[go: up one dir, main page]

JP2012185226A - Distal radius fracture reduction training model - Google Patents

Distal radius fracture reduction training model Download PDF

Info

Publication number
JP2012185226A
JP2012185226A JP2011046728A JP2011046728A JP2012185226A JP 2012185226 A JP2012185226 A JP 2012185226A JP 2011046728 A JP2011046728 A JP 2011046728A JP 2011046728 A JP2011046728 A JP 2011046728A JP 2012185226 A JP2012185226 A JP 2012185226A
Authority
JP
Japan
Prior art keywords
proximal
distal
bone
radius
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046728A
Other languages
Japanese (ja)
Other versions
JP5402962B2 (en
Inventor
Yoshio Tsujisaka
圭央 辻坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO IRYO GAKUEN
Original Assignee
TOYO IRYO GAKUEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO IRYO GAKUEN filed Critical TOYO IRYO GAKUEN
Priority to JP2011046728A priority Critical patent/JP5402962B2/en
Publication of JP2012185226A publication Critical patent/JP2012185226A/en
Application granted granted Critical
Publication of JP5402962B2 publication Critical patent/JP5402962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distal radius fracture reduction training model which enables a trainee to practice flexion reduction maneuver by reproducing overriding displacement and makes him or her feel a friction sound to be able to reproduce an operational feeling in actual manipulative reduction approximately.SOLUTION: The distal radius fracture reduction training model includes: concave and convex engagement parts 5 and 6 formed at three positions on surfaces facing each other of outer peripheral parts 2A and 3A of a proximal radial fragment model body 2 and a distal radial fragment model body 3; and an elastic body 9 which elastically urges the proximal radial fragment model body 2 and the distal radial fragment model body 3 toward each other in a reduction completion state where the concave and convex engagement parts 5 and 6 are engaged with each other. In order to avoid interference with the elastic body 9 between a state where the distal radial fragment model body 3 is displaced by overriding the back side of the proximal radial fragment model body 2 and the reduction completion state, clearance grooves 2C and 3C are formed on the back side of the proximal distal radial fragment model body 2 and a palm side of the distal radial fragment model body 3.

Description

本発明は、橈骨遠位端骨折の整復技術を習得するための整復実習に用いる模型に関するものである。   The present invention relates to a model used for reduction training for acquiring reduction techniques for distal radius fractures.

柔道整復術は、骨・関節・筋・腱・靭帯など運動器に加わる急性、亜急性の原因によって発生する骨折・脱臼・捻挫・挫傷・打撲などの損傷に対し、手術をせずに手技によって整復・固定・後療等を行う治療術であり、柔道整復師が患部の検査や施術を行う際には、全神経を指先に集中させた指先の高度な感覚が必要になる。
このような指先の高度な感覚を身につける必要がある柔道整復師になるためには、専門学校等での学習・実習が必要であり、学生が急増している現状において、臨床の現場以外で整復技術を習得するための整復実習模型(人体模型教材)の普及が望まれている(例えば、特許文献1参照。)。
Judo reduction is a technique that does not require surgery for fractures, dislocations, sprains, contusions, and bruises caused by acute and subacute causes such as bones, joints, muscles, tendons, and ligaments. This is a treatment that performs reduction, fixation, post-treatment, etc. When a judo reduction teacher examines or treats the affected area, it requires a high degree of fingertip sensation with all nerves concentrated on the fingertip.
In order to become a judo remediator who needs to acquire such advanced fingertip sensation, it is necessary to study and practice at vocational schools, etc. Therefore, it is desired to spread reduction training models (human body model teaching materials) for learning reduction techniques (see, for example, Patent Document 1).

また、橈骨遠位端は網目をなす骨質の薄い板(骨稜)が疎に配列した海綿骨の多い部位であり、手掌をついて転倒したり自転車やバイクに乗って転倒した際等に、幅広い年齢層にわたって橈骨遠位端骨折が発生し、その発生頻度は高くなっている。
このような橈骨遠位端骨折の整復技術を習得するための整復実習模型(整復技術習得用の人体模型教材)として、骨状部材の橈骨を金属(強磁性体)製の橈骨遠位端部材と該橈骨遠位端部材に隣接する側に磁石が設けられた橈骨近位端部材とに分離し、この分離面を、丸みを帯びた頂点を有する三角形または半円にし、骨状部材を軟質部材で覆ってなるものがある(特許文献1参照。)。
In addition, the distal end of the rib is a part of cancellous bone with a sparsely arranged thin plate of bone (bone crest) that forms a mesh, and it is widely used when falling with a palm or riding a bicycle or motorcycle Distal radius fractures occur across the age group, and the incidence is high.
As a reduction training model (human body model teaching material for acquiring reduction technique) for learning such reduction technique of distal radius fracture, the rib of the bone-shaped member is made of metal (ferromagnetic material) And a rib proximal end member provided with a magnet on the side adjacent to the rib distal end member, and the separation surface is made into a triangle or a semicircle having a rounded apex, and the bone-like member is soft Some are covered with a member (see Patent Document 1).

登録実用新案第3144317号公報Registered Utility Model No. 3144317

特許文献1のような橈骨遠位端骨折整復実習模型の構成では、橈骨遠位端部材と橈骨近位端部材とが離間することなく磁気的な吸着状態を維持しながらずれるだけであるため、橈骨遠位骨片が橈骨近位骨片の背側に騎乗転位してフォーク背状に変形した状態を再現することができず、よって、このような転位が大きくなった状態の橈骨遠位端骨折を整復する屈曲整復法の実習を行うことができない。
また、橈骨遠位端部材と橈骨近位端部材とを磁気的な吸着状態を維持しながらスライドさせる構成であることから、骨折の固有症状の一つである軋轢音を触知することができないため、実際の徒手整復に近い操作感を再現することがでず、よって指先の高度な感覚を身につけることができない。
In the configuration of the distal radius fracture reduction training model as in Patent Document 1, the distal radius end member and the proximal radius end member are merely displaced while maintaining a magnetically attracted state without being separated, It is impossible to reproduce the state where the distal radius fragment is mounted on the dorsal side of the proximal radius fragment and deformed into a fork spine shape. Cannot practice flexion reduction to reduce fractures.
In addition, since the distal end member of the radius and the proximal end member of the radius are slid while maintaining a magnetically attracted state, it is impossible to feel the stuttering that is one of the inherent symptoms of fractures. Therefore, it is impossible to reproduce an operational feeling that is close to actual manual reduction, and therefore it is impossible to acquire a high-level fingertip sensation.

そこで本発明が前述の状況に鑑み、解決しようとするところは、騎乗転位を再現して屈曲整復法の実習を行うことができ、軋轢音を触知させて実際の徒手整復に近い操作感を再現することができる橈骨遠位端骨折整復実習模型を提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem of riding reduction by reproducing the bending reduction method, and making the operation feel close to actual manual reduction by tactile roaring. It is in providing a training model for fracture reduction of the distal radius that can be reproduced.

本発明に係る橈骨遠位端骨折整復実習模型は、前記課題解決のために、橈骨遠位端骨折における橈骨近位骨片及び橈骨遠位骨片の骨折部に相当する部分がそれぞれ形成された橈骨近位骨片模擬体及び橈骨遠位骨片模擬体を備えた、橈骨遠位端骨折の整復技術を習得するための整復実習に用いる模型であって、前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体間の外周部対向面の少なくとも3箇所に形成された凹凸係合部と、該凹凸係合部が係合した整復完了状態で、前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体を、これらが近づく方向へ弾性付勢する弾性体とを備え、前記橈骨遠位骨片模擬体が前記橈骨近位骨片模擬体の背側に騎乗転位した状態と前記整復完了状態との間で前記弾性体と干渉しないように、前記橈骨近位骨片模擬体の背側及び前記橈骨遠位骨片模擬体の掌側の少なくともどちらかに逃げ溝を形成してなることを特徴とする。   In order to solve the above problems, the distal radius fracture reduction training model according to the present invention has a proximal radius bone fragment and a portion corresponding to a fracture portion of the distal radius bone fragment formed in the distal radius fracture. A model used for reduction training for learning a reduction technique of a distal radius fracture, comprising a proximal radius bone mimetic and a distal radius bone mimetic, the proximal radius bone mimetic and An uneven engagement portion formed at at least three locations on the outer peripheral portion facing surface between the distal radius bone simulated bodies, and the reduced proximal bone fragment simulated body in a reduced state where the uneven engagement portions are engaged, An elastic body that elastically biases the distal radial bone fragment simulated body in a direction in which the distal radial bone simulated body approaches, and the distal distal bone fragment simulated body is mounted on the dorsal side of the proximal proximal bone fragment simulated body; In order to prevent interference with the elastic body during the reduction completion state, And characterized by comprising a groove relief to at least one of the palm side of the distal radius bone fragment mimics.

このような構成によれば、凹凸係合部が係合した整復完了状態で、橈骨近位骨片模擬体及び橈骨遠位骨片模擬体を、これらが近づく方向へ弾性付勢する弾性体を備えているため、橈骨遠位端骨折を整復する際の操作力が、主に弾性体の復元力により再現される。
その上、橈骨近位骨片模擬体及び橈骨遠位骨片模擬体間の外周部対向面の少なくとも3箇所に凹凸係合部があることから、整復操作の際における凹凸係合により軋轢音を触知することができるため実際の徒手整復に近い操作感を再現することができるとともに、前記外周部対向面の少なくとも3箇所にある凹凸係合部が係合した状態では橈骨近位骨片模擬体及び橈骨遠位骨片模擬体が、その骨軸(長軸)が倒れる方向にがたつくことなく位置決めされるため、整復完了状態を触知することができる。
その上さらに、橈骨近位骨片模擬体の背側及び橈骨遠位骨片模擬体の掌側の少なくともどちらかに逃げ溝が形成されており、橈骨遠位骨片模擬体が橈骨近位骨片模擬体の背側に騎乗転位した状態と整復完了状態との間で弾性体と干渉しないことから、橈骨遠位骨片が橈骨近位骨片の背側に騎乗転位してフォーク背状に変形した状態を再現することができるため、このような転位が大きくなった状態の橈骨遠位端骨折を整復する屈曲整復法の実習を行うことができる。
その上、橈骨遠位端骨折における橈骨近位骨片及び橈骨遠位骨片の骨折部に相当する部分がそれぞれ形成された橈骨近位骨片模擬体及び橈骨遠位骨片模擬体並びにこれらを弾性付勢する弾性体等からなる簡素な構成により、製造コストを低減することができるとともに、繰り返し使用に適した信頼性を確保することができる。
According to such a configuration, the elastic body that elastically biases the proximal radial bone fragment simulated body and the distal radial bone fragment simulated body in the approaching direction in the reduction completed state in which the uneven engagement portion is engaged. Therefore, the operating force for reducing the distal radius fracture is reproduced mainly by the restoring force of the elastic body.
In addition, since there are concave and convex engaging portions at at least three locations on the outer periphery facing surface between the proximal radius bone simulated body and the distal radial bone simulated body, noise is generated by the concave and convex engagement during the reduction operation. Because it can be palpated, it can reproduce a feeling of operation close to actual manual reduction, and in the state where the concavo-convex engaging portions at at least three locations on the outer peripheral portion facing surface are engaged, Since the body and the rib distal bone fragment simulated body are positioned without rattling in the direction in which the bone axis (long axis) falls down, the reduction completion state can be felt.
Furthermore, a clearance groove is formed in at least one of the dorsal side of the proximal radius bone mimetic and the palm side of the distal radius bone mimetic, and the distal radius bone mimetic is the proximal radius bone. Since the elastic body does not interfere with the elastic body between the state where it is mounted on the dorsal side of the simulated body and the reduction completed state, the distal bone fragment is mounted on the dorsal side of the proximal bone fragment and becomes a fork dorsal shape. Since the deformed state can be reproduced, it is possible to practice a bending reduction method for reducing a distal radius fracture with such a large dislocation.
In addition, the proximal radius fragment mimetic and the distal radius bone mimetic in which the portions corresponding to the proximal radius fragment and the fractured portion of the distal radius fragment in the distal radius fracture are respectively formed, and these With a simple configuration made of an elastic body or the like that is elastically biased, the manufacturing cost can be reduced and reliability suitable for repeated use can be ensured.

ここで、前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体間の中央部対向面に凹凸係合部を形成してなると好ましい。
このような構成によれば、橈骨近位骨片模擬体及び橈骨遠位骨片模擬体の中央部間にも凹凸係合部があることから、この凹凸係合部も整復操作の際に凹凸係合するため、さらに実際に近い軋轢音や操作感を再現することができる。
Here, it is preferable that a concave-convex engaging portion is formed on the opposite surface of the central portion between the rib proximal bone fragment simulated body and the distal radius distal bone fragment simulated body.
According to such a configuration, since there is an uneven engagement portion between the central portion of the rib proximal bone fragment simulated body and the distal radius distal bone fragment simulated body, the uneven engagement portion is also uneven during the reduction operation. Because of the engagement, it is possible to reproduce a more realistic noise and operation feeling.

また、前記弾性体の長手方向が、近位方向へ行くにしたがって橈側へ傾斜すると好ましい。
このような構成によれば、橈骨遠位骨片模擬体が橈骨近位骨片模擬体の背側に騎乗転位した状態がより実際に近いものになるとともに、整復操作する際の操作力もより実際に近いものになる。
Moreover, it is preferable that the longitudinal direction of the elastic body is inclined toward the heel as it goes in the proximal direction.
According to such a configuration, the state where the distal radius bone simulated body is mounted on the dorsal side of the proximal radius bone simulated body is closer to the actual state, and the operation force when performing the reduction operation is more actual. It will be close to.

さらに、前記弾性体の張力を調節する張力調節手段を備えてなると好ましい。
このような構成によれば、張力調節手段を操作することにより、実際の徒手整復に近い操作感を再現するために熟練者が行う調節を容易に行うことができるとともに、製作した多数の橈骨遠位端骨折整復実習模型における整復実習時の操作感のばらつきを小さくすることができる。
Furthermore, it is preferable that a tension adjusting means for adjusting the tension of the elastic body is provided.
According to such a configuration, by operating the tension adjusting means, it is possible to easily perform adjustments performed by an expert in order to reproduce an operational feeling close to actual manual reduction, and to produce a large number of manufactured ribs. It is possible to reduce the variation in operational feeling during the reduction training in the distal fracture fracture training model.

さらにまた、前記弾性体が引張コイルばねであり、前記張力調節手段がターンバックルであると好ましい。
このような構成によれば、弾性体及び張力調節手段を、簡素な構成で長期間にわたって動作の信頼性が高く値段が安い引張コイルばね及びターンバックルにより構成しているため、さらに製造コストの低減化及び高信頼化を図ることができるとともに、ターンバックルの胴部を回動させることにより引張コイルばねの張力調節を容易に行うことができる。
Furthermore, it is preferable that the elastic body is a tension coil spring and the tension adjusting means is a turnbuckle.
According to such a configuration, since the elastic body and the tension adjusting means are configured by the tension coil spring and the turnbuckle that have a simple configuration and are reliable in operation for a long period of time and are inexpensive, further reduction in manufacturing cost is achieved. And high reliability, and the tension of the tension coil spring can be easily adjusted by rotating the body portion of the turnbuckle.

また、前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体の少なくとも前記骨折部に相当する部分周りを、軟部組織を模した軟質素材で被覆してなると好ましい。
このような構成によれば、骨折部に相当する部分周りが軟部組織を模した軟質素材で被覆されているため、橈骨遠位端骨折に相当する状態にした際に実際の橈骨遠位端骨折に近い状態を目視することができ、整復操作をする際の触感が実際に近いものになるとともに、軟質素材が不透明である場合には、内部が見えない状態で整復できたことを確認することが求められる整復実習に好適なものとなる。
その上、透明の軟質合成樹脂素材で形成した軟質素材で骨折部に相当する部分周りを被覆した橈骨遠位端骨折整復実習模型も製作しておくことにより、橈骨遠位端骨折の整復前後の状況を視認することができるため、整復実習をより効率的に進めることができる。
Further, it is preferable that at least a portion corresponding to the fracture portion of the proximal radius bone simulated body and the distal radius bone simulated body is covered with a soft material simulating a soft tissue.
According to such a configuration, since the periphery of the portion corresponding to the fracture portion is covered with the soft material simulating the soft tissue, the actual distal radius fracture when the state corresponding to the distal radius fracture is achieved. If the soft material is opaque, make sure that the reduction can be done without seeing the inside. This is suitable for reduction training.
In addition, a distal radius fracture reduction training model with a soft material formed of a transparent soft synthetic resin material covering the area corresponding to the fractured portion is also prepared, so that the distal radius fracture can be reduced before and after reduction. Since the situation can be visually confirmed, reduction training can be carried out more efficiently.

さらに、前記橈骨近位骨片模擬体の近位端部に回転関節を設けてなると好ましい。
このような構成によれば、橈骨近位骨片模擬体近位端部の回転関節により橈骨遠位端骨折整復実習模型の長軸回りの角度を自由に変更することができるため、整復を行う際の実際の腕の姿勢に近い状態を再現しながら整復実習を行うことができる。
Furthermore, it is preferable that a rotary joint is provided at the proximal end of the rib proximal bone fragment simulated body.
According to such a configuration, the angle around the major axis of the distal radius fracture reduction training model can be freely changed by the rotary joint at the proximal end portion of the proximal radius fragment simulated body, so that reduction is performed. It is possible to perform reduction training while reproducing a state close to the actual posture of the arm.

さらにまた、前記橈骨近位骨片模擬体を橈骨の途中までの部分に相当する長さとして上腕から前腕の近位部までを模した腕近位部模型に取り付けて腕模型とし、該腕模型に回転関節を設けるとともに、前記腕模型を人体又は人体模型に装着する装着手段を備えてなると好ましい。
このような構成によれば、装着手段で人体又は人体模型に装着した人の腕に近い橈骨遠位端骨折整復実習模型により、整復される受傷者の実際の姿勢並びに整復を行う術者及び助手の実際の動作を再現することができる。
Furthermore, the above-mentioned proximal rib radial bone simulated body is attached to an arm proximal part model imitating from the upper arm to the proximal part of the forearm as a length corresponding to the middle part of the rib to form an arm model, and the arm model It is preferable that a rotation joint is provided on the body and that the arm model is provided with a mounting means for mounting the arm model on the human body or the human body model.
According to such a configuration, the actual posture of the injured person to be reduced and the operator and the assistant who perform reduction by the distal radius fracture reduction training model close to the arm of the person attached to the human body or the human body model by the wearing means. Can reproduce the actual behavior of

以上のように、本発明に係る橈骨遠位端骨折整復実習模型によれば、簡素かつ動作が確実な構成により、転位が大きい橈骨遠位端骨折の実際に近い状態が再現され、徒手整復の際における実際に近い操作感を再現することができ、製造コストを低減することができるとともに、繰り返し使用に適した信頼性を確保することができるため、実用的で普及しやすいという顕著な効果を奏する。   As described above, according to the distal radius fracture reduction training model according to the present invention, a simple and reliable operation reproduces a state close to the actual situation of a distal radius fracture with a large dislocation. It is possible to reproduce the operational feeling close to the actual situation at the time, reduce the manufacturing cost, and ensure the reliability suitable for repeated use. Play.

本発明の実施の形態に係る橈骨遠位端骨折整復実習模型を人に装着した状態を示す正面図である。It is a front view which shows the state which mounted | wore the person with the radius radius fracture reduction training model which concerns on embodiment of this invention. 本発明の実施の形態に係る橈骨遠位端骨折整復実習模型における整復が完了した状態を示す部分縦断面斜視図である。It is a fragmentary longitudinal cross-section perspective view which shows the state which the reduction in the radius radius fracture reduction training model which concerns on embodiment of this invention was completed. 同じく背側から見た部分縦断面図である。It is the fragmentary longitudinal cross-sectional view similarly seen from the back side. 本発明の実施の形態に係る橈骨遠位端骨折整復実習模型における橈骨遠位骨片模擬体が橈骨近位骨片模擬体の背側に騎乗転位した状態を示す部分縦断面斜視図である。It is a fragmentary longitudinal cross-section perspective view which shows the state where the distal radius bone simulated body in the distal radius fracture reduction training model according to the embodiment of the present invention is mounted on the dorsal side of the proximal radial bone fragment simulated body. 同模型の部分縦断面分解斜視図である。It is a partial longitudinal cross-section exploded perspective view of the model. 同模型における橈骨遠位骨片模擬体が橈骨近位骨片模擬体の背側に騎乗転位した状態を示す橈側から見た部分縦断面図である。It is the fragmentary longitudinal cross-sectional view seen from the heel side which shows the state which the rib distal bone fragment simulation body in the same model carried on the dorsal side of the rib proximal bone fragment simulation body. 同模型における整復が完了した状態を示す橈側から見た部分縦断面である。It is the partial longitudinal cross-section seen from the heel side which shows the state which reduction was completed in the model. (a)は橈骨近位骨片模擬体及び橈骨遠位骨片模擬体の外周部の凹凸係合部を拡大して示す縦断面、(b)は橈骨近位骨片模擬体及び橈骨遠位骨片模擬体の中央部の凹凸係合部を拡大して示す縦断面である。(A) is a longitudinal cross-sectional view showing an enlarged concavo-convex engagement portion on the outer periphery of the proximal radius bone simulated body and distal radius bone simulated body, and (b) is a proximal proximal bone fragment simulated body and distal radius. It is a longitudinal cross-section which expands and shows the uneven | corrugated engaging part of the center part of a bone fragment simulated body.

図1に示すように、本発明の実施の形態に係る橈骨遠位端骨折整復実習模型(以下、単に「実習模型」という。)1は、手Hから前腕の一部までを模して製作されているため前腕全体の長さはなく、上腕から前腕の近位部までを模した腕近位部模型A1に回転関節(回り対偶)11により略骨軸(長軸)まわりに回転可能に取り付けて腕模型Aとされ、腕模型Aは装着手段である装着帯Bにより人体等に装着して使用することができる。
また、腕模型Aは、その全体が、例えばシリコーンゴムやウレタンゴム等の軟質合成樹脂素材で形成した、皮膚、皮下組織及び筋肉等の軟部組織を模した軟質素材Cで被覆される。
As shown in FIG. 1, a distal radius fracture reduction training model (hereinafter simply referred to as “training model”) 1 according to an embodiment of the present invention is manufactured by imitating from a hand H to a part of a forearm. Therefore, there is no length of the entire forearm, and the arm proximal part model A1 simulating from the upper arm to the proximal part of the forearm can be rotated around a substantially bone axis (long axis) by a rotary joint (turn pair) 11 The arm model A is attached to the arm model A, and the arm model A can be used by being mounted on a human body or the like by a mounting band B which is a mounting means.
Further, the entire arm model A is covered with a soft material C which is formed of a soft synthetic resin material such as silicone rubber or urethane rubber, and imitates soft tissues such as skin, subcutaneous tissue and muscle.

前腕骨は橈骨及び尺骨により構成されるが、図2〜図7に示すように、実習模型1の簡素化のため、尺骨を欠損させ、橈骨遠位端を通常の橈骨近位骨片及び橈骨遠位骨片よりも大きく形成しており、実習模型1は、橈骨遠位端骨折における橈骨近位骨片及び橈骨遠位骨片の骨折部に相当する部分がそれぞれ形成された橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3を備えている。
また、橈骨近位骨片模擬体2の外周部2A(図5参照。)の3箇所には係合凸部5,…が、橈骨遠位骨片模擬体3の外周部3A(図4及び図5参照。)の3箇所には係合凸部5,…に係合する係合凹部6,…が形成され、橈骨近位骨片模擬体2の中央部2B(図5参照。)には係合凸部7が、橈骨遠位骨片模擬体3の中央部3B(図4及び図5参照。)には係合凸部7に係合する係合凹部8が形成され、図2及び図7の整復完了状態では、係合凹部6,…及び係合凹部8に係合凸部5,…及び係合凸部7が凹凸係合する。
すなわち、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3間の外周部2A,3A(図5参照。)の対向面3箇所に凹凸係合部が形成され、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3間の中央部2B,3Bの対向面1箇所に凹凸係合部が形成される。
The forearm is composed of a radius and an ulna, but as shown in FIGS. 2 to 7, to simplify the training model 1, the ulna is lost, and the distal end of the radius is a normal proximal proximal bone fragment and radius. The proximal model bone is formed larger than the distal bone fragment, and the training model 1 includes a proximal radius bone fracture and a portion corresponding to a fracture portion of the distal radius bone fracture in the distal radius fracture. A piece mockup 2 and a distal radius bone mockup 3 are provided.
In addition, there are three engaging convex portions 5,... On the outer peripheral portion 2A (see FIG. 5) of the proximal radius bone simulated body 2 and the outer peripheral portion 3A (see FIGS. 4 and 4) of the distal radius bone simulated body 3. Engaging recesses 6,... That engage with the engaging projections 5,... Are formed at three locations in FIG. 5), and are formed in the central portion 2B (see FIG. 5) of the proximal rib fragment simulated body 2. The engaging convex part 7 is formed, and an engaging concave part 8 that engages with the engaging convex part 7 is formed in the central part 3B (see FIGS. 4 and 5) of the distal radius bone simulated body 3. FIG. 7 and FIG. 7, the engagement protrusions 5,... And the engagement protrusion 7 engage with the engagement recesses 6,.
That is, concave and convex engagement portions are formed at three opposing surfaces of the outer peripheral portions 2A and 3A (see FIG. 5) between the rib proximal bone fragment simulated body 2 and the distal radius distal bone fragment simulated body 3. An uneven engagement portion is formed at one place on the opposing surface of the central portions 2B, 3B between the simulated piece 2 and the distal radius bone simulated body 3.

図8(a)に示すように、係合凹部6は、例えば遠位方向へ行くにしたがって縮径する丸穴であり、その円錐面状の傾斜面6Aに、例えば丸軸状の係合凸部5先端部の球面5Aが当接した状態で凹凸係合し、位置決めされる。
また、図8(b)に示すように、係合凹部8は、例えば遠位方向へ行くにしたがって縮径する丸穴であり、その円錐面状の傾斜面8Aに、例えば丸軸状の係合凸部7先端部の傾斜面7Aが当接した状態で凹凸係合し、位置決めされる。
なお、これらのような凹凸係合部として、橈骨近位骨片模擬体2に係合凹部を形成し、橈骨遠位骨片模擬体3に係合凸部を形成するようにしてもよい。
ここで、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3間の外周部2A,3A(図5参照。)の対向面に形成する凹凸係合部を4箇所以上としてもよく、前記外周部2A,3A対向面に形成される凹凸係合部が3箇所以上であれば、これらの凹凸係合部は一直線上にないため、これらの凹凸係合部が係合状態になると、骨軸(長軸)が倒れる方向にがたつくことがなく、実際の整復完了状態に近い状態を模擬することができる。
As shown in FIG. 8 (a), the engaging recess 6 is a round hole whose diameter decreases, for example, in the distal direction, and the conical inclined surface 6A has, for example, a round-shaft engaging protrusion. In a state where the spherical surface 5A at the tip of the portion 5 is in contact, the concave and convex are engaged and positioned.
Further, as shown in FIG. 8B, the engaging recess 8 is a round hole whose diameter decreases, for example, as it goes in the distal direction, and the conical inclined surface 8A has, for example, a round shaft-like engagement. In the state where the inclined surface 7A at the tip of the joint convex portion 7 is in contact, the concave and convex portions are engaged and positioned.
In addition, as an uneven | corrugated engaging part like these, you may make it form an engagement recessed part in the radial proximal bone fragment simulated body 2, and form an engaging convex part in the distal radius bone simulated body 3. FIG.
Here, it is good also considering the uneven | corrugated engagement part formed in the opposing surface of outer peripheral part 2A, 3A (refer FIG. 5) between the rib proximal bone fragment simulated body 2 and the distal radius bone simulated body 3 as four or more places. If there are three or more concavo-convex engaging portions formed on the opposing surfaces of the outer peripheral portions 2A and 3A, these concavo-convex engaging portions are not in a straight line. It is possible to simulate a state close to the actual reduction completion state without shaking in the direction in which the bone axis (long axis) falls.

また、図2及び図7のように係合凸部5,…及び係合凹部6,…並びに係合凸部7及び係合凹部8が係合した整復完了状態で、弾性体である引張コイルばね9が、その近位端末9A及び遠位端末9Bを、それぞれ橈骨近位骨片模擬体2の中央(係合凸部7に形成された軸方向に伸びる穴の近位壁)に取り付けられたループ状紐体10A及び橈骨遠位骨片模擬体3の遠位の手骨部4中央に固定された受け部材4Aの掛止ピン10Bに掛止することにより取り付けられるため、引張コイルばね9により、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3は、これらが近づく方向へ弾性付勢される。
ここで、図3に示すように、引張コイルばね9の長手方向は、近位方向へ行くにしたがって、例えば10°〜20°程度橈側へ傾斜している。
Further, as shown in FIG. 2 and FIG. 7, the tension coil which is an elastic body in the reduction complete state where the engagement convex portion 5, the engagement concave portion 6, and the engagement convex portion 7 and the engagement concave portion 8 are engaged. A spring 9 has its proximal end 9A and distal end 9B attached to the center of the proximal radius bone mimetic 2 (the proximal wall of the axially extending hole formed in the engaging projection 7), respectively. Since it is attached by being hooked on the latch pin 10B of the receiving member 4A fixed to the center of the distal hand bone part 4 of the looped string body 10A and the distal radius bone simulated body 3, the tension coil spring 9 Thus, the rib proximal bone fragment simulated body 2 and the radius distal bone fragment simulated body 3 are elastically biased in the direction in which they approach.
Here, as shown in FIG. 3, the longitudinal direction of the tension coil spring 9 is inclined toward the heel side, for example, by about 10 ° to 20 ° as it goes in the proximal direction.

なお、図6に示す橈骨遠位端骨折に相当する状態から図7に示す整復完了状態との間で、引張コイルばね9のストローク(引張コイルばね9の伸びの変化量)が定まるため、材質、線径、コイル径及び巻数を変えて自由長さやばね定数等の特性を変化させた複数の引張コイルばねを付け替えなから、例えば専門学校の柔道整復師学科の教師等の熟練した柔道整復師が、実習模型1を操作して、徒手整復する際の操作力を確認しながら、実際の操作力に近くなる引張コイルばね9を選定すればよい。
また、引張コイルばね9に対して、これと直列にターンバックルを取り付けることや引張コイルばね9の端末を掛止する位置を可変にすること等による張力調節手段を備えることにより、引張コイルばね9の張力調節を行うことができる。
さらに、弾性体は、引張コイルばねに限定されるものではなく、ゴムチューブやゴム紐等の弾性体であってもよい。
The stroke of the tension coil spring 9 (the amount of change in the extension of the tension coil spring 9) is determined between the state corresponding to the distal radius fracture shown in FIG. 6 and the reduction completion state shown in FIG. No need to replace multiple tension coil springs with different characteristics such as free length and spring constant by changing wire diameter, coil diameter and number of turns, for example, skilled judo reduction teachers such as teachers of judo reduction teacher department of vocational school However, it is only necessary to select the tension coil spring 9 that is close to the actual operating force while operating the training model 1 and confirming the operating force at the time of manual reduction.
Further, the tension coil spring 9 is provided with tension adjusting means by attaching a turn buckle in series with the tension coil spring 9 or by changing the position where the end of the tension coil spring 9 is hooked. The tension can be adjusted.
Furthermore, the elastic body is not limited to the tension coil spring, and may be an elastic body such as a rubber tube or a rubber string.

さらにまた、図2及び図7に示す整復完了状態と図4及び図6に示す橈骨遠位骨片模擬体3が橈骨近位骨片模擬体2の背側に騎乗転位した状態との間で、引張コイルばね9と干渉しないように、橈骨近位骨片模擬体2の背側には逃げ溝2Cが、橈骨遠位骨片模擬体3の掌側3には逃げ溝3Cが形成される。
なお、このような逃げ溝は、整復完了状態と騎乗転位状態との間で引張コイルばね9等の弾性体と干渉しないように形成されるものであるため、引張コイルばね9等の弾性体の形状やその端末の取付位置によっては、橈骨近位骨片模擬体2の背側及び橈骨遠位骨片模擬体3の掌側に形成する逃げ溝を一方のみとすることもできる。
Furthermore, between the reduction completion state shown in FIGS. 2 and 7 and the state where the distal radius bone mimetic 3 shown in FIGS. 4 and 6 is mounted on the back side of the proximal radius bone mimetic 2. In order not to interfere with the tension coil spring 9, a clearance groove 2 </ b> C is formed on the dorsal side of the proximal radius bone simulated body 2, and a clearance groove 3 </ b> C is formed on the palm side 3 of the distal radius bone simulated body 3. .
Such a relief groove is formed so as not to interfere with the elastic body such as the tension coil spring 9 between the reduction completed state and the riding dislocation state. Depending on the shape and the attachment position of the terminal, only one of the relief grooves formed on the dorsal side of the proximal radius bone mimetic 2 and the palm side of the distal radius bone mimetic 3 can be used.

以上のような実習模型1の構成によれば、係合凸部5,…及び係合凹部6,…並びに係合凸部7及び係合凹部8が係合した図2及び図7に示す整復完了状態で、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3を、これらが近づく方向へ弾性付勢する引張コイルばね9を備えているため、橈骨遠位端骨折を整復する際の操作力が、主に引張コイルばね9の復元力により再現される。
また、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3間の外周部2A,3A対向面の少なくとも3箇所に凹凸係合部5,6があることから、図6の騎乗転位状態から図7の整復完了状態まで整復する操作の際における凹凸係合により軋轢音を触知することができるため実際の徒手整復に近い操作感を再現することができるとともに、外周部2A,3A対向面の少なくとも3箇所にある凹凸係合部が係合した状態では橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3が、その骨軸(長軸)が倒れる方向にがたつくことなく位置決めされるため、整復完了状態を触知することができる。
その上、実習模型1を用いた橈骨遠位端骨折の整復実習完了後に、再転位を起こさないように注意しながら、クラメル副木等の固定実習も併せて行うことができる。
According to the configuration of the training model 1 as described above, the engagement convex portions 5,... And the engagement concave portions 6,... And the engagement convex portions 7 and the engagement concave portions 8 are engaged, and the reduction shown in FIGS. In the completed state, the proximal radius fragment mimic 2 and the distal radius fragment mimic 3 are provided with the tension coil spring 9 that elastically biases them toward the direction in which they approach, so that the distal radius fracture is reduced. The operating force is reproduced mainly by the restoring force of the tension coil spring 9.
Further, since there are concave and convex engaging portions 5 and 6 at at least three locations on the outer peripheral portions 2A and 3A facing surfaces between the rib proximal bone fragment simulated body 2 and the distal radius distal bone fragment simulated body 3, the riding shift of FIG. Since the stuttering can be palpated by the uneven engagement during the reduction operation from the state to the reduction completion state of FIG. 7, the operation feeling close to the actual manual reduction can be reproduced, and the outer peripheral portions 2A and 3A. In a state in which the concave and convex engaging portions at at least three positions on the opposing surface are engaged, the proximal radius bone fragment simulated body 2 and the distal radius bone fragment simulated body 3 shake in the direction in which the bone axis (long axis) falls. Therefore, it is possible to feel the reduction completion state.
In addition, after the reduction training of the distal radius fracture using the training model 1, a fixation training of a clam splint or the like can be performed together with care not to cause rearrangement.

さらに、橈骨近位骨片模擬体2の背側及び橈骨遠位骨片模擬体3の掌側に逃げ溝2C,3Cが形成されており、橈骨遠位骨片模擬体3が橈骨近位骨片模擬体2の背側に騎乗転位した状態と整復完了状態との間で引張コイルばね9と干渉しないことから、橈骨遠位骨片が橈骨近位骨片の背側に騎乗転位してフォーク背状に変形した状態を再現することができるため、このような転位が大きくなった状態の橈骨遠位端骨折を整復する屈曲整復法の実習を行うことができる。
さらにまた、橈骨遠位端骨折における橈骨近位骨片及び橈骨遠位骨片の骨折部に相当する部分がそれぞれ形成された橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3並びにこれらを弾性付勢する引張コイルばね9等からなる簡素な構成により、製造コストを低減することができるとともに、繰り返し使用に適した信頼性を確保することができる。
また、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3間の中央部2B,3B対向面にも凹凸係合部7,8があり、この凹凸係合部7,8も整復操作の際に凹凸係合するため、さらに実際に近い軋轢音や操作感を再現することができる。
Further, relief grooves 2C and 3C are formed on the dorsal side of the proximal radius bone mimetic 2 and the palm side of the distal radius bone mimetic 3, and the distal radius bone mimetic 3 is the proximal radius bone. Since it does not interfere with the tension coil spring 9 between the state of the cowgirl shift on the dorsal side of the half-simulated body 2 and the reduction completed state, the distal radius fragment is mounted on the dorsal side of the proximal radius fragment and the fork Since the deformed state of the spine can be reproduced, it is possible to practice the bending reduction method of reducing the distal radius fracture with such a large dislocation.
Furthermore, in the distal radius fracture, the proximal radius bone simulated body 2 and the distal radius bone simulated body 3 in which portions corresponding to the proximal radius bone fracture and the fracture portion of the distal radius bone fragment are respectively formed, and With a simple configuration including the tension coil spring 9 that elastically biases them, the manufacturing cost can be reduced, and reliability suitable for repeated use can be ensured.
In addition, there are also concave and convex engaging portions 7 and 8 on the opposite surfaces of the central portions 2B and 3B between the rib proximal bone fragment simulated body 2 and the distal radius distal bone fragment simulated body 3, and the concave and convex engaging portions 7 and 8 are also reduced. Since the concavo-convex engagement is performed during the operation, it is possible to reproduce a more realistic noise and operational feeling.

さらに、引張コイルばね9の長手方向が、近位方向へ行くにしたがって橈側へ傾斜しているため、橈骨遠位骨片模擬体3が橈骨近位骨片模擬体2の背側に騎乗転位した状態がより実際に近いものになるとともに、整復操作する際の操作力もより実際に近いものになる。
さらにまた、引張コイルばね9等の弾性体の張力を調節する張力調節手段を備えることにより、張力調節手段を操作して実際の徒手整復に近い操作感を再現するために熟練者が行う調節を容易に行うことができるとともに、製作した多数の実習模型1,…における整復実習時の操作感のばらつきを小さくすることができる。
また、弾性体が引張コイルばね9であり、張力調節手段がターンバックルであると、弾性体及び張力調節手段を、簡素な構成で長期間にわたって動作の信頼性が高く値段が安い引張コイルばね9及びターンバックルにより構成しているため、さらに製造コストの低減化及び高信頼化を図ることができるとともに、ターンバックルの胴部を回動させることにより引張コイルばね9の張力調節を容易に行うことができる。
Further, since the longitudinal direction of the tension coil spring 9 is inclined toward the heel side as it goes in the proximal direction, the distal radius fragment simulated body 3 is mounted on the dorsal side of the proximal radius fragment simulated body 2. The state becomes closer to the actual state, and the operating force for the reduction operation becomes closer to the actual state.
Furthermore, by providing a tension adjusting means for adjusting the tension of the elastic body such as the tension coil spring 9, an adjustment performed by an expert to reproduce the operational feeling close to the actual manual reduction by operating the tension adjusting means. In addition to being easy to perform, it is possible to reduce variations in operational feeling during reduction training in the large number of training models 1,.
Further, when the elastic body is the tension coil spring 9 and the tension adjusting means is a turnbuckle, the elastic body and the tension adjusting means can be easily operated with a simple structure over a long period of time with high operation reliability and low price. In addition, since it is configured by the turnbuckle, the manufacturing cost can be further reduced and the reliability can be improved, and the tension of the tension coil spring 9 can be easily adjusted by rotating the body portion of the turnbuckle. Can do.

さらに、橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3の少なくとも骨折部に相当する部分周りを、皮膚、皮下組織及び筋肉等の軟部組織を模した軟質素材Cで被覆してなると、骨折部に相当する部分周りが軟質素材Cで被覆されているため、図4及び図6に示す橈骨遠位端骨折に相当する状態にした際に実際の橈骨遠位端骨折に近い状態を目視することができ、整復操作をする際の触感が実際に近いものになるとともに、軟質素材Cが不透明である場合には、内部が見えない状態で整復できたことを確認することが求められる整復実習に好適なものとなる。
さらにまた、軟質素材Cを不透明とした実習模型1とともに、例えば高透明シリコンーンゴム等の透明の軟質合成樹脂素材で形成した軟質素材Cで骨折部に相当する部分周りを被覆した実習模型1も製作しておくことにより、軟質素材Cが透明であることから橈骨遠位端骨折の整復前後の状況を視認することができるため、整復実習をより効率的に進めることができる。
なお、軟質素材Cにより橈骨近位骨片模擬体2及び橈骨遠位骨片模擬体3を被覆する構成では、図4及び図6に示す橈骨遠位骨片模擬体3が橈骨近位骨片模擬体2の背側に騎乗転位した状態から図2及び図7に示す状態まで徒手整復する際に軟質素材Cも変形するため、軟質素材Cも操作力を及ぼすことになる。
Further, at least the portion corresponding to the fracture portion of the proximal radius bone simulated body 2 and the distal radius bone simulated body 3 is covered with a soft material C simulating soft tissue such as skin, subcutaneous tissue and muscle. Then, since the periphery of the portion corresponding to the fracture portion is covered with the soft material C, when the state corresponding to the distal radius fracture shown in FIGS. If the soft material C is opaque, it is required to confirm that the reduction is possible without seeing the inside. It is suitable for reduction training.
Furthermore, together with the training model 1 in which the soft material C is opaque, a training model 1 is also produced in which the portion corresponding to the fracture portion is covered with a soft material C made of a transparent soft synthetic resin material such as highly transparent silicone rubber. Since the soft material C is transparent, the situation before and after reduction of the distal radius fracture can be visually confirmed, and reduction training can be performed more efficiently.
In the configuration in which the proximal proximal bone fragment simulated body 2 and the distal distal bone fragment simulated body 3 are covered with the soft material C, the distal distal bone fragment simulated body 3 shown in FIGS. 4 and 6 is the proximal proximal bone fragment. Since the soft material C is also deformed when it is manually reduced from the state where it is mounted on the back side of the simulated body 2 to the state shown in FIGS. 2 and 7, the soft material C also exerts an operating force.

また、図2及び図4〜図7に示すように、橈骨近位骨片模擬体2を橈骨の途中までの部分に相当する長さとしてその近位端部に回転関節11を構成する円板11Aを設けており、図6及び図7に示すように円板11Aを腕近位部模型A1の遠位端部の回転関節11を構成するハウジング11Bに収容して図1に示す腕模型Aとし、腕模型Aを装着手段である装着帯Bにより人体(あるいは、人体模型であってもよい。)に装着することができる。
このような構成によれば、装着帯Bで人体又は人体模型に装着した人の腕に近い実習模型1(腕模型A)により、整復される受傷者の実際の姿勢並びに整復を行う術者及び助手の実際の動作を再現しながら、屈曲整復法等の整復実習を行うことができる。
なお、回転関節11は、本実施の形態のような円板11Aをハウジング11Bにより支持する構成に限定されるものではなく、すべり軸受や玉軸受等を用いた構成にしてもよく、略骨軸(長軸)まわりに約180°程度の相対的な回転をすることができる構成であればよい。
さらに、橈骨近位骨片模擬体2の近位端部に回転関節11を設けることにより、回転関節11により実習模型1の長軸回りの角度を自由に変更することができるため、整復を行う際の実際の腕の姿勢に近い状態を再現しながら整復実習を行うことができる。
Further, as shown in FIGS. 2 and 4 to 7, the proximal rib fragment simulated body 2 has a length corresponding to the middle part of the radius, and the disc constituting the rotary joint 11 at the proximal end thereof. 11A, and as shown in FIGS. 6 and 7, the disc 11A is accommodated in a housing 11B constituting the rotary joint 11 at the distal end of the proximal arm model A1, and the arm model A shown in FIG. Then, the arm model A can be attached to the human body (or a human body model) by the attachment band B which is the attachment means.
According to such a configuration, by the training model 1 (arm model A) close to the arm of the person wearing the human body or the human body model with the wearing band B, the actual posture of the injured person to be reduced and the operator performing reduction Reduction exercises such as bending reduction can be performed while reproducing the actual movement of the assistant.
Note that the rotary joint 11 is not limited to the configuration in which the disk 11A is supported by the housing 11B as in the present embodiment, and may be configured using a slide bearing, a ball bearing, or the like. Any structure that can rotate about 180 ° around the (major axis) may be used.
Further, by providing the rotation joint 11 at the proximal end of the proximal rib fragment simulated body 2, the rotation joint 11 can freely change the angle around the long axis of the training model 1, and therefore reduce the rotation. It is possible to perform reduction training while reproducing a state close to the actual posture of the arm.

A 腕模型
A1 腕近位部模型
B 装着帯(装着手段)
C 軟部組織を模した軟質素材
H 手
1 橈骨遠位端骨折整復実習模型
2 橈骨近位骨片模擬体
2A 外周部
2B 中央部
2C 逃げ溝
3 橈骨遠位骨片模擬体
3A 外周部
3B 中央部
3C 逃げ溝
4 手骨部
4A 受け部材
5 係合凸部
5A 球面
6 係合凹部
6A 傾斜面
7 係合凸部
7A 傾斜面
8 係合凹部
8A 傾斜面
9 引張コイルばね(弾性体)
9A,9B 端末
10A ループ状紐体
10B 掛止ピン
11 回転関節(回り対偶)
11A 円板
11B ハウジング
A Arm model A1 Proximal arm model B Wearing band (wearing means)
C Soft material imitating soft tissue H Hand 1 Distal radius fracture reduction model 2 Radial proximal bone fragment simulated body 2A Outer peripheral part 2B Central part 2C Escape groove 3 Distal radius bone simulated body 3A Outer peripheral part 3B Central part 3C Escape groove 4 Hand bone part 4A Receiving member 5 Engaging convex part 5A Spherical surface 6 Engaging concave part 6A Inclining surface 7 Engaging convex part 7A Inclining surface 8 Engaging concave part 8A Inclining surface 9 Tension coil spring (elastic body)
9A, 9B Terminal 10A Loop-like string body 10B Latching pin 11 Rotating joint (rotating pair)
11A disk 11B housing

Claims (8)

橈骨遠位端骨折における橈骨近位骨片及び橈骨遠位骨片の骨折部に相当する部分がそれぞれ形成された橈骨近位骨片模擬体及び橈骨遠位骨片模擬体を備えた、橈骨遠位端骨折の整復技術を習得するための整復実習に用いる模型であって、
前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体間の外周部対向面の少なくとも3箇所に形成された凹凸係合部と、
該凹凸係合部が係合した整復完了状態で、前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体を、これらが近づく方向へ弾性付勢する弾性体とを備え、
前記橈骨遠位骨片模擬体が前記橈骨近位骨片模擬体の背側に騎乗転位した状態と前記整復完了状態との間で前記弾性体と干渉しないように、前記橈骨近位骨片模擬体の背側及び前記橈骨遠位骨片模擬体の掌側の少なくともどちらかに逃げ溝を形成してなることを特徴とする橈骨遠位端骨折整復実習模型。
A distal radius including a proximal radius bone mimetic and a distal radius bone mimic in which a portion corresponding to a fracture portion of the proximal radius bone and a distal radius bone fragment in a distal radius fracture is formed It is a model used for reduction training to learn the reduction technique of the distal fracture,
A concavo-convex engagement portion formed in at least three locations on the outer peripheral portion facing surface between the rib proximal bone fragment simulated body and the distal radius fragment simulated body;
An elastic body that elastically urges the proximal proximal bone fragment simulated body and the distal distal bone fragment simulated body in a direction in which the proximal proximal bone fragment simulated body and the distal distal bone fragment simulated body approach each other when the uneven engagement portion is engaged;
The proximal radial bone fragment simulation so that the distal radial bone fragment simulated body does not interfere with the elastic body between the state where it is mounted on the back side of the proximal radial bone fragment simulated body and the reduction complete state A distal radius fracture reduction training model, characterized in that a relief groove is formed on at least one of the back side of the body and the palm side of the simulated distal bone fragment.
前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体間の中央部対向面に凹凸係合部を形成してなる請求項1記載の橈骨遠位端骨折整復実習模型。   The distal radius fracture reduction training model according to claim 1, wherein an uneven engagement portion is formed on a surface opposite to the center between the proximal radius bone simulated body and the distal radius bone simulated body. 前記弾性体の長手方向が、近位方向へ行くにしたがって橈側へ傾斜する請求項1記載の橈骨遠位端骨折整復実習模型。   The distal radius fracture reduction training model according to claim 1, wherein the longitudinal direction of the elastic body is inclined toward the heel side in the proximal direction. 前記弾性体の張力を調節する張力調節手段を備えてなる請求項1記載の橈骨遠位端骨折整復実習模型。   The distal radius fracture reduction training model according to claim 1, further comprising tension adjusting means for adjusting the tension of the elastic body. 前記弾性体が引張コイルばねであり、前記張力調節手段がターンバックルである請求項4記載の橈骨遠位端骨折整復実習模型。   The distal radius fracture reduction training model according to claim 4, wherein the elastic body is a tension coil spring and the tension adjusting means is a turnbuckle. 前記橈骨近位骨片模擬体及び橈骨遠位骨片模擬体の少なくとも前記骨折部に相当する部分周りを、軟部組織を模した軟質素材で被覆してなる請求項1記載の橈骨遠位端骨折整復実習模型。   The distal radius fracture according to claim 1, wherein at least a portion corresponding to the fracture portion of the proximal radius bone simulated body and the distal radius bone simulated body is covered with a soft material simulating a soft tissue. Reduction training model. 前記橈骨近位骨片模擬体の近位端部に回転関節を設けてなる請求項1記載の橈骨遠位端骨折整復実習模型。   The reduced radius fracture training model according to claim 1, wherein a rotational joint is provided at a proximal end of the proximal radius fragment simulated body. 前記橈骨近位骨片模擬体を橈骨の途中までの部分に相当する長さとして上腕から前腕の近位部までを模した腕近位部模型に取り付けて腕模型とし、該腕模型に回転関節を設けるとともに、前記腕模型を人体又は人体模型に装着する装着手段を備えてなる請求項1記載の橈骨遠位端骨折整復実習模型。
The proximal rib fragment simulated body is attached to a proximal arm model simulating from the upper arm to the proximal portion of the forearm as a length corresponding to the middle part of the rib, and is used as an arm model. The distal radius fracture reduction training model according to claim 1, further comprising attachment means for attaching the arm model to a human body or a human body model.
JP2011046728A 2011-03-03 2011-03-03 Practice model for fracture of the distal radius fracture Expired - Fee Related JP5402962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046728A JP5402962B2 (en) 2011-03-03 2011-03-03 Practice model for fracture of the distal radius fracture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046728A JP5402962B2 (en) 2011-03-03 2011-03-03 Practice model for fracture of the distal radius fracture

Publications (2)

Publication Number Publication Date
JP2012185226A true JP2012185226A (en) 2012-09-27
JP5402962B2 JP5402962B2 (en) 2014-01-29

Family

ID=47015393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046728A Expired - Fee Related JP5402962B2 (en) 2011-03-03 2011-03-03 Practice model for fracture of the distal radius fracture

Country Status (1)

Country Link
JP (1) JP5402962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255449A (en) * 2017-06-02 2017-10-17 燕山大学 The track of center of mass motion containing clearance joints experiment analytical method under a kind of different gravity alignment conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186195A1 (en) * 2022-03-29 2023-10-05 Marenco Ag Artificial bone presenting a fracture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272115A (en) * 2006-03-31 2007-10-18 Matsuuchi:Kk Skeleton model
JP3144317U (en) * 2008-06-13 2008-08-21 周平 ▲高▼須 Human body model teaching materials for learning reduction techniques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272115A (en) * 2006-03-31 2007-10-18 Matsuuchi:Kk Skeleton model
JP3144317U (en) * 2008-06-13 2008-08-21 周平 ▲高▼須 Human body model teaching materials for learning reduction techniques

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255449A (en) * 2017-06-02 2017-10-17 燕山大学 The track of center of mass motion containing clearance joints experiment analytical method under a kind of different gravity alignment conditions

Also Published As

Publication number Publication date
JP5402962B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5156147B2 (en) Human body model teaching materials for learning reduction techniques and methods of learning reduction techniques using the human model learning materials
JP5402959B2 (en) Elbow joint dislocation reduction training model
US6854976B1 (en) Breast model teaching aid and method
US20100261530A1 (en) Game controller simulating parts of the human anatomy
JP5779589B2 (en) Muscle learning materials and teaching methods using them
JP5402962B2 (en) Practice model for fracture of the distal radius fracture
Güldenpfennig et al. Interactive and open-ended sensory toys: Designing with therapists and children for tangible and visual interaction
JP3157322U (en) Joint dislocation reduction simulation experience device
JP3144317U (en) Human body model teaching materials for learning reduction techniques
Li et al. Current status and clinical perspectives of extended reality for myoelectric prostheses
McNeill et al. Evaluating user experiences in rehabilitation games
Whittinghill et al. Gamification of physical therapy for the treatment of pediatric cerebral palsy: a pilot study examining player preferences
RU159697U1 (en) HAND SIMULATOR
RU26421U1 (en) TOY SIMULATOR FOR THE DEVELOPMENT OF SMALL MOTORITIES, TACTILITY AND COORDINATION OF MOVEMENT OF HANDS
Henriksen et al. An affordable virtual reality system for treatment of phantom limb pain
Cloud et al. A functional model of the digital extensor mechanism: Demonstrating biomechanics with hair bands
Wann Virtual reality environments for rehabilitation of perceptual-motor disorders following stroke
Chou When the mouse meets the elephant: A manual for string bass players with application of the philosophy and principles of the FM Alexander Technique
Nielsen et al. Comparison of body positions in virtual reality mirror box therapy for treatment of phantom limb pain in lower limb amputees
US20240296756A1 (en) Training Device
Güldenpfennig et al. Designing interactive and motivating stimuli for children with visual impairments
Prahm et al. Novel technologies in upper extremity rehabilitation
Nelson et al. The Feldenkrais Method for Instrumentalists
Wang et al. The virtual reality-cognitive rehabilitation (VR-CR) approach for children with autism
Mathiowetz Informational support and functional motor performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees