これを低減するためにトリミングを行う。
つぎに、図2を用いて光導波回路100の断面構造とヒータ71〜78の配置について説明する。図2は、図1に示す光導波回路100のX−X線断面図である。図2に示すように、光導波回路100は、たとえばシリコンからなる基板101上に形成されたシリカガラス系材料からなるクラッド層102内に、クラッド層よりも屈折率が高いコア部を形成して、このコア部を光導波路とすることで構成されている。なお、図2ではアーム光導波路33、43の断面を示している。なお、クラッド層102に対する各光導波路の比屈折率差はたとえば1.2%である。また、各光導波路の断面のサイズはたとえば6μm×6μmである。
図2に示すヒータ71、75は、クラッド層102上に形成された、たとえばタンタル(Ta)系材料などのヒータ材料からなる薄膜ヒータである。ヒータ71、75の幅をWとする。また、アーム光導波路33、43の高さ方向中心からこれらの上方に位置するヒータ71、75までの距離をLとする。以下、ヒータと光導波路との距離とは、光導波路の高さ方向中心からの距離とする。また、その他のヒータ72〜74、76〜78の幅もWとし、これらのヒータと、対応する光導波路との距離もLとする。本実施の形態1では、Wは50μmとし、クラッド層102の厚さは約60μmとし、Lを約17μmとする。
つぎに、図3を用いて1/2波長板61、62の配置について説明する。図3は、図1に示す光導波回路100のY−Y線断面図である。図3に示すように、1/2波長板61、62は、図示したアーム光導波路43および不図示のアーム光導波路33、34、44を横切るようにクラッド層102に形成された溝102a、102bに挿入されている。溝102a、102bは、アーム光導波路33、34、43、44に垂直な面に対して、アーム光導波路33、34、43、44の延伸方向に向けて約8度傾斜している。このように1/2波長板61、62が挿入される溝102a、102bに傾斜を設けることによって、アーム光導波路33、34、43、44を導波した光が1/2波長板61、62の表面で反射した場合に反射光がアーム光導波路33、34、43、44に戻ることが防止される。
つぎに、ヒータ71〜78の幅およびヒータ71〜78と対応するアーム光導波路との距離について説明する。図4は、幅が異なるヒータにおける、ヒータによる加熱量と光導波路の恒久的な屈折率変化量との関係を示す図である。
特許文献2にも示されるように、ヒータによってトリミングできる恒久的な屈折率変化量には偏波依存性がある。すなわち、光導波路のTE偏波とTM偏波とでは屈折率変化量が異なる。また、その偏波依存性はヒータの幅によって異なる。図4は、光導波路とヒータとの距離Lが17μmであり、ヒータの幅を10μmから100μmの間に設定した場合である。この場合、幅Wが距離Lの二倍の値W0に近い30μmの場合にTE偏波とTM偏波とでの屈折率変化量の差がほぼ無くなる(すなわち偏波依存性がなくなる)。ここで、偏波依存性が無いとは、例えば両偏波における屈折率変化量の差が約1%以内という意味である。また、WがW0より大きい場合は、TM偏波の方が屈折率変化量が大きい。WがW0より小さい場合は、TE偏波の方が屈折率変化量が大きい。
本実施の形態1では、ヒータ71〜78の幅Wを、距離Lの約2.9倍である50μmとしているので、TM偏波の方が、屈折率変化量が大きくなっている。また、いずれの幅の場合も、屈折率変化量は加熱量と略比例関係にある。
つぎに、本実施の形態1において、ヒータ71〜78に与えるヒータ電力とアーム光導波路33、34、43、44の偏波間位相差変化量との関係について説明する。ここで、偏波間位相差とは、TM偏波とTE偏波での加熱による屈折率変化量の差を、光の位相差に変換して表した量を意味する。
図5は、本実施の形態1における、ヒータ電力と偏波間位相差変化量との関係の一例を示す図である。なお、偏波間位相差変化量はπで規格化している。ここで、横軸に示す0〜500mWのヒータ電力で光導波路を加熱した場合は、トリミングの場合の恒久的な屈折率変化とは異なり、熱光学効果(TO効果)によって屈折率が可逆的に変化する程度の熱が光導波路に与えられる。
図5に示すように、本実施の形態1では、TO効果によってヒータ電力と偏波間位相差変化量とは略比例しており、ヒータ電力を大きくするほど偏波間位相差変化量は大きくなる。このことは、本実施の形態1のヒータ71〜78によって、アーム光導波路33、34、43、44にTO効果によって屈折率が可逆的に変化する程度の熱を与えると、図4に示す恒久的な屈折率変化と同様にTM偏波での屈折率変化量の方が大きいため、ヒータ電力を大きくするほど偏波間位相差変化量が大きくなっていることを意味する。
図6は、本実施の形態1における、累積トリミング時間と偏波間位相差変化量との関係の一例を示す図である。ここで、累積トリミング時間とは、屈折率が恒久的に変化する程度の熱をアーム光導波路に与える累積時間を意味する。なお、図6ではヒータ電力を6Wとしている。図6に示すように、累積トリミング時間と偏波間位相差変化量とは略比例している。また、図4に示すように、本実施の形態1では、TM偏波での屈折率変化量が大きいため、ヒータ電力を大きくするほど偏波間位相差変化量が大きくなっていることを意味する。
図4〜図6に示すように、TO効果によって屈折率が可逆的に変化する熱量による偏波間位相差変化量と、トリミングの際の恒久的な屈折率変化量による偏波間位相差変化量との間には相関関係がある。そこで、以下に示す本実施の形態1に係る光導波回路100の製造方法では、ヒータ71〜78によって、アーム光導波路33、34、43、44のトリミングを行う前にTO効果による可逆的屈折率変化を発生させて屈折率変化の情報を得て、これによってトリミングによるPDFSの変化の方向および変化量を予め調査する。
以下、本実施の形態1に係る光導波回路100の製造方法の一例について説明する。はじめに、公知の火炎堆積(Flame Hydrolysis Deposition、FHD)法によるガラス微粒子の堆積とガラス化工程、フォトリソグラフィと反応性イオンエッチング、FHD法とガラス化工程とを順次行い、基板101上に図1に示す各光導波路の構造を形成する。その後、スパッタ法等によるヒータ71〜78の形成、およびエッチング等による溝102a、102bの形成と1/2波長板61、62の挿入とを行う。これによって、図1に示す光導波回路100の構造が形成される。
つぎに、PDFSの調整を行う。図7は、PDFSの調整の一例のフロー図である。図7に示すように、本調整方法では、はじめに、光導波回路100の構造を形成した後の初期状態のPDFSの測定を行う(ステップS101)。つぎに、ステップS101の測定結果に基づいて、可逆的屈折率変化のためのアーム光導波路の加熱を行う(ステップS102)。つぎに、ステップS102の加熱によるPDFSの変化に基づいて、所望のPDFS低減が可能かどうかの判定を行う(ステップS103)。所望のPDFS低減が可能であれば(ステップS103、Yes)、続けてトリミングを行い(ステップS104)、可能でなければ(ステップS103、No)、不良と判断して工程を終了する。
以下、上記の方法によって光導波回路100の構造を形成した光導波回路を実際に製造し、その調整を行った場合を例として説明する。
はじめに、ステップS101の工程について説明する。この工程では、MZI干渉計30の透過スペクトルの測定を行い、Cバンドを含む約1520nm〜1570nmの波長帯域で約5nmごとの波長ピークにおけるPDFSを求めた。図8は、初期状態におけるPDFSの波長依存性の一例を示す図である。図8に示すように、1/2波長板61、62を挿入しているにも関わらず、測定帯域内において600MHz〜700MHzのPDFSが残留していた。
つぎに、この測定結果に基づいて、アーム光導波路33上に1/2波長板61、62を挟んで対称に配置されたヒータ71、73を用いてトリミングを行うこととしたが、その前にこのヒータ71、73を用いて、以下のようにステップS102の可逆的屈折率変化のためのアーム光導波路33の加熱を行った。
まず、ヒータ71、73に個別に120mW、250mW、および500mWの電力で通電を行った状態でそれぞれ透過スペクトル測定を行い、PDFSを求めた。なお、図5に示すとおり、これらの電力はTO効果によって屈折率が可逆的に変化する程度の熱をアーム光導波路33に与えるものである。
図9は、可逆的屈折率変化のためのアーム光導波路の加熱を行った場合のヒータ電力と各波長でのPDFSとの関係の一例を示す図である。図9に示すように、ヒータ73のヒータ電力を増加していくとPDFSが増加することが確認された。一方、ヒータ71のヒータ電力を増加していくとPDFSが一旦減少し、その後増加することが確認された。図9に示す結果から、ステップS103の判定を行い、ヒータ71に250Wの電力を通電させることでPDFSを極小にでき、200MHz以下に低減できる、すなわち所望のPDFS低減が可能であると判定した。この結果から、ヒータ71を用いてトリミングを行うことに決定した。
ここで、ヒータ71を用いてトリミングを行う際のトリミング時間を、図5、図6に示す相関関係から見積もった。具体的には、図5より、ヒータに250mWの通電を行った場合の偏波間位相差変化量は約0.035πであることが分かる。一方、図6から、約0.035πの偏波間位相差変化量を発生させるための累積トリミング時間は約500秒である。したがって、PDFSを200MHz以下に低減するために、偏波間位相差変化量を約0.035πとするために必要な累積トリミング時間は約500秒であると見積もった。
つぎに、ステップS104のトリミングを行った。図10は、累積トリミング時間と各波長でのPDFSとの関係を示す図である。図10では、実験のためにまずヒータ電力を6Wとして400秒のトリミングを連続して行った後にPDFSを測定した。さらに、その後同じヒータ電力で30秒ずつ追加のトリミングを行った。すると、可逆的屈折率変化のための加熱の結果から予測された通りの約500秒の累積トリミング時間で、所望の200MHz以下、より具体的には150MHz以下のPDFSが実現された。
つぎに、MZI干渉計40にも、アーム光導波路43に対応するヒータ75、77を用いて上記のステップS101〜S104の工程を適用したところ、150MHz以下のPDFSが実現された。すなわち、上記の調整によって、40Gbps−DQPSK通信方式にも適用できる、150MHz以下のPDFSを有する光導波回路が実現できた。
なお、上記の調整方法を適用せずにトリミングを行う場合、ヒータ73によってトリミングを行ってしまうおそれがある。この場合、図9に示すようにPDFSは増加してしまう。トリミングは恒久的な屈折率変化を発生させるものであるため、このようにPDFSが増加してしまうとその光導波回路は不良品となってしまう。また、ヒータ71でトリミングを行う場合でも、累積トリミング時間を長くしすぎるとPDFSは極小値よりも増加してしまうおそれがある。
これに対して、上記調整方法によって予めトリミングをすべきヒータとその累積トリミングを決定することによって、PDFSの不要な増加が防止されるため、光導波回路の製造歩留まりが高くなる。
なお、上記調整方法では、ヒータ71、73によって可逆的屈折率変化のためのアーム光導波路33の加熱を行ったが、同様な方法でヒータ72、74によって可逆的屈折率変化のためのアーム光導波路34の加熱を行ってもよい。また、同様な方法でヒータ76、78によって可逆的屈折率変化のためのアーム光導波路44の加熱を行ってもよい。
つぎに、上記と同様に製造した別の光導波回路にステップS101、102の工程を適用した。図11は、可逆的屈折率変化のためのアーム光導波路の加熱を行った場合のヒータ電力と各波長でのPDFSとの関係の別の一例を示す図である。この例の場合は、図11に示すように、ヒータ71、73のいずれに通電した場合にも、PDFSが400MHz以上であり、200MHz以下にできなかった。また、ヒータ72、74に通電した場合も同様に200MHz以下にできなかった。そこで、ステップS103の工程において所望のPDFS低減が可能でないと判断し、ステップS104の工程を行わずに終了した。これによって、トリミングを行っても所望のPDFS低減が可能ではない、不良品の光導波回路を効率的に識別でき、その後の不要なトリミングの工程を省略することができた。
(実施の形態2)
つぎに、本発明の実施の形態2について説明する。本実施の形態2に係る光導波回路装置は、実施の形態1に係る光導波回路を備えたものである。
つぎに、本発明の実施の形態2について説明する。本実施の形態2に係る光導波回路装置は、実施の形態1に係る光導波回路を備えたものである。
図12は、本実施の形態2に係る光導波回路装置の模式的な平面図である。図12に示すように、この光導波回路装置1000は、図1に示す実施の形態1に係る光導波回路100と、光導波回路100のヒータ71〜78のそれぞれに接続した制御部110およびグラウンド端子120とを備えている。
光導波回路100上にはヒータ71〜78と制御部110およびグラウンド端子120とを接続するための端子130および配線140が形成されている。
制御部110は、ヒータ71〜78に電力を供給するための電源チャネル110a〜110dを備えている。電源チャネル110aは、同一のアーム光導波路33上のヒータ71、73のそれぞれの一端に接続している。電源チャネル110bは、同一のアーム光導波路43上のヒータ75、77のそれぞれの一端に接続している。電源チャネル110cは、同一のアーム光導波路34上のヒータ72、74のそれぞれの一端に接続している。電源チャネル110dは、同一のアーム光導波路44上のヒータ76、78のそれぞれの一端に接続している。また、グラウンド端子120は、ヒータ71〜78のそれぞれの他の一端に接続している。
この光導波回路装置1000の光導波回路100は、上記の調整方法によってPDFSが低減されている。しかし、光導波回路100の干渉特性は、たとえば入力されるDQPSK光信号の波長に応じて変化する。そのため、この光導波回路装置1000の使用時には、入力されるDQPSK光信号の波長において所望の干渉特性を実現するために、ヒータ71〜78によってアーム光導波路33、34、43、44に熱が与えられ、これによってTO効果による屈折率調整が行われている。
ここで、ヒータ71〜78は、トリミングの前のPDFSの調査を行うために、TO効果に偏波依存性、すなわち偏波間位相差が発生するように、たとえば、その幅およびアーム光導波路33、34、43、44までの距離等が設定されている。一方、上記のような使用時のTO効果による屈折率調整を行う場合には、TO効果に偏波依存性が発生しないほうが好ましい。
そこで、この光導波回路装置1000では、1/2波長板61、62を挟んで同一のアーム光導波路上に配置された2つのヒータを同じ電源チャネルに並列接続して、同一の電力が与えられるようにしている。その結果、たとえばヒータ71に電力を与えたときにアーム光導波路33に発生する偏波間位相差と、ヒータ73に電力を与えたときにアーム光導波路33に発生する偏波間位相差とが1/2波長板61、62によってキャンセルされる。これによって、この光導波回路装置1000は、製造歩留まりが高く、かつ使用時には偏波依存性がない適切な屈折率調整をできるものとなる。
なお、上記の理由から、光導波回路100のトリミング前の調査の際には、1/2波長板61、62を挟んで同一のアーム光導波路上に配置された2つのヒータを同時に駆動せず、いずれか一方のみを駆動することが好ましい。このような一方のみの駆動をすることによって、発生する偏波間位相差がキャンセルされないため、トリミング前の調査が容易になる。
この光導波回路装置1000では、同一の電力を与えるべきヒータを並列接続しているが、本発明はこれに限らず、各ヒータに個別に同一の電力を与えても良い。
(実施の形態3)
つぎに、本発明の実施の形態3について説明する。本実施の形態3に係る光導波回路は、アーム光導波路にTO効果を与えるヒータとトリミングを行うヒータとを別々のヒータで構成したものである。
つぎに、本発明の実施の形態3について説明する。本実施の形態3に係る光導波回路は、アーム光導波路にTO効果を与えるヒータとトリミングを行うヒータとを別々のヒータで構成したものである。
図13は、実施の形態3に係る光導波回路の模式的な平面図である。図13に示すように、この光導波回路200は、図1に示す実施の形態1に係る光導波回路100において、ヒータ71〜78を削除し、TO効果付与のためのヒータ81〜88と、トリミングのためのヒータ91〜98と、を付加した構成を有する。
ヒータ81、91は、アーム光導波路33上に1/2波長板61、62に対して入力光導波路10側に配置されている。ヒータ83、93は、アーム光導波路33上に1/2波長板61、62に対して出力光導波路51〜54側に配置されている。
ヒータ82、92は、アーム光導波路34上に1/2波長板61、62に対して入力光導波路10側に配置されている。ヒータ84、94は、アーム光導波路34上に1/2波長板61、62に対して出力光導波路51〜54側に配置されている。
同様に、ヒータ85、95、ヒータ86、96は、それぞれアーム光導波路43、44上に1/2波長板61、62に対して入力光導波路10側に配置されている。ヒータ87、97、ヒータ88、98は、それぞれアーム光導波路43、44上に1/2波長板61、62に対して出力光導波路51〜54側に配置されている。
この光導波回路200でのPDFSの調整を行う場合は、たとえば、MZI干渉計30のアーム光導波路33上のヒータ81への通電でPDFSが低減できた場合は、1/2波長板61、62に対して同じ入力光導波路10側のヒータ91によってトリミングを行う。このように、同一のアーム光導波路上の1/2波長板61、62に対して同じ側のヒータを対にして事前調査とトリミングとを行うことによって、実施の形態1の場合と同様に単一のトリミング用のヒータによって良好なPDFSを得ることができる。
この光導波回路200では、トリミングのためのヒータと、TO効果付与のためのヒータとを別々のヒータで構成しているので、各ヒータをその用途に応じて適切な構造、配置に設計することができる。たとえば、トリミングのためのヒータと、TO効果付与のためのヒータとを同一の構成としても良いし、別の構成としても良い。各ヒータをどのような構成としても、図5、6に示されるようなトリミングのためのヒータと、TO効果付与のためのヒータとの間の偏波間位相差変化量の相関関係を予め調べておき、その相関関係を用いて、実施の形態1の場合と同様の良好なトリミングを行うことができる。
また、上記実施の形態では、容易にトリミングすべきヒータを決定できるように、トリミングのためのヒータと、TO効果付与のためのヒータとで、電力付与時に同じ方向(符号)の偏波間位相差変化を与える構成を採用した。しかしながら、本発明はこれに限らず、可逆的なTO効果を与える場合と、恒久的なトリミングを行う際の両方において、偏波間位相差変化が生じるようなヒータの構成であれば良い。
たとえば、ヒータの幅等の構造パラメータやトリミングのために付与する電力などのトリミングパラメータの選定方法により、逆向き(すなわちTE偏波の方が屈折率変化量が大きい)の偏波間位相差変化を与える構成とすることもできる。その場合、たとえば実施の形態1の光導波回路100の場合は、ヒータ71でアーム光導波路33にTO効果を与えた場合にPDFSを低減できた場合には、1/2波長板61、62を挟んだ反対側のヒータ73をトリミングするといったように、どのヒータでTO効果を与えた場合に、どのヒータでトリミングをすると同様の偏波間位相差変化が与えられるのかをあらかじめ把握しておき、それに従ってトリミングに使用すべきヒータを決定すれば良い。
また、上記実施の形態では、複数のヒータのいずれか1つをトリミングに用いたが、本発明はこれに限ることなく、複数のヒータを同時にあるいは連続的に駆動してトリミングすることもできる。その場合でも上記実施の形態と同様に、事前のTO効果による可逆的な偏波間位相差調整によって、トリミングに使用すべきヒータやトリミング量を決定することができる。
また、上記実施の形態は、DQPSK光信号の復調素子としての光導波回路であるが、本発明はこれに限らず、各種光干渉計を備えた光導波回路に適用可能である。特に、光干渉計に1/2波長板を挿入してTM偏波とTE偏波とを入れ換える構成の場合は、干渉波形に現れるピークがTM偏波とTE偏波とのいずれかを判別することが困難であるので、光導波路のトリミングの前に可逆的なTO効果を与えて事前にトリミングの方向を調べることが有効である。
また、上記実施の形態により本発明が限定されるものではない。上記各実施形態の各構成要素を適宜組み合わせて構成したものも本発明に含まれる。たとえば、実施の形態2に係る光導波回路装置において実施の形態3に係る光導波回路を用いてもよい。その他、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明に含まれる。
10 入力光導波路
20 Y分岐光導波路
21、22 分岐光導波路
30、40 MZI干渉計
31、41 入力側カプラ
32、42 出力側カプラ
33、34、43、44 アーム光導波路
51〜54 出力光導波路
61、62 1/2波長板
71〜78、81〜88、91〜98 ヒータ
100、200 光導波回路
100a、100b、100c、100d 端面
101 基板
102 クラッド層
102a、102b 溝
110 制御部
110a、110b、110c、110d 電源チャネル
120 グラウンド端子
130 端子
140 配線
1000 光導波回路装置
P1〜P4 交点
Pin 光入力ポート
Pout1〜Pout4 光出力ポート
S101〜S104 ステップ
20 Y分岐光導波路
21、22 分岐光導波路
30、40 MZI干渉計
31、41 入力側カプラ
32、42 出力側カプラ
33、34、43、44 アーム光導波路
51〜54 出力光導波路
61、62 1/2波長板
71〜78、81〜88、91〜98 ヒータ
100、200 光導波回路
100a、100b、100c、100d 端面
101 基板
102 クラッド層
102a、102b 溝
110 制御部
110a、110b、110c、110d 電源チャネル
120 グラウンド端子
130 端子
140 配線
1000 光導波回路装置
P1〜P4 交点
Pin 光入力ポート
Pout1〜Pout4 光出力ポート
S101〜S104 ステップ
Claims (17)
- 光導波路からなる光干渉計と、
前記光干渉計を構成する光導波路の少なくとも一部に沿って配置された、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる可逆的な屈折率変化を与える加熱と、前記光導波路に該光導波路の2つの屈折率主軸において互いに異なる恒久的な屈折率変化を与える加熱とを行う加熱部と、
を備え、前記光干渉計は、前記恒久的な屈折率変化を与える加熱が行われたことによって偏波依存周波数シフトが低減されたものであることを特徴とする光導波回路。 - 前記加熱部は、1つのヒータによって構成されていることを特徴とする請求項1に記載の光導波回路。
- 前記加熱部は、前記可逆的な屈折率変化を与える加熱を行うヒータと、前記恒久的な屈折率変化を与える加熱を行うヒータとによって構成されていることを特徴とする請求項1に記載の光導波回路。
- 前記ヒータは、前記光導波路の2つの屈折率主軸において互いに異なる屈折率変化を与えるように、幅および前記光導波路までの距離が設定されていることを特徴とする請求項2または3に記載の光導波回路。
- 前記光干渉計は、マッハツェンダー型干渉計であることを特徴とする請求項1〜4のいずれか一つに記載の光導波回路。
- 差動位相変調光信号を復調させる復調素子として構成されていることを特徴とする請求項1〜5のいずれか一つに記載の光導波回路。
- 前記可逆的な屈折率変化を与えたときの前記光導波路の屈折率変化の情報をもとに前記恒久的な屈折率変化が与えられたものであることを特徴とする請求項1〜6のいずれか一つに記載の光導波回路。
- 前記屈折率変化の情報は前記光干渉計の偏波依存周波数シフトであることを特徴とする請求項7に記載の光導波回路。
- 前記光干渉計は中心に対して略対称形に構成されており、前記対称形の略中心に前記光干渉計の偏波依存周波数シフトを低減するための1/2波長板が挿入されていることを特徴とする請求項1〜8のいずれか一つに記載の光導波回路。
- 所定の波長における前記光干渉計の偏波依存周波数シフトが200MHz以下であることを特徴とする請求項9に記載の光導波回路。
- 前記1/2波長板を挟んで2つの前記加熱部が配置されていることを特徴とする請求項9または10に記載の光導波回路。
- 請求項1〜10のいずれか一つに記載の光導波回路と、
前記加熱部を制御する制御部と、
を備えることを特徴とする光導波回路装置。 - 請求項11に記載の光導波回路と、
前記加熱部を制御する制御部と、
を備え、前記制御部は、当該光導波回路装置の使用時において、前記1/2波長板を挟んで配置された前記2つの加熱部に略同一の電力を与えて前記可逆的な屈折率変化を与える加熱を行わせることを特徴とする光導波回路装置。 - 光導波路からなる光干渉計を備える光導波回路の製造方法であって、
前記光干渉計を構成する光導波路の少なくとも一部に、該光導波路の2つの屈折率主軸において互いに異なる可逆的な屈折率変化を与える第1の加熱を行い、
前記可逆的な屈折率変化を与える加熱による前記光導波路の屈折率変化の情報をもとに、前記光干渉計の偏波依存周波数シフトを低減するように、前記光導波路の少なくとも一部に該光導波路の2つの屈折率主軸において互いに異なる不可逆的な屈折率変化を与える第2の加熱を行う、
ことを含むことを特徴とする光導波回路の製造方法。 - 前記屈折率変化の情報は前記光干渉計の偏波依存周波数シフトであることを特徴とする請求項14に記載の光導波回路の製造方法。
- 所定の波長における前記光干渉計の偏波依存周波数シフトが200MHz以下になるように前記第2の加熱を行うことを特徴とする請求項14または15に記載の光導波回路の製造方法。
- 前記第1の加熱を行った場合の屈折率変化に基づく偏波間位相差変化量と前記第2の加熱を行った場合の屈折率変化に基づく偏波間位相差変化量との相関関係に基づいて、前記第2の加熱を行うべき前記光導波路の領域および加熱量を設定することを特徴とする請求項14〜16のいずれか一つに記載の光導波回路の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011066404A JP2012203129A (ja) | 2011-03-24 | 2011-03-24 | 光導波回路およびその製造方法ならびに光導波回路装置 |
PCT/JP2012/055826 WO2012128043A1 (ja) | 2011-03-24 | 2012-03-07 | 光導波回路およびその製造方法ならびに光導波回路装置 |
US13/611,033 US20130004115A1 (en) | 2011-03-24 | 2012-09-12 | Optical waveguide circuit and method of manufacturing the same, and optical waveguide circuit apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011066404A JP2012203129A (ja) | 2011-03-24 | 2011-03-24 | 光導波回路およびその製造方法ならびに光導波回路装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012203129A true JP2012203129A (ja) | 2012-10-22 |
Family
ID=46879198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011066404A Withdrawn JP2012203129A (ja) | 2011-03-24 | 2011-03-24 | 光導波回路およびその製造方法ならびに光導波回路装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130004115A1 (ja) |
JP (1) | JP2012203129A (ja) |
WO (1) | WO2012128043A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6915412B2 (ja) * | 2017-07-04 | 2021-08-04 | 住友電気工業株式会社 | 半導体光変調器 |
CN116599596B (zh) * | 2023-07-17 | 2023-09-29 | 中国科学院西安光学精密机械研究所 | 片上倍频程速率可调的dpsk解调器及调谐方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5064264A (en) * | 1990-10-26 | 1991-11-12 | International Business Machines Corporation | Photorefractive materials |
US6546161B2 (en) * | 2000-01-21 | 2003-04-08 | Nippon Telegraph And Telephone Corporation | No polarization dependent waveguide type optical circuit |
JP3703013B2 (ja) * | 2001-01-26 | 2005-10-05 | 日本電信電話株式会社 | 干渉計光回路及びその製造方法 |
US7376310B2 (en) * | 2002-12-20 | 2008-05-20 | International Business Machines Corporation | Optical waveguide element with controlled birefringence |
US6961492B2 (en) * | 2003-09-17 | 2005-11-01 | Lucent Technologies Inc. | Tunable dispersion compensator |
EP2653899B1 (en) * | 2007-01-10 | 2016-06-22 | Nippon Telegraph And Telephone Corporation | Waveguide type optical interference circuit |
US7480091B2 (en) * | 2007-03-06 | 2009-01-20 | The Furukawa Electric Co., Ltd. | Delay-line demodulator and method of adjusting a phase shift in the demodulator |
CN101784926B (zh) * | 2007-08-24 | 2012-05-16 | 日本电信电话株式会社 | 偏振无关波导型干涉光路 |
JP4934566B2 (ja) * | 2007-10-12 | 2012-05-16 | 古河電気工業株式会社 | 遅延復調デバイス |
US7899279B2 (en) * | 2008-01-10 | 2011-03-01 | Nippon Telegraph And Telephone Corporation | Optical delay line interferometer |
JP4558814B2 (ja) * | 2008-03-27 | 2010-10-06 | 古河電気工業株式会社 | 遅延復調デバイス |
JP4763013B2 (ja) * | 2008-03-27 | 2011-08-31 | 古河電気工業株式会社 | 遅延復調デバイスの位相調整方法 |
JP4615578B2 (ja) * | 2008-03-31 | 2011-01-19 | 古河電気工業株式会社 | 遅延復調デバイス |
WO2011122538A1 (ja) * | 2010-03-30 | 2011-10-06 | 古河電気工業株式会社 | Plc型復調用遅延回路 |
JPWO2011122539A1 (ja) * | 2010-03-30 | 2013-07-08 | 古河電気工業株式会社 | Plc型復調用遅延回路 |
JPWO2011152202A1 (ja) * | 2010-05-31 | 2013-07-25 | 古河電気工業株式会社 | Plc型復調用遅延回路及びplc型光干渉計 |
JP2013061431A (ja) * | 2011-09-12 | 2013-04-04 | Furukawa Electric Co Ltd:The | 復調用遅延回路および光受信器 |
-
2011
- 2011-03-24 JP JP2011066404A patent/JP2012203129A/ja not_active Withdrawn
-
2012
- 2012-03-07 WO PCT/JP2012/055826 patent/WO2012128043A1/ja active Application Filing
- 2012-09-12 US US13/611,033 patent/US20130004115A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20130004115A1 (en) | 2013-01-03 |
WO2012128043A1 (ja) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4615578B2 (ja) | 遅延復調デバイス | |
JP5075840B2 (ja) | 導波路型光干渉回路 | |
US6870979B2 (en) | Optical circuit, method for manufacturing optical circuit, optical circuit device and method for controlling optical circuit device | |
JP4558814B2 (ja) | 遅延復調デバイス | |
US7480091B2 (en) | Delay-line demodulator and method of adjusting a phase shift in the demodulator | |
WO2013038773A1 (ja) | 復調用遅延回路および光受信器 | |
JP5045416B2 (ja) | 光導波路素子およびそれを用いた光学装置 | |
US8477409B2 (en) | PLC-type delay demodulation circuit and PLC-type optical interferometer | |
US7813032B2 (en) | Methods to control phase shifts of delay demodulation devices | |
US8441717B2 (en) | PLC-type delay demodulation circuit | |
WO2012128043A1 (ja) | 光導波回路およびその製造方法ならびに光導波回路装置 | |
US8422118B2 (en) | PLC-type delay demodulation circuit | |
US6529647B2 (en) | Optical device with optical waveguides and manufacturing method therefor | |
JP5158859B2 (ja) | 遅延復調デバイスおよびその位相調整方法 | |
JP4267888B2 (ja) | 光回路および光回路装置ならびに光回路の製造方法 | |
JP5019632B2 (ja) | 遅延復調デバイスおよび遅延復調デバイスの位相調整方法 | |
JP3691823B2 (ja) | 光回路装置および光回路装置の制御方法 | |
JP5019649B2 (ja) | 導波路型光回路 | |
JP5955944B2 (ja) | 偏光依存性が低減された光学装置 | |
US20130129273A1 (en) | Polarization separation element and optical integrated element | |
CN115166883A (zh) | 一种光谱低功率可调的刻蚀衍射光栅 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140603 |