[go: up one dir, main page]

JP2012193465A - Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber - Google Patents

Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber Download PDF

Info

Publication number
JP2012193465A
JP2012193465A JP2011057124A JP2011057124A JP2012193465A JP 2012193465 A JP2012193465 A JP 2012193465A JP 2011057124 A JP2011057124 A JP 2011057124A JP 2011057124 A JP2011057124 A JP 2011057124A JP 2012193465 A JP2012193465 A JP 2012193465A
Authority
JP
Japan
Prior art keywords
fiber
carbon
carbon black
mass
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011057124A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakao
洋之 中尾
Yoshihiro Sako
佳弘 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011057124A priority Critical patent/JP2012193465A/en
Publication of JP2012193465A publication Critical patent/JP2012193465A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an acrylic precursor fiber for a carbon fiber that is good in spinnability and excellent in carbonization yield after calcination process, and a carbon fiber obtained from the precursor fiber at low cost.SOLUTION: The acrylic precursor fiber for a carbon fiber comprises a mixture that contains 1 to 100 pts.mass of carbon black with respect to 100 pts.mass of a polyacrylonitrile-based polymer, in which the carbon black has a dibutyl phthalate absorption amount of 100 (cm/100 g) or less, and pH of an aqueous dispersion comprising 90 pts.mass of water and 10 pts.mass of the carbon black is to be 7.0 or more and 8.0 or less.

Description

本発明は、良好な紡糸性を有する、焼成工程後の炭化収率に優れた炭素繊維用アクリル系前駆体繊維、及びその前駆体繊維から得られる炭素繊維の製造方法に関するものである。   The present invention relates to an acrylic precursor fiber for carbon fiber having good spinnability and excellent carbonization yield after the firing step, and a method for producing carbon fiber obtained from the precursor fiber.

炭素繊維は力学的、化学的諸特性及び軽量性などにより、航空機部材、鉄道車両部材、船舶部材スポーツ用品用途などに広く使用され、さらに近年では自動車などの一般産業.用途分野などにも使用されようとしている。求められる力学特性力学特性のレベルも高まっており、また生産増加能力の増強も強く要求されている。   Carbon fiber is widely used in aircraft parts, railway vehicle parts, ship parts and sporting goods because of its mechanical and chemical properties and light weight, and more recently in general industries such as automobiles. I am trying to do. The level of required mechanical properties is increasing, and there is a strong demand for enhanced production capacity.

従来、ポリアクリロニトリル系前駆体繊維束(以下、PAN系前駆体繊維束という)は次のような工程を経て炭素繊維化処理される。まず、耐炎化処理工程により数十〜数百錘のPAN系前駆体繊維束を200〜300℃の酸化性雰囲気中で耐炎化熱処理し、得られた耐炎化繊維束を、炭素化処理工程において300℃以上の不活性雰囲気中で焼成し、炭素繊維を得る。   Conventionally, a polyacrylonitrile-based precursor fiber bundle (hereinafter referred to as a PAN-based precursor fiber bundle) is subjected to carbon fiber treatment through the following steps. First, several tens to several hundreds of PAN-based precursor fiber bundles are subjected to flame-resistant heat treatment in an oxidizing atmosphere at 200 to 300 ° C. by the flame-resistant treatment process, and the obtained flame-resistant fiber bundles are subjected to the carbonization treatment process. Firing in an inert atmosphere at 300 ° C. or higher to obtain carbon fibers.

耐炎化工程および炭素化工程は、炭素繊維の物性および生産性を左右する重要な工程である。耐炎化工程ではアクリル系繊維を構成する高分子鎖を酸化させると共に高分子鎖に結合したニトリル基を環化させることにより、引き続く炭素化工程を通過しうる程度に熱的に安定な構造を有する繊維に転換させ、炭素化工程において更に高温の不活性雰囲気で酸化を促進させ、構造を緻密化させることで、高い強度・弾性率を有する炭素繊維を得ることが出来る。   The flameproofing process and the carbonization process are important processes that affect the physical properties and productivity of carbon fibers. In the flameproofing process, the polymer chain constituting the acrylic fiber is oxidized and the nitrile group bonded to the polymer chain is cyclized to have a thermally stable structure that can pass through the subsequent carbonization process. Carbon fiber having high strength and elastic modulus can be obtained by converting to fiber, promoting oxidation in a high temperature inert atmosphere in the carbonization step, and densifying the structure.

しかし、この炭素繊維を焼成する工程で起こる化学反応により、炭素原子を含んだ分解物が廃棄ガスとして放出され炭化収率が低くなり、生産性が悪くなるなどの問題がある。ここでの炭化収率とは、焼成工程において加わる熱エネルギーにより繊維の一部が焼き飛ばされ、重量減少した後の炭素繊維質量と、焼成工程通過前のアクリル系繊維質量の比(%)を指し、炭素繊維の生産性の指標として用いられる。炭素繊維の製造コスト低減の見地から、焼成工程において炭化収率を向上させ、炭素繊維の生産性を向上させる技術の確立が望まれている。   However, there is a problem that a decomposition reaction containing carbon atoms is released as a waste gas due to a chemical reaction that occurs in the process of firing the carbon fiber, resulting in a low carbonization yield and poor productivity. The carbonization yield here is the ratio (%) of the mass of carbon fiber after weight loss and the mass of acrylic fiber before passing through the firing process, due to the heat energy applied in the firing process. It is used as an index of carbon fiber productivity. From the viewpoint of reducing the production cost of carbon fiber, establishment of a technique for improving the carbonization yield and improving the productivity of carbon fiber in the firing process is desired.

炭素繊維の炭化収率を向上させるために、炭素繊維前駆体繊維用ポリアクリロニトリル系重合体に、カーボンブラックをあらかじめ含有させておく方法がある。   In order to improve carbonization yield of carbon fiber, there is a method of previously containing carbon black in a polyacrylonitrile-based polymer for carbon fiber precursor fiber.

例えば、特許文献1に、炭素繊維前駆体繊維用ポリアクリロニトリル系重合体にカーボンブラックを含有させる技術が開示されている。また特許文献2では、含有させるカーボンブラックを塩基性化合物を分散剤として効率良く分散する技術が記載されている。これらの技術を用いて追試を行ったところ、炭素繊維前駆体組成物は可紡性があり、さらに焼成した炭素繊維の炭化収率は比較的高い値を示した。   For example, Patent Document 1 discloses a technique in which carbon black is contained in a polyacrylonitrile-based polymer for carbon fiber precursor fibers. Patent Document 2 describes a technique for efficiently dispersing carbon black to be contained using a basic compound as a dispersant. When an additional test was conducted using these techniques, the carbon fiber precursor composition was spinnable, and the carbonization yield of the baked carbon fiber showed a relatively high value.

特開2007−182657公報JP 2007-182657 A 特開2008−169535公報JP 2008-169535 A

しかしながら、特許文献1や2に記載の方法では紡糸原液調製時において、カーボンブラックが二次凝集により紡糸原液中に塊状となり、流動性を悪化する傾向にあった。さらには表面が酸性に表面処理されたカーボンブラックと塩基性化合物の分散剤の相互作用により、分散時に紡糸原液の粘度が上昇して流動性を悪化させやすく、紡糸生産性が低下しやすい欠点が見られた。   However, in the methods described in Patent Documents 1 and 2, carbon black becomes agglomerated in the spinning stock solution due to secondary agglomeration when the spinning stock solution is prepared, and the fluidity tends to deteriorate. Furthermore, due to the interaction between the surface-treated carbon black and the dispersing agent of the basic compound, the viscosity of the spinning dope increases at the time of dispersion and fluidity tends to deteriorate, and the spinning productivity tends to decrease. It was seen.

本発明は、かかる課題を解決するために、本発明の炭素繊維用アクリル系前駆体繊維は次の構成を有する。ジブチルフタレート吸収量が100(cm/100g)以下、水に10質量%となるように分散したときの水分散液のpHが7.0以上8.0以下であるカーボンブラックを、ポリアクリロニトリル系重合体100質量部に対し、1〜100質量部を含む混合物で構成される炭素繊維用アクリル系前駆体繊維の製造方法である。 In order to solve this problem, the acrylic precursor fiber for carbon fiber of the present invention has the following configuration. Dibutyl phthalate absorption of 100 (cm 3 / 100g) or less, the carbon black pH of the aqueous dispersion is 7.0 to 8.0 when dispersed so as to be 10 mass% of water, polyacrylonitrile It is a manufacturing method of the acrylic precursor fiber for carbon fibers comprised with the mixture containing 1-100 mass parts with respect to 100 mass parts of polymers.

また、本発明は前記課題を解決するために本発明の炭素繊維の製造方法は次の構成を有する。すなわち、前記した方法により製造される炭素繊維用アクリル系前駆体繊維を耐炎化し、炭素化して得られる炭素繊維の製造方法である。   Moreover, in order to solve the said subject, the manufacturing method of the carbon fiber of this invention has the following structure. That is, this is a method for producing carbon fibers obtained by flame-proofing and carbonizing acrylic precursor fibers for carbon fibers produced by the above-described method.

本発明によれば、良好な紡糸性を有し、焼成工程後の炭化収率に優れた炭素繊維用アクリル系前駆体繊維、及びその前駆体繊維から得られる炭素繊維を低コストで製造できる。   ADVANTAGE OF THE INVENTION According to this invention, it has favorable spinnability and can manufacture the carbon fiber acrylic precursor fiber for carbon fibers excellent in the carbonization yield after a baking process, and the carbon fiber obtained from the precursor fiber at low cost.

本発明における炭素繊維用アクリル系前駆体繊維は次の構成を有する。すなわちポリアクリロニトリル系重合体100質量部に対し、ジブチルフタレート吸収量が100(cm/100g)以下であり、また水に10質量%となるように分散したときの水分散液のpHが7.0以上8.0以下であるカーボンブラック1〜100質量部を含む混合物で構成される炭素繊維用アクリル系前駆体繊維である。 The acrylic precursor fiber for carbon fiber in the present invention has the following configuration. That respect polyacrylonitrile-based polymer to 100 parts by mass, and a dibutyl phthalate absorption of 100 (cm 3 / 100g) or less and pH of the aqueous dispersion when the dispersion so as to be 10 mass% water 7. It is an acrylic precursor fiber for carbon fiber composed of a mixture containing 1 to 100 parts by mass of carbon black of 0 or more and 8.0 or less.

(ジブチルフタレート(DBP)吸収量)
ジブチルフタレート(DBP)吸収量が100(cm/100g)以下であるカーボンブラックとは、JIS K6217−4(2001)の「DBP吸収量の求め方」に準じ、アブソープトメータを用いて測定したDBP吸収量が100(cm/100g)以下になるものをいう。このDBP吸収量は、カーボンブラックの二次凝集体であるストラクチャーの大きさの指標であり、ストラクチャーが大きすぎると、紡糸原液中での分散性が悪くなり、炭素繊維用アクリル系前駆体繊維を製造する際の可紡性が損なわれるばかりでなく、炭素繊維を製造する際の延伸性不良、得られる炭素繊維の弾性率、強度低下の原因となる。また、かかるDBP吸収量は1〜100(cm/100g)、好ましくは10〜80(cm/100g)、さらに好ましくは30〜70(cm/100g)であることが必要である。DBP吸収量が多いと、カーボンブラックが二次凝集体を形成しやすくなり、紡糸原液の流動性を損なう可能性がある。
(Dibutyl phthalate (DBP) absorption)
The dibutyl phthalate (DBP) absorption amount is 100 (cm 3 / 100g) or less carbon black, according to the "DBP absorption of Determination" of JIS K6217-4 (2001), measured using the Abu soap door meter DBP absorption, as refers to those made to 100 (cm 3 / 100g) or less. This DBP absorption amount is an index of the size of the structure which is a secondary aggregate of carbon black. If the structure is too large, the dispersibility in the spinning dope deteriorates, and the acrylic precursor fiber for carbon fiber is deteriorated. Not only is the spinnability at the time of production impaired, but also causes poor stretchability at the time of producing carbon fibers, the elastic modulus of the resulting carbon fibers, and the strength decreases. Further, according DBP absorption 1~100 (cm 3 / 100g), preferably should be in 10~80 (cm 3 / 100g), more preferably 30~70 (cm 3 / 100g). When the DBP absorption amount is large, carbon black tends to form secondary aggregates, which may impair the fluidity of the spinning dope.

本発明におけるカーボンブラックは表面が特に表面処理されていないカーボンブラック、もしくは表面がやや塩基性に表面処理されたカーボンブラックを用いることが好ましい。表面酸化処理の度合いはカーボンブラックを水に濃度10質量%となるように分散したときの水分散液のpHが7.0以上8.0以下、より好ましくは7.5以上8.0以下となるものが良い。かかるpHが7よりも小さいと、紡糸原液中でのカーボンブラックが均一に分散しにくく、紡糸原液に対する分散性が不十分となる可能性がある。   The carbon black in the present invention is preferably carbon black whose surface is not particularly surface-treated, or carbon black whose surface is slightly basic-treated. The degree of the surface oxidation treatment is such that the pH of the aqueous dispersion when carbon black is dispersed in water to a concentration of 10% by mass is 7.0 or more and 8.0 or less, more preferably 7.5 or more and 8.0 or less. What is good. If the pH is less than 7, the carbon black in the spinning dope is difficult to disperse uniformly, and the dispersibility in the spinning dope may be insufficient.

表面酸化処理の度合いは、カーボンブラックを水に10質量%となるように分散したときの水分散液のpHをpH試験器により測定することで求めることが出来る。   The degree of the surface oxidation treatment can be determined by measuring the pH of the aqueous dispersion when carbon black is dispersed in water at 10% by mass using a pH tester.

また、本発明におけるカーボンブラックは窒素吸着比表面積が40m/g以下であるカーボンブラックを用いることが好ましい。窒素吸着比表面積が40m/g以下であるカーボンブラックとはJIS K6217−2(2001)の「比表面積の求め方―窒素吸着法―単点法」に準じて、自動比表面積測定装置を用いて測定した 窒素吸着比表面積が40m/g以下になるものをいう。この該窒素吸着比表面積は、カーボンブラックの一次粒径の大きさの指標であり、比表面積が大きすぎると、紡糸原液中に細かな粒子が多数存在していることを表すため、カーボンブラックの存在する量が少量である場合は均一に分散しやすくなるが、カーボンブラックの質量部が大きくなると、後述するカーボンブラックの二次凝集体であるストラクチャーを形成しやすくなる。ストラクチャーが大きすぎると紡糸原液中での分散性が悪くなり、炭素繊維用アクリル系前駆体繊維を製造する際の可紡性が損なわれるばかりでなく、炭素繊維を製造する際の延伸性不良、得られる炭素繊維の弾性率、強度低下の原因となる。また、かかる窒素吸着比表面積は1〜40m/g、好ましくは5〜35m/g、さらに好ましくは10〜30m/gであることが良い。 The carbon black in the present invention is preferably a carbon black having a nitrogen adsorption specific surface area of 40 m 2 / g or less. Carbon black having a nitrogen adsorption specific surface area of 40 m 2 / g or less uses an automatic specific surface area measuring device in accordance with “Method of obtaining specific surface area—nitrogen adsorption method—single point method” of JIS K6217-2 (2001). nitrogen adsorption specific surface area measured Te refers to those made below 40 m 2 / g. This nitrogen adsorption specific surface area is an index of the primary particle size of carbon black, and if the specific surface area is too large, it indicates that many fine particles are present in the spinning dope. When the amount present is small, it is easy to disperse uniformly, but when the mass part of the carbon black is increased, it becomes easy to form a structure that is a carbon black secondary aggregate described later. If the structure is too large, the dispersibility in the spinning dope deteriorates, and not only the spinnability when producing the acrylic precursor fiber for carbon fibers is impaired, but also poor stretchability when producing carbon fibers, This causes a decrease in the elastic modulus and strength of the obtained carbon fiber. Also, such nitrogen adsorption specific surface area 1~40m 2 / g, it is better preferably 5~35m 2 / g, more preferably 10 to 30 m 2 / g.

本発明において、炭素繊維用アクリル系前駆体繊維の紡糸原液に含まれるカーボンブラックの配合量は、炭素繊維の炭化収率や紡糸を行う際の取り扱い性の観点から、ポリアクリロニトリル系重合体100質量部に対して1〜100質量部、好ましくは50〜100質量部、より好ましくは80〜100質量部とするのが良い。カーボンブラックの配合量が多すぎると、紡糸原液の流動性が低下するため、口金フィルターの目詰まりや糸切れが発生しやすくなる。   In the present invention, the blending amount of carbon black contained in the spinning solution of acrylic precursor fiber for carbon fiber is 100 mass of polyacrylonitrile polymer from the viewpoint of carbonization yield of carbon fiber and handling property when spinning. It is good to set it as 1-100 mass parts with respect to a part, Preferably it is 50-100 mass parts, More preferably, it is 80-100 mass parts. If the amount of carbon black is too large, the fluidity of the spinning dope will decrease, and clogging and thread breakage of the die filter will easily occur.

本発明における炭素繊維用アクリル系前駆体繊維の紡糸原液に含まれるカーボンブラックは、カーボンブラックを溶媒に十分分散させた分散液とすることが好ましい。カーボンブラックを分散させる溶媒としては、DMSO、DMF、DMAcなどのポリアクリロニトリル系重合体が可溶な溶媒を用いることができる。   The carbon black contained in the spinning solution of the acrylic precursor fiber for carbon fiber in the present invention is preferably a dispersion in which carbon black is sufficiently dispersed in a solvent. As a solvent for dispersing carbon black, a solvent in which a polyacrylonitrile-based polymer such as DMSO, DMF, or DMAc is soluble can be used.

かかる分散液の調整方法は、超音波、自公転式ミキサー、プラネタリーミキサー、ホモミキサー、ホモジナイザー、ボールミルおよびビーズミルなど一般的な、固液混合用の方法のいずれでも可能であり、いくつかの方法を組み合わせて調整しても良い。   Such a dispersion can be prepared by any of common solid-liquid mixing methods such as ultrasonic, self-revolving mixer, planetary mixer, homomixer, homogenizer, ball mill and bead mill. You may adjust by combining.

さらにかかる分散液には、カーボンブラックをより均一に分散することが出来るようにする観点から、さらに塩基性化合物が含まれていることが好ましい。塩基性化合物とは、カーボンブラックの表面が塩基性に表面処理されたものであっても良い。ここでいう塩基性化合物は、具体的にはアミノ基、またはアンモニアを有する化合物であることが好ましい。分子中に含まれるアミノ基は、一級アミノ基、二級アミノ基および三級アミノ基のいずれも使用可能である。アミノ基を有する化合物としては、脂肪族鎖についた脂肪族アミンと、芳香族環に直接ついた芳香族アミンがあり、本発明では脂肪族アミンおよび芳香族アミンいずれを用いても良い。   Furthermore, it is preferable that the dispersion further contains a basic compound from the viewpoint of enabling the carbon black to be more uniformly dispersed. The basic compound may be a basic surface-treated carbon black. Specifically, the basic compound here is preferably a compound having an amino group or ammonia. As the amino group contained in the molecule, any of a primary amino group, a secondary amino group and a tertiary amino group can be used. The compound having an amino group includes an aliphatic amine attached to an aliphatic chain and an aromatic amine attached directly to an aromatic ring. In the present invention, either an aliphatic amine or an aromatic amine may be used.

このようなアミノ基を持つ化合物としては、メチルアミン、トリメチルアミン、トリエチルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、モノエタノールアミン、ジエタノールアミン、メチルジエタノールアミン、トリエタノールアミン、ベンジルアミン、フェニルエチルアミン、アニリン、ジメチルアニリンなどが好ましく用いられる。   Examples of compounds having such amino groups include methylamine, trimethylamine, triethylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, monoethanolamine, diethanolamine, methyldiethanolamine, triethanolamine, benzylamine, phenylethylamine, aniline, dimethylaniline, etc. Is preferably used.

これら塩基性化合物の中でも、より少量でカーボンブラックを均一分散できる観点から、メチルアミン、ジエタノールアミン、メチルジエタノールアミンがさらに好ましく用いられる。   Among these basic compounds, methylamine, diethanolamine, and methyldiethanolamine are more preferably used from the viewpoint that carbon black can be uniformly dispersed in a smaller amount.

本発明において、塩基性化合物を含有させる場合、その含有量は、カーボンブラックとの相互作用や、炭素繊維用アクリル系前駆体繊維の耐熱性・緻密性の観点から、カーボンブラック100質量部に対して5質量部以下であることが好ましい。5質量部より高いと加える塩基性化合物の含有率が高くなり、後述で加えるポリアクリロニトリル系重合体の有機溶媒に対する溶解性が低下し、製糸後の原糸緻密性が低下し、焼成後の炭素繊維の強度、弾性率の低下に繋がる可能性がある。   In the present invention, when a basic compound is contained, its content is based on 100 mass parts of carbon black from the viewpoint of the interaction with carbon black and the heat resistance and denseness of the acrylic precursor fiber for carbon fiber. And preferably 5 parts by mass or less. When the content is higher than 5 parts by mass, the content of the basic compound to be added is increased, the solubility of the polyacrylonitrile-based polymer to be added later is reduced in the organic solvent, the density of the original yarn after spinning is reduced, and the carbon after firing is reduced. This may lead to a decrease in fiber strength and elastic modulus.

本発明の炭素繊維用アクリル系前駆体繊維の紡糸原液に用いるポリアクリロニトリル系重合体には、炭素繊維にしたときの共重合成分に起因する欠陥点を少なくし、炭素繊維の品質ならびに性能の向上目的から、アクリロニトリルが90質量%以上、好ましくは96%質量以上を重合したものが良い。   The polyacrylonitrile polymer used for the spinning solution of acrylic precursor fiber for carbon fiber of the present invention has fewer defects due to copolymer components when it is made into carbon fiber, and improves the quality and performance of carbon fiber. For the purpose, it is preferable to polymerize 90% by mass or more, preferably 96% by mass or more of acrylonitrile.

本発明で用いるポリアクリロニトリル系重合体には、共重合成分、分子量分布、立体規則性などに制約は無く、炭素繊維となすための耐炎化処理を促進させるために、共重合成分として耐炎化促進作用を有する単量体を0.1〜5モル%共重合させるのが良い。耐炎化促進成分としては、カルボキシル基またはアミド基を一つ以上有するものが好ましく用いられる。また耐炎化反応が高くなるほど、短時間で耐炎化処理でき、生産性を高めることが出来ることから耐炎化促進成分の共重合量を多くすることが望ましい。しかし一方で、該共重合量が多くなるほど、発熱速度が大きくなり暴走反応の危険が生じることがあるため、5モル%を超えない範囲とすることが望ましく、0.5〜3モル%がより好ましく、1〜3モル%とすることがさらに好ましい。   The polyacrylonitrile-based polymer used in the present invention has no restrictions on the copolymer component, molecular weight distribution, stereoregularity, etc., and promotes flame resistance as a copolymer component in order to promote flame resistance treatment for carbon fiber. It is good to copolymerize the monomer which has an effect | action 0.1 to 5 mol%. As the flame resistance promoting component, those having at least one carboxyl group or amide group are preferably used. Further, as the flame resistance reaction becomes higher, the flame resistance treatment can be performed in a shorter time, and the productivity can be increased. Therefore, it is desirable to increase the copolymerization amount of the flame resistance promoting component. However, on the other hand, as the amount of copolymerization increases, the exothermic rate increases and the risk of runaway reaction may occur. Therefore, the range is preferably not more than 5 mol%, more preferably 0.5 to 3 mol%. Preferably, it is more preferable to set it as 1-3 mol%.

耐炎化促進作用を有する単量体の具体例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、シトラコン酸、エタクリル酸、マレイン酸、メサコン酸、アクリルアミド、メタクリルアミドなどが好ましく用いられる。焼成工程での耐炎化促進や溶媒に対する溶解性の向上の観点から、アクリルアミド、メタクリルアミドがより好ましく用いられる。   As specific examples of the monomer having a flame resistance promoting action, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid, acrylamide, methacrylamide and the like are preferably used. Acrylamide and methacrylamide are more preferably used from the viewpoint of promoting flame resistance in the firing step and improving solubility in solvents.

本発明で用いるポリアクリロニトリル系重合体を製造するには、溶液重合、懸濁重合等公知の重合方法の何れでも用いることが出来る。溶液重合を採用する場合、使用する溶媒としては、DMSO,DMF、DMAcなどのポリアクリロニトリル系重合体が可溶な溶媒を用いる。中でもポリアクリロニトリル系重合体の溶解性の観点から、DMAcがより好ましく用いられる。   In order to produce the polyacrylonitrile-based polymer used in the present invention, any of known polymerization methods such as solution polymerization and suspension polymerization can be used. When employing solution polymerization, a solvent in which a polyacrylonitrile-based polymer such as DMSO, DMF, or DMAc is soluble is used. Among these, DMAc is more preferably used from the viewpoint of solubility of the polyacrylonitrile-based polymer.

本発明で用いる炭素繊維用アクリル系前駆体繊維の紡糸原液を製造するには、前記カーボンブラック分散液に前記ポリアクリロニトリル系重合体を十分に溶解させることで調製される。カーボンブラックの分散液の溶媒はポリアクリロニトリル系重合体が可溶な溶媒である必要が有り、工程の簡略化という観点ではポリアクリロニトリル系重合体の製造時に用いた溶媒と同一であることが好ましい。ポリアクリロニトリル系重合体を溶媒に溶解し、カーボンブラックを加えて分散させると、紡糸原液の粘度が上昇し、流動性が悪くなる恐れがあり、さらには均一に分散しない恐れがある。   In order to produce a spinning stock solution of acrylic precursor fiber for carbon fiber used in the present invention, it is prepared by sufficiently dissolving the polyacrylonitrile polymer in the carbon black dispersion. The solvent of the carbon black dispersion must be a solvent in which the polyacrylonitrile polymer is soluble, and is preferably the same as the solvent used in the production of the polyacrylonitrile polymer from the viewpoint of simplifying the process. If a polyacrylonitrile-based polymer is dissolved in a solvent and carbon black is added and dispersed, the viscosity of the spinning dope increases, the fluidity may be deteriorated, and there is a possibility that it is not uniformly dispersed.

本発明において、炭素繊維用アクリル系前駆体繊維は、以下のような工程で製造できる。本発明の方法では、前記した紡糸原液を、湿式紡糸法または乾湿式紡糸法により口金から紡出し、凝固浴に導入して繊維を凝固せしめる。工業的な観点では、生産性に優れた湿式紡糸法が好ましい。   In the present invention, the acrylic precursor fiber for carbon fiber can be produced by the following steps. In the method of the present invention, the above-described spinning solution is spun from a die by a wet spinning method or a dry-wet spinning method and introduced into a coagulation bath to coagulate the fibers. From an industrial viewpoint, a wet spinning method excellent in productivity is preferable.

本発明において、前記凝固浴は、紡糸原液に用いられる用材を含む水溶液が好適に使用され、含まれる溶剤の濃度を調節して、凝固糸の空隙率を少なくするように設定する。使用する溶剤によって一般的に異なるが、例えばDMAcを使用する場合は、DMAcの濃度は50〜80質量%、好ましくは60〜75質量%である。また凝固浴の温度は低い方が好ましく、通常50℃以下、さらに好ましくは40℃以下である。凝固浴の温度を低くすればより緻密な糸を得ることが出来るが、温度を下げすぎると凝固糸の引取速度が低下し生産性が低下するので、適切な範囲に設定することが望ましい。   In the present invention, the coagulation bath is preferably an aqueous solution containing materials used for the spinning dope, and is set so as to reduce the porosity of the coagulated yarn by adjusting the concentration of the contained solvent. Generally, depending on the solvent used, for example, when DMAc is used, the concentration of DMAc is 50 to 80% by mass, preferably 60 to 75% by mass. The temperature of the coagulation bath is preferably low, and is usually 50 ° C. or lower, more preferably 40 ° C. or lower. If the temperature of the coagulation bath is lowered, a denser yarn can be obtained. However, if the temperature is lowered too much, the take-up speed of the coagulated yarn is lowered and the productivity is lowered.

本発明の方法では、洗浄、延伸工程において上記で得られた膨潤糸条を洗浄及び延伸する。なお、洗浄と延伸の順番については、洗浄を先に行っても良く、また同時に行っても良い。洗浄の方法としては、特に制限はないが、一般的に用いられている、水中、特に温水中に浸漬させる方法がよい。   In the method of the present invention, the swollen yarn obtained above is washed and drawn in the washing and drawing steps. In addition, about the order of washing | cleaning and extending | stretching, you may perform washing | cleaning first and may carry out simultaneously. Although there is no restriction | limiting in particular as a washing | cleaning method, The method of immersing in the water generally used, especially warm water is good.

延伸の方法としては、水中、温水中に浸漬させながら延伸する方法、熱板、ローラー等のよる空気中での乾熱延伸法、また熱風が循環している箱型炉内での延伸でも良く、これらに限定されるものではない。経済的な観点から、温水中で行うことが好ましい。また延伸倍率は、1〜8倍とすることが好ましい。ただし、後に二次延伸を行う場合、その延伸倍率を考慮して設定することが好ましい。   The stretching method may be a method of stretching while being immersed in water or warm water, a dry heat stretching method in the air using a hot plate or a roller, or stretching in a box furnace where hot air is circulated. However, it is not limited to these. From an economical viewpoint, it is preferable to carry out in warm water. The draw ratio is preferably 1 to 8 times. However, when performing secondary stretching later, it is preferable to set in consideration of the stretching ratio.

本発明の方法では、油剤付与工程において上記で得られた洗浄及び延伸後の糸条を、シリコーン系油剤が入った油浴槽に導いて、糸条にシリコーン系油剤を付与する。油剤としては、シリコーン化合物を含有するシリコーン系油剤を使用する。かかるシリコーン油剤はジメチルシリコーンオイルや有機変性シリコーンオイルを用いることが好ましく、耐熱性の高いアミノ変性シリコーンオイルがより好ましい。通常は、シリコーン化合物とノニオン系乳化剤とを混合し、乳化したものを用いる。また、場合により、酸化防止剤や各種添加剤、さらにシリコーン原子を含まない有機物を混合することもできる。   In the method of the present invention, the washed and stretched yarn obtained above in the oil agent application step is guided to an oil bath containing a silicone oil agent, and the silicone oil agent is applied to the yarn. As the oil agent, a silicone-based oil agent containing a silicone compound is used. As the silicone oil, dimethyl silicone oil or organically modified silicone oil is preferably used, and amino-modified silicone oil having high heat resistance is more preferable. Usually, a silicone compound and a nonionic emulsifier are mixed and emulsified. In some cases, an antioxidant, various additives, and an organic substance not containing a silicone atom can be mixed.

本発明の方法では、乾燥緻密化において上記で得られたシリコーン系油剤を付与した糸条を乾燥緻密化する。乾燥緻密化の方法としては、熱板や加熱ローラーに接触させることにより行うことが一般的に用いられており、加熱ローラーによる乾燥が好ましく用いられる。乾燥温度が高いほど、シリコーン油剤の架橋 反応が促進され、また生産性の観点からも好ましいので、単繊維間の融着が生じない範囲で高く設定できる。具体的には150℃以上が好ましく、180℃以上であればさらに好ましい。また乾燥時間は上記糸条が十分乾燥する時間をとることが好ましい。   In the method of the present invention, the yarn provided with the silicone-based oil obtained above in dry densification is dry densified. As a method for drying and densifying, it is generally performed by contacting with a hot plate or a heating roller, and drying with a heating roller is preferably used. The higher the drying temperature, the more the crosslinking reaction of the silicone oil agent is promoted, and it is also preferable from the viewpoint of productivity. Therefore, it can be set as high as possible without causing fusion between single fibers. Specifically, 150 ° C. or higher is preferable, and 180 ° C. or higher is more preferable. Moreover, it is preferable that the drying time is a time for the yarn to dry sufficiently.

本発明の方法では、必要に応じて、上記で得られた乾燥緻密化後の糸条を二次延伸することもできる。二次延伸の方法としては、乾熱延伸、スチーム延伸等が挙げられる。   In the method of the present invention, if necessary, the dried and densified yarn obtained above can be secondarily stretched. Examples of the secondary stretching method include dry heat stretching and steam stretching.

本発明において、得ようとする炭素繊維用アクリル系前駆体繊維の単繊維繊度は、好ましくは0.5〜2.0dtex、より好ましくは0.6〜1.5dtexである事が良い。かかる単繊維繊度が小さすぎると、可紡性の低下、ローラー、ガイドの接触による糸切れ発生などにより、製糸工程および焼成工程の工程通過性が低下することがある。また単繊維繊度が大きすぎると、耐炎化後の各単繊維における内外構造差が大きくなり、つづく炭化工程での工程通過性や、得られる炭素繊維の引張強度、引張弾性率が低下することがある。   In the present invention, the single fiber fineness of the carbon fiber acrylic precursor fiber to be obtained is preferably 0.5 to 2.0 dtex, more preferably 0.6 to 1.5 dtex. If the single fiber fineness is too small, the processability of the yarn-making process and the firing process may decrease due to a decrease in spinnability and the occurrence of yarn breakage due to contact between rollers and guides. In addition, if the single fiber fineness is too large, the difference between the inner and outer structures of each single fiber after flame resistance increases, and the process passability in the subsequent carbonization process, the tensile strength of the resulting carbon fiber, and the tensile elastic modulus may decrease. is there.

また、本発明の炭素繊維は以下のような工程で製造できる。   Moreover, the carbon fiber of this invention can be manufactured in the following processes.

本発明の方法では、耐炎化工程において、前記した炭素繊維用アクリル系前駆体繊維を200〜300℃の酸化性雰囲気中で加熱して、耐炎化繊維束を得る。酸化性雰囲気としては、空気、酸素、二酸化窒素など、公知の酸化性雰囲気を採用できるが、経済性の面から空気が好ましい。耐炎化処理の時間は、炭素繊維の生産性および性能を高める観点から30〜120分が好ましい。耐炎化処理に要する時間を30分以上とすることで、耐炎化反応が十分になって、処理斑を生じにくくなり、また後に行われる炭素化工程で毛羽、束切れを生じにくくなり、結果的に生産性が向上する。一方、耐炎化処理に要する時間を120分以下とすることで、耐炎化装置を大型化したり耐炎化処理速度を下げたりする必要がなくなり、生産性が向上する。   In the method of the present invention, in the flameproofing step, the above-mentioned acrylic precursor fiber for carbon fiber is heated in an oxidizing atmosphere at 200 to 300 ° C. to obtain a flameproofed fiber bundle. As the oxidizing atmosphere, known oxidizing atmospheres such as air, oxygen and nitrogen dioxide can be adopted, but air is preferable from the viewpoint of economy. The flameproofing treatment time is preferably 30 to 120 minutes from the viewpoint of enhancing the productivity and performance of the carbon fiber. By making the time required for the flameproofing treatment to be 30 minutes or more, the flameproofing reaction becomes sufficient, and it becomes difficult to produce uneven spots, and it becomes difficult to cause fluff and bundle breakage in the subsequent carbonization process. Productivity is improved. On the other hand, by setting the time required for the flameproofing treatment to 120 minutes or less, it is not necessary to enlarge the flameproofing device or reduce the flameproofing treatment speed, thereby improving productivity.

本発明の方法では、前炭素化工程において、前記耐炎化繊維束を第1の炭素化炉に投入して前炭素化処理し、前炭素化繊維束を得る。第1の炭素化炉内は、温度が300℃以上1,000℃未満の不活性雰囲気であり、耐炎化処理されたアクリル系前駆体繊維束は、該不活性雰囲気中を走行する間に前炭素化処理される。なお、第1の炭素化炉内を循環する不活性雰囲気の流れは、走行する被処理繊維に対して平行方向でも、垂直方向でもよく、特に限定されない。不活性雰囲気としては、窒素、アルゴン、ヘリウムなど公知の不活性雰囲気を採用できるが、経済性の面から窒素が望ましい。   In the method of the present invention, in the pre-carbonization step, the flame-resistant fiber bundle is put into a first carbonization furnace and pre-carbonized to obtain a pre-carbonized fiber bundle. The inside of the first carbonization furnace is an inert atmosphere having a temperature of 300 ° C. or more and less than 1,000 ° C., and the acrylic precursor fiber bundle that has been subjected to flame resistance treatment is moved forward while traveling in the inert atmosphere. Carbonized. In addition, the flow of the inert atmosphere which circulates in the 1st carbonization furnace may be a parallel direction with respect to the to-be-processed fiber, or a perpendicular direction, and is not specifically limited. As the inert atmosphere, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is desirable from the viewpoint of economy.

本発明では、炭素化工程において、前記前炭素化繊維束を第2の炭素化炉に投入して炭素化処理し、炭素化繊維束を得る。第2の炭素化炉内は、最高温度が1,000℃以上3,000℃以下の不活性雰囲気であり、前炭素化繊維束は、該不活性雰囲気中を走行する間に炭素化処理される。なお、第2の炭素化炉内の不活性雰囲気の流れは、走行する被処理繊維に対して平行方向でも、垂直方向でもよく、特に限定されない。不活性雰囲気としては、先に例示した公知の不活性雰囲気の中から選択して用いることができるが、経済性の面から窒素が望ましい。   In the present invention, in the carbonization step, the pre-carbonized fiber bundle is put into a second carbonization furnace and carbonized to obtain a carbonized fiber bundle. The inside of the second carbonization furnace is an inert atmosphere having a maximum temperature of 1,000 ° C. or more and 3,000 ° C. or less, and the pre-carbonized fiber bundle is carbonized while traveling in the inert atmosphere. The In addition, the flow of the inert atmosphere in a 2nd carbonization furnace may be a parallel direction with respect to the to-be-processed fiber to travel, or a perpendicular direction, and is not specifically limited. The inert atmosphere can be selected from the known inert atmospheres exemplified above, but nitrogen is desirable from the viewpoint of economy.

前述のように焼成工程を段階的に行うことで、熱エネルギーによって繊維が分解、焼き飛ばされる質量を極力抑制することにより、得られる炭素繊維の炭化収率は55%以上となる。   By performing the firing process stepwise as described above, the carbonization yield of the obtained carbon fiber is 55% or more by suppressing the mass that the fiber is decomposed and burned off by thermal energy as much as possible.

さらに得られた炭素化繊維束は、サイジング処理工程の前に、表面処理が行われても良い。例えば、電解液中で電解酸化処理を施したり、気相または液相での酸化処理を施すことによって、複合材料における炭素繊維とマトリックス樹脂との親和性や接着性を向上させることが好ましい。   Further, the obtained carbonized fiber bundle may be subjected to a surface treatment before the sizing treatment step. For example, it is preferable to improve the affinity and adhesiveness between the carbon fiber and the matrix resin in the composite material by performing an electrolytic oxidation treatment in an electrolytic solution or an oxidation treatment in a gas phase or a liquid phase.

サイジング処理工程では、サイジング処理とその乾燥処理を行う。サイジング処理の方法は特に限定されず、炭素化繊維束に所望のサイジング剤を付与することができれば良い。例えば、ローラーサイジング法、ローラー浸漬法およびスプレー法等を挙げることができる。   In the sizing process, a sizing process and a drying process are performed. The method of sizing treatment is not particularly limited as long as a desired sizing agent can be applied to the carbonized fiber bundle. Examples thereof include a roller sizing method, a roller dipping method, and a spray method.

サイジング処理に用いるサイジング処理液は特に限定されず、種々の高次加工に適した特性を有するものを選択することができる。例えば、均一に糸条に含浸するためには、サイジング剤を含む溶液、エマルジョンまたはサスペンジョン状態としたサイジング処理液とできるもので、それを炭素化繊維束に付着させて、乾燥装置内で溶剤または分散媒を乾燥除去できるものであれば良い。   The sizing treatment liquid used for the sizing treatment is not particularly limited, and a sizing treatment solution having characteristics suitable for various high-order processing can be selected. For example, in order to uniformly impregnate the yarn, it can be a solution containing a sizing agent, an emulsion, or a sizing treatment liquid in a suspended state, which is attached to a carbonized fiber bundle, and the solvent or What is necessary is just to be able to dry and remove the dispersion medium.

サイジング処理液中のサイジング剤の主成分としては、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ウレタン変性エポキシ樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルサルフォン樹脂などが挙げられ、特に限定しない。   The main components of the sizing agent in the sizing treatment liquid are epoxy resin, epoxy-modified polyurethane resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, polyetherimide resin, polyamideimide resin, polyimide resin, bismaleimide Resins, urethane-modified epoxy resins, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, polyether sulfone resins and the like can be mentioned, and are not particularly limited.

サイジング処理液中のサイジング剤の割合は特に限定されず、0.2〜20質量%が好ましく、より好ましくは3〜10質量%である。サイジング処理液中のサイジング剤の割合を0.2質量%以上とすることで、炭素繊維に所望する機能を充分に付与することができる。また、サイジング処理液中のサイジング剤の割合を20質量%以下とすることで、サイジング剤の付着量が適切なものとなり、後工程で複合材料として利用する際のマトリックス樹脂の含浸性が良好となる。   The ratio of the sizing agent in the sizing treatment liquid is not particularly limited, and is preferably 0.2 to 20% by mass, more preferably 3 to 10% by mass. By setting the ratio of the sizing agent in the sizing treatment liquid to 0.2% by mass or more, a desired function can be sufficiently imparted to the carbon fiber. In addition, by setting the ratio of the sizing agent in the sizing treatment liquid to 20% by mass or less, the adhesion amount of the sizing agent becomes appropriate, and the impregnation property of the matrix resin when used as a composite material in a subsequent process is good. Become.

サイジング処理液に用いる溶媒または分散媒は特に限定されないが、取り扱い性および安全性の面から、水を用いることが好ましい。   Although the solvent or dispersion medium used for the sizing treatment liquid is not particularly limited, it is preferable to use water from the viewpoints of handleability and safety.

炭素繊維束におけるサイジング剤の付着量は、0.3〜5.0質量%が好ましく、0.4〜3.0質量%がより好ましい。サイジング剤の付着量を0.3質量%以上とすることで、炭素繊維に所望する機能を充分に付与することができる。また、サイジング剤の付着量を3.0質量%以下とすることで、後工程で複合材料として利用する際のマトリックス樹脂の含浸性が良好となる。   The adhesion amount of the sizing agent in the carbon fiber bundle is preferably 0.3 to 5.0% by mass, and more preferably 0.4 to 3.0% by mass. By setting the adhesion amount of the sizing agent to 0.3% by mass or more, a desired function can be sufficiently imparted to the carbon fiber. Moreover, the impregnation property of the matrix resin at the time of utilizing as a composite material by a post process becomes favorable because the adhesion amount of a sizing agent shall be 3.0 mass% or less.

サイジング処理後の乾燥処理では、サイジング処理液の溶媒または分散媒を乾燥除去する。その際の条件は、120〜300℃の温度で、10秒〜10分間の範囲が好適であり、より好適には150〜250℃の温度で、30秒〜4分間の範囲である。乾燥温度を120℃以上とすることで、溶媒を充分に除去することができる。また、乾燥温度を300℃以下とすることで、サイジング処理された炭素繊維束の品質を維持することができる。   In the drying process after the sizing process, the solvent or dispersion medium of the sizing process liquid is removed by drying. The conditions in this case are preferably a temperature of 120 to 300 ° C. and a range of 10 seconds to 10 minutes, and more preferably a temperature of 150 to 250 ° C. and a range of 30 seconds to 4 minutes. By setting the drying temperature to 120 ° C. or higher, the solvent can be sufficiently removed. Moreover, the quality of the carbon fiber bundle by which the sizing process was carried out can be maintained by making drying temperature into 300 degrees C or less.

乾燥処理の方法は特に限定されず、例えば、蒸気を熱源とするホットロールに接触させて乾燥させる方法や、熱風が循環している装置内で乾燥させる方法を挙げることができる。   The method for the drying treatment is not particularly limited, and examples thereof include a method of drying by contacting with a hot roll using steam as a heat source, and a method of drying in an apparatus in which hot air is circulated.

以下、実施例により本発明をより具体的に説明する。本実施例においては、各種特性を次のようにして測定した。
<炭素系微粒子の窒素吸着比表面積>
JIS K6217−2(2001)の「比表面積の求め方―窒素吸着法―単点法」に準じて、自動比表面積測定装置を用いて測定した。
<カーボンブラックのDBP吸収量>
JIS K6217−4(2001)の「DBP吸収量の求め方」に準じ、アブソープトメータを用いて測定した。
<カーボンブラックのpH測定>
カーボンブラック10gを水100mlに加え、攪拌しながら加熱し、沸騰後冷却し、上澄み液のpHを測定した。
<炭化収率>
カーボンブラック分散液にポリアクリロニトリル系重合体を十分に溶解させた紡糸原液に対し水を加えて溶媒を除去後、重合体組成物を単離する。重合体組成物を垂直流方式バッチ耐炎化炉にて230℃で40分、さらに260℃で40分、昇温時間を計10分とし合計90分の耐炎化処理を行う。その後、サンプルを凍結乾燥して粉砕し、示差熱熱質量(TG/DTA:TAインスツルメンツ DTA Q−500)測定器を用いて50℃/分の昇温速度で1100℃まで加熱した。このとき加熱後の試験体の質量をa、測定前の試験体質量をbとし、質量比a/b×100(%)を、その試験体の炭化収率とした。
<可紡性評価>
カーボンブラックとポリアクリロニトリル系重合体の固形分濃度が21.2質量%となるようにDMAcに溶解して調製した紡糸原液を作成し、その紡糸原液を口金ホール数2000、口金孔径0.075mmの口金から、吐出量を2L/hrに調整し、DMAc67質量%、水33質量%の凝固浴中に吐出する湿式紡糸を行う。その際、引き取り速度を徐々に上げていき、糸切れした糸が凝固浴中で観察された時の速度(限界凝固浴速度)を可紡性の指標とする。
Hereinafter, the present invention will be described more specifically with reference to examples. In this example, various characteristics were measured as follows.
<Nitrogen adsorption specific surface area of carbon-based fine particles>
According to JIS K6217-2 (2001) “Method for obtaining specific surface area—nitrogen adsorption method—single point method”, measurement was performed using an automatic specific surface area measuring apparatus.
<DBP absorption of carbon black>
It was measured using an abstract meter according to “How to determine DBP absorption” in JIS K6217-4 (2001).
<PH measurement of carbon black>
10 g of carbon black was added to 100 ml of water, heated with stirring, cooled after boiling, and the pH of the supernatant was measured.
<Carbonization yield>
Water is added to the spinning solution in which the polyacrylonitrile-based polymer is sufficiently dissolved in the carbon black dispersion to remove the solvent, and then the polymer composition is isolated. The polymer composition is subjected to a flameproofing treatment in a vertical flow batch flameproofing furnace at 230 ° C. for 40 minutes, further at 260 ° C. for 40 minutes, a total temperature rising time of 10 minutes, and a total of 90 minutes. Thereafter, the sample was freeze-dried and pulverized, and then heated to 1100 ° C. at a temperature increase rate of 50 ° C./min using a differential thermal thermal mass (TG / DTA: TA Instruments DTA Q-500) measuring device. At this time, the mass of the test specimen after heating was a, the specimen mass before measurement was b, and the mass ratio a / b × 100 (%) was the carbonization yield of the specimen.
<Spinnability evaluation>
A spinning stock solution prepared by dissolving in DMAc so that the solid content concentration of carbon black and polyacrylonitrile-based polymer was 21.2% by mass was prepared. The spinning stock solution had a number of die holes of 2000 and a die hole diameter of 0.075 mm. From the die, the amount of discharge is adjusted to 2 L / hr, and wet spinning is performed to discharge into a coagulation bath of DMAc 67 mass% and water 33 mass%. At that time, the take-up speed is gradually increased, and the speed when the broken yarn is observed in the coagulation bath (the limit coagulation bath speed) is used as an index of spinnability.

(実施例1)
アクリロニトリル単位96%、アクリルアミド単位3%、メタクリル酸単位1%からなるアクリロニトリル系重合体(カルボン酸基の量は7.0×10−5当量、極限粘度(η)は1.7)を、DMAcに溶解し、ポリアクリロニトリル重合体を調製した。また、カーボンブラック(東海カーボン社製、製品名:シーストS)を重合体の固形分100質量部に対して100質量部秤量し、DMAcに分散させ、更にメチルアミンを1質量部加えた状態でオークスミキサー(ダイナミックミキサー)にて100rpmで30分攪拌し、その後ビーズミル(アシザワ社製、製品名:TYPE STISTS)にて20rpmで20分を行い、カーボンブラック分散液を得た。このカーボンブラック分散液に対し、前記ポリアクリロニトリル系重合体を、カーボンブラックとポリアクリロニトリル系重合体の総固形分濃度が21.2質量%となるよう溶解させ、オークスミキサー(ダイナミックミキサー)にて100rpmで30分攪拌することで目的とする炭素繊維用アクリル系前駆体繊維の紡糸原液を得た。なお、用いたカーボンブラックのDBP吸収量およびpHと、得られた紡糸原液の可紡性の測定結果を表1に合わせて示す。この紡糸原液の炭化収率、可紡性を測定したところ、炭化収率は74.2%と高い値を示し、限界凝固浴速度は18m/minであった。
Example 1
Acrylonitrile polymer comprising 96% acrylonitrile units, 3% acrylamide units, and 1% methacrylic acid units (the amount of carboxylic acid groups is 7.0 × 10 −5 equivalents, the intrinsic viscosity (η) is 1.7), DMAc To obtain a polyacrylonitrile polymer. In addition, 100 parts by mass of carbon black (manufactured by Tokai Carbon Co., Ltd., product name: Seast S) was weighed with respect to 100 parts by mass of the solid content of the polymer, dispersed in DMAc, and further added with 1 part by mass of methylamine. The mixture was stirred at 100 rpm for 30 minutes with an Oak mixer (dynamic mixer), and then 20 minutes at 20 rpm with a bead mill (manufactured by Ashizawa, product name: TYPE STITS) to obtain a carbon black dispersion. In the carbon black dispersion, the polyacrylonitrile polymer is dissolved so that the total solid concentration of the carbon black and the polyacrylonitrile polymer is 21.2% by mass, and 100 rpm is obtained with an Oaks mixer (dynamic mixer). Was stirred for 30 minutes to obtain a spinning solution of the target acrylic precursor fiber for carbon fiber. Table 1 shows the DBP absorption amount and pH of the carbon black used and the measurement results of the spinnability of the obtained spinning dope. When the carbonization yield and spinnability of this spinning dope were measured, the carbonization yield was as high as 74.2%, and the critical coagulation bath speed was 18 m / min.

孔径0.075mm、孔数2000の紡糸口金を用いて、温度38℃、濃度68%のDMAc水溶液(凝固浴)に吐出湿式紡糸法により、凝固糸とした。ついで、凝固糸を60℃から98℃の温水中で脱溶媒しながら、6倍に延伸した。延伸糸をアミノシリコン系油剤1%水溶液中に浸漬した後、180℃の加熱ローラーにて乾燥緻密化し、単糸繊度が1.2dtex、フィラメント数2000の炭素繊維前駆体繊維を得た。   A spinneret having a hole diameter of 0.075 mm and a hole number of 2000 was used to obtain a coagulated yarn by a discharge wet spinning method in a DMAc aqueous solution (coagulation bath) having a temperature of 38 ° C. and a concentration of 68%. Next, the coagulated yarn was stretched 6 times while removing the solvent in warm water at 60 ° C to 98 ° C. The drawn yarn was immersed in a 1% aqueous solution of an aminosilicon-based oil and then dried and densified with a heating roller at 180 ° C. to obtain a carbon fiber precursor fiber having a single yarn fineness of 1.2 dtex and a filament count of 2000.

得られた炭素繊維前駆体繊維を6本合糸し、トータルフィラメント数12,000とした上で、230〜260℃の空気中において延伸比0.94で延伸しながらで耐炎化処理し、耐炎化繊維を得た。   Six obtained carbon fiber precursor fibers were combined to give a total filament number of 12,000, and subjected to a flame resistance treatment while being drawn at a draw ratio of 0.94 in air at 230 to 260 ° C. A modified fiber was obtained.

続いて400℃〜700℃の窒素雰囲気中において、延伸比1.0で延伸しながら予備炭化処理を行い、更に最高温度1350℃の窒素雰囲気中において、延伸比を0.95に設定して炭化処理を行い炭素繊維を得た。   Subsequently, preliminary carbonization is performed while stretching at a stretch ratio of 1.0 in a nitrogen atmosphere at 400 ° C. to 700 ° C., and further, carbonization is performed by setting the stretch ratio to 0.95 in a nitrogen atmosphere at a maximum temperature of 1350 ° C. The carbon fiber was obtained by processing.

(実施例2)
分散させるカーボンブラックをシーストSから三菱化学製、製品名:#5に変更した以外は実施例1と同様にして紡糸原液および炭素繊維を得た。なお、用いたカーボンブラックのDBP吸収量およびpHと、得られた紡糸原液の可紡性の測定結果を表1に合わせて示す。この紡糸原液の炭化収率、可紡性を測定したところ、炭化収率は72.2%と高く、限界凝固浴速度は14m/minと、炭素繊維用アクリル系前駆体繊維を得るに十分な値を示した。
(Example 2)
A spinning dope and carbon fiber were obtained in the same manner as in Example 1 except that the carbon black to be dispersed was changed from Seast S to Mitsubishi Chemical, product name: # 5. Table 1 shows the DBP absorption amount and pH of the carbon black used and the measurement results of the spinnability of the obtained spinning dope. When the carbonization yield and spinnability of this spinning dope were measured, the carbonization yield was as high as 72.2%, the limiting coagulation bath speed was 14 m / min, which was sufficient to obtain an acrylic precursor fiber for carbon fiber. The value is shown.

(比較例1)
分散させるカーボンブラックをシーストSから旭カーボン社製、製品名:SUN BLACK X605に変更した以外は実施例1と同様にして紡糸原液を得た。なお、用いたカーボンブラックのDBP吸収量およびpHと、得られた紡糸原液の可紡性の測定結果を表1に合わせて示す。この紡糸原液の炭化収率、可紡性を測定したところ、炭化収率は68.4%であったが、紡糸原液中に塊状のカーボンブラックが観察され、フィルターですぐに目詰まりを起こし凝固浴で糸切れが多発したため、限界凝固浴速度を測定することが出来ず、可紡性が十分とは言えなかった。
(Comparative Example 1)
A spinning dope was obtained in the same manner as in Example 1 except that the carbon black to be dispersed was changed from Seast S to Asahi Carbon Co., Ltd., product name: SUN BLACK X605. Table 1 shows the DBP absorption amount and pH of the carbon black used and the measurement results of the spinnability of the obtained spinning dope. When the carbonization yield and spinnability of this spinning dope were measured, the carbonization yield was 68.4%, but massive carbon black was observed in the spinning dope, causing clogging immediately in the filter and solidifying. Since thread breakage occurred frequently in the bath, the critical coagulation bath speed could not be measured, and the spinnability was not sufficient.

(比較例2)
分散させるカーボンブラックをシーストSから旭カーボン社製、製品名:SUN BLACK X45に変更した以外は実施例1と同様にして紡糸原液を得た。なお、用いたカーボンブラックのDBP吸収量およびpHと、得られた紡糸原液の可紡性の測定結果を表1に合わせて示す。この紡糸原液の炭化収率、可紡性を測定したところ、炭化収率は74.1%であったが、紡糸原液の流動性が悪く、口金フィルターに分散しきれなかったカーボンブラックの凝集によって目詰まりを起こし吐出不良となったため、限界凝固浴速度を測定することが出来ず、可紡性が十分とは言えなかった。
(Comparative Example 2)
A spinning dope was obtained in the same manner as in Example 1 except that the carbon black to be dispersed was changed from Seast S to Asahi Carbon Co., Ltd., product name: SUN BLACK X45. Table 1 shows the DBP absorption amount and pH of the carbon black used and the measurement results of the spinnability of the obtained spinning dope. When the carbonization yield and spinnability of this spinning dope were measured, the carbonization yield was 74.1%, but the spinning dope was poor in fluidity and was agglomerated due to the aggregation of carbon black that could not be dispersed in the die filter. Since clogging occurred and discharge was poor, the critical coagulation bath speed could not be measured, and the spinnability was not sufficient.

(比較例3)
分散させるカーボンブラックをシーストSから三菱化学製、製品名:MA−100に変更した以外は実施例1と同様にして紡糸原液を得た。なお、用いたカーボンブラックのDBP吸収量およびpHと、得られた紡糸原液の可紡性の測定結果を表1に合わせて示す。この紡糸原液の炭化収率、可紡性を測定したところ、炭化収率は75.6%であったが、紡糸原液の流動性が悪く、口金フィルターに発達したカーボンブラックの凝集により目詰まりを起こし凝固浴で糸切れが多発したため、可紡性が十分とは言えなかった。
(Comparative Example 3)
A spinning dope was obtained in the same manner as in Example 1 except that the carbon black to be dispersed was changed from Seast S to Mitsubishi Chemical, product name: MA-100. Table 1 shows the DBP absorption amount and pH of the carbon black used and the measurement results of the spinnability of the obtained spinning dope. The carbonization yield and spinnability of this spinning stock solution were measured. The carbonization yield was 75.6%, but the fluidity of the spinning stock solution was poor and clogging was caused by the aggregation of carbon black developed in the die filter. Since the yarn breakage occurred frequently in the raising coagulation bath, the spinning property was not sufficient.

Figure 2012193465
Figure 2012193465

Claims (4)

ジブチルフタレート吸収量100(cm/100g)以下、水90質量部とカーボンブラック10質量部とからなる水分散液のpHが7.0以上8.0以下であるカーボンブラックを、ポリアクリロニトリル系重合体100質量部に対し、1〜100質量部含む混合物で構成される炭素繊維用アクリル系前駆体繊維。 Dibutyl phthalate absorption 100 (cm 3 / 100g) or less, pH of aqueous dispersion consisting of water 90 parts by weight of carbon black 10 parts by weight of carbon black is 7.0 to 8.0, polyacrylonitrile heavy Acrylic precursor fibers for carbon fibers composed of a mixture containing 1 to 100 parts by mass with respect to 100 parts by mass of the coalescence. 前記カーボンブラックが窒素吸着比表面積40m/g以下である請求項1に記載の炭素繊維用アクリル系前駆体繊維。 The acrylic precursor fiber for carbon fiber according to claim 1, wherein the carbon black has a nitrogen adsorption specific surface area of 40 m 2 / g or less. カーボンブラックを溶媒に分散させた分散液と、ポリアクリロニトリル系重合体を溶媒に分散させた重合体溶液とを混合して紡糸原液とし、湿式または乾湿式紡糸法により、前駆体繊維を製造する炭素繊維用アクリル系前駆体繊維の製造方法。   Carbon which manufactures precursor fiber by wet or dry wet spinning method by mixing a dispersion liquid in which carbon black is dispersed in a solvent and a polymer solution in which a polyacrylonitrile polymer is dispersed in a solvent to prepare a spinning stock solution. A method for producing an acrylic precursor fiber for fiber. 請求項1〜3のいずれかに記載の炭素繊維用アクリル系前駆体繊維を耐炎化し、炭素化して得られる炭素繊維。   A carbon fiber obtained by flameproofing and carbonizing the acrylic precursor fiber for carbon fiber according to any one of claims 1 to 3.
JP2011057124A 2011-03-15 2011-03-15 Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber Withdrawn JP2012193465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057124A JP2012193465A (en) 2011-03-15 2011-03-15 Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057124A JP2012193465A (en) 2011-03-15 2011-03-15 Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber

Publications (1)

Publication Number Publication Date
JP2012193465A true JP2012193465A (en) 2012-10-11

Family

ID=47085619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057124A Withdrawn JP2012193465A (en) 2011-03-15 2011-03-15 Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber

Country Status (1)

Country Link
JP (1) JP2012193465A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540131A (en) * 2013-06-21 2016-12-22 コーロン インダストリーズ インク Polyacrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP2018138628A (en) * 2017-02-24 2018-09-06 三菱ケミカル株式会社 Polyacrylonitrile-based copolymer, carbon fiber precursor fiber, flame-resistant fiber bundle production method, and carbon fiber bundle production method
GB2591249A (en) * 2020-01-22 2021-07-28 Mersen Scotland Holytown Ltd Thermal insulation materials suitable for use at high temperatures, and process for making said materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540131A (en) * 2013-06-21 2016-12-22 コーロン インダストリーズ インク Polyacrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP2018138628A (en) * 2017-02-24 2018-09-06 三菱ケミカル株式会社 Polyacrylonitrile-based copolymer, carbon fiber precursor fiber, flame-resistant fiber bundle production method, and carbon fiber bundle production method
GB2591249A (en) * 2020-01-22 2021-07-28 Mersen Scotland Holytown Ltd Thermal insulation materials suitable for use at high temperatures, and process for making said materials
GB2591249B (en) * 2020-01-22 2024-10-02 Mersen Scotland Holytown Ltd Thermal insulation materials suitable for use at high temperatures, and process for making said materials

Similar Documents

Publication Publication Date Title
US7976945B2 (en) Flame resistant fiber, carbon fiber and production method thereof
Frank et al. Carbon fibers: precursors, manufacturing, and properties
JP2018145540A (en) Method for production of carbon fiber bundle
JP2018145541A (en) Carbon fiber bundle and method for production of the same
CN102733009A (en) High strength polyacrylonitrile-base carbon fibers having structured surface grooves, and preparation method thereof
CN101280041A (en) Acrylonitrile-containing polymerization reaction composition for carbon fiber and preparation method thereof
US8043693B2 (en) Solution containing flame-resistant polymer and carbon molding
US20150118142A1 (en) Formation of carbon nanotube-enhanced fibers and carbon nanotube-enahnced hybrid structures
CN109252251A (en) Major diameter wet-dry change polyacrylonitrile-based carbon fibre and preparation method thereof
CN109082730A (en) Major diameter polyacrylonitrile-based carbon fibre and preparation method thereof
JP2016040419A (en) Method for producing carbon fiber
JP2007182657A (en) Polymer composition for carbon fiber precursor fiber
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
JP2012193465A (en) Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber
KR102157184B1 (en) Methode for preparing acrylonitrile based copolymer fiber
JP2007291557A (en) Carbon fiber and method for producing the same
JP4662450B2 (en) Carbon fiber manufacturing method
KR20140074136A (en) Precursor manufacturing device of carbon fiber
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
RU2432422C2 (en) Fire-resistant fibre, carbon fibre and production method thereof
JP2008169535A (en) Polymer composition for carbon fiber precursor fiber
CN114150402B (en) Carbon fiber and method for producing the same
JP6048395B2 (en) Polyacrylonitrile-based polymer, carbon fiber precursor fiber, and method for producing carbon fiber
JP2016037689A (en) Method for producing carbon fiber
JPH02264011A (en) Acrylic fiber for graphite fibers

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603