JP2012172248A - Method for treating electroless nickel plating waste solution - Google Patents
Method for treating electroless nickel plating waste solution Download PDFInfo
- Publication number
- JP2012172248A JP2012172248A JP2011038277A JP2011038277A JP2012172248A JP 2012172248 A JP2012172248 A JP 2012172248A JP 2011038277 A JP2011038277 A JP 2011038277A JP 2011038277 A JP2011038277 A JP 2011038277A JP 2012172248 A JP2012172248 A JP 2012172248A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- nickel
- aging solution
- nickel plating
- electroless nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 59
- 239000002699 waste material Substances 0.000 title claims abstract description 42
- 238000007747 plating Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 66
- 239000007788 liquid Substances 0.000 claims abstract description 65
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 30
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 30
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 30
- 239000010802 sludge Substances 0.000 claims abstract description 29
- 230000032683 aging Effects 0.000 claims description 60
- 239000007787 solid Substances 0.000 claims description 12
- 238000000967 suction filtration Methods 0.000 claims description 9
- 238000000926 separation method Methods 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 59
- 150000002815 nickel Chemical class 0.000 description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 11
- 239000000706 filtrate Substances 0.000 description 11
- 239000011574 phosphorus Substances 0.000 description 11
- 229910052698 phosphorus Inorganic materials 0.000 description 11
- 238000001914 filtration Methods 0.000 description 9
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229940043430 calcium compound Drugs 0.000 description 2
- 150000001674 calcium compounds Chemical class 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001467 sodium calcium phosphate Inorganic materials 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XWKBMOUUGHARTI-UHFFFAOYSA-N tricalcium;diphosphite Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])[O-].[O-]P([O-])[O-] XWKBMOUUGHARTI-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Chemically Coating (AREA)
- Activated Sludge Processes (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は無電解ニッケルめっきの廃液処理方法に関する。 The present invention relates to a waste liquid treatment method for electroless nickel plating.
従来から、プラスチック、セラミックスのような不導体の表面にニッケル薄膜を形成するために、無電解ニッケルめっきが行なわれている。無電解ニッケルめっきでは、主としてニッケル塩と、還元剤、キレート剤とを含有するめっき液に上記不導体である被処理物を浸漬し、上記ニッケル塩を上記還元剤で還元することによって金属ニッケルを上記被処理物表面に析出させる。
上記還元剤としては主として次亜リン酸が使用されているが、上記メッキ工程が進行するにつれ、上記還元剤は酸化され、上記ニッケル塩は消費されていくから、適宜上記還元剤やニッケル塩を補給することが必要である。
このような無電解ニッケルめっき工程にあっては、めっき工程が進行するにつれ、上記還元剤の酸化物等の反応残渣が蓄積され、めっき液のめっき処理能力が低下していくから、ある時点でめっき液の更新が必要となる。そして処理能力が低下しためっき液は廃液として廃棄されるが、上記廃液(老化液)には上記還元剤の酸化物、残存ニッケル塩、キレート剤、pH調整剤等のBOD成分、COD成分が数万ppmの単位で含まれており、環境汚染を防止するためにも該老化液に含まれる上記BOD成分、COD成分等の除去処理が必要である。
上記処理方法として、従来からフェントン酸化処理方法、次亜塩素酸カルシウムによる処理方法、オゾンによる処理方法、電解酸化処理方法、光触媒を用いて光照射による酸化処理方法等が行なわれてきた。しかし上記処理方法は酸化処理効果が悪かったり、処理時間が長かったり、高濃度でBOD成分、COD成分を含む廃液に対しては処理効果が充分でなかったり、あるいは処理操作が煩雑であったり、多量の薬品を使用する等課題が多かった。
Conventionally, electroless nickel plating has been performed to form a nickel thin film on the surface of a nonconductor such as plastic or ceramic. In electroless nickel plating, metal nickel is obtained by immersing the non-conductive object in a plating solution mainly containing a nickel salt, a reducing agent, and a chelating agent, and reducing the nickel salt with the reducing agent. It is deposited on the surface of the workpiece.
Hypophosphorous acid is mainly used as the reducing agent. However, as the plating process proceeds, the reducing agent is oxidized and the nickel salt is consumed. It is necessary to replenish.
In such an electroless nickel plating process, as the plating process proceeds, reaction residues such as oxides of the reducing agent accumulate, and the plating treatment capacity of the plating solution decreases. The plating solution needs to be renewed. The plating solution with a reduced processing capacity is discarded as a waste solution, and the waste solution (aging solution) contains a number of BOD components and COD components such as oxides of the reducing agent, residual nickel salts, chelating agents, and pH adjusting agents. In order to prevent environmental pollution, it is necessary to remove the BOD component, the COD component, etc. contained in the aging solution in order to prevent environmental pollution.
As the above-mentioned treatment methods, a Fenton oxidation treatment method, a treatment method with calcium hypochlorite, a treatment method with ozone, an electrolytic oxidation treatment method, an oxidation treatment method by light irradiation using a photocatalyst, and the like have been conventionally performed. However, the above-mentioned treatment method has a poor oxidation treatment effect, a long treatment time, a high concentration of waste liquid containing BOD component and COD component, a treatment effect is not sufficient, or a treatment operation is complicated, There were many problems such as using a large amount of chemicals.
上記課題を解決するために、特許文献1では第1工程として廃液のpHを5.5〜9に保ちつつ90〜110℃に加熱することによって廃液中に残存する次亜リン酸を亜リン酸へ酸化させ、第2工程として上記廃液のpHを11〜12に保持しつつカルシウム源を添加することで上記廃液中の亜リン酸および正リン酸をカルシウム塩として除去し、第3工程として廃液中に残った亜リン酸を、オゾン等を使用して正リン酸に酸化することで、更に廃液中のリン成分をカルシウム塩として沈殿除去する方法が開示されている。
また特許文献2では第1工程として廃液に無機酸を添加してpH2未満の酸性廃液として廃液中の次亜リン酸ナトリウム由来のナトリウムを塩として除去し、第2工程として上記廃液にカルシウム化合物を添加してpHを2〜7に調整し、亜リン酸カルシウム及び硫酸カルシウムを含む沈殿を除去し、第3工程として上記廃液にアルカリ剤を添加してpHを9.5以上に調整し、水酸化ニッケルの沈殿を生成せしめて除去する方法が開示されている。
In order to solve the above problems, in Patent Document 1, as a first step, phosphorous acid is used to remove hypophosphorous acid remaining in the waste liquid by heating to 90 to 110 ° C. while maintaining the pH of the waste liquid at 5.5 to 9. As a second step, phosphorous acid and orthophosphoric acid in the waste liquid are removed as calcium salts by adding a calcium source while maintaining the pH of the waste liquid at 11 to 12 as a second step, and a waste solution as a third step. A method is disclosed in which phosphorous acid remaining therein is oxidized to normal phosphoric acid using ozone or the like, and further, the phosphorus component in the waste liquid is precipitated and removed as a calcium salt.
In Patent Document 2, an inorganic acid is added to the waste liquid as the first step, and sodium hypophosphite-derived sodium in the waste liquid is removed as a salt as an acidic waste liquid having a pH of less than 2, and a calcium compound is added to the waste liquid as the second step. Add to adjust pH to 2-7, remove precipitates containing calcium phosphite and calcium sulfate, add alkaline agent to the waste liquid as third step to adjust pH to 9.5 or higher, nickel hydroxide A method for generating and removing the precipitate is disclosed.
上記特許文献1の方法では、二段階のpH調整工程、更には酸化工程が必要であり、工程が煩雑になりかつ酸化工程では効率よく酸化を行なうことが困難で、かつ酸化に長時間を要するうえ、沈殿除去が二段階必要となる。
上記特許文献2の方法では、第1工程でのpH調整のために無機酸が必要であり、更に第1工程において廃液のpHを2未満にするので、第2工程において廃液のpHを2〜7に調整するためのカルシウム化合物の使用量が多くなる。また沈殿除去工程も二段階必要となる。
The method of Patent Document 1 requires a two-stage pH adjustment step and further an oxidation step, which makes the process complicated, makes it difficult to efficiently oxidize in the oxidation step, and requires a long time for the oxidation. In addition, two stages of precipitation removal are required.
In the method of Patent Document 2, an inorganic acid is necessary for pH adjustment in the first step, and the pH of the waste liquid is set to less than 2 in the first step. The amount of calcium compound used to adjust to 7 increases. Also, the precipitation removal process requires two steps.
本発明は上記従来の問題を解決する手段として、無電解ニッケルめっき廃液である老化液に水酸化カルシウムを添加することで上記老化液のpHを6〜7とする工程1、上記工程1で処理された上記老化液に、更に水酸化ナトリウムを添加することで該老化液のpHを12以上とし、固体として析出するニッケル含有成分を該老化液から分離し、該老化液のニッケル濃度を20ppm以下とする工程2、上記工程2で得られた老化液を被処理液として活性汚泥処理する工程3、以上の工程を有する無電解ニッケルめっき廃液の処理方法を提供するものである。
この場合、上記工程1、工程2で用いられる水酸化カルシウムと水酸化ナトリウムの量が1:0.05〜1:0.1モル比であることが望ましい。
更に上記工程2において、固体として析出するニッケル含有成分を老化液から分離する手段がフィルタープレスまたは吸引濾過であることが望ましい。
In the present invention, as means for solving the above-mentioned conventional problems, treatment is performed in Step 1 and Step 1 in which the pH of the aging solution is set to 6 to 7 by adding calcium hydroxide to the aging solution which is an electroless nickel plating waste solution. Further, sodium hydroxide is added to the above-described aging solution so that the pH of the aging solution is 12 or more, and the nickel-containing component that precipitates as a solid is separated from the aging solution, and the nickel concentration of the aging solution is 20 ppm or less The present invention provides a method for treating an electroless nickel plating waste liquid comprising the steps 2 and 3, a step 3 for treating activated sludge using the aging solution obtained in the step 2 as a liquid to be treated, and the above steps.
In this case, it is desirable that the amount of calcium hydroxide and sodium hydroxide used in Step 1 and Step 2 is 1: 0.05 to 1: 0.1 molar ratio.
Furthermore, in the step 2, it is desirable that the means for separating the nickel-containing component precipitated as a solid from the aging solution is a filter press or suction filtration.
〔作用〕
無電解ニッケルめっき廃液(老化液)に対して活性汚泥処理を施すためには、該老化液中のニッケル濃度を20ppm(20mg/l)以下にすることが必要である。上記老化液は、多量のニッケル塩およびキレート剤、pH調整剤等のBOD成分、COD成分を含むので、活性汚泥処理に先立ってニッケル塩が20ppm以下になるように過剰のニッケル塩を除去することが必要である。上記老化液中のニッケル塩を除去するためには、該老化液をアルカリ性として該老化液中のニッケル塩を水酸化ニッケルとして液分から析出させればよく、この場合pH12以上のアルカリ性とすることで該老化液中のニッケル濃度を20ppm(20mg/l)以下とすることが出来る。
しかしここで、上記老化液のpHを12以上とするために、濾過や取扱いの容易さから水酸化カルシウムのみを添加した場合、上記水酸化カルシウムの未溶解粒子の表面にリン酸カルシウムの結晶が析出してしまい、上記水酸化カルシウムと老化液中のニッケル塩との更なる反応を阻害するようになるから、上記水酸化カルシウム粒子が不溶性となり、上記老化液中の水酸化カルシウムとニッケル塩との更なる反応を促進し、上記老化液を所定のpHとするためには多量の水酸化カルシウムが必要となる。
一方水酸化ナトリウムのみを添加した場合には、上記水酸化ナトリウムによる界面活性剤としての分散効果のために、析出する水酸化ニッケルが微粒子となって廃液中に細かく分散してしまうため、濾過性が悪くなり、固液分離効率が低いものとなる。
そのため本発明では、先ず工程1では老化液に水酸化カルシウムを添加してpHを6〜7に調整する。上記工程1におけるpH領域では、析出する水酸化ニッケル結晶の量も過多にならず、水酸化カルシウム粒子の不溶性化も著しくない。しかし工程1においては、上記老化液中にいまだ析出しないニッケル塩がある程度の量で残存しているので、沈殿を分離することなく更に工程2では水酸化ナトリウムを添加してpHを12以上にして残存するニッケル塩を水酸化ニッケルとして析出させ、上記老化液中のニッケル濃度を20ppm以下にする。
上記工程2においては、上記老化液中のpHは工程1で既に6〜7に調整されているから、pH12以上にするための水酸化ナトリウム使用量も少なくて済み、したがって上記老化液中に析出したニッケルを含む固形分は効率良く分離され、該老化液中のニッケル濃度を20ppm以下にすることが容易に実施される。
[Action]
In order to perform activated sludge treatment on the electroless nickel plating waste liquid (aging solution), it is necessary to make the nickel concentration in the aging solution 20 ppm (20 mg / l) or less. Since the aging solution contains a large amount of nickel salt and a BOD component such as a chelating agent, a pH adjuster, and a COD component, the excess nickel salt should be removed so that the nickel salt becomes 20 ppm or less prior to the activated sludge treatment. is required. In order to remove the nickel salt in the aging solution, the aging solution may be made alkaline, and the nickel salt in the aging solution may be precipitated from the liquid as nickel hydroxide. The nickel concentration in the aging solution can be 20 ppm (20 mg / l) or less.
However, when only the calcium hydroxide is added for ease of filtration and handling in order to set the pH of the aging solution to 12 or more, calcium phosphate crystals are precipitated on the surface of the calcium hydroxide undissolved particles. As a result, further reaction between the calcium hydroxide and the nickel salt in the aging solution is inhibited, so that the calcium hydroxide particles become insoluble, and the calcium hydroxide and nickel salt in the aging solution become more insoluble. A large amount of calcium hydroxide is required to promote the reaction and bring the aging solution to a predetermined pH.
On the other hand, when only sodium hydroxide is added, the precipitated nickel hydroxide becomes fine particles and is finely dispersed in the waste liquid due to the dispersion effect of the sodium hydroxide as a surfactant. And the solid-liquid separation efficiency is low.
Therefore, in the present invention, first, in step 1, calcium hydroxide is added to the aging solution to adjust the pH to 6-7. In the pH range in the above step 1, the amount of precipitated nickel hydroxide crystals is not excessive, and the insolubilization of calcium hydroxide particles is not significant. However, in Step 1, since a certain amount of nickel salt that has not yet precipitated remains in the aging solution, sodium hydroxide is further added to pH 12 or more in Step 2 without separating the precipitate. The remaining nickel salt is precipitated as nickel hydroxide so that the nickel concentration in the aging solution is 20 ppm or less.
In the step 2, the pH in the aging solution is already adjusted to 6 to 7 in the step 1, so that the amount of sodium hydroxide used for making the pH 12 or more can be reduced, and thus the aging solution is precipitated in the aging solution. The solid content containing nickel is efficiently separated, and the nickel concentration in the aging solution is easily reduced to 20 ppm or less.
活性汚泥処理は生活排水、工業排水などの廃液中のBOD成分やCOD成分等の除去に一般的に用いられている方法であるが、上記工程1、工程2によって処理された老化液の場合には、上記したように残存ニッケル濃度は20ppm以下となり、活性汚泥処理が可能な液が得られる。そこで本発明では上記活性汚泥処理を最終的な工程3として行なうことによって、工程1では沈殿を分離する必要がなくなり、工程2で固液分離された液分をそのまま活性汚泥処理してリン、BOD成分、COD成分等を効率よく除去し、上記老化液は河川等に排水可能な状態にまで浄化される。
更に、上記工程1、工程2で用いられる水酸化カルシウムと水酸化ナトリウムの使用量は、上記したように大巾に削減することが出来るが、水酸化カルシウムと水酸化ナトリウムの量が1:0.05〜1:0.1モル比であると、上記老化液中の水酸化ニッケル生成反応が効率良く行なわれ、該老化液中のニッケルの除去が円滑に行なわれる。
また更に、上記工程2における固液分離を、フィルタープレスまたは吸引濾過を用いて行なうことでより簡便かつ効率よく固液分離処理を行なうことが出来る。
Activated sludge treatment is a method generally used for removing BOD components and COD components in waste liquids such as domestic wastewater and industrial wastewater, but in the case of aging liquid treated by the above-mentioned Step 1 and Step 2. As described above, the residual nickel concentration is 20 ppm or less, and a liquid capable of being treated with activated sludge is obtained. Therefore, in the present invention, by performing the activated sludge treatment as the final step 3, it is not necessary to separate the precipitate in the step 1, and the liquid separated in the step 2 is directly treated with activated sludge to obtain phosphorus and BOD. Components, COD components and the like are efficiently removed, and the aging liquid is purified to a state where it can be drained into a river or the like.
Further, the amount of calcium hydroxide and sodium hydroxide used in the above steps 1 and 2 can be greatly reduced as described above, but the amount of calcium hydroxide and sodium hydroxide is 1: 0. When the molar ratio is from 0.05 to 1: 0.1, the nickel hydroxide formation reaction in the aging solution is efficiently performed, and the nickel in the aging solution is smoothly removed.
Furthermore, the solid-liquid separation process in step 2 can be performed more easily and efficiently by performing the solid-liquid separation using a filter press or suction filtration.
〔効果〕
本発明によれば、無電解ニッケルめっき廃液(老化液)からニッケルを20ppm以下になるまで除去するための処理を、使用する薬品の量を出来るだけ少なくし、かつ工程を短縮して、処理操作も簡便にすることで経済的かつ効果的に行なうことができ、このようにしてニッケルを20ppm以下になるまで除去された上記老化液に対しては、活性汚泥処理を円滑に行なうことができる。
〔effect〕
According to the present invention, the treatment for removing nickel from the electroless nickel plating waste solution (aging solution) to 20 ppm or less reduces the amount of chemicals used, shortens the process, and performs the treatment operation. However, the activated sludge treatment can be smoothly performed on the aging liquid from which nickel has been removed to 20 ppm or less in this manner.
本発明の廃液処理方法を下記に詳細に説明する。
〔工程1〕
本発明の廃液処理方法の工程1では、老化液に水酸化カルシウムを添加することで、上記老化液のpHを6〜7に調整する。この時点でニッケル、リン等がある程度固体として析出するが、本工程においては固液分離等の処理を行なわない。
本工程において調整される老化液のpHが6未満の場合、下記の工程2で水酸化ナトリウムを多量に添加しなければならなくなり、固液分離の効率も悪くなる。またpHが7を超えた場合には、前記したように未溶融の水酸化カルシウム粒子の表面にリン酸カルシウムの結晶が析出して、結果として水酸化カルシウムが不溶性化し易くなるから、該水酸化カルシウムの添加量が過剰となる。
The waste liquid treatment method of the present invention will be described in detail below.
[Step 1]
In step 1 of the waste liquid treatment method of the present invention, the pH of the aging solution is adjusted to 6 to 7 by adding calcium hydroxide to the aging solution. At this point, nickel, phosphorus and the like are precipitated to some extent as a solid, but in this step, solid-liquid separation or the like is not performed.
When the pH of the aging solution adjusted in this step is less than 6, it is necessary to add a large amount of sodium hydroxide in the following step 2, and the efficiency of solid-liquid separation also deteriorates. When the pH exceeds 7, as described above, calcium phosphate crystals are precipitated on the surface of the unmelted calcium hydroxide particles, and as a result, the calcium hydroxide is likely to be insoluble. Addition amount becomes excessive.
〔工程2〕
本発明の廃液処理方法の工程2では、上記工程1でpHを6〜7に調整された老化液に水酸化ナトリウムを添加することで、該老化液のpHを12以上に調整する。本工程ではpHを12以上とすることにより、老化液中に残存するニッケルを上記工程1よりも更に固体として析出せしめることが出来、該老化液から析出したニッケルを固形分として固液分離することで、ニッケル濃度を20ppm以下とすることが出来る。更に加えて本工程では、リンや他のBOD成分,COD成分も大部分が塩等として上記老化液から析出せしめることが出来るので、該塩等をも固形分として上記老化液から固液分離することが出来る。
ここで、上記老化液のpHが12未満の場合、液中のニッケルが充分に析出せず、上記固液分離後も老化液中にニッケルが20ppm以上残留することになる。
[Step 2]
In step 2 of the waste liquid treatment method of the present invention, the pH of the aging solution is adjusted to 12 or more by adding sodium hydroxide to the aging solution whose pH is adjusted to 6 to 7 in the above step 1. In this step, by setting the pH to 12 or more, nickel remaining in the aging solution can be precipitated as a solid more than in the above step 1, and the nickel precipitated from the aging solution is solid-liquid separated as a solid content. Thus, the nickel concentration can be 20 ppm or less. In addition, in this step, phosphorus, other BOD components, and COD components can be precipitated from the aging solution as most of the salt, etc., so that the solid is separated from the aging solution as a solid. I can do it.
Here, when the pH of the aging solution is less than 12, nickel in the solution does not sufficiently precipitate, and nickel remains in the aging solution after the solid-liquid separation by 20 ppm or more.
上記工程2における固液分離手段はフィルタープレス、吸引濾過法、沈殿法、遠心分離法等、特に限定されないが、フィルタープレスまたは吸引濾過による固液分離方法を用いることが処理の容易さ、処理速度の点から望ましい。 The solid-liquid separation means in the step 2 is not particularly limited, such as a filter press, a suction filtration method, a precipitation method, a centrifugal separation method, etc., but the use of a solid-liquid separation method by a filter press or suction filtration facilitates processing and processing speed. From the point of view is desirable.
ここに、工程1、工程2で用いられる水酸化カルシウムと水酸化ナトリウムの量が1:0.05〜1:0.1モル比であることが望ましい。1:0.05よりも水酸化カルシウムの比率が多いと水酸化カルシウムの量が水酸化ナトリウムに対して過剰となり、未溶解の水酸化カルシウム粒子の表面にリン酸カルシウムの結晶が析出し易くなるために、水酸化ニッケル生成反応が円滑に行なわれにくくなり、また1:0.1よりも水酸化ナトリウムの比率が多いと上記したように大量の水酸化ナトリウムが界面活性剤として作用するために上記固形分が液中に細かく分散し易くなり、固液分離時の濾過処理速度が低下する。またこのモル比範囲内において、水酸化カルシウムと水酸化ナトリウムの使用量が最少となる。 Here, it is desirable that the amount of calcium hydroxide and sodium hydroxide used in Step 1 and Step 2 is 1: 0.05 to 1: 0.1 molar ratio. When the ratio of calcium hydroxide is higher than 1: 0.05, the amount of calcium hydroxide is excessive with respect to sodium hydroxide, and calcium phosphate crystals are likely to precipitate on the surface of undissolved calcium hydroxide particles. When the ratio of sodium hydroxide is larger than 1: 0.1, a large amount of sodium hydroxide acts as a surfactant as described above. Minutes are easily dispersed finely in the liquid, and the filtration rate during solid-liquid separation is reduced. Also, within this molar ratio range, the amount of calcium hydroxide and sodium hydroxide used is minimized.
〔工程3〕
上記工程2における固液分離によって固形分を分離された上記老化液はニッケルの大部分が除去されており、残存ニッケル量は20ppm以下となる。しかし上記老化液中にはリンやBOD成分、COD成分がある程度残留している。
そこで本発明の廃液処理方法の工程3では、上記工程2で処理された老化液を被処理液として活性汚泥処理を行なう。活性汚泥処理を行うにあたり、pHを12以上に調整された上記老化液のpHを塩酸、硫酸等の酸を使用して、pH7〜8に調整する。そして上記老化液(被処理液)は残存ニッケル量が20ppm以下であるため、円滑に活性汚泥処理を施すことが充分可能なものとなっている。
この場合、活性汚泥処理方法であれば回分式活性汚泥法や連続式活性汚泥法、またはそれ以外の方法であっても構わない。一般的には槽内に空気吹き込み手段を具備した好気槽内に被処理液を充填し、該被処理液中に活性汚泥を分散させ、空気を吹き込みつつ好気的にBOD成分やCOD成分を分解処理する好気的活性汚泥処理が適用されるが、攪拌機を付した嫌気槽内に活性汚泥を分散させた被処理液を充填し、攪拌することによってBOD成分やCOD成分を分解する嫌気的活性汚泥処理が適用されてもよい。特に上記被処理液中にリンが大量に残留している場合には、好気性微生物存在下において雰囲気を酸素欠乏状態から好気性状態に変化させた時に、上記微生物がリン分を過剰に摂取することを利用して、嫌気槽と好気槽、または嫌気槽と無酸素槽と好気槽とを設けて微生物にポリリン酸を蓄積させることで被処理液中のリン分を除去する活性汚泥処理法が望ましい方法として挙げられる。
上記活性汚泥法を施された被処理液は、液中のリンやBOD成分,COD成分が効率的に生物学的分解除去され、このようにして浄化された被処理液は、分解物を沈殿分離した後、河川等に排水しても問題のない品質となる。
[Step 3]
The aging solution from which the solid content has been separated by the solid-liquid separation in the above step 2 has most of the nickel removed, and the amount of residual nickel is 20 ppm or less. However, phosphorus, BOD components, and COD components remain in the aging solution to some extent.
Therefore, in step 3 of the waste liquid treatment method of the present invention, activated sludge treatment is performed using the aging solution treated in step 2 as a liquid to be treated. In performing the activated sludge treatment, the pH of the aging solution whose pH is adjusted to 12 or more is adjusted to pH 7 to 8 using an acid such as hydrochloric acid or sulfuric acid. And since the said aging liquid (liquid to be treated) has a residual nickel amount of 20 ppm or less, the activated sludge treatment can be sufficiently performed smoothly.
In this case, as long as it is an activated sludge treatment method, a batch activated sludge method, a continuous activated sludge method, or other methods may be used. In general, the liquid to be treated is filled in an aerobic tank equipped with air blowing means in the tank, activated sludge is dispersed in the liquid to be treated, and BOD components and COD components are aerobically blown into the air. The aerobic activated sludge treatment that decomposes is applied, but the anaerobic tank in which an activated sludge is dispersed in an anaerobic tank equipped with a stirrer and agitated to decompose the BOD and COD components An activated sludge treatment may be applied. In particular, when a large amount of phosphorus remains in the liquid to be treated, when the atmosphere is changed from an oxygen-deficient state to an aerobic state in the presence of an aerobic microorganism, the microorganism ingests an excessive amount of phosphorus. Activated sludge treatment to remove phosphorus in the liquid to be treated by accumulating polyphosphoric acid in microorganisms by providing anaerobic tank and aerobic tank, or anaerobic tank, anoxic tank and aerobic tank Method is a desirable method.
The liquid to be treated that has been subjected to the above activated sludge method is biologically decomposed and removed of phosphorus, BOD components, and COD components in the liquid efficiently, and the liquid to be treated thus purified precipitates decomposition products. After separation, the quality will be satisfactory even if drained into rivers.
以下に本発明の一実施例を記載する。なお、本発明はこの実施例にのみ限定されるものではない。
〔実施例1〕
老化液である無電解ニッケルめっき廃液(ニッケル:4900mg/l)1リットルに、10質量%水酸化カルシウム水溶液2.4リットルを添加し、30分攪拌した。この時のpHは6.6であった。
次に10質量%水酸化ナトリウム水溶液132mlを添加してニッケルを析出させた。添加した水酸化カルシウムと水酸化ナトリウムのモル比は1:0.055である。この時のpHは12.0であった。これを吸引濾過によって濾過した。濾液中の残存ニッケル濃度は3.1mg/l(20ppm以下)であった。
An embodiment of the present invention will be described below. In addition, this invention is not limited only to this Example.
[Example 1]
To 1 liter of electroless nickel plating waste liquid (nickel: 4900 mg / l) which is an aging solution, 2.4 liter of 10 mass% calcium hydroxide aqueous solution was added and stirred for 30 minutes. The pH at this time was 6.6.
Next, 132 ml of 10 mass% sodium hydroxide aqueous solution was added to precipitate nickel. The molar ratio of added calcium hydroxide to sodium hydroxide is 1: 0.055. The pH at this time was 12.0. This was filtered by suction filtration. The residual nickel concentration in the filtrate was 3.1 mg / l (20 ppm or less).
〔参考例1〕
老化液である無電解ニッケルめっき廃液(ニッケル:4900mg/l)1リットルに、10質量%水酸化カルシウム水溶液3.08リットルを添加し、30分攪拌した。この時のpHは13.0であった。これを吸引濾過によって濾過したが、濾過性そのものは良いもののpHの調整が難しく、水酸化カルシウム水溶液の所要量(3.08リットル)が、実施例1の所要量(2.4リットル)に比べて、28vol%増となった。濾液中の残存ニッケル濃度は1.2mg/l(20ppm以下)であった。
[Reference Example 1]
To 1 liter of electroless nickel plating waste liquid (nickel: 4900 mg / l) which is an aging solution, 3.08 liter of 10 mass% calcium hydroxide aqueous solution was added and stirred for 30 minutes. The pH at this time was 13.0. Although this was filtered by suction filtration, although the filterability itself was good, it was difficult to adjust the pH, and the required amount of aqueous calcium hydroxide (3.08 liters) was compared with the required amount of Example 1 (2.4 liters). And increased by 28 vol%. The residual nickel concentration in the filtrate was 1.2 mg / l (20 ppm or less).
〔参考例2〕
無電解ニッケルめっき廃液(ニッケル:4900mg/l)1リットルに、10質量%水酸化ナトリウム水溶液496mlを添加し、30分攪拌した。この時のpHは12.0であった。これを吸引濾過によって濾過した。濾液中の残存ニッケル濃度は29mg/lであり、濾過にも長時間を要した。
[Reference Example 2]
To 1 liter of electroless nickel plating waste liquid (nickel: 4900 mg / l) was added 496 ml of a 10 mass% sodium hydroxide aqueous solution, and the mixture was stirred for 30 minutes. The pH at this time was 12.0. This was filtered by suction filtration. The residual nickel concentration in the filtrate was 29 mg / l, and filtration also took a long time.
実施例1、参考例1,2における吸引濾過を行なった際の濾過時間に対する濾液発生量のグラフを図1に示す。
実施例1では濾過時間と濾液発生量とに良好な相関がみられ、また濾液中の残存ニッケル濃度も活性汚泥処理を行なうことができるほど充分に低いものであった。
参考例1の水酸化カルシウムのみを添加したものは、濾液中の残存ニッケル濃度は低い値であったが、水酸化カルシウムの溶解速度が遅く、また水酸化カルシウムのイオン解離が少ないため多量の水酸化カルシウムを添加する必要があり、更に所定のpHにコントロールするのが困難であった。
参考例2の水酸化ナトリウムのみを添加したものは、濾液中の残存ニッケル濃度が高く、活性汚泥処理を行なうことが困難であり、更に濾過処理において、水酸化ニッケル等の固体成分が微粒子として液中に分散しており、濾過初期(図1のグラフで濾過時間が1分までの間)から濾材の目詰まりが生じ、濾液発生量の伸びが悪くなった。
FIG. 1 shows a graph of the amount of filtrate generated with respect to the filtration time when performing suction filtration in Example 1 and Reference Examples 1 and 2.
In Example 1, a good correlation was found between the filtration time and the amount of filtrate produced, and the residual nickel concentration in the filtrate was sufficiently low to enable the activated sludge treatment.
In the case where only calcium hydroxide of Reference Example 1 was added, the residual nickel concentration in the filtrate was low, but the dissolution rate of calcium hydroxide was slow and the ion dissociation of calcium hydroxide was small, so that a large amount of water was used. It was necessary to add calcium oxide, and it was difficult to control to a predetermined pH.
In the case of adding only sodium hydroxide in Reference Example 2, the residual nickel concentration in the filtrate is high and it is difficult to perform activated sludge treatment. Further, in the filtration treatment, solid components such as nickel hydroxide are liquid as fine particles. The filter medium was clogged from the beginning of filtration (the filtration time was up to 1 minute in the graph of FIG. 1), and the increase in the amount of filtrate produced worsened.
実施例1で行なった廃液処理によって得られた濾液を、希塩酸によってpHを7に調整し、さらに水道水によって20倍に希釈したものを被処理液として、活性汚泥処理を行なった。処理前、工程2の固液分離後、活性汚泥処理後、それぞれの廃液中のニッケル濃度、BOD値、COD値、リン濃度を表1に示す。 The filtrate obtained by the waste liquid treatment performed in Example 1 was adjusted to pH 7 with dilute hydrochloric acid, and further diluted 20-fold with tap water to carry out activated sludge treatment using the liquid to be treated. Table 1 shows the nickel concentration, BOD value, COD value, and phosphorus concentration in each waste liquid before treatment, after solid-liquid separation in step 2, and after activated sludge treatment.
表1に示すように、実施例1の処理によってニッケル濃度を20mg以下にされた廃液は、活性汚泥処理によって更にリン、BOD成分、COD成分が効率的に分解、除去されていることが確認された。 As shown in Table 1, it was confirmed that the waste liquid whose nickel concentration was reduced to 20 mg or less by the treatment of Example 1 further decomposed and removed phosphorus, BOD component, and COD component efficiently by activated sludge treatment. It was.
本発明は無電解ニッケルめっき廃液(老化液)の処理を、薬品の使用量を少なく、簡便に行なうことができるから、産業上使用可能である。
The present invention can be used industrially because the treatment of the electroless nickel plating waste liquid (aging solution) can be easily performed with a small amount of chemicals.
Claims (3)
上記工程1で処理された上記老化液に、更に水酸化ナトリウムを添加することで該老化液のpHを12以上とし、固体として析出するニッケル含有成分を該老化液から分離し、該老化液のニッケル濃度を20ppm以下とする工程2、
上記工程2で得られた老化液を被処理液として活性汚泥処理する工程3、
以上の工程を有することを特徴とする無電解ニッケルめっき廃液の処理方法。 Step 1, in which the pH of the aging solution is adjusted to 6 to 7 by adding calcium hydroxide to the aging solution which is an electroless nickel plating waste solution;
By further adding sodium hydroxide to the aging solution treated in the above step 1, the pH of the aging solution is set to 12 or more, and the nickel-containing component precipitated as a solid is separated from the aging solution, Step 2 in which the nickel concentration is 20 ppm or less,
Step 3 for treating activated sludge using the aging solution obtained in Step 2 as a liquid to be treated,
A method for treating an electroless nickel plating waste liquid, comprising the steps described above.
The method for treating an electroless nickel plating waste liquid according to claim 1 or 2, wherein in the step 2, the means for separating the nickel-containing component precipitated as a solid from the aging solution is a filter press or suction filtration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011038277A JP5628704B2 (en) | 2011-02-24 | 2011-02-24 | Treatment method of electroless nickel plating waste liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011038277A JP5628704B2 (en) | 2011-02-24 | 2011-02-24 | Treatment method of electroless nickel plating waste liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012172248A true JP2012172248A (en) | 2012-09-10 |
JP5628704B2 JP5628704B2 (en) | 2014-11-19 |
Family
ID=46975441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011038277A Active JP5628704B2 (en) | 2011-02-24 | 2011-02-24 | Treatment method of electroless nickel plating waste liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5628704B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016137429A (en) * | 2015-01-27 | 2016-08-04 | 王子ホールディングス株式会社 | Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment |
JP2017155275A (en) * | 2016-03-01 | 2017-09-07 | 株式会社荏原製作所 | Electroless plating apparatus and electroless plating method |
CN108059309A (en) * | 2018-01-30 | 2018-05-22 | 深圳职业技术学院 | A kind of plating method for processing organic wastewater and device |
CN110581274A (en) * | 2019-10-09 | 2019-12-17 | 湖南工程学院 | A kind of preparation method of carbon-coated sodium vanadium phosphate |
CN110592561A (en) * | 2019-10-09 | 2019-12-20 | 湖南工程学院 | A kind of treatment method of electroless nickel plating waste liquid |
-
2011
- 2011-02-24 JP JP2011038277A patent/JP5628704B2/en active Active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016137429A (en) * | 2015-01-27 | 2016-08-04 | 王子ホールディングス株式会社 | Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment |
JP2017155275A (en) * | 2016-03-01 | 2017-09-07 | 株式会社荏原製作所 | Electroless plating apparatus and electroless plating method |
CN108059309A (en) * | 2018-01-30 | 2018-05-22 | 深圳职业技术学院 | A kind of plating method for processing organic wastewater and device |
CN110581274A (en) * | 2019-10-09 | 2019-12-17 | 湖南工程学院 | A kind of preparation method of carbon-coated sodium vanadium phosphate |
CN110592561A (en) * | 2019-10-09 | 2019-12-20 | 湖南工程学院 | A kind of treatment method of electroless nickel plating waste liquid |
CN110592561B (en) * | 2019-10-09 | 2021-08-27 | 湖南工程学院 | Treatment method of chemical nickel plating waste liquid |
CN110581274B (en) * | 2019-10-09 | 2022-04-22 | 湖南工程学院 | A kind of preparation method of carbon-coated sodium vanadium phosphate |
Also Published As
Publication number | Publication date |
---|---|
JP5628704B2 (en) | 2014-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101636353B (en) | Method of recycling electroless nickel waste | |
US20130168314A1 (en) | Method for Treating Wastewater Containing Copper Complex | |
JP5628704B2 (en) | Treatment method of electroless nickel plating waste liquid | |
CN105601036A (en) | Method for treating chemical nickel plating waste water on basis of ozonation and biochemical technique | |
JP2014213264A (en) | Method and device for treating fluoride-containing water | |
US3763038A (en) | Process for purifying water that contains organic matter | |
JP5929987B2 (en) | Biological treatment method and biological treatment apparatus | |
CN108439646B (en) | A kind of pretreatment method of high-concentration organic wastewater in the production process of mercapto heterocyclic compounds | |
CN106029583B (en) | The processing method and processing unit of water containing ammonia | |
CN111995181A (en) | Treatment method of photovoltaic industrial wastewater | |
JP6623288B2 (en) | Method and apparatus for treating wastewater containing hydrogen sulfide | |
KR101918832B1 (en) | Copper-containing wastewater treatment method and treatment device | |
JP2007253073A (en) | Water treatment apparatus and water treatment method | |
JP2014233692A (en) | Treatment method and treatment device for hard-biodegradable organic matter-containing water | |
JP7199685B2 (en) | Wastewater treatment equipment and wastewater treatment method | |
CN113371934A (en) | Sewage treatment method | |
JPH10180266A (en) | Treatment of waste liquid of electroless nickel plating | |
JP4049407B2 (en) | Treatment method of electroless nickel-phosphorus plating waste liquid | |
JP2014221449A (en) | Method and apparatus for processing water containing organic hardly-decomposable substance | |
CN112960829B (en) | Process for treating copper-containing wastewater generated in production of printed circuit boards | |
CN115925149B (en) | A method for preparing a raw material solution for slowing down membrane pollution in a forward osmosis concentration process of chemical nickel plating waste tank liquid | |
CN118812065A (en) | A method for treating high-concentration chemical nickel plating aging solution to meet standards | |
JP2023167782A (en) | Method and apparatus for treating wastewater containing organic chelating agent and heavy metals | |
CN119392343A (en) | A method for regenerating nickel-phosphorus alloy electroplating waste liquid | |
CN114163021A (en) | Method for treating heavy metal wastewater containing complex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140922 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141002 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5628704 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |