JP2012178320A - Porous sheet - Google Patents
Porous sheet Download PDFInfo
- Publication number
- JP2012178320A JP2012178320A JP2011041906A JP2011041906A JP2012178320A JP 2012178320 A JP2012178320 A JP 2012178320A JP 2011041906 A JP2011041906 A JP 2011041906A JP 2011041906 A JP2011041906 A JP 2011041906A JP 2012178320 A JP2012178320 A JP 2012178320A
- Authority
- JP
- Japan
- Prior art keywords
- porous sheet
- nanofiber layer
- nonwoven fabric
- discharge
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002121 nanofiber Substances 0.000 claims abstract description 39
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 33
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 27
- -1 polyethylene Polymers 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000004698 Polyethylene Substances 0.000 claims abstract description 11
- 239000004743 Polypropylene Substances 0.000 claims abstract description 11
- 229920000573 polyethylene Polymers 0.000 claims abstract description 11
- 229920001155 polypropylene Polymers 0.000 claims abstract description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 9
- 239000002033 PVDF binder Substances 0.000 claims abstract description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 7
- 229920002239 polyacrylonitrile Polymers 0.000 claims abstract description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims abstract description 6
- 239000004800 polyvinyl chloride Substances 0.000 claims abstract description 6
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 6
- 239000004642 Polyimide Substances 0.000 claims abstract description 5
- 229920001721 polyimide Polymers 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims description 47
- 239000000835 fiber Substances 0.000 claims description 22
- 239000000919 ceramic Substances 0.000 claims description 7
- 230000035699 permeability Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000007599 discharging Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000001523 electrospinning Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- MJEMIOXXNCZZFK-UHFFFAOYSA-N ethylone Chemical compound CCNC(C)C(=O)C1=CC=C2OCOC2=C1 MJEMIOXXNCZZFK-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
Abstract
Description
本発明は、多孔質シート、例えば、非水電解質二次電池用セパレータのようなセパレータとして有用な多孔質シート、とくに、無機繊維不織布に高分子ナノファイバー層を被覆した多孔質シートに関する。 The present invention relates to a porous sheet, for example, a porous sheet useful as a separator such as a separator for a non-aqueous electrolyte secondary battery, and more particularly to a porous sheet in which a polymer nanofiber layer is coated on an inorganic fiber nonwoven fabric.
リチウムイオン電池は、携帯電話や自動車用途などに使用されており、高容量化の傾向に伴って、高い安全性が要求されるようになってきている。 Lithium ion batteries are used for mobile phones and automobiles, and high safety has been demanded as capacity has increased.
現行のリチウムイオン電池では、正極と負極の電子伝導を絶縁する役割として、10〜30μmのポリオレフィン系微多孔膜セパレータが使用されている。これらの膜の素材としてはポリエチレンおよびポリプロピレンなどが広く利用されている。この場合、もしも微小短絡が起こり温度上昇した場合は120℃付近でポリエチレンが微多孔を閉じ、電池反応の進行を阻止するシャットダウン機能が備えられている。ただし、ポリプロピレンの溶融温度160℃を超えると、セパレータのメルトダウンが起こり全面短絡する恐れがある。さらに220℃以上では正極が熱分解して、放出された酸素と電解液などの有機溶媒が激しく反応して熱暴走に至る可能性もある。 In the current lithium ion battery, a polyolefin-based microporous membrane separator having a thickness of 10 to 30 μm is used to insulate the electronic conduction between the positive electrode and the negative electrode. As materials for these films, polyethylene, polypropylene, and the like are widely used. In this case, if a micro short circuit occurs and the temperature rises, a shutdown function is provided in which polyethylene closes the micropores at around 120 ° C. and prevents the battery reaction from proceeding. However, if the melting temperature of polypropylene exceeds 160 ° C., the separator may melt down and the entire surface may be short-circuited. Furthermore, at 220 ° C. or higher, the positive electrode is thermally decomposed, and the released oxygen and an organic solvent such as an electrolytic solution may react violently, leading to thermal runaway.
これらの問題点を解決する種々の例が提案されている。 Various examples have been proposed to solve these problems.
特許文献1(特開2008−218085号公報)には、ポリオレフィン樹脂に無機フィラーを混合溶融して、多孔化と強度向上のために一軸延伸あるいは二軸延伸したフィルムが記載されている。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-218085) describes a film obtained by mixing and melting an inorganic filler in a polyolefin resin and uniaxially stretching or biaxially stretching in order to increase porosity and improve strength.
特許文献2(特開2007−273443号公報)には、ポリオレフィン微多孔膜を素材として、無機フィラーを含んだスラリーを塗布又は含浸処理して乾燥する方法が記載されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-273443) describes a method of drying by applying or impregnating a slurry containing an inorganic filler using a polyolefin microporous film as a raw material.
特許文献3(特開2005−285605号公報)には、正極又は負極活物質の表面にセラミックフィラーを含む多孔層を形成させる方法が記載されている。 Patent Document 3 (Japanese Patent Laid-Open No. 2005-285605) describes a method of forming a porous layer containing a ceramic filler on the surface of a positive electrode or negative electrode active material.
特許文献4(特開2006−164761号公報)には、150℃で実質的に変形しないイオン透過性のシート状物に、有機微粒子を塗布又は含浸させたセパレータが記載されている。 Patent Document 4 (Japanese Patent Laid-Open No. 2006-164761) describes a separator obtained by applying or impregnating organic fine particles to an ion-permeable sheet-like material that does not substantially deform at 150 ° C.
特許文献5(特開2010−251078号公報)には、無機多孔質材料に耐熱性の樹脂を被覆することで、耐熱性のある多孔質シートとする方法が記載されている。 Patent Document 5 (Japanese Patent Application Laid-Open No. 2010-2551078) describes a method for forming a heat-resistant porous sheet by coating a heat-resistant resin on an inorganic porous material.
しかしながら、特許文献1から3に記載の従来例では、いずれも、基材のフィルムは、ポリオレフィン系樹脂であるため、高温での耐熱性が不十分であり、電池の熱暴走を防ぐために安全が確保されているとは言いがたかった。さらに、無機フィラーを添加するためには既存のセパレータよりも製造工程が複雑となり、製造コストが増大するといった課題も有していた。 However, in all of the conventional examples described in Patent Documents 1 to 3, since the base film is a polyolefin resin, the heat resistance at high temperature is insufficient, and safety is prevented in order to prevent thermal runaway of the battery. It was hard to say that it was secured. Furthermore, in order to add an inorganic filler, the manufacturing process is more complicated than that of an existing separator, and there is a problem that the manufacturing cost increases.
特許文献4に記載の従来例では、シート上の基材に有機微粒子を塗布または含浸させているが、有機微粒子を敷き詰めた状態または基材中に一部が浸透した状態では、均一で微細な孔が得られにくい。そのため、リチウムイオン電池として安定した充放電特性が得られにくいといった問題があった。 In the conventional example described in Patent Document 4, organic fine particles are applied or impregnated on a base material on a sheet. However, in a state where organic fine particles are spread or partially penetrated into the base material, the fine particles are uniform and fine. It is difficult to obtain holes. Therefore, there has been a problem that it is difficult to obtain stable charge / discharge characteristics as a lithium ion battery.
特許文献5に記載の従来例では、耐熱性には優れているが、基材の無機繊維に表面被覆する方法では、シートの孔径が大きくなるためデンドライト生成による短絡が発生しやすく、安定した充放電特性が得られにくいといった問題があった。 In the conventional example described in Patent Document 5, the heat resistance is excellent, but in the method of covering the inorganic fiber of the base material with a surface, the hole diameter of the sheet increases, so that a short circuit due to generation of dendrites is likely to occur, and stable charging There was a problem that it was difficult to obtain discharge characteristics.
本発明の課題は、高い耐熱性を有し、十分な安全性が得られる多孔質シートを提供することである。 An object of the present invention is to provide a porous sheet having high heat resistance and sufficient safety.
本発明の解決手段を例示すると、次のとおりである。 Examples of the solving means of the present invention are as follows.
(1)無機繊維不織布に高分子ナノファイバー層を被覆したことを特徴とする多孔質シート。 (1) A porous sheet obtained by coating an inorganic fiber nonwoven fabric with a polymer nanofiber layer.
(2)多孔質シートの耐熱性が300℃以上であり、多孔質シートを用いた電池の放電容量が充電容量の99パーセント以上であることを特徴とする請求項1に記載の多孔質シート。 (2) The porous sheet according to claim 1, wherein the heat resistance of the porous sheet is 300 ° C. or higher, and the discharge capacity of the battery using the porous sheet is 99% or more of the charge capacity.
(3)無機繊維不織布は、セラミックファイバーを50重量%以上95重量%以下含み、厚みが10μm以上100μm以下であり、透気度が5秒以上100秒以下であることを特徴とする前述の多孔質シート。 (3) The inorganic fiber nonwoven fabric contains ceramic fibers in an amount of 50% by weight to 95% by weight, has a thickness of 10 μm to 100 μm, and has an air permeability of 5 seconds to 100 seconds. Quality sheet.
(4)高分子ナノファイバー層は、材質がポリビニルアルコール、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート及びポリイミドの熱可塑性高分子から選ばれる1種類または複数種類の混合物であることを特徴とする前述の多孔質シート。 (4) The polymer nanofiber layer is composed of one or more kinds of materials selected from thermoplastic polymers such as polyvinyl alcohol, polyvinylidene fluoride, polyacrylonitrile, polyvinyl chloride, polyethylene, polypropylene, polyethylene terephthalate and polyimide. The porous sheet as described above, characterized in that it exists.
(5)高分子ナノファイバー層は、繊維径が10nm以上500nm以下であり、厚みが1μm以上8μm以下であることを特徴とする前述の多孔質シート。 (5) The above-mentioned porous sheet, wherein the polymer nanofiber layer has a fiber diameter of 10 nm to 500 nm and a thickness of 1 μm to 8 μm.
(6)前述の多孔質シートを有するセパレータ。 (6) A separator having the porous sheet described above.
(7)前述のセパレータが設けられている電池。 (7) A battery provided with the separator described above.
本発明の多孔質シートは、無機繊維不織布に高分子ナノファイバー層を被覆したことを特徴とする多孔質シートであり、例えば、耐熱性に優れた無機繊維を主成分とした不織布を基材とし、その基材の表面に高分子ナノファイバーからなる層を被覆した構造にする。 The porous sheet of the present invention is a porous sheet characterized in that a polymer nanofiber layer is coated on an inorganic fiber nonwoven fabric. For example, a nonwoven fabric mainly composed of inorganic fibers having excellent heat resistance is used as a base material. The base material surface is coated with a layer made of polymer nanofibers.
基材とする無機繊維は、500℃以上でも変形収縮することはほとんどないため、既存のポリオレフィンを基材とした製品よりもはるかに高い耐熱性を有する。 Since the inorganic fiber used as the base material hardly deforms and shrinks even at 500 ° C. or higher, it has a much higher heat resistance than products based on the existing polyolefin.
また、無機繊維は不燃性であるため、リチウムイオン電池で大きな容量を占めているセパレータの基材として使用した場合、可燃性の電解液などを組み込んでいても、十分な安全性が得られる。 Moreover, since inorganic fiber is nonflammable, when it is used as a base material for a separator that occupies a large capacity in a lithium ion battery, sufficient safety can be obtained even if a flammable electrolyte is incorporated.
さらに、高分子ナノファイバー層で被覆すると、均一で微細な孔を三次元的に作製することができる。そのため、リチウムデンドライトの生成による短絡発生を抑制し、リチウムイオン電池として安定した充放電特性を得ることができる。 Furthermore, when coated with the polymer nanofiber layer, uniform and fine pores can be produced three-dimensionally. Therefore, it is possible to suppress occurrence of a short circuit due to generation of lithium dendrite, and to obtain stable charge / discharge characteristics as a lithium ion battery.
本発明においては、耐熱性に優れた無機繊維を主成分とした無機繊維不織布を基材とし、その基材に高分子ナノファイバー層を被覆して、多孔質シートを作製する。 In the present invention, a porous sheet is produced by using an inorganic fiber nonwoven fabric mainly composed of inorganic fibers excellent in heat resistance as a base material and coating the base material with a polymer nanofiber layer.
本発明の好ましい実施形態における無機繊維不織布は以下の通りである。 The inorganic fiber nonwoven fabric in preferable embodiment of this invention is as follows.
無機繊維としては、SiO2、Al2O3、ZrO2、MgO、CaOなどの酸化物を主成分とし、繊維径が1μm以上100μm以下の繊維形状のものが使用できる。具体的にはガラス繊維、セラミックファイバー、アルミナ繊維、ムライト繊維、ウィスカーなどが使用できる。 As the inorganic fibers, fibers having a fiber shape having an oxide such as SiO 2 , Al 2 O 3 , ZrO 2 , MgO, and CaO as a main component and having a fiber diameter of 1 μm to 100 μm can be used. Specifically, glass fiber, ceramic fiber, alumina fiber, mullite fiber, whisker and the like can be used.
無機繊維不織布は、上記無機繊維とセルロース、ポリエチレン、ポリビニルアルコール、ポリプロピレンなどの有機繊維からなり、無機繊維/有機繊維の比率が重量比で50/50〜95/5であればよく、好ましくは60/40〜90/10である。無機繊維は不織布の骨材であり、有機繊維は無機繊維を結合させる役割を果たす。無機繊維の量が50%未満だと耐熱性が不十分であり、高温において不織布の収縮が大きくなってしまう。95%を超えると、有機繊維の量が少なすぎるため不織布自体の強度が十分ではなく、取り扱いが著しく悪くなってしまう。 An inorganic fiber nonwoven fabric consists of said inorganic fiber and organic fibers, such as a cellulose, polyethylene, polyvinyl alcohol, a polypropylene, The ratio of an inorganic fiber / organic fiber should just be 50 / 50-95 / 5 by weight ratio, Preferably 60 / 40 to 90/10. Inorganic fibers are non-woven aggregates, and organic fibers play a role in bonding inorganic fibers. When the amount of the inorganic fiber is less than 50%, the heat resistance is insufficient, and the shrinkage of the nonwoven fabric becomes large at a high temperature. If it exceeds 95%, the amount of the organic fiber is too small, so that the strength of the nonwoven fabric itself is not sufficient, and handling becomes extremely worse.
無機繊維不織布の厚みは10μm以上100μm以下が好ましい。10μm未満では不織布自体の強度が小さく、さらにピンホールなどが発生しやすくなってしまう。100μmを超えると、セパレータとして使用した際に抵抗が大きくなり、十分な充放電特性が得られない。 The thickness of the inorganic fiber nonwoven fabric is preferably 10 μm or more and 100 μm or less. If it is less than 10 μm, the strength of the nonwoven fabric itself is small, and pinholes and the like are likely to occur. If it exceeds 100 μm, the resistance increases when used as a separator, and sufficient charge / discharge characteristics cannot be obtained.
無機繊維不織布の透気度は5秒以上100秒以下が好ましい。5秒未満では空孔の面積が大きいため、基材としての強度が低く、ナノファイバー層にピンホールが発生しやすくなってしまう。100秒を超えるとセパレータとしての抵抗が大きすぎるため十分な充放電特性が得られない。 The air permeability of the inorganic fiber nonwoven fabric is preferably 5 seconds or more and 100 seconds or less. If it is less than 5 seconds, the area of the pores is large, so the strength as a substrate is low, and pinholes are likely to occur in the nanofiber layer. If it exceeds 100 seconds, the resistance as a separator is too large, and sufficient charge / discharge characteristics cannot be obtained.
透気度の評価方法はJIS P 8117に従った。本方法は100ccの空気が不織布を通過する時間を測定するもので、不織布の緻密度を表すものである。 The evaluation method of the air permeability was in accordance with JIS P 8117. This method measures the time required for 100 cc of air to pass through the nonwoven fabric and represents the density of the nonwoven fabric.
無機繊維不織布の製造方法は通常の製紙方法が適用できる。例えば、無機繊維とフィビリル化したセルロースを水に分散させてスラリーとして、それを抄紙する方法を採用できる。 A normal papermaking method can be applied to the method for producing the inorganic fiber nonwoven fabric. For example, a method in which inorganic fibers and fibrillated cellulose are dispersed in water to form a slurry and paper can be employed.
本発明の好ましい実施形態における高分子ナノファイバー層は以下の通りである。 The polymer nanofiber layer in a preferred embodiment of the present invention is as follows.
高分子ナノファイバーの材質はポリビニルアルコール、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミドなどの熱可塑性高分子から選ばれる1種類または複数種類の混合物などが使用できる。 As the material of the polymer nanofiber, one kind or a mixture of plural kinds selected from thermoplastic polymers such as polyvinyl alcohol, polyvinylidene fluoride, polyacrylonitrile, polyvinyl chloride, polyethylene, polypropylene, polyethylene terephthalate and polyimide can be used.
繊維径は10nm以上500nm以下が好ましい。10nm未満では製法が限定されるため、量産には不向きとなる。500nmを超えると十分に微細な多孔が得られず、空孔が大きくなるため内部短絡が発生してしまう。 The fiber diameter is preferably 10 nm or more and 500 nm or less. If it is less than 10 nm, the production method is limited, so that it is not suitable for mass production. If it exceeds 500 nm, a sufficiently fine porosity cannot be obtained, and the pores become large, causing an internal short circuit.
高分子ナノファイバー層の厚みは1μm以上8μm以下が好ましい。1μm未満では層の厚みが不十分であり、空孔が大きくなって内部短絡が発生してしまう。8μmを超えると内部抵抗が高くなって十分な充放電特性が得られない。 The thickness of the polymer nanofiber layer is preferably 1 μm or more and 8 μm or less. If it is less than 1 μm, the thickness of the layer is insufficient, the pores become large, and an internal short circuit occurs. If it exceeds 8 μm, the internal resistance becomes high and sufficient charge / discharge characteristics cannot be obtained.
高分子ナノファイバー層の目付量(単位面積当たりの重量)は0.1g/m2以上1.5g/m2以下が好ましい。0.1g/m2未満ではナノファイバー層の緻密度が不十分であり、空孔が大きいため内部短絡が発生しやすくなる。1.5g/m2を超えると内部抵抗が高くなるため十分な充放電特性が得られない。 The weight per unit area (weight per unit area) of the polymer nanofiber layer is preferably 0.1 g / m 2 or more and 1.5 g / m 2 or less. If it is less than 0.1 g / m 2 , the density of the nanofiber layer is insufficient, and the internal holes are likely to occur because the pores are large. If it exceeds 1.5 g / m 2 , the internal resistance increases, so that sufficient charge / discharge characteristics cannot be obtained.
高分子ナノファイバーは、エレクトロスピニング(電荷誘導紡糸)法によって作製できる。エレクトロスピニングは、高電圧を印加したノズルから高分子溶液を押し出し、高分子溶液を帯電させることで、対向電極のコレクター側に向かって延伸してナノファイバーを作製する方法である。高分子溶液の配合や印加する電圧などのパラメーターを変更することでナノファイバーの繊維径や形状を調整でき、層構造を制御できる。高分子溶液はナノファイバーを構成する高分子と溶媒からなり、高分子はポリビニルアルコール、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミドなどの熱可塑性高分子から選ばれる1種類または複数種類の混合物であり、溶媒はエタノール、メタノール、アセトン、テトラヒドロフラン、ベンゼン、トルエン、ジクロロメタン、四塩化炭素、トリクロロエタン、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、酢酸エチル、酢酸メチル、水などから選ばれる1種類または複数種類の混合物を使用できる。上記高分子溶液には、高分子ナノファイバー層を作製する時間を短縮するために高分子粉末を添加することもできる。ただし高分子粉末を添加する場合は、使用している溶媒に溶解しない高分子を選択する必要がある。高分子粉末はポリエチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリ塩化ビニル、ポリプロピレン、ポリエチレンテレフタレートなどの熱可塑性高分子が使用でき、粒子径は50μm以下が好ましい。50μmを超えると均一な分散が困難になり、高分子ナノファイバー層作製時にムラが発生しやすくなる。 The polymer nanofiber can be produced by an electrospinning (charge-induced spinning) method. Electrospinning is a method of producing a nanofiber by stretching a polymer solution from a nozzle to which a high voltage is applied and charging the polymer solution toward the collector side of the counter electrode. The fiber diameter and shape of the nanofiber can be adjusted by changing parameters such as the composition of the polymer solution and the applied voltage, and the layer structure can be controlled. The polymer solution is composed of a polymer constituting the nanofiber and a solvent, and the polymer is selected from thermoplastic polymers such as polyvinyl alcohol, polyvinylidene fluoride, polyacrylonitrile, polyvinyl chloride, polyethylene, polypropylene, polyethylene terephthalate, and polyimide. One or a mixture of several kinds of solvents, ethanol, methanol, acetone, tetrahydrofuran, benzene, toluene, dichloromethane, carbon tetrachloride, trichloroethane, N, N-dimethylformamide, N-methyl-2-pyrrolidone, ethyl acetate, One or more kinds of mixtures selected from methyl acetate, water and the like can be used. A polymer powder can be added to the polymer solution in order to shorten the time for producing the polymer nanofiber layer. However, when adding polymer powder, it is necessary to select a polymer that does not dissolve in the solvent used. The polymer powder can be a thermoplastic polymer such as polyethylene, polyvinylidene fluoride, polyacrylonitrile, polyvinyl chloride, polypropylene, polyethylene terephthalate, and the particle size is preferably 50 μm or less. When it exceeds 50 μm, uniform dispersion becomes difficult, and unevenness is likely to occur when the polymer nanofiber layer is produced.
無機繊維不織布に高分子ナノファイバー層を被覆して多孔質シートを作製する方法としては、無機繊維不織布に高分子ナノファイバー層を積層した後、加熱しながらプレス加工する方法を挙げることができる。加熱により軟化した高分子ナノファイバー層に圧力を加えることで、無機繊維不織布と完全に接着した一体構造にでき、同時に高分子ナノファイバー層の厚みを適切な値に制御できる。加熱温度は高分子ナノファイバー層を十分に軟化できればよく、材質によって異なるが、100℃以上250℃以下が好ましい。100℃未満では十分に軟化せず、250℃を超えると、高分子ナノファイバーが完全に溶融してしまい、微孔構造を保てなくなってしまう。 Examples of a method for producing a porous sheet by coating a polymer nanofiber layer on an inorganic fiber nonwoven fabric include a method in which the polymer nanofiber layer is laminated on the inorganic fiber nonwoven fabric and then pressed while heating. By applying pressure to the polymer nanofiber layer softened by heating, it is possible to obtain an integrated structure that is completely bonded to the inorganic fiber nonwoven fabric, and at the same time, the thickness of the polymer nanofiber layer can be controlled to an appropriate value. The heating temperature only needs to sufficiently soften the polymer nanofiber layer, and varies depending on the material, but is preferably 100 ° C. or higher and 250 ° C. or lower. If it is less than 100 ° C., it is not sufficiently softened, and if it exceeds 250 ° C., the polymer nanofibers are completely melted and the microporous structure cannot be maintained.
作製した多孔質シートの評価方法は以下の通りである。 The evaluation method of the produced porous sheet is as follows.
(1)耐熱特性の評価
30×50mmに切り出した多孔質シートをSUS板の上にクリップで固定して、電熱ヒーターを用いてそのSUS板を加熱した。室温から300℃まで加熱して、形状変化等の外観状態を観察した。フィルムが変形溶解するサンプルでは、その温度を耐熱性として、変形溶解が無いサンプルは300℃以上とした。
(1) Evaluation of heat resistance characteristics A porous sheet cut out to 30 × 50 mm was fixed on a SUS plate with a clip, and the SUS plate was heated using an electric heater. After heating from room temperature to 300 ° C., the appearance state such as shape change was observed. In the sample in which the film is deformed and dissolved, the temperature is set as heat resistance, and in the sample without deformation and dissolution, the temperature is set to 300 ° C. or higher.
(2)高分子ナノファイバー層の厚み、繊維径測定
走査型電子顕微鏡(SEM)を用いて、多孔質シートの断面を観察し、厚みと繊維径を測定した。
(2) Measurement of polymer nanofiber layer thickness and fiber diameter Using a scanning electron microscope (SEM), the cross section of the porous sheet was observed, and the thickness and fiber diameter were measured.
(3)電池特性の評価
電池特性の評価として、作製した多孔質シートをセパレータとして組み込んだ電池の放電容量を測定した。コバルト酸リチウム正極材料を70μmの厚さに塗工した幅30mmのアルミ箔からなる正極シート(厚さ100μm)と、リチウム箔幅30mmの負極シートを、セパレータの間に介在させて、30×55×3mmの扁平状に巻き取ったものを、予め皿状に加工しておいたアルミニウムラミネートパッケージ内に収めた。このパッケージを真空注液装置内にセットし、電解液を注液した後、10kPaの減圧と10kPaの加圧を3回繰り返すことによって、電解液をセパレータ内部に十分に含浸させた。ついで、真空注液装置内でパッケージ開口部を封止することにより、リチウムイオン2次電池を組み立てた。室温20℃の条件下で、このようにして組み立てた電池を0.15mA/cm2の電流密度で、カットオフ電圧を4.2Vに設定して定電流モードで充電を行い、同じ電流密度でカットオフ電圧を2.8Vに設定して放電を行うという充放電を0.2Cのレートで行った。この時の放電容量で充放電特性を評価した。110mAh/g以上であれば既存の材質と同等の性能といえる。また、カットオフ電位を同じに設定して、充放電の電流密度を5倍にし、レートを1.0Cに変えた評価実験を行った。充放電の繰り返し特性は、レート1.0Cで行い、繰り返し100回後で初期容量の95パーセントが放電で観察され、各々の充放電の繰り返し回数で充電容量の99パーセント以上が放電で観察されものは、既存の材質と同等の性能といえる。
(3) Evaluation of battery characteristics As an evaluation of battery characteristics, the discharge capacity of a battery incorporating the produced porous sheet as a separator was measured. A positive electrode sheet (thickness 100 μm) made of an aluminum foil with a width of 30 mm coated with a lithium cobaltate positive electrode material to a thickness of 70 μm and a negative electrode sheet with a lithium foil width of 30 mm are interposed between separators, and 30 × 55 What was wound up in a flat shape of 3 mm was stored in an aluminum laminate package that had been processed into a dish shape in advance. After this package was set in a vacuum injection device and the electrolyte solution was injected, the separator was sufficiently impregnated in the separator by repeating 10 kPa depressurization and 10 kPa pressurization three times. Subsequently, the lithium ion secondary battery was assembled by sealing a package opening in a vacuum injection apparatus. Under the condition of room temperature of 20 ° C., the battery assembled in this way was charged at a constant current mode with a current density of 0.15 mA / cm 2 and a cut-off voltage set to 4.2 V. Charging / discharging was performed at a rate of 0.2C, with the cut-off voltage set at 2.8V. The charge / discharge characteristics were evaluated by the discharge capacity at this time. If it is 110 mAh / g or more, it can be said that it is the performance equivalent to the existing material. In addition, an evaluation experiment was performed in which the cut-off potential was set to be the same, the charge / discharge current density was increased five times, and the rate was changed to 1.0 C. Charging / discharging characteristics are performed at a rate of 1.0 C, and after 100 repetitions, 95% of the initial capacity is observed by discharging, and 99% or more of the charging capacity is observed by discharging at each charging / discharging cycle. Can be said to have the same performance as existing materials.
以下、表を参照して、実施例1〜5及び参考例1〜4を説明する。
実施例1においては、セラミックファイバー製無機繊維不織布(株式会社ITM製MTペーパー:厚み40μm)と、ポリビニルアルコールの高分子ナノファイバー層からなる積層体を、130℃で加熱プレスして高分子ナノファイバー層の厚みを2μmとして、多孔質シートを作製した。作製した多孔質シートをセパレータとして電池に組み込んで評価したところ、レート0.2Cで放電容量は125mAh/gであり充放電特性は良好であった。さらに、充放電の繰り返し特性は、レート1.0Cで行い、繰り返し100回後で初期容量の95パーセントが放電で観察され、各々の充放電の繰り返し回数で充電容量の99パーセント以上が放電で観察された。また300℃以上まで加熱しても変形等が無く、耐熱性も良好であった。 In Example 1, a laminate comprising a ceramic fiber inorganic fiber nonwoven fabric (MT paper manufactured by ITM Co., Ltd .: thickness 40 μm) and a polymer nanofiber layer of polyvinyl alcohol was heated and pressed at 130 ° C. to form polymer nanofibers. A porous sheet was prepared with a layer thickness of 2 μm. When the produced porous sheet was incorporated into a battery as a separator and evaluated, the discharge capacity was 125 mAh / g at a rate of 0.2 C, and the charge / discharge characteristics were good. Furthermore, the charge / discharge repetition characteristics were performed at a rate of 1.0C, and after 100 repetitions, 95% of the initial capacity was observed by discharge, and 99% or more of the charge capacity was observed by discharge at each charge / discharge cycle. It was done. Further, even when heated to 300 ° C. or higher, there was no deformation and the heat resistance was good.
実施例2においては、セラミックファイバー製無機繊維不織布(株式会社ITM製MTペーパー:厚み40μm)と、高分子粉末としてポリエチレン微粒子1(平均粒径20μm:住友精化株式会社製UF−80)を2重量%含有したポリビニルアルコールの高分子ナノファイバー層からなる積層体を、130℃で加熱プレスして高分子ナノファイバー層の厚みを2μmとして、多孔質シートを作製した。作製した多孔質シートをセパレータとして電池に組み込んで評価したところ、レート0.2Cで放電容量は131mAh/gであり充放電特性は良好であった。さらに、充放電の繰り返し特性は、レート1.0Cで行い、繰り返し100回後で初期容量の95パーセントが放電で観察され、各々の充放電の繰り返し回数で充電容量の99パーセント以上が放電で観察された。また300℃以上まで加熱しても変形等が無く、耐熱性も良好であった。 In Example 2, ceramic fiber inorganic fiber nonwoven fabric (MT paper manufactured by ITM Co., Ltd .: thickness 40 μm) and polyethylene fine particles 1 (average particle size 20 μm: UF-80 manufactured by Sumitomo Seika Co., Ltd.) as polymer powder are 2 A porous sheet was prepared by heating and pressing a laminated body composed of polymer nanofiber layers of polyvinyl alcohol containing 130% by weight at 130 ° C. to make the thickness of the polymer nanofiber layers 2 μm. When the produced porous sheet was incorporated into a battery as a separator and evaluated, the discharge capacity was 131 mAh / g at a rate of 0.2 C, and the charge / discharge characteristics were good. Furthermore, the charge / discharge repetition characteristics were performed at a rate of 1.0C, and after 100 repetitions, 95% of the initial capacity was observed by discharge, and 99% or more of the charge capacity was observed by discharge at each charge / discharge cycle. It was done. Further, even when heated to 300 ° C. or higher, there was no deformation and the heat resistance was good.
実施例3においては、高分子ナノファイバー層の厚みを4μmとした以外は実施例2と同一の条件で多孔質シートを作製した。レート0.2Cで放電容量は120mAh/gであり充放電特性は良好であった。さらに、充放電の繰り返し特性は、レート1.0Cで行い、繰り返し100回後で初期容量の95パーセントが放電で観察され、各々の充放電の繰り返し回数で充電容量の99パーセント以上が放電で観察された。また300℃以上まで加熱しても変形等が無く、耐熱性も良好であった。 In Example 3, a porous sheet was produced under the same conditions as in Example 2 except that the thickness of the polymer nanofiber layer was 4 μm. The discharge capacity was 120 mAh / g at a rate of 0.2 C, and the charge / discharge characteristics were good. Furthermore, the charge / discharge repetition characteristics were performed at a rate of 1.0C, and after 100 repetitions, 95% of the initial capacity was observed by discharge, and 99% or more of the charge capacity was observed by discharge at each charge / discharge cycle. It was done. Further, even when heated to 300 ° C. or higher, there was no deformation and the heat resistance was good.
実施例4においては、高分子粉末をポリエチレン微粒子2(平均粒径30μm:三井化学株式会社製XM−220)に変更した以外は、実施例2と同一の条件で多孔質シートを作製した。レート0.2Cで放電容量は113mAh/gであり充放電特性は良好であった。さらに、充放電の繰り返し特性は、レート1.0Cで行い、繰り返し100回後で初期容量の95パーセントが放電で観察され、各々の充放電の繰り返し回数で充電容量の99パーセント以上が放電で観察された。また300℃以上まで加熱しても変形等が無く、耐熱性も良好であった。 In Example 4, a porous sheet was produced under the same conditions as in Example 2 except that the polymer powder was changed to polyethylene fine particles 2 (average particle size 30 μm: XM-220 manufactured by Mitsui Chemicals, Inc.). The discharge capacity was 113 mAh / g at a rate of 0.2 C, and the charge / discharge characteristics were good. Furthermore, the charge / discharge repetition characteristics were performed at a rate of 1.0C, and after 100 repetitions, 95% of the initial capacity was observed by discharge, and 99% or more of the charge capacity was observed by discharge at each charge / discharge cycle. It was done. Further, even when heated to 300 ° C. or higher, there was no deformation and the heat resistance was good.
実施例5においては、高分子ナノファイバーの材質をポリフッ化ビニリデンとした以外は、実施例2と同一の条件で多孔質シートを作製した。放電容量は112mAh/gであり充放電特性は良好であった。さらに、充放電の繰り返し特性は、レート1.0Cで行い、繰り返し100回後で初期容量の95パーセントが放電で観察され、各々の充放電の繰り返し回数で充電容量の99パーセント以上が放電で観察された。また300℃以上まで加熱しても変形等が無く、耐熱性も良好であった。 In Example 5, a porous sheet was produced under the same conditions as in Example 2 except that the material of the polymer nanofiber was polyvinylidene fluoride. The discharge capacity was 112 mAh / g, and the charge / discharge characteristics were good. Furthermore, the charge / discharge repetition characteristics were performed at a rate of 1.0C, and after 100 repetitions, 95% of the initial capacity was observed by discharge, and 99% or more of the charge capacity was observed by discharge at each charge / discharge cycle. It was done. Further, even when heated to 300 ° C. or higher, there was no deformation and the heat resistance was good.
比較例1においては、セラミックファイバー製無機繊維不織布(株式会社ITM製MTペーパー:厚み40μm)のみで特性をレート0.2Cで評価した。耐熱性には優れているものの、電池評価をすると内部短絡が発生して充放電特性が得られなかった。 In Comparative Example 1, the characteristics were evaluated at a rate of 0.2 C using only ceramic fiber inorganic fiber nonwoven fabric (MT paper manufactured by ITM Co., Ltd .: thickness 40 μm). Although excellent in heat resistance, when the battery was evaluated, an internal short circuit occurred and charge / discharge characteristics could not be obtained.
比較例2においては、高分子ナノファイバー層の厚みを10μmとした以外は、実施例2と同一の条件で多孔質シートを作製した。耐熱性には優れているものの、内部抵抗が高くなってレート0.2Cで放電容量は82mAh/gしか得られなかった。 In Comparative Example 2, a porous sheet was produced under the same conditions as in Example 2 except that the thickness of the polymer nanofiber layer was 10 μm. Although the heat resistance was excellent, the internal resistance was increased, and the discharge capacity was only 82 mAh / g at a rate of 0.2 C.
比較例3においては、市販のポリエチレン−ポリプロピレンからなる微多孔膜を無機繊維不織布の代わりとして用いて特性を評価した。レート0.2Cで放電容量は135mAh/gであり、充放電特性は良好であったが、140℃まで加熱すると変形溶解し、耐熱性は不十分であった。 In Comparative Example 3, characteristics were evaluated using a commercially available microporous membrane made of polyethylene-polypropylene instead of the inorganic fiber nonwoven fabric. The discharge capacity was 135 mAh / g at a rate of 0.2 C, and the charge / discharge characteristics were good, but when heated to 140 ° C., it was deformed and dissolved, and the heat resistance was insufficient.
比較例4においては、市販のポリエチレン−ポリプロピレンからなる微多孔膜を無機繊維不織布の代わりとして使用し、高分子粉末の代わりに微粉シリカ(平均粒径20nm)を添加したポリビニルアルコールからなる高分子ナノファイバー層を厚さ2μmとして多孔質シートを作製した。レート0.2Cで放電容量は129mAh/gであり充放電特性は良好であった。微粉シリカの耐熱性は優れているが、150℃まで加熱すると基材が変形溶解してしまい、耐熱性は不十分であった。 In Comparative Example 4, a polymer nano-particle made of polyvinyl alcohol in which a microporous membrane made of commercially available polyethylene-polypropylene was used instead of the inorganic fiber nonwoven fabric, and fine powder silica (average particle size 20 nm) was added instead of the polymer powder. A porous sheet was prepared with a fiber layer thickness of 2 μm. The discharge capacity was 129 mAh / g at a rate of 0.2 C, and the charge / discharge characteristics were good. Although the heat resistance of fine silica is excellent, the substrate is deformed and dissolved when heated to 150 ° C., and the heat resistance is insufficient.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011041906A JP2012178320A (en) | 2011-02-28 | 2011-02-28 | Porous sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011041906A JP2012178320A (en) | 2011-02-28 | 2011-02-28 | Porous sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012178320A true JP2012178320A (en) | 2012-09-13 |
Family
ID=46980033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011041906A Pending JP2012178320A (en) | 2011-02-28 | 2011-02-28 | Porous sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012178320A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022399A (en) * | 2012-10-19 | 2013-04-03 | 昆山美好新能源科技有限公司 | Electrolyte diaphragm |
CN103579565A (en) * | 2013-11-21 | 2014-02-12 | 中国海诚工程科技股份有限公司 | Inorganic nanofiber ceramic diaphragm for lithium ion battery and preparation method thereof |
WO2014091856A1 (en) * | 2012-12-12 | 2014-06-19 | 日本電気株式会社 | Separator, electrode element, storage device, and method for manufacturing separator |
JP2017532728A (en) * | 2014-09-04 | 2017-11-02 | アモグリーンテック カンパニー リミテッド | Flexible battery, manufacturing method thereof, and auxiliary battery including flexible battery |
CN108448031A (en) * | 2018-03-30 | 2018-08-24 | 上海恩捷新材料科技股份有限公司 | A kind of electrochemical appliance diaphragm and preparation method thereof and secondary cell |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02170347A (en) * | 1988-12-22 | 1990-07-02 | Hitachi Maxell Ltd | Inorganic non-aqueous electrolyte battery |
JPH02170346A (en) * | 1988-12-22 | 1990-07-02 | Hitachi Maxell Ltd | Inorganic non-aqueous electrolyte battery |
US5091275A (en) * | 1990-04-25 | 1992-02-25 | Evanite Fiber Corporation | Glass fiber separator and method of making |
JP2000268862A (en) * | 1999-03-19 | 2000-09-29 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
JP2000323169A (en) * | 1999-05-12 | 2000-11-24 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
JP2004146190A (en) * | 2002-10-24 | 2004-05-20 | Tomoegawa Paper Co Ltd | Lithium ion secondary battery separator and lithium ion secondary battery provided with the same |
WO2008075457A1 (en) * | 2006-12-20 | 2008-06-26 | Kuraray Co., Ltd. | Separator for alkaline battery, method for producing the same, and battery |
JP2008303521A (en) * | 2007-05-07 | 2008-12-18 | Teijin Techno Products Ltd | Conjugate fiber structure |
WO2009076401A1 (en) * | 2007-12-11 | 2009-06-18 | P.H. Glatfelter Company | Batter separator structures |
-
2011
- 2011-02-28 JP JP2011041906A patent/JP2012178320A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02170347A (en) * | 1988-12-22 | 1990-07-02 | Hitachi Maxell Ltd | Inorganic non-aqueous electrolyte battery |
JPH02170346A (en) * | 1988-12-22 | 1990-07-02 | Hitachi Maxell Ltd | Inorganic non-aqueous electrolyte battery |
US5091275A (en) * | 1990-04-25 | 1992-02-25 | Evanite Fiber Corporation | Glass fiber separator and method of making |
JP2000268862A (en) * | 1999-03-19 | 2000-09-29 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
JP2000323169A (en) * | 1999-05-12 | 2000-11-24 | Toyota Central Res & Dev Lab Inc | Lithium secondary battery |
JP2004146190A (en) * | 2002-10-24 | 2004-05-20 | Tomoegawa Paper Co Ltd | Lithium ion secondary battery separator and lithium ion secondary battery provided with the same |
WO2008075457A1 (en) * | 2006-12-20 | 2008-06-26 | Kuraray Co., Ltd. | Separator for alkaline battery, method for producing the same, and battery |
JP2008303521A (en) * | 2007-05-07 | 2008-12-18 | Teijin Techno Products Ltd | Conjugate fiber structure |
WO2009076401A1 (en) * | 2007-12-11 | 2009-06-18 | P.H. Glatfelter Company | Batter separator structures |
Non-Patent Citations (2)
Title |
---|
JPN6014013400; 化学大辞典 第1版, 1989, p.1333, 株式会社東京化学同人 * |
JPN6015002257; 電池応用ハンドブック 第2版, 2005, p.351, CQ出版株式会社 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022399A (en) * | 2012-10-19 | 2013-04-03 | 昆山美好新能源科技有限公司 | Electrolyte diaphragm |
WO2014091856A1 (en) * | 2012-12-12 | 2014-06-19 | 日本電気株式会社 | Separator, electrode element, storage device, and method for manufacturing separator |
CN103579565A (en) * | 2013-11-21 | 2014-02-12 | 中国海诚工程科技股份有限公司 | Inorganic nanofiber ceramic diaphragm for lithium ion battery and preparation method thereof |
JP2017532728A (en) * | 2014-09-04 | 2017-11-02 | アモグリーンテック カンパニー リミテッド | Flexible battery, manufacturing method thereof, and auxiliary battery including flexible battery |
US10593990B2 (en) | 2014-09-04 | 2020-03-17 | Amogreentech Co., Ltd. | Flexible battery, manufacturing method therefor, and auxiliary battery comprising flexible battery |
US10938059B2 (en) | 2014-09-04 | 2021-03-02 | Amogreentech Co., Ltd. | Flexible battery, manufacturing method therefor, and auxiliary battery comprising flexible battery |
CN108448031A (en) * | 2018-03-30 | 2018-08-24 | 上海恩捷新材料科技股份有限公司 | A kind of electrochemical appliance diaphragm and preparation method thereof and secondary cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Waqas et al. | Recent development in separators for high‐temperature lithium‐ion batteries | |
CN100514711C (en) | Electronic component separator and method for producing the same | |
CN111615762B (en) | Separator for electrochemical device and method for manufacturing same | |
Huang | Separator technologies for lithium-ion batteries | |
Deimede et al. | Separators for lithium‐ion batteries: a review on the production processes and recent developments | |
CN104838519B (en) | Diaphragm for non-water system secondary battery and non-aqueous secondary battery | |
KR101055431B1 (en) | Method for producing a separator having a porous coating layer, a separator formed therefrom and an electrochemical device having the same | |
KR101301446B1 (en) | Secondary battery fibrous separation membrane and method thereof | |
CN111492504A (en) | Separator for nonaqueous secondary battery and nonaqueous secondary battery | |
CN103181000B (en) | Method for producing separator, separator produced by the method, and electrochemical device provided with the separator | |
CN108630871B (en) | Battery, battery diaphragm and preparation method thereof | |
JP2019040876A (en) | Rechargeable lithium ion battery separator and method of use thereof | |
KR100890594B1 (en) | Separation membrane for electrochemical device with high air permeability and manufacturing method thereof | |
KR101013785B1 (en) | Electrode-Separator Membrane Composite and Manufacturing Method Thereof | |
KR102308942B1 (en) | Separator and electrochemical device containing the same | |
WO2006123811A1 (en) | Separator for lithium ion secondary battery and lithium ion secondary battery | |
JP2015514812A (en) | Polyolefin composite microporous membrane excellent in heat resistance and stability and method for producing the same | |
JP2014526776A (en) | Separator manufacturing method, separator formed by the method, and electrochemical device including the same | |
JP2011035373A (en) | Separator for power storage device | |
KR20150084637A (en) | Micro porous hybrid separator, method for manufacturing the same and electrochemical device containing the same | |
WO2011081416A2 (en) | Separator having nanopores and an energy storage device using the same | |
JPWO2017130574A1 (en) | Secondary battery | |
KR101490890B1 (en) | Separator for secondary battery and manufacturing method thereof | |
JP2012178320A (en) | Porous sheet | |
KR20180055277A (en) | Membranes having porous ethylene-vinyl acetate copolymer layer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141029 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150602 |