JP2012187691A - Method for selecting tool rotation speed - Google Patents
Method for selecting tool rotation speed Download PDFInfo
- Publication number
- JP2012187691A JP2012187691A JP2011054991A JP2011054991A JP2012187691A JP 2012187691 A JP2012187691 A JP 2012187691A JP 2011054991 A JP2011054991 A JP 2011054991A JP 2011054991 A JP2011054991 A JP 2011054991A JP 2012187691 A JP2012187691 A JP 2012187691A
- Authority
- JP
- Japan
- Prior art keywords
- natural frequency
- tool
- frequency
- analysis
- rotation speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Automatic Control Of Machine Tools (AREA)
Abstract
Description
本発明は、回転工具用いて工作物を加工するときの工具軸の固有振動数を用いてびびり振動を回避する工具回転速度選定方法に関するものである。 The present invention relates to a tool rotation speed selection method for avoiding chatter vibration using a natural frequency of a tool axis when a workpiece is machined using a rotary tool.
回転工具を用いた加工においてびびり振動を防止するために、基準工具を装着して実測した固有振動数の周波数と、基準工具単体の形状・材質から算出される固有振動数の周波数の比を補正係数として求め、この補正係数と使用する回転工具の形状から算出される固有振動数を乗じて算出した固有振動数の周波数を用いて、びびり振動の起きない工具回転速度を設定する従来技術1(例えば、特許文献1参照)がある。 In order to prevent chatter vibration during machining using a rotating tool, the ratio of the natural frequency frequency measured with the reference tool and the natural frequency calculated from the shape and material of the reference tool is corrected. Prior art 1 for setting a tool rotation speed at which chatter vibration does not occur using a frequency of the natural frequency calculated by multiplying the correction coefficient and the natural frequency calculated from the shape of the rotary tool to be used. For example, see Patent Document 1.
工具の動剛性が小さくて質量の小さい小型の工具の場合は工具の特性値が支配的で固有振動数が決まるため、従来技術1の補正係数による固有振動数の計算でも誤差は少ない。しかし、工具単体の動剛性が大きい場合や質量が大きい場合は、固有振動数は工具と主軸系を含む複数の質量、ばね、減衰からなる連成系の振動モデルとして決定されるので、複数の固有振動数を持つ。従来技術1では工具のみの特性値から1個の固有振動数を算出している、このため、複数の固有振動数を持つ場合は、どの固有振動数でびびり振動が発生するか不明である。さらに、正確な固有振動数の予測ができずびびり振動の防止回転速度に誤差を生じる恐れがある。
本発明は上記事情に鑑みてなされたものであり、大型の工具を用いた場合にも、正確な固有振動数の推定を可能にして、びびり振動を回避する工具回転速度選定方法を提供することを目的とする。
In the case of a small tool having a small dynamic rigidity and a small mass, the characteristic value of the tool is dominant and the natural frequency is determined. Therefore, even when the natural frequency is calculated by the correction coefficient of the conventional technique 1, the error is small. However, when the dynamic rigidity of the tool alone is large or the mass is large, the natural frequency is determined as a coupled vibration model consisting of a plurality of masses, springs, and damping including the tool and spindle system. Has a natural frequency. In the prior art 1, one natural frequency is calculated from the characteristic value of only the tool. For this reason, when there are a plurality of natural frequencies, it is unclear which natural frequency causes chatter vibrations. Furthermore, the natural frequency cannot be predicted accurately, and an error may occur in the rotational speed that prevents chatter vibration.
The present invention has been made in view of the above circumstances, and provides a tool rotation speed selection method that enables accurate estimation of the natural frequency and avoids chatter vibration even when a large tool is used. With the goal.
上記の課題を解決するための請求項1に係る発明の特徴は、回転する工具を主軸に装着して工作物を加工するときに発生するびびり振動を回避する工具回転速度選定方法であって、
基準工具を装着した主軸系の固有振動数の解析値である解析基準固有振動数を計算する基準固有振動数解析工程と、
前記基準工具を主軸に装着して測定した固有振動数である実測固有振動数を測定する固有振動数実測工程と、
所定固有振動数について、前記解析基準固有振動数と前記実測固有振動数の差である補正値を演算する補正値演算工程と、
前記基準工具を除く工具を装着した主軸系の固有振動数の解析値である解析固有振動数を計算する固有振動数解析工程と、
前記解析固有振動数を前記補正値を用いて補正して予測固有振動数を演算する固有振動数補正工程と、
前記予測固有振動数を用いて推奨工具回転速度を演算する、工具回転速度演算工程と、を備えることである。
A feature of the invention according to claim 1 for solving the above-mentioned problem is a tool rotation speed selection method for avoiding chatter vibration that occurs when a workpiece is machined by mounting a rotating tool on a spindle.
A reference natural frequency analysis step for calculating an analysis reference natural frequency which is an analysis value of the natural frequency of the spindle system to which the reference tool is attached;
A natural frequency actual measurement step for measuring an actual natural frequency that is a natural frequency measured by mounting the reference tool on the spindle;
A correction value calculation step for calculating a correction value that is a difference between the analysis reference natural frequency and the measured natural frequency for a predetermined natural frequency;
A natural frequency analysis step of calculating an analysis natural frequency which is an analysis value of a natural frequency of a spindle system equipped with a tool excluding the reference tool;
A natural frequency correction step of calculating the predicted natural frequency by correcting the analysis natural frequency using the correction value;
A tool rotation speed calculating step of calculating a recommended tool rotation speed using the predicted natural frequency.
請求項2に係る発明の特徴は、請求項1に係る発明において、前記基準固有振動数解析工程・前記固有振動数実測工程がコンプライアンスの周波数応答のピーク値から固有振動数を検出し、
前記補正値が、固有振動数の周波数の差である周波数補正値と、コンプライアンスの差であるコンプライアンス補正値の組であり、
前記所定固有振動数が所定の閾値を越えるコンプライアンスを備える固有振動数であることである。
The invention according to claim 2 is characterized in that, in the invention according to claim 1, the reference natural frequency analysis step / the natural frequency measurement step detects a natural frequency from a peak value of a frequency response of compliance,
The correction value is a set of a frequency correction value that is a difference in frequency of the natural frequency and a compliance correction value that is a difference in compliance.
The predetermined natural frequency is a natural frequency having a compliance exceeding a predetermined threshold.
請求項3に係る発明の特徴は、請求項1または請求項2に係る発明において、前記基準工具として形状パターンと寸法の異なる複数の基準工具を備えることである。 A feature of the invention according to claim 3 is that, in the invention according to claim 1 or claim 2, the reference tool includes a plurality of reference tools having different dimensions from the shape pattern.
請求項1に係る発明によれば、基準工具を装着した主軸系の固有振動数の解析値と実測値の差である補正値を用いて、使用工具を装着した主軸系の固有振動数の解析値を補正するので、使用工具を装着した主軸系の正確な固有振動値が算出できる。そのため、びびり振動の発生しない推奨工具軸回転速度を正確に選定できる。 According to the invention according to claim 1, analysis of the natural frequency of the main spindle system to which the tool is attached is used by using a correction value that is a difference between the actual value and the analysis value of the main spindle system to which the reference tool is attached. Since the value is corrected, an accurate natural vibration value of the spindle system on which the tool used is mounted can be calculated. Therefore, it is possible to accurately select the recommended tool shaft rotation speed at which chatter vibration does not occur.
請求項2に係る発明によれば、固有振動数のコンプライアンス値を用いて、複数の固有振動数についてびびり振動発生の可能性の順位を判定できる。このため、びびり振動発生の可能性の高い順番に推奨工具軸回転速度を選定できる。 According to the second aspect of the invention, it is possible to determine the ranking of the possibility of chatter vibration occurrence for a plurality of natural frequencies using the compliance value of the natural frequencies. For this reason, the recommended tool axis rotation speed can be selected in the order of the high possibility of chatter vibration.
請求項3に係る発明によれば、形状パターンと寸法の異なる複数の基準工具を備えることで、使用工具に近い特性を持つ基準工具の補正値を用いることができ、より正確な使用工具の固有振動値が算出できる。そのため、びびり振動の発生しない推奨工具軸回転速度をより正確に選定できる。 According to the invention of claim 3, by providing a plurality of reference tools having different shape patterns and dimensions, it is possible to use the correction value of the reference tool having characteristics close to that of the tool used, and a more accurate characteristic of the tool used. Vibration value can be calculated. Therefore, the recommended tool axis rotation speed at which chatter vibration does not occur can be selected more accurately.
以下、本発明の実施形態を図1〜図7に基づき説明する。
図1は工具2を装着した主軸1の概略と、固有振動数測定装置3を用いてインパルス応答試験により固有振動数を測定する概念を示した図である。
主軸1は、工具2を保持するスピンドル11と、スピンドル11を回転自在に軸受12、13を介して支持するハウジング16をそなえる。スピンドル11の軸方向の中央部にはモータロータ14が固定され、ハウジング16にモータステータ15が固定されている。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing an outline of a main shaft 1 on which a tool 2 is mounted and a concept of measuring a natural frequency by an impulse response test using a natural frequency measuring device 3.
The main shaft 1 includes a spindle 11 that holds the tool 2 and a housing 16 that rotatably supports the spindle 11 via bearings 12 and 13. A motor rotor 14 is fixed to the central portion of the spindle 11 in the axial direction, and a motor stator 15 is fixed to the housing 16.
インパルス応答試験は、スピンドル11を静止した状態で、センサ32を固定した工具2をハンマー31で打撃し、そのときに出力される信号を固有振動数演算装置33で演算して測定する。
図2は主軸・工具系のコンプライアンスの周波数応答を示す図で、横軸が周波数、縦軸がコンプライアンスである。固有振動数はコンプライアンスが図2のa、b、c、d等のピークを示す位置である。
In the impulse response test, the tool 2 with the sensor 32 fixed is struck with a hammer 31 while the spindle 11 is stationary, and a signal output at that time is calculated with a natural frequency calculator 33 and measured.
FIG. 2 is a diagram showing the frequency response of compliance of the spindle / tool system, with the horizontal axis representing frequency and the vertical axis representing compliance. The natural frequency is a position where the compliance shows peaks such as a, b, c, and d in FIG.
再生びびり振動は、固有振動数近辺で切屑厚みの周期的変動が発生して、切削力の変動が増大することにより発生する。このため、工具の刃先の作用周期を固有振動数に一致させて切屑厚みの変動を無くすれば防止できることが知られている。このため、固有振動数をf(Hz)、工具刃数をe、1以上の整数をn、工具回転速度をN(min−1)とすると、N=(f・60)/(e.n)で算出される工具回転速度で加工するとびびり振動が発生しないことが知られている。 Regenerative chatter vibration is generated when periodic fluctuations in chip thickness occur around the natural frequency and fluctuations in cutting force increase. For this reason, it is known that this can be prevented by making the working period of the cutting edge of the tool coincide with the natural frequency to eliminate the fluctuation of the chip thickness. Therefore, assuming that the natural frequency is f (Hz), the number of tool blades is e, an integer of 1 or more is n, and the tool rotation speed is N (min −1 ), N = (f · 60) / (e.n). It is known that chatter vibration does not occur when machining at the tool rotation speed calculated in (1).
主軸系は振動モデルとしてみた場合、工具2・スピンドル11・モータロータ14の質量、工具2・スピンドル11・軸受12・軸受13のばねなどで構成されている。このため、複数の質量とばねが連成された振動系として複数の固有振動数が存在する。この固有振動数の周波数とコンプライアンスを、質量、ばね、減衰係数を定めてモーダル計算することで解析的に求めることができることが知られている。
複数の固有振動数を持つ系のびびり振動は、コンプライアンスの大きな固有振動数で発生する可能性が高いが、必ずしも順位通りに決まるものではなく、コンプライアンスの上位の固有振動数の中の1つで発生することが多い。
When viewed as a vibration model, the spindle system is composed of the mass of the tool 2, the spindle 11, and the motor rotor 14, the spring of the tool 2, the spindle 11, the bearing 12, and the bearing 13. For this reason, there are a plurality of natural frequencies as a vibration system in which a plurality of masses and springs are coupled. It is known that the frequency and compliance of this natural frequency can be obtained analytically by determining the mass, spring and damping coefficient and performing modal calculation.
Chatter vibration of a system with multiple natural frequencies is likely to occur at a natural frequency with large compliance, but it is not necessarily determined in order, and is one of the higher natural frequencies of compliance. Often occurs.
びびり振動を回避する推奨工具回転速度選定方法について、図3の工程図に基づき説明する。
初めに、基準工具2をスピンドル11に装着した状態でインパルス応答試験を行い、図2の実線に示すようなコンプライアンスの周波数応答線図を測定する(S1)。平行して、基準工具2をスピンドル11に装着した系の解析を行い、図2の破線に示すようなコンプライアンスの周波数応答線図を演算する(S2)。基準工具を装着した系の実測値と解析値の対応ピークを決定する。具体的には、図2において、コンプライアンスの実測値と解析値の最大値同士を対応するピーク対aとする、ピーク対aから周波数の降順(または昇順)で同じ順番のピークを対応するピーク対b、c,dとする。対象とするピークは実測値において所定の閾値より大きい値の4個のピークとする。(S3)。
A recommended tool rotation speed selection method for avoiding chatter vibration will be described with reference to the process diagram of FIG.
First, an impulse response test is performed with the reference tool 2 mounted on the spindle 11, and a compliance frequency response diagram as shown by a solid line in FIG. 2 is measured (S1). In parallel, a system in which the reference tool 2 is mounted on the spindle 11 is analyzed, and a compliance frequency response diagram as shown by a broken line in FIG. 2 is calculated (S2). Determine the corresponding peak of the measured and analyzed values of the system with the reference tool. Specifically, in FIG. 2, the peak value corresponding to the peak in the same order in descending frequency (or ascending order) from the peak pair a to the peak pair a corresponding to the measured compliance value and the maximum value of the analysis value. Let b, c, d. The target peaks are four peaks that are actually measured values that are larger than a predetermined threshold value. (S3).
基準工具を装着した系の補正値を演算する。図4にピークbの具体例を示す、ピークbの解析による周波数をMfkb、実測による周波数をMfbとすると、周波数補正値ΔfbはΔfb=Mfb−Mfkbとなる。ピークbの解析によるコンプライアンスをMCkb、実測によるコンプライアンスをMCbとすると、コンプライアンス補正値ΔCbはΔCb=MCb−MCkbとなる。同様にして夫々の対応ピーク対毎に、周波数補正値Δfa〜Δfdと、コンプライアンス補正値ΔCa〜ΔCdを演算する(S4)。使用工具をスピンドルに装着した状態の解析を行い、周波数応答線図を演算する(S5)。基準工具を装着した系の解析値と使用工具を装着した系の解析値の対応ピークを決定する。具体的には、図5に示すように、S3で決めた基準工具を装着した系の解析値のピークaに使用工具を装着した系の解析値の最大ピークを対応させ、ピーク対aから周波数の降順(または昇順)で同じ順番のピークを対応するピーク対b、c,dとする(S6)。使用工具を装着した系の固有振動数の周波数とコンプライアンスの予測値を演算する。具体的には、図6に示すように、使用工具を装着した系の解析のピーク値a、b、c,dの周波数とコンプライアンスの値に、夫々対応する周波数補正値Δfa〜Δfdと、コンプライアンス補正値ΔCa〜ΔCdを加算し、周波数予測値fha〜fhdとコンプライアンス予測値Cha〜Chdを演算する(S7)。推奨順位と推奨工具軸回転速度の決定。推奨順位はコンプライアンス予測値の大きい順とする。順位1番目の推奨工具軸回転速度N1はN1=(fha・60)/(e.n)となる。ここで、eは工具の刃数でnは1以上の整数である。(S8)。推奨工具軸回転速度とその推奨順位を出力する(S9)。 Calculate the correction value of the system with the reference tool. FIG. 4 shows a specific example of the peak b. When the frequency obtained by analyzing the peak b is Mfk b and the actually measured frequency is Mf b , the frequency correction value Δf b is Δf b = Mf b −Mfk b . When the compliance by analysis of the peak b is MCk b and the compliance by measurement is MC b , the compliance correction value ΔC b is ΔC b = MC b −MCk b . Similarly, frequency correction values Δf a to Δf d and compliance correction values ΔC a to ΔC d are calculated for each corresponding peak pair (S4). An analysis of the state in which the tool used is mounted on the spindle is performed, and a frequency response diagram is calculated (S5). The corresponding peak of the analysis value of the system with the reference tool and the analysis value of the system with the tool used is determined. Specifically, as shown in FIG. 5, the peak a of the analysis value of the system with the reference tool determined in S3 is made to correspond to the maximum peak of the analysis value of the system with the tool used, and the frequency from peak pair a Peaks in the same order in descending order (or ascending order) are set as corresponding peak pairs b, c, d (S6). Calculate the frequency of natural frequency and the predicted value of compliance of the system with the tool used. Specifically, as shown in FIG. 6, frequency correction values Δf a to Δf d corresponding to the frequency and compliance values of the peak values a, b, c, d in the analysis of the system in which the tool used is mounted, respectively. Then, the compliance correction values ΔC a to ΔC d are added to calculate the predicted frequency values fha to fhd and predicted compliance values Cha to Chd (S7). Determination of recommended order and recommended tool axis rotation speed. The recommended order is the order of the predicted compliance value. The first recommended tool axis rotation speed N 1 in the ranking is N 1 = (fha · 60) / (en). Here, e is the number of blades of the tool, and n is an integer of 1 or more. (S8). The recommended tool axis rotation speed and its recommended order are output (S9).
以上のように、本発明によれば基準工具の解析値と実測値差から求めた補正値を用いて、使用工具の解析値を補正して求めた予測固有振動数の周波数から、びびり振動を発生しない推奨工具軸回転速度を算出するので、実測定をすることなく、正確な推奨工具軸回転速度を設定できる。さらに、複数の固有振動数のコンプライアンス順位に基づき、複数の推奨工具軸回転速度を推奨順位と共に出力するので、複数の固有振動数をもつ主軸系に対しても確実にびびり振動を発生しない推奨工具軸回転速度を算出できる。 As described above, according to the present invention, chatter vibration is reduced from the frequency of the predicted natural frequency obtained by correcting the analysis value of the tool used, using the correction value obtained from the difference between the analysis value of the reference tool and the actual measurement value. Since the recommended tool axis rotation speed that does not occur is calculated, an accurate recommended tool axis rotation speed can be set without performing actual measurement. In addition, since multiple recommended tool axis rotation speeds are output along with the recommended order based on the compliance order of multiple natural frequencies, the recommended tool does not generate chatter vibrations reliably even for spindle systems with multiple natural frequencies. The shaft rotation speed can be calculated.
上記の説明では、1つの基準工具の補正値を用いた例について述べたが、図7に示すように複数の基準工具を準備しておき、使用工具の形状が2つの基準工具の中間に位置する場合は、2つの基準工具の補正値の平均値を用いて補正してもよい。 In the above description, the example using the correction value of one reference tool has been described. However, as shown in FIG. 7, a plurality of reference tools are prepared, and the shape of the tool used is positioned between the two reference tools. When doing, you may correct | amend using the average value of the correction value of two reference tools.
1:主軸系 2:工具 3:固有振動数測定装置 11:スピンドル 12、13:軸受14:モータロータ 15:ステータ 16:ハウジング 31:ハンマー 32:センサ 33:固有振動数演算装置 1: Spindle system 2: Tool 3: Natural frequency measuring device 11: Spindle 12, 13: Bearing 14: Motor rotor 15: Stator 16: Housing 31: Hammer 32: Sensor 33: Natural frequency calculation device
Claims (3)
基準工具を装着した主軸系の固有振動数の解析値である解析基準固有振動数を計算する基準固有振動数解析工程と、
前記基準工具を主軸に装着して測定した固有振動数である実測固有振動数を測定する固有振動数実測工程と、
所定固有振動数について、前記解析基準固有振動数と前記実測固有振動数の差である補正値を演算する補正値演算工程と、
前記基準工具を除く工具を装着した主軸系の固有振動数の解析値である解析固有振動数を計算する固有振動数解析工程と、
前記解析固有振動数を前記補正値を用いて補正して予測固有振動数を演算する固有振動数補正工程と、
前記予測固有振動数を用いて推奨工具回転速度を演算する、工具回転速度演算工程と、を備える工具回転速度選定方法。 A tool rotation speed selection method for avoiding chatter vibration that occurs when machining a workpiece with a rotating tool mounted on the spindle,
A reference natural frequency analysis step for calculating an analysis reference natural frequency which is an analysis value of the natural frequency of the spindle system to which the reference tool is attached;
A natural frequency actual measurement step for measuring an actual natural frequency that is a natural frequency measured by mounting the reference tool on the spindle;
A correction value calculation step for calculating a correction value that is a difference between the analysis reference natural frequency and the measured natural frequency for a predetermined natural frequency;
A natural frequency analysis step of calculating an analysis natural frequency which is an analysis value of a natural frequency of a spindle system equipped with a tool excluding the reference tool;
A natural frequency correction step of calculating the predicted natural frequency by correcting the analysis natural frequency using the correction value;
A tool rotation speed selection method comprising: calculating a recommended tool rotation speed using the predicted natural frequency; and a tool rotation speed calculation step.
前記補正値が、固有振動数の周波数の差である周波数補正値と、コンプライアンスの差であるコンプライアンス補正値の組であり、
前記所定固有振動数が所定の閾値を越えるコンプライアンスを備える固有振動数である、請求項1に記載の工具回転速度選定方法。 The reference natural frequency analysis step / the natural frequency measurement step detects the natural frequency from the peak value of the frequency response of the compliance,
The correction value is a set of a frequency correction value that is a difference in frequency of the natural frequency and a compliance correction value that is a difference in compliance.
The tool rotation speed selection method according to claim 1, wherein the predetermined natural frequency is a natural frequency having a compliance exceeding a predetermined threshold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011054991A JP5834429B2 (en) | 2011-03-14 | 2011-03-14 | Tool rotation speed selection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011054991A JP5834429B2 (en) | 2011-03-14 | 2011-03-14 | Tool rotation speed selection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012187691A true JP2012187691A (en) | 2012-10-04 |
JP5834429B2 JP5834429B2 (en) | 2015-12-24 |
Family
ID=47081421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011054991A Expired - Fee Related JP5834429B2 (en) | 2011-03-14 | 2011-03-14 | Tool rotation speed selection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5834429B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2538750C2 (en) * | 2013-05-23 | 2015-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") | Method of determination of optimum cutting speed during metal working |
JP2016045151A (en) * | 2014-08-26 | 2016-04-04 | オークマ株式会社 | Machine tool |
JP2017094463A (en) * | 2015-11-26 | 2017-06-01 | Dmg森精機株式会社 | Derivation method for natural frequency of cutting tool, preparation method for stable limit curve, and derivation apparatus for natural frequency of cutting tool |
JP2018028512A (en) * | 2016-08-19 | 2018-02-22 | オークマ株式会社 | Machine with rotating shaft |
KR20190049527A (en) * | 2017-10-31 | 2019-05-09 | 화낙 코퍼레이션 | Diagnostic device and diagnostic method |
RU2707308C1 (en) * | 2018-09-21 | 2019-11-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" | Method of setting up a lathe for part turning |
RU2757336C2 (en) * | 2020-01-31 | 2021-10-13 | Общество с ограниченной ответственностью "Научно-производственное объединение "Центротех" (ООО "НПО "Центротех") | Method for determining optimal modes of cutting process of structural steels |
RU2811617C1 (en) * | 2023-11-10 | 2024-01-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" | Method of setting up lathe for turning part |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003108206A (en) * | 2001-10-02 | 2003-04-11 | Mori Seiki Co Ltd | Correction device for NC machine tools |
JP2003340627A (en) * | 2002-05-22 | 2003-12-02 | Kobe Steel Ltd | Machining method by small-diameter endmill and method for determining machining condition |
JP2006159299A (en) * | 2004-12-02 | 2006-06-22 | Tohoku Techno Arch Co Ltd | Device implemented for working unitary with measurement |
JP2010023162A (en) * | 2008-07-17 | 2010-02-04 | Okuma Corp | Chatter vibration suppression method of machine tool and device used for the same |
-
2011
- 2011-03-14 JP JP2011054991A patent/JP5834429B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003108206A (en) * | 2001-10-02 | 2003-04-11 | Mori Seiki Co Ltd | Correction device for NC machine tools |
JP2003340627A (en) * | 2002-05-22 | 2003-12-02 | Kobe Steel Ltd | Machining method by small-diameter endmill and method for determining machining condition |
JP2006159299A (en) * | 2004-12-02 | 2006-06-22 | Tohoku Techno Arch Co Ltd | Device implemented for working unitary with measurement |
JP2010023162A (en) * | 2008-07-17 | 2010-02-04 | Okuma Corp | Chatter vibration suppression method of machine tool and device used for the same |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2538750C2 (en) * | 2013-05-23 | 2015-01-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") | Method of determination of optimum cutting speed during metal working |
JP2016045151A (en) * | 2014-08-26 | 2016-04-04 | オークマ株式会社 | Machine tool |
JP2017094463A (en) * | 2015-11-26 | 2017-06-01 | Dmg森精機株式会社 | Derivation method for natural frequency of cutting tool, preparation method for stable limit curve, and derivation apparatus for natural frequency of cutting tool |
JP2018028512A (en) * | 2016-08-19 | 2018-02-22 | オークマ株式会社 | Machine with rotating shaft |
KR20190049527A (en) * | 2017-10-31 | 2019-05-09 | 화낙 코퍼레이션 | Diagnostic device and diagnostic method |
JP2019081225A (en) * | 2017-10-31 | 2019-05-30 | ファナック株式会社 | Diagnostic device and diagnostic method |
KR102080473B1 (en) | 2017-10-31 | 2020-02-24 | 화낙 코퍼레이션 | Diagnostic device and diagnostic method |
US10620164B2 (en) | 2017-10-31 | 2020-04-14 | Fanuc Corporation | Diagnostic device and diagnostic method |
RU2707308C1 (en) * | 2018-09-21 | 2019-11-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" | Method of setting up a lathe for part turning |
RU2757336C2 (en) * | 2020-01-31 | 2021-10-13 | Общество с ограниченной ответственностью "Научно-производственное объединение "Центротех" (ООО "НПО "Центротех") | Method for determining optimal modes of cutting process of structural steels |
RU2811617C1 (en) * | 2023-11-10 | 2024-01-15 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" | Method of setting up lathe for turning part |
Also Published As
Publication number | Publication date |
---|---|
JP5834429B2 (en) | 2015-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5834429B2 (en) | Tool rotation speed selection method | |
US8256590B2 (en) | Vibration suppressing device and vibration suppressing method for machine tool | |
JP4777960B2 (en) | Vibration suppression device | |
JP6625794B2 (en) | A method for calculating a spindle stable rotational speed capable of suppressing chatter vibration, a method for notifying the method, a method for controlling a spindle rotational speed, an NC program editing method, and an apparatus therefor. | |
US8014903B2 (en) | Method for suppressing vibration and device therefor | |
JP5732325B2 (en) | Vibration discrimination method and vibration discrimination apparatus | |
JP4433422B2 (en) | Vibration suppression device | |
ITMI20081584A1 (en) | VIBRATION SUPPRESSION DEVICE FOR MACHINE TOOLS | |
JP5622626B2 (en) | Rotational speed display device | |
WO2014115395A1 (en) | Cutting-vibration suppression method, computation control device, and machine tool | |
JP5917251B2 (en) | Chatter vibration suppression system and suppression method | |
JP2012187657A (en) | Chattering detection method | |
JP2013000850A (en) | Controller and control method of machine tool | |
JP5226484B2 (en) | Chatter vibration suppression method | |
JP4891150B2 (en) | Vibration suppressor for machine tools | |
JP6302794B2 (en) | Rotation speed display method | |
JP2008290194A (en) | Vibration suppressor for machine tools | |
JP5155090B2 (en) | Vibration determination method and vibration suppression device for machine tool | |
JP5631792B2 (en) | Machine tool monitoring device | |
JP5631779B2 (en) | Vibration suppression method and apparatus for machine tool | |
JP5862111B2 (en) | Machining data correction method | |
JP2012093983A (en) | Vibration display device | |
JP5782899B2 (en) | Cutting condition setting device | |
JP2012200844A (en) | Method for forming chatter stability limit diagram | |
JP4995115B2 (en) | Vibration suppression method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150708 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5834429 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |