[go: up one dir, main page]

JP2012175880A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2012175880A
JP2012175880A JP2011038105A JP2011038105A JP2012175880A JP 2012175880 A JP2012175880 A JP 2012175880A JP 2011038105 A JP2011038105 A JP 2011038105A JP 2011038105 A JP2011038105 A JP 2011038105A JP 2012175880 A JP2012175880 A JP 2012175880A
Authority
JP
Japan
Prior art keywords
terminal
power transmission
transmission side
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011038105A
Other languages
Japanese (ja)
Inventor
Yoshiharu Hatano
由晴 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aiphone Co Ltd
Original Assignee
Aiphone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aiphone Co Ltd filed Critical Aiphone Co Ltd
Priority to JP2011038105A priority Critical patent/JP2012175880A/en
Publication of JP2012175880A publication Critical patent/JP2012175880A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To extend a transmission distance to a power reception side such that high-efficiency power supply from a power transmission side is possible through a simple circuit configuration using a self-excited oscillation circuit.SOLUTION: For power supply from a power transmission-side resonance part 1 to a power reception-side resonance part 2 in a non-contact manner through a transformer 3, a self-excited oscillation circuit 10 of the power transmission-side resonance part generates a voltage of resonance frequency that a capacitor C connected in parallel between a first (+) terminal T1a and a first (-) terminal T1b of a power transmission-side primary coil L1 constituting a transformer, an induction voltage is generated between a first (+) terminal T2a and a second (-) terminal T2b of a power transmission-side secondary coil L2 based upon the generated voltage, and fed back to gate sides of first and second switching elements FET1, FET2 so as to generate and apply a drain voltage by amplifying the induction voltage between the first (+) terminal and first (-) terminal of the power transmission-side primary coil. The operation thereof is repeated.

Description

本発明は、磁気共鳴型の非接触給電装置に係り、特に、自励式の発振回路を有する非接触給電装置に関する。   The present invention relates to a magnetic resonance type non-contact power feeding device, and more particularly to a non-contact power feeding device having a self-excited oscillation circuit.

従来から、この種の非接触給電装置として、例えば、特許文献1に記載の電磁誘導型の非接触電源装置によれば、電力供給側で磁気結合されるコイルとして、共振特性を表すQ値が低いコア・トランスを使用している。   Conventionally, as this type of non-contact power supply device, for example, according to the electromagnetic induction-type non-contact power supply device described in Patent Document 1, a Q value representing resonance characteristics is used as a coil magnetically coupled on the power supply side. A low core transformer is used.

また、特許文献2に記載の電磁誘導の磁気共鳴現象を用いた非接触電力伝送装置によれば、給電側磁気共鳴コイルの共振周波数と受電側コイル磁気共鳴コイルの共振周波数とを正確に一致させるための他励式の発振回路を使用している。   Further, according to the non-contact power transmission device using the magnetic resonance phenomenon of electromagnetic induction described in Patent Document 2, the resonance frequency of the power supply side magnetic resonance coil and the resonance frequency of the power reception side coil magnetic resonance coil are exactly matched. For this purpose, a separately excited oscillation circuit is used.

特開2000−175379号公報JP 2000-175379 A 特開2010−154700号公報JP 2010-154700 A

しかしながら、背景技術に記載した特許文献1に記載の非接触電源装置においては、電力供給側で磁気結合されるコイルが有するQ値が低いため、給電(送電)側から高効率な電力供給を可能とする受電側への伝達距離が短くなる難点があった。   However, in the non-contact power supply device described in Patent Document 1 described in the background art, since the Q value of the coil magnetically coupled on the power supply side is low, highly efficient power supply from the power supply (power transmission) side is possible. There is a drawback that the transmission distance to the power receiving side becomes shorter.

一方、特許文献2に記載の非接触電力伝送装置においては、例えば、図3のブロック図に示すように、給電(送電)側で必要とされる各種の回路501、502、503、504、505のうち、発振回路501の発振周波数と共振回路504の共振周波数とを正確に一致させるための制御回路505が必要となり、回路構成が複雑となるばかりでなく、このような制御が行われないと、給電(送電)側から受電側への電力供給の効率が低下する難点があった。   On the other hand, in the non-contact power transmission device described in Patent Document 2, for example, as shown in the block diagram of FIG. 3, various circuits 501, 502, 503, 504, 505 required on the power feeding (power transmission) side are used. Among them, a control circuit 505 for accurately matching the oscillation frequency of the oscillation circuit 501 and the resonance frequency of the resonance circuit 504 is required, which not only complicates the circuit configuration but also does not perform such control. The power supply efficiency from the power feeding (power transmission) side to the power receiving side has been difficult to reduce.

本発明は、これらの難点を解消するためになされたもので、自励式の発振回路を用いた簡単な回路構成をもとに、送電側から高効率な電力供給を可能とする受電側への伝達距離を延長させた磁気共鳴型の非接触給電装置を提供することを目的としている。   The present invention has been made to solve these problems, and based on a simple circuit configuration using a self-excited oscillation circuit, the power transmission side can provide a highly efficient power supply to the power reception side. An object of the present invention is to provide a magnetic resonance type non-contact power feeding device with an extended transmission distance.

前述の目的を達成するため、本発明の第1の態様である非接触給電装置は、送電側共振部からトランスを経由して受電側共振部に非接触で電力供給を行う非接触給電装置である。トランスは、磁気結合される送電側一次コイル及び送電側二次コイルと、送電側一次コイルから伝達される電源を受電するための受電側コイルとを有している。送電側共振部は、直流電圧を分圧するための第1、第2の分圧抵抗と、トランスのリファレンスを確保するために送電側一次コイルの中点端子に直流電圧を印加するためのリファレンス回路と、第1、第2の分圧抵抗の出力電圧がゲート側に印加され、送電側一次コイルの第1の(+)端子及び中点端子間、第1の(−)端子及び中点端子間のそれぞれの印加電圧を増幅してドレイン電圧を生成するための第1、第2のスイッチング素子、送電側一次コイルの第1の(+)端子及び第1の(−)端子間に並列接続されるコンデンサで構成される自励式発振回路とを備えている。自励式発振回路を構成するコンデンサにより発生する電圧をもとに送電側二次コイルの第2の(+)端子及び第2の(−)端子間に誘導電圧を発生させ、誘電電圧を第1、第2のスイッチング素子のゲート側にフィードバックで印加することにより、送電側一次コイルの第1の(+)端子及び第2の(−)端子間にドレイン電圧を印加するものである。   In order to achieve the above-described object, the non-contact power feeding device according to the first aspect of the present invention is a non-contact power feeding device that performs non-contact power supply from a power transmission side resonance unit to a power reception side resonance unit via a transformer. is there. The transformer includes a power transmission side primary coil and a power transmission side secondary coil that are magnetically coupled, and a power reception side coil for receiving power supplied from the power transmission side primary coil. The power transmission side resonance unit includes first and second voltage dividing resistors for dividing the DC voltage, and a reference circuit for applying the DC voltage to the midpoint terminal of the power transmission side primary coil in order to secure the reference of the transformer. And the output voltage of the first and second voltage dividing resistors is applied to the gate side, between the first (+) terminal and the midpoint terminal of the power transmission side primary coil, the first (−) terminal and the midpoint terminal The first and second switching elements for amplifying the respective applied voltages between the first and second switching elements and the first (+) terminal and the first (-) terminal of the power transmission side primary coil are connected in parallel. And a self-excited oscillation circuit including a capacitor. An induced voltage is generated between the second (+) terminal and the second (−) terminal of the secondary coil on the power transmission side based on the voltage generated by the capacitor constituting the self-excited oscillation circuit, and the first dielectric voltage is generated. The drain voltage is applied between the first (+) terminal and the second (−) terminal of the power transmission side primary coil by applying the feedback to the gate side of the second switching element.

また、本発明の第2の態様である非接触給電装置は、本発明の第1の態様において、送電側一次コイル及び送電側二次コイルは、空芯コイルで形成されるものである。   Moreover, the non-contact electric power feeder which is a 2nd aspect of this invention is a 1st aspect of this invention. WHEREIN: A power transmission side primary coil and a power transmission side secondary coil are formed with an air-core coil.

本発明の非接触給電装置によれば、発振周波数と共振周波数を正確に一致させるような所定の調整工程が不要な自励式の発振回路を用いた簡単な回路をもとに送電側共振部を構成することにより、送電側共振部から高効率な電力供給を可能とする受電側共振部への伝達距離を延長できる。   According to the non-contact power feeding device of the present invention, the power transmission side resonance unit is formed on the basis of a simple circuit using a self-excited oscillation circuit that does not require a predetermined adjustment process to accurately match the oscillation frequency and the resonance frequency. By configuring, it is possible to extend the transmission distance from the power transmission side resonance unit to the power reception side resonance unit that enables highly efficient power supply.

また、本発明の非接触給電装置によれば、送電側共振部を構成する自励式の発振回路として、コア・トランスが不要な磁気結合型の空芯コイルを用いることにより、共振特性を表すQ値を高めることができる。   In addition, according to the non-contact power feeding device of the present invention, the self-excited oscillation circuit that constitutes the power transmission side resonance unit uses a magnetically coupled air-core coil that does not require a core / transformer, thereby expressing the resonance characteristics. The value can be increased.

図1は、本発明の実施例による非接触給電装置の具体的な構成を示す電気回路図である。FIG. 1 is an electric circuit diagram showing a specific configuration of a non-contact power feeding device according to an embodiment of the present invention. 本発明の実施例による非接触給電装置において適用されるコイルをプリント基板上に実実装させた具体的なパターンを示す図であり、図2(A)は、プリント基板の一方の面側であるA面のパターン図、図2(B)は、プリント基板の他方の面側であるB面のパターンをA面側から透視した図である。It is a figure which shows the specific pattern which actually mounted the coil applied in the non-contact electric power feeder by the Example of this invention on a printed circuit board, and FIG. 2 (A) is the one surface side of a printed circuit board. FIG. 2B is a perspective view of the pattern of the B surface, which is the other surface side of the printed circuit board, from the A surface side. 図3は、従来例において適用される周波数(発振周波数、共振周波数)制御のためのブロック図である。FIG. 3 is a block diagram for frequency (oscillation frequency, resonance frequency) control applied in the conventional example.

以下、本発明の非接触給電装置を適用した実施の形態例について、図面を参照して説明する。   Embodiments to which the non-contact power feeding device of the present invention is applied will be described below with reference to the drawings.

図1は、本発明の実施例による非接触給電装置の具体的な構成を示す電気回路図である。この非接触給電装置は、送電側共振部1からトランス3を経由して受電側共振部2に非接触で電力供給を行うものである。   FIG. 1 is an electric circuit diagram showing a specific configuration of a non-contact power feeding device according to an embodiment of the present invention. This non-contact power supply device supplies power to the power receiving side resonance unit 2 from the power transmission side resonance unit 1 via the transformer 3 in a contactless manner.

トランス3は、磁気結合される送電側一次コイルL1及び送電側二次コイルL2と、送電側一次コイルL1から伝達される電源を受電するための受電側コイルL2とを有しており、送電側一次コイルL1及び送電側二次コイルL2は、空芯コイルで形成されている。   The transformer 3 includes a power transmission side primary coil L1 and a power transmission side secondary coil L2 that are magnetically coupled, and a power reception side coil L2 that receives power supplied from the power transmission side primary coil L1. The primary coil L1 and the power transmission side secondary coil L2 are formed of air-core coils.

送電側共振部1には、第1の分圧抵抗R1、R2、第2の分圧抵抗R3、R4及びリファレンス回路RFCと、第1、第2のスイッチング素子FET1、FET2、(共振)コンデンサCを有する自励式発振回路10とが備えられている。   The power transmission side resonance unit 1 includes a first voltage dividing resistor R1, R2, a second voltage dividing resistor R3, R4 and a reference circuit RFC, first and second switching elements FET1, FET2, and a (resonant) capacitor C. And a self-excited oscillation circuit 10 having.

この送電側共振部10において、第1の分圧抵抗R1、R2及び第2の分圧抵抗R3、R4はそれぞれ、直流電圧V0を分圧するためのものであり、直列接続された第1の分圧抵抗R1、R2間には、自励式発振回路10を構成する第1のスイッチング素子FET1のゲートが接続されている。また、同様に直列接続された第2の分圧抵抗R3、R4間には、自励式発振回路10を構成する第2のスイッチング素子FET2のゲートが接続されている。   In the power transmission side resonance unit 10, the first voltage dividing resistors R1 and R2 and the second voltage dividing resistors R3 and R4 are used to divide the DC voltage V0 and are connected in series. The gate of the first switching element FET1 constituting the self-excited oscillation circuit 10 is connected between the piezoresistors R1 and R2. Similarly, the gate of the second switching element FET2 constituting the self-excited oscillation circuit 10 is connected between the second voltage dividing resistors R3 and R4 connected in series.

また、送電側共振部1のリファレンス回路RFCは、例えば、チョークコイルで形成されており、トランス3のリファレンスを確保するために当該トランスを構成する送電側一次コイルL1の中点端子T1cに直流電圧V0を印加するものである。   The reference circuit RFC of the power transmission side resonance unit 1 is formed of, for example, a choke coil, and a DC voltage is applied to the midpoint terminal T1c of the power transmission side primary coil L1 constituting the transformer 3 in order to secure a reference of the transformer 3. V0 is applied.

送電側共振部1の自励式発振回路10において、第1のスイッチング素子FET1は、第1の分圧抵抗R1、R2の出力電圧がゲート側に印加され、トランス3を構成する送電側一次コイルL1の第1の(+)端子T1a及び中点端子T1c間の印加電圧を増幅してドレイン電圧を生成するためのものであり、そのソースは基準電位点に、そのドレインは送電側一次コイルL1の第1の(+)端子T1aにそれぞれ接続されている。また、第2のスイッチング素子FET2は、第2の分圧抵抗R3、R4の出力電圧がゲート側に印加され、送電側一次コイルL1の第1の(−)端子T1b及び中点端子T1c間の印加電圧を増幅してドレイン電圧を生成するためのものであり、そのソースは基準電位点に、そのドレインは送電側一次コイルL1の第1の(−)端子T1bにそれぞれ接続されている。   In the self-excited oscillation circuit 10 of the power transmission side resonance unit 1, the first switching element FET 1 is applied with the output voltage of the first voltage dividing resistors R 1 and R 2 on the gate side, and the power transmission side primary coil L 1 constituting the transformer 3. For amplifying the applied voltage between the first (+) terminal T1a and the midpoint terminal T1c to generate a drain voltage, the source at the reference potential point, and the drain at the power transmission side primary coil L1. Each is connected to a first (+) terminal T1a. The second switching element FET2 has the output voltage of the second voltage dividing resistors R3 and R4 applied to the gate side, and between the first (−) terminal T1b and the midpoint terminal T1c of the power transmission side primary coil L1. This is for amplifying the applied voltage to generate a drain voltage, the source of which is connected to the reference potential point, and the drain of which is connected to the first (-) terminal T1b of the power transmission side primary coil L1.

また、送電側共振部1の自励式発振回路10において、コンデンサCは、トランス3を構成する送電側一次コイルL1の第1の(+)端子T1a及び第1の(−)端子T1b間に並列接続されており、送電側二次コイルL2の第2の(+)端子T2a及び第2の(−)端子T2b間に誘導電圧を発生させ、この誘電電圧を第1、第2のスイッチング素子FET1、FET2のゲート側にフィードバックで印加するためのものである。   In the self-excited oscillation circuit 10 of the power transmission side resonance unit 1, the capacitor C is connected in parallel between the first (+) terminal T 1 a and the first (−) terminal T 1 b of the power transmission side primary coil L 1 constituting the transformer 3. An inductive voltage is generated between the second (+) terminal T2a and the second (-) terminal T2b of the power transmission side secondary coil L2, and this dielectric voltage is used as the first and second switching elements FET1. , For applying feedback to the gate side of FET2.

このような構成の非接触給電装置によれば、送電側共振部1において、第1の分圧抵抗R1、R2を経由して直流電圧V0を分圧させた出力電圧V1は第1のスイッチング素子FET1のゲートに印加され、この出力電圧V1を増幅したドレイン電圧V10を発生させることにより、トランス3を構成する送電側一次コイルL1の第1の(+)端子T1a及び第1の中点端子T1c間には、所定のドレイン電圧(V11=)V10−V0が印加される。一方、第2の分圧抵抗R3、R4を経由して直流電圧V0を分圧させた出力電圧V2は第2のスイッチング素子FET2のゲートに印加され、この出力電圧V2を増幅したドレイン電圧V20を発生させることにより、送電側一次コイル30の第1の(−)端子T1b及び第1の中点端子T1c間には、所定のドレイン電圧(V21=)V20−V0が印加される。   According to the non-contact power feeding device having such a configuration, the output voltage V1 obtained by dividing the DC voltage V0 via the first voltage dividing resistors R1 and R2 in the power transmission side resonance unit 1 is the first switching element. The first (+) terminal T1a and the first midpoint terminal T1c of the power transmission side primary coil L1 constituting the transformer 3 are generated by applying a drain voltage V10 which is applied to the gate of the FET1 and amplifies the output voltage V1. A predetermined drain voltage (V11 =) V10-V0 is applied between them. On the other hand, an output voltage V2 obtained by dividing the DC voltage V0 via the second voltage dividing resistors R3 and R4 is applied to the gate of the second switching element FET2, and a drain voltage V20 obtained by amplifying the output voltage V2 is obtained. As a result, a predetermined drain voltage (V21 =) V20-V0 is applied between the first (-) terminal T1b and the first middle point terminal T1c of the power transmission side primary coil 30.

また、送電側共振部1の自励式発振回路10によれば、トランス3を構成する送電側一次コイルL1の第1の(+)端子T1a及び第1の(−)端子T1b間に並列接続されたコンデンサCが有する共振周波数の電圧が生成され、この電圧をもとに送電側二次コイルL2の第1の(+)端子T2a及び第2の(−)端子T2b間に誘導電圧が発生し、第1、第2のスイッチング素子FET1、FET2のゲート側にフィードバックで印加することにより、送電側一次コイルL1の第1の(+)端子T1a及び第1の(−)端子T1b間に前述のドレイン電圧V11、V21を印加することができ、このような動作を繰り返すことにより、安定した自励式の発振動作が可能となる。   Further, according to the self-excited oscillation circuit 10 of the power transmission side resonance unit 1, the power transmission side primary coil L 1 constituting the transformer 3 is connected in parallel between the first (+) terminal T 1 a and the first (−) terminal T 1 b. The resonance frequency voltage of the capacitor C is generated, and an induced voltage is generated between the first (+) terminal T2a and the second (-) terminal T2b of the power transmission side secondary coil L2 based on this voltage. By applying feedback to the gate sides of the first and second switching elements FET1 and FET2, the above-described between the first (+) terminal T1a and the first (−) terminal T1b of the power transmission side primary coil L1. Drain voltages V11 and V21 can be applied, and by repeating such an operation, a stable self-excited oscillation operation is possible.

前述までの説明から明らかな構成の自励式発振回路10を送電側共振部1に備え、トランス3を構成する送電側一次コイルL1及び送電側二次コイルL2を空芯コイルで形成することにより、共振特性を表すQ値を高めることができるばかりでなく、図3に示すような送電側において発振周波数と共振周波数とを正確に一致させるための制御機能(制御回路505)を必要とせず簡単な回路構成をもとに、送電側共振部1からトランス3を経由して受電側共振部2に非接触で高効率な電力供給を可能する際の伝達距離を延長させることができる。   By including the self-excited oscillation circuit 10 having a configuration apparent from the above description in the power transmission side resonance unit 1 and forming the power transmission side primary coil L1 and the power transmission side secondary coil L2 constituting the transformer 3 with air core coils, Not only can the Q value representing the resonance characteristic be increased, but also a simple control function (control circuit 505) for accurately matching the oscillation frequency and the resonance frequency on the power transmission side as shown in FIG. 3 is not required. Based on the circuit configuration, it is possible to extend the transmission distance when enabling high-efficiency power supply in a non-contact manner from the power transmission side resonance unit 1 to the power reception side resonance unit 2 via the transformer 3.

また、コンデンサCは、送電側一次コイルL1の第1の(+)端子T1a及び第1の(−)端子T1b間に並列接続されるため、共振特性を表すQ値を高めたまま任意の共振周波数を選択することができる。   In addition, since the capacitor C is connected in parallel between the first (+) terminal T1a and the first (−) terminal T1b of the power transmission side primary coil L1, any resonance can be achieved while increasing the Q value representing the resonance characteristics. The frequency can be selected.

なお、前述のようなトランス3を構成する送電側一次コイルL1及び送電側二次コイルL2は、図2(A)、(B)に示すパターンでプリント基板P1上に実装される空芯コイルで形成され、図2(A)は、プリント基板P1の一方の面であるA面のパターン図、図2(B)は、プリント基板P1の他方の面であるB面のパターンをA面側から透視した図である。   The power transmission side primary coil L1 and the power transmission side secondary coil L2 constituting the transformer 3 as described above are air-core coils mounted on the printed circuit board P1 in the pattern shown in FIGS. 2 (A) and 2 (B). 2A is a pattern diagram of the A surface that is one surface of the printed circuit board P1, and FIG. 2B is a pattern of the B surface that is the other surface of the printed circuit board P1 from the A surface side. FIG.

図2(A)に示すプリント基板P1のA面には、第1の(+)端子T1a及び第1の(−)端子T1b間が電気接続される送電側一次コイルL1が実装されており、具体的には、第1の(+)端子T1aを始点として同心の外周から半周毎に内周に向かって当該コイル線路長の第1の中間点T10まで展開し、第1の中間点T10から同心に半周展開される第1のターンと、第1の(−)端子T1bを始点として同心の外周から半周毎に内周に向かって展開しながら配線されて第1の中間点T10に接続される第2のターンとを備える第1のパターンを有している。   A power transmission side primary coil L1 that is electrically connected between the first (+) terminal T1a and the first (-) terminal T1b is mounted on the A surface of the printed circuit board P1 shown in FIG. Specifically, starting from the first (+) terminal T1a, the coil line length is expanded from the concentric outer circumference toward the inner circumference every half of the circumference to the first middle point T10 of the coil line length, and from the first middle point T10. A first turn that is concentrically deployed halfway and a first (−) terminal T1b starting from the first (−) terminal T1b are wired from the outer periphery of the concentric portion toward the inner periphery and connected to the first intermediate point T10. And a second pattern having a second turn.

この送電側一次コイルL1が有する第1のパターンにおいて、第1の(+)端子T1aを始点とする線路と第1の(−)端子T1bを始点とする線路とがクロスオーバーする部分は、スルーホールH1を経由してプリント基板P1の他方の面側であるB面に設けられており、前述のように送電側一次コイルL1の巻き数がターン数に対応させた「2」で形成されているため、第1の(+)端子T1aと第1の(−)端子T1bを近接した位置に実装することができ、第1のパターンの展開に伴い変化する共振特性を表すQ値の劣化を容易に防止可能となる。   In the first pattern of the primary coil L1 on the power transmission side, the portion where the line starting from the first (+) terminal T1a and the line starting from the first (−) terminal T1b cross over is through. It is provided on the B surface which is the other surface side of the printed circuit board P1 through the hole H1, and as described above, the number of turns of the primary coil L1 on the power transmission side is formed with “2” corresponding to the number of turns. Therefore, the first (+) terminal T1a and the first (−) terminal T1b can be mounted at close positions, and the Q value representing the resonance characteristics that change with the development of the first pattern is deteriorated. It can be easily prevented.

また、送電側一次コイルL1が有する第1のパターンによれば、プリント基板P1のA面のような片面のみでパターン展開されているため、浮遊容量を小さく抑えることができ、自己共振周波数を高くすることで使用可能な周波数の範囲を広く設定できる。   Further, according to the first pattern of the power transmission side primary coil L1, since the pattern is developed only on one side such as the A side of the printed circuit board P1, the stray capacitance can be kept small, and the self-resonant frequency is increased. By doing so, a wide range of usable frequencies can be set.

また、送電側一次コイルL1は、第1の(+)端子T1aから第1の中間点T10までの距離と第1の(−)端子T1bから第1の中間点T10までの距離が等長で当該第1の(+)端子及び第1の(−)端子の第1の中間点T10と同心を結ぶ線Lnによって対称構造で形成されているため、抵抗成分及びインダクタンス成分がそれぞれ等価となる電気的な中点端子T1cを設けることができる。   The power transmission side primary coil L1 has the same distance from the first (+) terminal T1a to the first intermediate point T10 and the distance from the first (−) terminal T1b to the first intermediate point T10. Since the first (+) terminal and the first (−) terminal are formed in a symmetrical structure by a line Ln concentric with the first intermediate point T10 of the first (−) terminal, the resistance component and the inductance component are equivalent to each other. A typical midpoint terminal T1c can be provided.

なお、送電側一次コイルL1において、前述の第1の中間点T10及び中点端子T1c間は、スルーホールH2を経由してプリント基板P1のB面にパターン形成されている。   In the primary coil L1 on the power transmission side, a pattern is formed on the B surface of the printed board P1 between the first intermediate point T10 and the midpoint terminal T1c described above via the through hole H2.

一方、図2(B)に示すプリント基板P1のB面には、第2の(+)端子T2a及び第2の(−)端子T2b間が電気接続される送電側二次コイルL2が実装されており、具体的には、第2の(+)端子T2aを始点として同心の外周から半周毎に内周に向かって当該コイル線路長の第2の中間点T20まで展開し、第2の中間点T20から同心に半周展開される第3のターンと、第2の(−)端子T2bを始点として同心の外周から半周毎に内周に向かって展開しながら配線されて第2の中間点T20に接続される第4のターンとを備える第2のパターンを有しており、このリンクコイルL2によれば、前述の第3、第4のターンの当該ターン数に起因した巻き数「2」で形成されている。   On the other hand, a power transmission side secondary coil L2 that is electrically connected between the second (+) terminal T2a and the second (−) terminal T2b is mounted on the B surface of the printed circuit board P1 shown in FIG. Specifically, with the second (+) terminal T2a as the starting point, the coil line length extends from the concentric outer circumference toward the inner circumference every half circumference to the second intermediate point T20 of the coil line length, and the second intermediate A third turn developed concentrically from the point T20, and a second intermediate point T20 wired from the concentric outer circumference to the inner circumference every half circumference starting from the second (−) terminal T2b. And a second pattern having a fourth turn connected to the second coil. According to the link coil L2, the number of turns “2” resulting from the number of turns of the third and fourth turns described above is provided. It is formed with.

この送電側二次コイルL2が有する第2のパターンにおいて、第2の(+)端子T2aを始点とする線路と第2の(−)端子T2bを始点とする線路とがクロスオーバーする部分は、スルーホールH3を経由してプリント基板P1のA面に設けられており、前述のように送電側二次コイルL2の巻き数がターン数に対応させた「2」で形成されているため、第2の(+)端子T2aと第2の(−)端子T2bを近接した位置に実装することができ、第2のパターンの展開に伴い変化する共振特性を表すQ値の劣化を容易に防止可能となる。   In the second pattern of the power transmission side secondary coil L2, the portion where the line starting from the second (+) terminal T2a and the line starting from the second (−) terminal T2b cross over is as follows: Since it is provided on the A surface of the printed circuit board P1 through the through hole H3, and the number of turns of the power transmission side secondary coil L2 is “2” corresponding to the number of turns as described above, The second (+) terminal T2a and the second (-) terminal T2b can be mounted in close proximity, and deterioration of the Q value representing the resonance characteristics that change with the development of the second pattern can be easily prevented. It becomes.

また、送電側二次コイルL2が有する第2のパターンによれば、プリント基板P1のB面のような片面のみでパターン展開されているため、浮遊容量を小さく抑えることができ、自己共振周波数を高くすることで使用可能な周波数の範囲を広く設定できる。   Moreover, according to the second pattern of the secondary coil L2 on the power transmission side, since the pattern is developed only on one side such as the B side of the printed circuit board P1, the stray capacitance can be reduced, and the self-resonant frequency can be reduced. By increasing the frequency range, the usable frequency range can be set wide.

なお、前述までの説明から明らかなように、第1のパターンを有する送電側一次コイルL1と第2のパターンを有する送電側二次コイルL2をそれぞれ、プリント基板P1のA面、B面にクロスオーバーしない位置に実装することができるため、このプリント基板P1を1層2面の当該基板で実現可能であって、低い製造コストによりコイル実装が可能となる。   As is clear from the above description, the power transmission side primary coil L1 having the first pattern and the power transmission side secondary coil L2 having the second pattern are respectively crossed on the A surface and the B surface of the printed circuit board P1. Since it can be mounted at a position that does not exceed, this printed board P1 can be realized by the board having one layer and two surfaces, and the coil can be mounted at a low manufacturing cost.

本発明の非接触給電装置においては、特定の実施の形態をもって説明してきたが、この形態に限定されるものでなく、本発明の効果を奏する限り、これまで知られた如何なる構成の当該装置であっても採用できるということはいうまでもないことである。   The non-contact power feeding device of the present invention has been described with a specific embodiment. However, the present invention is not limited to this embodiment. As long as the effect of the present invention is achieved, the device of any configuration known so far can be used. It goes without saying that even if there is, it can be adopted.

例えば、本発明の実施例によれば、(プリント基板P1のA面に実装される)送電側一次コイルL1の巻き数として、「2」の巻き数の当該コイルを適用したが、この態様に限定されるものではなく、その巻き数を2以上の偶数で形成することもできる。   For example, according to the embodiment of the present invention, the coil having the number of turns “2” is applied as the number of turns of the power transmission side primary coil L1 (mounted on side A of the printed circuit board P1). The number of turns is not limited, and the number of turns may be an even number of 2 or more.

1……送電側共振部
10……自励式発振回路
C……コンデンサ
R1、R2……第1の分圧抵抗
R3、R4……第2の分圧抵抗
RFC……リファレンス回路
FET1……第1のスイッチング素子
FET2……第2のスイッチング素子
2……受電側共振部
3……トランス
L1……送電側一次コイル
T1a……第1の(+)端子
T1b……第1の(−)端子
T1c……中点端子
L2……送電側二次コイル
T2a……第2の(+)端子
T2b……第2の(−)端子
L3……受電側トランス
DESCRIPTION OF SYMBOLS 1 ... Power transmission side resonance part 10 ... Self-excited oscillation circuit C ... Capacitor R1, R2 ... 1st voltage-dividing resistor R3, R4 ... 2nd voltage-dividing resistor RFC ... Reference circuit FET1 ... 1st Switching element FET2 …… Second switching element 2 …… Receiving side resonance part 3 …… Transformer L1 …… Transmission side primary coil T1a …… First (+) terminal T1b …… First (−) terminal T1c …… Middle point L2 …… Secondary coil on power transmission side T2a …… Second (+) terminal T2b …… Second (−) terminal L3 …… Transformer on receiving side

Claims (2)

送電側共振部(1)からトランス(3)を経由して受電側共振部(2)に非接触で電力供給を行う非接触給電装置であって、
前記トランスは、磁気結合される送電側一次コイル(L1)及び送電側二次コイル(L2)と、前記送電側一次コイルから伝達される電源を受電するための受電側コイル(L3)とを有し、
前記送電側共振部は、直流電圧(V0)を分圧するための第1、第2の分圧抵抗(R1、R2、R3、R4)と、前記トランスのリファレンスを確保するために前記送電側一次コイルの中点端子(T1c)に前記直流電圧を印加するためのリファレンス回路(RFC)と、前記第1、第2の分圧抵抗の出力電圧がゲート側に印加され、前記送電側一次コイルの第1の(+)端子(T1a)及び前記中点端子間、第1の(−)端子(T1b)及び前記中点端子間のそれぞれの印加電圧を増幅してドレイン電圧を生成するための第1、第2のスイッチング素子(FET1、FET2)、前記送電側一次コイルの前記(+)端子及び前記(−)端子間に並列接続されるコンデンサ(C)で構成される自励式発振回路(10)とを備え、
前記自励式発振回路を構成する前記コンデンサにより発生する電圧をもとに前記送電側二次コイルの第2の(+)端子(T2a)及び第2の(−)端子(T2b)間に誘導電圧を発生させ、前記誘電電圧を前記第1、第2のスイッチング素子のゲート側にフィードバックで印加することにより、前記送電側一次コイルの前記(+)端子及び前記(−)端子間に前記ドレイン電圧を印加することを特徴とする非接触給電装置。
A non-contact power feeding device that performs non-contact power supply from a power transmission side resonance unit (1) to a power reception side resonance unit (2) via a transformer (3),
The transformer includes a power transmission side primary coil (L1) and a power transmission side secondary coil (L2) that are magnetically coupled, and a power reception side coil (L3) for receiving power transmitted from the power transmission side primary coil. And
The power transmission side resonance unit includes first and second voltage dividing resistors (R1, R2, R3, R4) for dividing a DC voltage (V0), and the power transmission side primary for securing a reference for the transformer. A reference circuit (RFC) for applying the DC voltage to the middle point terminal (T1c) of the coil, and output voltages of the first and second voltage dividing resistors are applied to the gate side, and the power transmission side primary coil A first voltage for amplifying the applied voltage between the first (+) terminal (T1a) and the midpoint terminal and between the first (−) terminal (T1b) and the midpoint terminal to generate a drain voltage. 1, a self-excited oscillation circuit (10) composed of a second switching element (FET1, FET2), a capacitor (C) connected in parallel between the (+) terminal and the (−) terminal of the power transmission side primary coil. )
An induced voltage between the second (+) terminal (T2a) and the second (-) terminal (T2b) of the secondary coil on the power transmission side based on the voltage generated by the capacitor constituting the self-excited oscillation circuit And applying the dielectric voltage to the gate sides of the first and second switching elements by feedback, the drain voltage between the (+) terminal and the (−) terminal of the power transmission side primary coil. A non-contact power feeding device characterized by applying
前記送電側一次コイル及び前記送電側二次コイルは、空芯コイルで形成されることを特徴とする請求項1記載の非接触給電装置。   The contactless power feeding device according to claim 1, wherein the power transmission side primary coil and the power transmission side secondary coil are formed of air-core coils.
JP2011038105A 2011-02-24 2011-02-24 Non-contact power supply device Withdrawn JP2012175880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038105A JP2012175880A (en) 2011-02-24 2011-02-24 Non-contact power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038105A JP2012175880A (en) 2011-02-24 2011-02-24 Non-contact power supply device

Publications (1)

Publication Number Publication Date
JP2012175880A true JP2012175880A (en) 2012-09-10

Family

ID=46978225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038105A Withdrawn JP2012175880A (en) 2011-02-24 2011-02-24 Non-contact power supply device

Country Status (1)

Country Link
JP (1) JP2012175880A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059857A1 (en) * 2018-09-21 2020-03-26 大日本印刷株式会社 Coil pair, power-sending device, power-receiving device, and power transmission system
CN112187056A (en) * 2019-07-04 2021-01-05 胜美达集团株式会社 Power supply systems and DC-DC converters
CN113382509A (en) * 2021-06-08 2021-09-10 广东科谷智能科技有限公司 Lighting driving power supply, control circuit and PCB
WO2022269966A1 (en) * 2021-06-21 2022-12-29 スミダコーポレーション株式会社 Inverter circuit and electric field coupling non-contact power feeding device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059857A1 (en) * 2018-09-21 2020-03-26 大日本印刷株式会社 Coil pair, power-sending device, power-receiving device, and power transmission system
JP2020047896A (en) * 2018-09-21 2020-03-26 大日本印刷株式会社 Coil pair, power transmission device, power reception device and power transmission system
JP7148842B2 (en) 2018-09-21 2022-10-06 大日本印刷株式会社 Coil pair, power transmitting device, power receiving device, and power transmission system
CN112187056A (en) * 2019-07-04 2021-01-05 胜美达集团株式会社 Power supply systems and DC-DC converters
EP3761498A1 (en) * 2019-07-04 2021-01-06 Sumida Corporation Power supply system and dc/dc converter
CN112187056B (en) * 2019-07-04 2024-09-03 胜美达集团株式会社 Power supply system and DC-DC converter
CN113382509A (en) * 2021-06-08 2021-09-10 广东科谷智能科技有限公司 Lighting driving power supply, control circuit and PCB
WO2022269966A1 (en) * 2021-06-21 2022-12-29 スミダコーポレーション株式会社 Inverter circuit and electric field coupling non-contact power feeding device
JP2023001500A (en) * 2021-06-21 2023-01-06 スミダコーポレーション株式会社 Inverter circuit, and electric field coupling type non-contact power-feeding device
EP4362315A4 (en) * 2021-06-21 2025-05-28 Sumida Corporation Inverter circuit and contactless power supply device with electrical field coupling
JP7694187B2 (en) 2021-06-21 2025-06-18 スミダコーポレーション株式会社 Inverter circuit and electric field coupling type non-contact power supply device

Similar Documents

Publication Publication Date Title
JP6640177B2 (en) Isolated DC / DC converter
JP4898663B2 (en) Non-contact energy transmission apparatus and method
US11817834B2 (en) High frequency wireless power transfer system, transmitter, and receiver therefor
JP5764032B2 (en) Wireless power feeding device, power receiving device and power feeding system
WO2016143527A1 (en) Isolated switching power source
US9722499B2 (en) Energy transfer element with capacitor compensated cancellation and balance shield windings
US9871416B2 (en) Resonant type high frequency power supply device
US20080150665A1 (en) Magnetic element and magnetic core assembly having reduced winding loss
EP2612427A2 (en) Circuit arrangement and method for reducing common-mode noise in a switched-mode power supply, and a switched-mode power supply
US8379415B2 (en) Systems and methods for reducing EMI in switch mode converter systems
CN107834856A (en) DC DC Changer Devices
JP2012175880A (en) Non-contact power supply device
WO2016113949A1 (en) Electric power supply device
JP2025501604A (en) Differential rectifier for use in a wireless power receiver and method for rectifying a power signal - Patents.com
JP6604352B2 (en) Wireless power transmission apparatus and wireless power transmission system
US20160105154A1 (en) High-frequency generator
JP2013081283A (en) Signal transmission transformer for switching power supply and switching power supply device
EP3928334A1 (en) A common mode choke
US20190036348A1 (en) Resonant power transfer
JP2001167928A (en) Printed circuit board
JP2015179708A (en) Transformer and resonance type converter
JP2014150690A (en) Current resonance type switching power source
JP2015053765A (en) Llc current resonance type switching power-supply device
JP2012175033A (en) Printed circuit board coil
JP2019013078A (en) Contactless power transmission device, contactless power reception device and contactless power transfer device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513