JP2012162795A - Hot rolled ferritic stainless steel sheet excellent in cold cracking nature and method of manufacturing the same - Google Patents
Hot rolled ferritic stainless steel sheet excellent in cold cracking nature and method of manufacturing the same Download PDFInfo
- Publication number
- JP2012162795A JP2012162795A JP2011026277A JP2011026277A JP2012162795A JP 2012162795 A JP2012162795 A JP 2012162795A JP 2011026277 A JP2011026277 A JP 2011026277A JP 2011026277 A JP2011026277 A JP 2011026277A JP 2012162795 A JP2012162795 A JP 2012162795A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- steel sheet
- rolled steel
- ferritic stainless
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
【課題】冷間割れ性に優れたフェライト系ステンレス熱延鋼板を提供する。
【解決手段】質量%で、C:0.0010%〜0.010%、Si:0.01%〜1.0%、Mn:0.01%〜2.00%、P:0.040%未満、S:0.010%以下、Cr:10.0%〜30.0%、Cu:1.0〜2.0%、Al:0.001%〜0.10%、及び、N:0.0030%〜0.0200%をそれぞれ含有し、残部がFeおよび不可避的不純物からなる鋼組成を有し、結晶粒内において、Cuよりなる最大径5nm以下のCuクラスタの個数密度が2×1013個/mm3未満であることを特徴とする冷間割れ性に優れたフェライト系ステンレス熱延鋼板を採用する。
【選択図】なしA ferritic stainless hot rolled steel sheet having excellent cold cracking properties is provided.
SOLUTION: In mass%, C: 0.0010% to 0.010%, Si: 0.01% to 1.0%, Mn: 0.01% to 2.00%, P: 0.040% Less than S, 0.010% or less, Cr: 10.0% to 30.0%, Cu: 1.0 to 2.0%, Al: 0.001% to 0.10%, and N: 0 .0030% to 0.0200% respectively, the balance being a steel composition composed of Fe and inevitable impurities, and the number density of Cu clusters having a maximum diameter of 5 nm or less made of Cu in the crystal grains is 2 × 10 A ferritic stainless hot-rolled steel sheet having excellent cold cracking characteristics, which is less than 13 pieces / mm 3 , is employed.
[Selection figure] None
Description
本発明は、冷間割れ性に優れたフェライト系ステンレス熱延鋼板およびその製造方法に関する。 The present invention relates to a ferritic stainless hot rolled steel sheet having excellent cold cracking properties and a method for producing the same.
自動車の排気系用部材は、エンジンより排出される高温の排気ガス環境にさらされるため、現在では一般的に、耐熱性、耐酸化性、耐熱疲労特性等に優れたフェライト系ステンレス鋼が用いられている。 Since automobile exhaust system members are exposed to the high-temperature exhaust gas environment discharged from the engine, at present, ferritic stainless steel having excellent heat resistance, oxidation resistance, heat fatigue resistance, etc. is generally used. ing.
上記特性の向上を目的として、これまでにCrやMoを主体とした元素を添加したフェライト系ステンレス鋼板が開発されてきたが、最近ではCuを添加した鋼板が開発されてきている。 For the purpose of improving the above characteristics, ferritic stainless steel sheets to which elements mainly composed of Cr and Mo have been added have been developed so far. Recently, steel sheets to which Cu has been added have been developed.
特許文献1には、中温域でのCu析出物による析出強化を、そして高温域での固溶Cuによる固溶強化を利用するためにCuを1重量%以上添加した自動車排気系部品用ステンレス冷延鋼板が開示されている。 In Patent Document 1, stainless steel cooling for automobile exhaust system parts to which Cu is added in an amount of 1% by weight or more in order to utilize precipitation strengthening by Cu precipitates in a medium temperature region and solid solution strengthening by solid solution Cu in a high temperature region. A rolled steel sheet is disclosed.
しかし一般的には、このようなCuを多量に添加した鋼板を製造する際には冷間割れが生じる場合があり、これに起因する生産性の悪さが課題として挙げられている。なお、冷間割れとは、熱延コイルを巻き解いた後、連続酸洗ラインあるいは連続焼鈍酸洗ラインを通した際に、熱延コイルの靱性が不足しているために耳割れあるいは板破断が生じる現象を指す。 However, generally, when manufacturing such a steel sheet to which a large amount of Cu is added, cold cracking may occur, and the poor productivity resulting from this is cited as a problem. Note that cold cracking means that when a hot-rolled coil is unwound and then passed through a continuous pickling line or a continuous annealing pickling line, the toughness of the hot-rolled coil is insufficient, resulting in ear cracking or plate breakage. Refers to the phenomenon that occurs.
特許文献2には、Cuを2.0質量%以下含有するフェライト系ステンレスの冷延焼鈍板についての技術が開示されているが、その熱間圧延板の靭性については触れられていない。一方、冷延板における析出物の生成を抑制するために熱延後に直ちに水冷して巻取処理を行うことが記述されている。
しかしながら、巻取温度等の開示は無く、熱延後に室温付近まで冷却することは冷却設備の能力上困難であり、また水冷の終了温度も明確にされておらず、実際に適用できる条件は明確にされていなかった。
Patent Document 2 discloses a technique about a cold rolled annealed sheet of ferritic stainless steel containing 2.0% by mass or less of Cu, but does not mention the toughness of the hot rolled sheet. On the other hand, in order to suppress the formation of precipitates in the cold-rolled sheet, it is described that the winding process is performed by water cooling immediately after hot rolling.
However, there is no disclosure of the coiling temperature, etc., and it is difficult to cool down to room temperature after hot rolling because of the capacity of the cooling equipment, and the end temperature of water cooling is not clear, and the conditions that can be actually applied are clear Was not.
熱延板の靱性が課題となるフェライト系ステンレス鋼としてはCr量が高い鋼種やAlを添加した鋼種があるが、これらの熱延板靱性の解決手段としては特許文献3乃至5が公知である。 Ferritic stainless steels that are subject to toughness of hot-rolled sheets include steel types with a high Cr content and steel types to which Al is added. Patent Documents 3 to 5 are known as means for solving these hot-rolled sheet toughnesses. .
特許文献3には、Crを25〜35重量%添加した鋼種の熱延板の靱性値を向上させる技術として、400〜600℃で巻き取り、直ちに水冷以上の冷却速度で急冷する技術が開示されている。
また特許文献4には、Alを3〜7重量%含有するフェライト系ステンレス鋼を巻取後に急水冷する技術が開示されている。
Patent Document 3 discloses a technique for winding up at 400 to 600 ° C. and immediately quenching at a cooling rate equal to or higher than water cooling as a technique for improving the toughness value of a hot-rolled sheet of steel type to which Cr is added in an amount of 25 to 35% by weight. ing.
Patent Document 4 discloses a technique in which ferritic stainless steel containing 3 to 7% by weight of Al is rapidly cooled after winding.
特許文献5には、巻取温度を550〜650℃として巻取コイル形状とし、その後3時間以内に水槽に浸漬する方法が開示されている。 Patent Document 5 discloses a method in which a winding temperature is set to 550 to 650 ° C. to form a winding coil shape, and then immersed in a water tank within 3 hours.
これらのように熱延板靱性を改善する技術として特許文献3及び5の技術が開示されている。しかしながら、本願発明者らが上記従来の知見を、Cuを1%以上含有した鋼種に対して適用したところ、冷間割れが発生する場合があり、必ずしも靭性の改善に対して有効ではないことが分かった。即ち、従来知られていたCu添加鋼板の靭性改善のための技術は、1%以上という多量のCuを含有するフェライト系ステンレスの熱延板においては十分に有効ではなく、更なる改善が必要とされるものであった。 As described above, the techniques of Patent Documents 3 and 5 are disclosed as techniques for improving hot rolled sheet toughness. However, when the present inventors applied the above-mentioned conventional knowledge to a steel type containing 1% or more of Cu, cold cracking may occur, which is not necessarily effective for improving toughness. I understood. In other words, the conventionally known technique for improving the toughness of Cu-added steel sheets is not sufficiently effective in hot rolled sheets of ferritic stainless steel containing a large amount of Cu of 1% or more, and further improvement is required. It was to be done.
そこで、本発明は、上記の実情に鑑みなされたものであって、冷間割れ性に優れたフェライト系ステンレス熱延鋼板及びその製造方法を提供することを目的とする。 Then, this invention is made | formed in view of said situation, Comprising: It aims at providing the ferritic stainless steel hot-rolled steel plate excellent in cold crack property, and its manufacturing method.
本発明者らは、上記のような課題を解決すべく、フェライト系ステンレス鋼の熱延巻取条件と熱延板の靱性の関係を調査した。
まず、Cu量を変化させたフェライト系ステンレス鋼を実験室で5mm厚まで熱延した後、巻取温度を300〜600℃の範囲、巻取処理時間を0.1h〜100hの範囲で変化させながら巻取処理を行った。そして、この巻取処理後に水冷によって室温まで冷却して熱延鋼板を作製した。得られた熱延鋼板よりシャルピー試験を実施し、室温(25℃)における靱性を評価した。
In order to solve the above-described problems, the present inventors have investigated the relationship between hot-rolling conditions of ferritic stainless steel and toughness of hot-rolled sheets.
First, after ferritic stainless steel with varying Cu content is hot-rolled to a thickness of 5 mm in a laboratory, the winding temperature is changed in the range of 300 to 600 ° C., and the winding treatment time is changed in the range of 0.1 h to 100 h. The winding process was performed. And after this winding process, it cooled to room temperature by water cooling, and produced the hot rolled sheet steel. A Charpy test was performed from the obtained hot-rolled steel sheet, and the toughness at room temperature (25 ° C.) was evaluated.
また、上記種々の条件で製造した熱延鋼板中に存在するCuクラスタ等の微細析出物に着目し、靭性との関係を調査した。これは、Cu添加鋼板の靭性にはCu系析出物が大きく影響を及ぼすことが推測できるが、Cuクラスタのようなシングルナノオーダーの微細析出物は、従来観察すること自体が困難であったため、靭性の関係は明らかではなく、また、そのような微細析出過程を制御する方法も不明であったためである。これらの検討を行い、得られた知見を下記に列挙する。 In addition, focusing on fine precipitates such as Cu clusters existing in the hot-rolled steel sheet produced under the various conditions described above, the relationship with toughness was investigated. This can be presumed that Cu-based precipitates greatly affect the toughness of the Cu-added steel sheet, but single nano-order fine precipitates such as Cu clusters have been difficult to observe in the past, This is because the relationship between toughness is not clear and the method for controlling such a fine precipitation process has not been known. These studies are conducted and the findings obtained are listed below.
(1)得られた熱延鋼板の靱性は、製造条件によって10J/cm2〜100J/cm2の範囲で変化した。
(2)得られた熱延鋼板の金属組織を光学顕微鏡で観察したところ、いずれもフェライトの未再結晶組織であった。また、走査型電子顕微鏡(SEM)、透過電子顕微鏡(TEM)のいずれの方法で観察してもCu析出物を見つけることができなかった。即ち、Cu析出物の生成が充分抑制されているにもかかわらず、靭性の良好なものと不良なものがあることが分かった。
そこで、より微細な状態を調査するために3次元アトムプローブにて調査したところ、靱性が20J/cm2未満の熱延鋼板においてはCuよりなる微細なクラスタ(Cuクラスタ)が数多く観察された。一方、靱性が20J/cm2以上の熱延鋼板においては、このような微細なCuクラスタが認められない、若しくは非常に密度が少なかった。
通常、Cu析出物は、Cu原子が集まってBCC、9R、FCC等の結晶構造を組んで析出物と認識される。また、従来のTEM観察で確認される析出物は数十nm以上の大きさである。
なお、本発明において「Cuクラスタ」とは、3次元アトムプローブによる調査において確認される最大径が5nm以下のサイズのCu原子の集合体のことと定義する。また、本発明で定義したCuクラスタの結晶構造は特には限定されるものでなく、BCCや9R等の結晶構造を持つ析出物や、析出物の前駆的な状態も存在すればそれを包含する。一方、熱延鋼板の靭性は、上記のように定義した「Cuクラスタ」の密度と密接な関係があることが分かった。
(3)図1は、1.2%Cu添加鋼の巻取温度、巻き取り後における1.2%Cu添加鋼を水槽に浸漬するまでの時間と靱性との関係を示すグラフである。なお、グラフ中の符号は、○:シャルピー衝撃値≧20J/cm2、×:シャルピー衝撃値<20J/cm2である。
図1のグラフから明らかなように、500℃以下の巻取温度では、1.2%Cu添加鋼を水槽に浸漬するまでの時間が長いほどシャルピー衝撃値(靱性値)は低下し、ある時間が過ぎると靱性値は20J/cm2より低くなることが判明した。
また、巻取温度の条件及び水槽に浸漬するまでの時間の条件が同一の場合でも、1.2%Cu添加鋼を水槽に浸漬する時間(浸漬時間)が1hより短い場合には靱性が低くなることが判明した。すなわち、熱延鋼板の靱性は、巻取温度、熱延鋼板を水槽に浸漬するまでの時間、及び浸漬時間の影響を受ける因子であり、これら因子を制御することで良好な靱性が得られることを知見した。
(1) toughness of the resulting hot rolled steel sheet was varied in the range of 10J / cm 2 ~100J / cm 2 by the production conditions.
(2) When the metal structure of the obtained hot-rolled steel sheet was observed with an optical microscope, all of them were unrecrystallized structures of ferrite. In addition, Cu precipitates could not be found by observing with either a scanning electron microscope (SEM) or a transmission electron microscope (TEM). That is, it has been found that there are good toughness and poor toughness even though the formation of Cu precipitates is sufficiently suppressed.
Then, when investigating with a three-dimensional atom probe in order to investigate a finer state, many fine clusters (Cu clusters) made of Cu were observed in a hot-rolled steel sheet having a toughness of less than 20 J / cm 2 . On the other hand, in a hot-rolled steel sheet having a toughness of 20 J / cm 2 or more, such fine Cu clusters were not recognized or the density was very low.
Usually, Cu precipitates are recognized as precipitates by gathering Cu atoms and forming a crystal structure such as BCC, 9R or FCC. Moreover, the deposit confirmed by the conventional TEM observation has a size of several tens of nm or more.
In the present invention, the “Cu cluster” is defined as an aggregate of Cu atoms having a maximum diameter of 5 nm or less, which is confirmed in a survey using a three-dimensional atom probe. In addition, the crystal structure of the Cu cluster defined in the present invention is not particularly limited, and includes a precipitate having a crystal structure such as BCC or 9R or a precursor state of the precipitate. . On the other hand, the toughness of the hot-rolled steel sheet was found to be closely related to the density of “Cu clusters” defined as described above.
(3) FIG. 1 is a graph showing the relationship between the winding temperature of 1.2% Cu-added steel, the time until the 1.2% Cu-added steel after winding is immersed in a water tank, and toughness. Reference numerals in the graph, ○: Charpy impact value ≧ 20J / cm 2, ×: a Charpy impact value <20J / cm 2.
As is apparent from the graph of FIG. 1, at a coiling temperature of 500 ° C. or lower, the Charpy impact value (toughness value) decreases as the time until the 1.2% Cu-added steel is immersed in the water tank decreases, It has been found that the toughness value is lower than 20 J / cm 2 after the time is exceeded.
Moreover, even when the conditions for the coiling temperature and the time until dipping in the water tank are the same, the toughness is low when the time for dipping the 1.2% Cu-added steel in the water tank (immersion time) is shorter than 1 h. Turned out to be. That is, the toughness of the hot-rolled steel sheet is a factor that is affected by the coiling temperature, the time until the hot-rolled steel sheet is immersed in the water tank, and the immersion time, and good toughness can be obtained by controlling these factors. I found out.
本発明は、これらの知見に基づいて到ったもので、本発明の要旨は、以下の通りである。 The present invention has been made based on these findings, and the gist of the present invention is as follows.
[1] 質量%で、
C :0.0010〜0.010%、
Si:0.01〜1.0%、
Mn:0.01〜2.00%、
P :0.040%未満、
S :0.010%以下、
Cr:10.0〜30.0%、
Cu:1.0〜2.0%、
Al:0.001〜0.10%、
N :0.0030〜0.0200%、
をそれぞれ含有し、残部がFe及び不可避的不純物よりなる鋼組成を有し、結晶粒内において、Cuよりなる最大径5nm以下のCuクラスタの個数密度が2×1013個/mm3未満であることを特徴とする冷間割れ性に優れたフェライト系ステンレス熱延鋼板。
[2]さらに、質量%で、
Nb:0.10〜0.70%、
Ti:0.05〜0.30%
のうち1種または2種以上を、下記式(1)を満足するように含むことを特徴とする上記[1]に記載の冷間割れ性に優れたフェライト系ステンレス熱延鋼板。
Nb/93+Ti/48≧C/12+N/14 ・・・ (1)
[3]さらに、質量%で、
Mo:0.1〜1.0%、
Ni:0.1〜1.0%、
Al:0.50〜3.0%、
のうち1種または2種以上を含むことを特徴とする上記[1]または[2]に記載の冷間割れ性に優れたフェライト系ステンレス熱延鋼板。
[4]さらに、質量%で、
B:0.0001〜0.0025%
を含むことを特徴とする上記[1]乃至[3]のいずれかに記載の冷間割れ性に優れたフェライト系ステンレス熱延鋼板。
[5]上記[1]乃至[4]のいずれかに記載のフェライト系ステンレス熱延鋼板を製造する方法であって、上記[1]乃至[4]のいずれかに記載の鋼組成を有するフェライト系ステンレス鋼を鋳造した鋼片を用いて熱間圧延を行うことにより熱延鋼板とする工程と、前記熱間圧延後、巻取温度Tを300℃〜500℃とし、前記熱延鋼板をコイル状に巻き取る工程と、コイル状とした前記熱延鋼板を、水槽に1時間以上浸漬させ、該浸漬後に前記熱延鋼板を前記水槽より取り出す工程と、を有し、前記熱延鋼板をコイル状に巻き取る工程後、前記熱延鋼板を、下記式(2)を満たすような時間tc(h)以内に前記水槽に浸漬させることを特徴とする冷間割れ性に優れたフェライト系ステンレス熱延鋼板の製造方法。
tc=10^((452−T)/76.7) ・・・ (2)
[1] By mass%
C: 0.0010 to 0.010%,
Si: 0.01 to 1.0%,
Mn: 0.01 to 2.00%
P: less than 0.040%,
S: 0.010% or less,
Cr: 10.0-30.0%,
Cu: 1.0-2.0%,
Al: 0.001 to 0.10%,
N: 0.0030-0.0200%,
Each of which has a steel composition comprising Fe and inevitable impurities, and the number density of Cu clusters having a maximum diameter of 5 nm or less made of Cu is less than 2 × 10 13 pieces / mm 3 in the crystal grains. A ferritic stainless hot rolled steel sheet with excellent cold cracking characteristics.
[2] Furthermore, in mass%,
Nb: 0.10 to 0.70%,
Ti: 0.05-0.30%
1 type or 2 types or more are included so that the following formula (1) may be satisfied, The ferritic stainless steel hot rolled steel sheet excellent in cold crack property as described in said [1] characterized by the above-mentioned.
Nb / 93 + Ti / 48 ≧ C / 12 + N / 14 (1)
[3] Furthermore, in mass%,
Mo: 0.1 to 1.0%,
Ni: 0.1 to 1.0%,
Al: 0.50 to 3.0%,
The ferritic stainless steel hot-rolled steel sheet having excellent cold cracking properties according to the above [1] or [2], comprising one or more of them.
[4] Furthermore, in mass%,
B: 0.0001 to 0.0025%
The ferritic stainless hot-rolled steel sheet having excellent cold cracking properties according to any one of [1] to [3] above.
[5] A method for producing a ferritic stainless hot-rolled steel sheet according to any one of [1] to [4], wherein the ferrite has the steel composition according to any one of [1] to [4]. A hot rolled steel sheet by hot rolling using a steel piece cast from a stainless steel, and after the hot rolling, the coiling temperature T is set to 300 ° C. to 500 ° C., and the hot rolled steel sheet is coiled A step of winding the hot-rolled steel sheet in a coil shape into a water tank for at least 1 hour, and taking out the hot-rolled steel sheet from the water tank after the immersion. After the step of winding into a shape, the hot-rolled steel sheet is immersed in the water tank within a time tc (h) that satisfies the following formula (2). A method for producing rolled steel sheets.
tc = 10 ^ ((452-T) /76.7) (2)
以上のように、本発明によれば、熱延鋼板の靭性に影響を及ぼす微細なCuクラスタの個数密度が従来よりも低く分布されている。そのため、熱延鋼板の靭性の低下を抑制することができ、その結果、熱延鋼板の冷間割れを防ぐことができる。
また、本発明に係るフェライト系ステンレス熱延鋼板によれば、熱間圧延後の連続焼鈍あるいは酸洗工程を通っても冷間割れは生じない。
また、本発明によれば、Cuを含有するフェライト系ステンレス熱延鋼板の冷間割れを抑制することで製造歩留りの増加、生産効率の向上をもたらすことができる。その結果、製造コスト低減などの面で産業上非常に有用な効果を発揮することができる。また、生産効率向上により使用エネルギーを抑制することができるため、地球環境保全に貢献しうる。
As described above, according to the present invention, the number density of fine Cu clusters that affect the toughness of the hot-rolled steel sheet is distributed lower than in the past. Therefore, the fall of the toughness of a hot-rolled steel plate can be suppressed, and as a result, the cold crack of a hot-rolled steel plate can be prevented.
Moreover, according to the ferritic stainless steel hot-rolled steel sheet according to the present invention, cold cracking does not occur even after continuous annealing or hot pickling after hot rolling.
Moreover, according to this invention, the increase in a production yield and the improvement of production efficiency can be brought about by suppressing the cold crack of the ferritic stainless steel hot-rolled steel plate containing Cu. As a result, it is possible to exert a very useful effect on the industry in terms of manufacturing cost reduction and the like. Moreover, energy consumption can be suppressed by improving production efficiency, which can contribute to global environmental conservation.
以下に、本実施形態のフェライト系ステンレス熱延鋼板について詳細に説明する。 Below, the ferritic stainless steel hot-rolled steel sheet of this embodiment is demonstrated in detail.
本実施形態のフェライト系ステンレス熱延鋼板は、質量%で、C:0.0010%〜0.010%、Si:0.01%〜1.0%、Mn:0.01%〜2.00%、P:0.040%未満、S:0.010%以下、Cr:10.0%〜30.0%、Cu:1.0〜2.0%、Al:0.001%〜0.10%、及び、N:0.0030%〜0.0200%
をそれぞれ含有し、残部がFeおよび不可避的不純物からなる鋼組成を有し、結晶粒内において、Cuよりなる最大径5nm以下のCuクラスタの個数密度が2×1013個/mm3未満である。
以下、本実施形態の熱延鋼板の鋼組成を限定した理由について説明する。なお、組成についての%の表記は、特に断りがない場合は質量%を意味する。
The ferritic stainless steel hot-rolled steel sheet of the present embodiment is mass%, C: 0.0010% to 0.010%, Si: 0.01% to 1.0%, Mn: 0.01% to 2.00. %, P: less than 0.040%, S: 0.010% or less, Cr: 10.0% -30.0%, Cu: 1.0-2.0%, Al: 0.001% -0. 10% and N: 0.0030% to 0.0200%
Each of which has a steel composition composed of Fe and inevitable impurities, and the number density of Cu clusters having a maximum diameter of 5 nm or less made of Cu is less than 2 × 10 13 pieces / mm 3 in the crystal grains. .
Hereinafter, the reason which limited the steel composition of the hot-rolled steel plate of this embodiment is demonstrated. In addition, the description of% about a composition means the mass% unless there is particular notice.
C:0.0010〜0.010%
Cは、固溶状態で存在すると溶接部の粒界腐食性が劣化するため、多量の添加は好ましくなく、上限を0.010%とする。また、粒界腐食性の影響を及ぼさないようC量を低減するには、精錬時間の増加等、製造コストの増加をもたらすため、下限を0.0010%とする。なお、溶接部の粒界腐食性及び製造コストの観点から考えると、0.0020〜0.0070%とすることが好ましい。
C: 0.0010 to 0.010%
If C exists in a solid solution state, the intergranular corrosion resistance of the welded portion deteriorates, so a large amount is not preferable, and the upper limit is made 0.010%. Further, in order to reduce the amount of C so as not to influence the intergranular corrosion, the lower limit is made 0.0010% in order to bring about an increase in manufacturing cost such as an increase in refining time. In view of the intergranular corrosion property of the weld and the manufacturing cost, the content is preferably 0.0020 to 0.0070%.
Si:0.01〜1.0%
Siは、耐酸化性を向上させる元素である。しかし多量に添加すると靱性の劣化を招くため、上限を1.0%とする。一方、脱酸剤として不可避的に混入するため、下限を0.01%とする。なお、好ましくは0.02%〜0.97%の範囲とする。
Si: 0.01 to 1.0%
Si is an element that improves oxidation resistance. However, if added in a large amount, the toughness is deteriorated, so the upper limit is made 1.0%. On the other hand, in order to inevitably mix as a deoxidizer, the lower limit is made 0.01%. The range is preferably 0.02% to 0.97%.
Mn:0.01〜2.00%
Mnは、高温強度、耐酸化性を向上させる元素であるが、多量の添加は、Siと同様に靱性の劣化を招くため、上限を2.00%とする。また、不可避的に混入する場合があるため、下限を0.01%とする。なお、好ましくは0.02%〜1.95%の範囲とする。
Mn: 0.01 to 2.00%
Mn is an element that improves high-temperature strength and oxidation resistance. However, addition of a large amount leads to deterioration of toughness like Si, so the upper limit is made 2.00%. Moreover, since it may inevitably be mixed, the lower limit is made 0.01%. The range is preferably 0.02% to 1.95%.
P:0.040%未満
Pは、Crの原料等から不可避的に混入するため、0.005%は混入する場合が多いが、延性や製造性を低下させるので、可能な限り少ないほうが好ましい。しかし、過度に脱りんを行うことは非常に困難であり、さらには製造コストも増加するため、0.040%未満とする。
P: Less than 0.040% P is inevitably mixed from Cr raw materials and the like, so 0.005% is often mixed. However, since ductility and manufacturability are reduced, it is preferable that P be as small as possible. However, excessive dephosphorization is extremely difficult, and the manufacturing cost also increases, so the content is made less than 0.040%.
S:0.010%以下
Sは、溶解しやすい化合物をつくり、耐食性を劣化させる場合があるため、少ない方が好ましく、0.010%以下とする。また、耐食性の観点からは低い方が好ましく、0.0050%未満とすることが好ましい。
なお、近年では脱硫技術が発達しているため、Sの下限を0.0001%とするのが好ましく、安定製造性を考慮すると下限は0.0005%とすることがより好ましい。
S: 0.010% or less Since S produces a compound that is easily dissolved and may deteriorate the corrosion resistance, the smaller one is preferable, and the content is made 0.010% or less. Moreover, the lower one is preferable from a viewpoint of corrosion resistance, and it is preferable to set it as less than 0.0050%.
In recent years, since desulfurization technology has been developed, the lower limit of S is preferably 0.0001%, and the lower limit is more preferably 0.0005% in consideration of stable productivity.
Cr:10.0〜30.0%
Crは耐食性並びに高温強度、耐酸化性を確保するために必要な基本元素であり、その効果を発揮するために10.0%以上の添加が必須である。一方、多量の添加により靱性の劣化を招くため、上限を30.0%とする。なお、Cr量は多いほど高強度化し、また「475℃脆化」と呼ばれる高Cr鋼に特有の脆化現象が生じやすくなるため、Cr量は20.0%以下とすることが好ましい。
Cr: 10.0-30.0%
Cr is a basic element necessary for ensuring corrosion resistance, high-temperature strength, and oxidation resistance, and in order to exert its effects, addition of 10.0% or more is essential. On the other hand, the addition of a large amount causes deterioration of toughness, so the upper limit is made 30.0%. The Cr content is preferably 20.0% or less because the greater the Cr content, the higher the strength, and the more likely the embrittlement phenomenon peculiar to high Cr steel called “475 ° C. embrittlement” occurs.
Cu:1.0〜2.0%
Cuは、適量添加すると高温における強度が増加するため、自動車排気系部材用の鋼板への添加が適している。添加量が1.0%未満であるとCuによる強化量が十分に得られないため、下限を1.0%とする。また、好ましくは、1.05%以上である。一方、多量の添加は、製造途中並びに冷延製品における靱性の劣化を招くため、上限を2.0%とする。また、好ましくは1.75%以下である。
Cu: 1.0-2.0%
When Cu is added in an appropriate amount, the strength at a high temperature increases, so that addition to a steel plate for an automobile exhaust system member is suitable. If the addition amount is less than 1.0%, a sufficient amount of strengthening by Cu cannot be obtained, so the lower limit is made 1.0%. Further, it is preferably 1.05% or more. On the other hand, addition of a large amount leads to deterioration of toughness during production and in cold-rolled products, so the upper limit is made 2.0%. Further, it is preferably 1.75% or less.
Al:0.001〜0.10%、
Alは、脱酸元素として活用するため、適量の添加をする。0.001%未満の添加では脱酸能力が不十分であるため、これを下限とする。一方、添加量が0.10%で十分に酸素量を低減でき、それを超える添加量でも脱酸能力はほぼ飽和する。さらに、過度の添加は加工性の低下を招くおそれがあるため、0.10%を上限とする。なお、好ましくは、0.002%〜0.095%の範囲である。
Al: 0.001 to 0.10%,
Since Al is used as a deoxidizing element, an appropriate amount is added. If the addition is less than 0.001%, the deoxidizing ability is insufficient, so this is the lower limit. On the other hand, when the addition amount is 0.10%, the amount of oxygen can be sufficiently reduced, and the deoxidation ability is almost saturated even when the addition amount exceeds this amount. Furthermore, since excessive addition may cause deterioration in workability, the upper limit is made 0.10%. In addition, Preferably, it is 0.002%-0.095% of range.
N:0.0030〜0.0200%
Nは、Cと同様、固溶状態で存在すると溶接部の粒界腐食性が劣化するため、多量の添加は好ましくない。このため上限を0.0200%とする。またN量を低減するには精錬時間の増加等、製造コストの増加をもたらすため、下限を0.0030%とする。なお、溶接部の粒界腐食性及び製造コストの観点から考えると、0.0050〜0.0120%とすることが好ましい。
N: 0.0030 to 0.0200%
If N is present in a solid solution state as in C, addition of a large amount is not preferable because the intergranular corrosion resistance of the welded portion deteriorates. For this reason, the upper limit is made 0.0200%. Further, in order to reduce the amount of N, the production cost increases such as an increase in refining time, so the lower limit is made 0.0030%. In view of the intergranular corrosion property of the weld and the manufacturing cost, the content is preferably 0.0050 to 0.0120%.
また、本実施形態では、上記元素に加えて、Nb:0.10〜0.70%、Ti:0.05〜0.30%のうち1種または2種以上を、下記式(3)を満足するように添加することが好ましい。
Nb/93+Ti/48≧C/12+N/14 ・・・ (3)
Nb及びTiは、CやNと析出物を作り、固溶C,Nを低減する作用がある。加えて、Nb及びTiが固溶状態で存在する場合には、高温においては固溶強化により部材の高温強度、熱疲労特性を向上させる。C、Nを固定するためにはそれぞれNb:0.10%、Ti:0.05%以上を添加することが必要であるため、これを下限とする。また、鋼中に存在するC,Nをすべて析出状態とするためには、化学量論的には上記式(3)を満足することが必要である。
一方、Nb、Ti共に、多量の添加は製造途中の靱性の劣化を招き、また表面疵の発生が顕著になる場合があるため、上限はNb:0.70%、Ti:0.30%とする。
In this embodiment, in addition to the above elements, one or more of Nb: 0.10 to 0.70% and Ti: 0.05 to 0.30% are represented by the following formula (3). It is preferable to add so as to satisfy.
Nb / 93 + Ti / 48 ≧ C / 12 + N / 14 (3)
Nb and Ti have a function of forming precipitates with C and N and reducing solid solution C and N. In addition, when Nb and Ti are present in a solid solution state, the high temperature strength and thermal fatigue characteristics of the member are improved by solid solution strengthening at high temperatures. In order to fix C and N, it is necessary to add Nb: 0.10% and Ti: 0.05% or more, respectively. Further, in order to make all the C and N present in the steel into a precipitated state, it is necessary to satisfy the above formula (3) stoichiometrically.
On the other hand, the addition of a large amount of both Nb and Ti leads to toughness deterioration during production, and the occurrence of surface flaws may become prominent, so the upper limit is Nb: 0.70%, Ti: 0.30% To do.
また、本実施形態では、上記元素に加えて、Mo:0.1〜1.0%、Ni:0.1〜1.0%、Al:0.50〜3.0%のうち1種または2種以上を添加することが好ましい。
Mo,Ni及びAlは高温強度を増加させる元素であり、必要に応じて添加しても良い。Alは前述の脱酸とは異なる目的で添加するため、適正添加量が異なる。またNiは靱性向上の効果も持つ。高温強度の増加が顕著になるのは、添加量がそれぞれMo:0.10%以上、Ni:0.10%以上、Al:0.50%以上の場合であるため、これらを下限とした。また多量の添加は製造途中の靱性の劣化及び表面疵の発生を招くため、上限をそれぞれ1.0%、1.0%,3.0%とする。
In this embodiment, in addition to the above elements, one of Mo: 0.1 to 1.0%, Ni: 0.1 to 1.0%, Al: 0.50 to 3.0%, or It is preferable to add two or more.
Mo, Ni, and Al are elements that increase the high-temperature strength, and may be added as necessary. Since Al is added for the purpose different from the aforementioned deoxidation, the appropriate addition amount is different. Ni also has the effect of improving toughness. The increase in the high-temperature strength becomes remarkable when the addition amounts are Mo: 0.10% or more, Ni: 0.10% or more, and Al: 0.50% or more, respectively. Further, since a large amount of addition causes deterioration of toughness during production and generation of surface flaws, the upper limits are set to 1.0%, 1.0%, and 3.0%, respectively.
また、本実施形態では、上記元素に加えて、B:0.0001〜0.0025%を添加することが好ましい。
Bは二次加工性を向上させる元素である。二次加工性が必要とされる用途に用いる場合には必要に応じて添加しても良い。二次加工性の向上効果は添加量が0.0001%以上から発現するので、これを下限とする。また、多量の添加は加工性を低下させる場合があるため、上限を0.0025%とする。
In this embodiment, it is preferable to add B: 0.0001 to 0.0025% in addition to the above elements.
B is an element that improves secondary workability. When used in applications where secondary workability is required, it may be added as necessary. Since the effect of improving secondary workability is manifested when the addition amount is 0.0001% or more, this is the lower limit. Moreover, since a large amount of addition may reduce workability, the upper limit is made 0.0025%.
また、本実施形態の重要な特徴として、結晶粒内における、CuよりなるCuクラスタのサイズは、最大径で5nm以下とする。なお、Cuクラスタのサイズは、Cuクラスタの最大径、つまり、Cuクラスタが球状の場合は直径、板状の場合は対角長と定義し、本発明では、この最大径の測定値の平均値を規定する。また、Cuクラスタの最大径の測定方法については後述することとする。
本発明者らの調査によると、熱延鋼板の靱性が低下したサンプルにおいては、最大径が5nm以下のサイズのCuクラスタが多く存在していることが分かった。したがって、本発明において、熱延鋼板の靭性の低下を抑制するために、結晶粒内のCuクラスタのサイズを最大径で5nm以下とする。
また、本発明では、上記Cuクラスタのサイズの下限は特には限定しないが、Cuクラスタのサイズの測定精度を考慮すると、最大径で1nm以上とすることが好ましい。
なお、このような微細なサイズのCuクラスタは、前述のように、3次元アトムプローブ法等で初めて観察されるものであり、従来の技術で開示されているCu析出物とは異なり、前駆的状態と考えられる。
Further, as an important feature of the present embodiment, the size of the Cu cluster made of Cu in the crystal grains is set to 5 nm or less at the maximum diameter. The size of the Cu cluster is defined as the maximum diameter of the Cu cluster, that is, the diameter when the Cu cluster is spherical, and the diagonal length when it is plate-like. In the present invention, the average value of the measured values of the maximum diameter is defined. Is specified. A method for measuring the maximum diameter of the Cu cluster will be described later.
According to the investigation by the present inventors, it was found that in the sample in which the toughness of the hot-rolled steel sheet was lowered, many Cu clusters having a maximum diameter of 5 nm or less existed. Therefore, in this invention, in order to suppress the fall of the toughness of a hot-rolled steel plate, the size of the Cu cluster in a crystal grain shall be 5 nm or less in maximum diameter.
In the present invention, the lower limit of the size of the Cu cluster is not particularly limited. However, in consideration of the measurement accuracy of the size of the Cu cluster, the maximum diameter is preferably 1 nm or more.
In addition, as described above, such a finely sized Cu cluster is observed for the first time by the three-dimensional atom probe method or the like, and is different from the Cu precipitate disclosed in the prior art. It is considered a state.
また、上記調査の結果、上述したような微細なサイズのCuクラスタの密度と、該熱延鋼板の靭性に関係があることも分かった。したがって、本実施形態において、熱延鋼板の靭性を良好に保つためには、最大径5nm以下のCuクラスタの個数密度は2×1013個/mm3未満とする必要がある。
Cuクラスタの個数密度は熱延鋼板の強度、靱性へ大きく影響し、Cuクラスタが2×1013個/mm3以上存在する場合には、熱延鋼板の靱性が著しく低下し、冷間での割れの発生する場合が多くなる。このような、最大径が5nm以下のサイズのCuクラスタは、転位などの強力なピニングサイトとなり、転位がパイルアップし、応力集中しやすくなると考えられる。従って、このような微細なCuクラスタの空間密度が上昇することによって、応力集中サイトの密度が増え、靭性が低下するものと考えられるため、Cuクラスタの個数密度は2×1013個/mm3未満とする。
Further, as a result of the above investigation, it was also found that there is a relationship between the density of the finely sized Cu clusters as described above and the toughness of the hot-rolled steel sheet. Therefore, in this embodiment, in order to maintain good toughness of the hot-rolled steel sheet, the number density of Cu clusters having a maximum diameter of 5 nm or less needs to be less than 2 × 10 13 pieces / mm 3 .
The number density of Cu clusters greatly affects the strength and toughness of hot-rolled steel sheets. When Cu clusters are present at 2 × 10 13 pieces / mm 3 or more, the toughness of hot-rolled steel sheets is significantly reduced, There are many cases where cracks occur. Such a Cu cluster having a maximum diameter of 5 nm or less becomes a strong pinning site such as dislocation, and the dislocation piles up and stress concentration is likely to occur. Accordingly, it is considered that the density of stress concentration sites increases and the toughness decreases due to an increase in the spatial density of such fine Cu clusters. Therefore, the number density of Cu clusters is 2 × 10 13 pieces / mm 3. Less than.
なお、熱延鋼板の靭性に影響を与えるのは、上述したような微細なCuクラスタばかりではなく、より大きなCu析出物もあるが、本発明の開示の範囲においては、このような粗大なCu析出物が出現する以前に冷却を終了するため、粗大なCu析出物は観察されなかった。即ち、本発明における熱延鋼板の靭性は、最大径が5nm以下のCuクラスタの密度によって決まることになると考えられる。 In addition, it is not only the fine Cu clusters as described above but also larger Cu precipitates that affect the toughness of the hot-rolled steel sheet, but within the scope of the present disclosure, such coarse Cu Since the cooling was terminated before the precipitates appeared, no coarse Cu precipitates were observed. That is, it is considered that the toughness of the hot rolled steel sheet according to the present invention is determined by the density of Cu clusters having a maximum diameter of 5 nm or less.
次に、上述したような、微細なCuクラスタのサイズ及び個数密度の測定方法であるが、Cuクラスタは通常の析出物に比べて小さいため、大きさや分布密度を透過型電子顕微鏡(TEM)で測定することは困難である。したがって、本発明におけるフェライト系ステンレス熱延鋼板の結晶粒内のCuクラスタのサイズ及び個数密度は、以下に示す3次元アトムプローブ(3D−AP)法を用いて次のような手順で測定する。 Next, there is a method for measuring the size and number density of fine Cu clusters as described above. Since Cu clusters are smaller than ordinary precipitates, the size and distribution density can be measured with a transmission electron microscope (TEM). It is difficult to measure. Therefore, the size and number density of Cu clusters in the crystal grains of the ferritic stainless steel hot-rolled steel sheet in the present invention are measured by the following procedure using a three-dimensional atom probe (3D-AP) method described below.
まず、測定対象となる熱延鋼板から0.3mm×0.3mm×10mmの棒状試料を切り出し、電解研磨法によって針状加工する。加工を施したこの針状試料を用い、結晶粒内の任意方向に3D−AP(OxfordNanoscience社製)によって50万原子以上の測定を行い、3次元マップにより可視化して定量解析する。
このような任意方向の測定を異なる結晶粒10個以上について実施し、各結晶粒に含まれるCuより成る微細なCuクラスタの個数密度(観察領域の体積当りのクラスタの個数)とサイズを平均として求める。Cuクラスタのサイズは、球状や板状等、いずれの形状においても最大となる長さを測定した。特にサイズの小さいCuクラスタは、その形状が明らかではない場合が多いため、電界イオン顕微鏡(FIM)の電解蒸発を利用した精密なサイズ測定を実施することが好ましい。
ここで、FIMとは、針状にした試料に高い電圧を印加し、不活性ガスを導入することで、試料表面の電界分布を2次元的に映し出す方法である。
一般には鉄鋼材料中の析出物はフェライトマトリックスより明るいかまたは暗いコントラストを与える。特定の原子面の電界蒸発を1原子面ずつ行い析出物コントラストの発生消滅を観察することで、析出物の深さ方向のサイズを精度良く見積もることができる。
First, a rod-shaped sample having a size of 0.3 mm × 0.3 mm × 10 mm is cut out from a hot-rolled steel sheet to be measured, and needle-shaped by an electrolytic polishing method. Using this processed needle-like sample, a measurement of 500,000 atoms or more is performed in 3D-AP (manufactured by Oxford Nanoscience) in an arbitrary direction within the crystal grain, and is visualized and quantitatively analyzed with a three-dimensional map.
Such measurement in an arbitrary direction is carried out for 10 or more different crystal grains, and the number density (number of clusters per volume of the observation region) and size of Cu included in each crystal grain are averaged. Ask. Regarding the size of the Cu cluster, the maximum length was measured in any shape such as a spherical shape or a plate shape. In particular, since the shape of a small-sized Cu cluster is often unclear, it is preferable to perform precise size measurement using electrolytic evaporation of a field ion microscope (FIM).
Here, FIM is a method of projecting the electric field distribution on the sample surface two-dimensionally by applying a high voltage to the needle-like sample and introducing an inert gas.
In general, precipitates in steel materials give a brighter or darker contrast than the ferrite matrix. By observing the generation and disappearance of precipitate contrast by performing field evaporation of specific atomic planes one atomic plane at a time, it is possible to accurately estimate the size of the precipitate in the depth direction.
次に、本実施形態におけるフェライト系ステンレス熱延鋼板の製造方法について説明する。 Next, the manufacturing method of the ferritic stainless steel hot-rolled steel sheet in this embodiment is demonstrated.
本実施形態におけるフェライト系ステンレス熱延鋼板の製造方法は、上記組成を有するフェライト系ステンレス鋼を鋳造した鋼片を用いて熱間圧延を行うことにより熱延鋼板とする工程と、熱間圧延後、巻取温度Tを300℃〜500℃とし、熱延鋼板をコイル状に巻き取る工程と、コイル状とした熱延鋼板を、水槽に1時間以上浸漬させ、該浸漬後に熱延鋼板を水槽より取り出す工程と、を有し、熱延鋼板をコイル状に巻き取る工程後、この熱延鋼板を、下記式(4)を満たすような時間tc(h)以内に水槽に浸漬させる。
tc=10^((452−T)/76.7) ・・・ (4)
以下に、本実施形態におけるフェライト系ステンレス熱延鋼板の製造方法について詳細に説明する。
The method for producing a ferritic stainless steel hot-rolled steel sheet according to the present embodiment includes a step of hot-rolling a steel strip obtained by casting a ferritic stainless steel having the above composition to form a hot-rolled steel sheet, and after hot rolling The winding temperature T is set to 300 ° C. to 500 ° C., the step of winding the hot-rolled steel sheet into a coil shape, and the hot-rolled steel sheet made into a coil shape is immersed in a water tank for 1 hour or more. After the step of winding the hot-rolled steel sheet into a coil shape, the hot-rolled steel sheet is immersed in a water tank within a time tc (h) that satisfies the following formula (4).
tc = 10 ^ ((452-T) /76.7) (4)
Below, the manufacturing method of the ferritic stainless steel hot-rolled steel plate in this embodiment is demonstrated in detail.
まず、上記鋼組成を含有するフェライト系ステンレス鋼を鋳造した鋼片を用いて熱間圧延を実施する。次いで仕上げ圧延を施した後、水冷で冷却し、コイル状に巻き取る。本実施形態においては、このときの巻取温度Tを300℃〜500℃とする。巻取温度Tが300℃未満であると、巻き取り前の冷却状態が鋼板の部位ごとに不均一となりやすく、その結果、巻取コイルの形状不良が生じやすいため好ましくない。また、巻取温度Tが500℃超である場合は、上述したようなCuより成るCuクラスタの個数密度が非常に高くなり、熱延鋼板の靱性不良をもたらすため好ましくない。 First, hot rolling is performed using a steel piece obtained by casting a ferritic stainless steel containing the above steel composition. Then, after finish rolling, the product is cooled with water and wound into a coil. In this embodiment, the winding temperature T at this time is set to 300 ° C to 500 ° C. When the winding temperature T is less than 300 ° C., the cooling state before winding tends to be uneven for each part of the steel sheet, and as a result, the shape of the winding coil tends to be poor, which is not preferable. In addition, when the coiling temperature T exceeds 500 ° C., the number density of Cu clusters made of Cu as described above becomes very high, which leads to poor toughness of the hot-rolled steel sheet.
次に、コイル状に巻き取った後、水槽に浸漬処理をする。これは、Cuクラスタの生成を抑制するためである。
ここで、仕上げ圧延後の水冷により熱延鋼板の温度が巻取温度に到達してから、最大径5nm以下のCuクラスタが生成し、その個数密度が増加し、靭性が低下し始めるまでの時間は熱延鋼板の温度の経時変化に強く依存する。なお、通常の熱間圧延で巻取温度300〜500℃で巻き取る場合、熱間圧延してから巻取温度に達するまでの時間は1min以内であり、この間の冷却速度は3℃/sec以上である。このような冷却速度条件の場合は、巻き取り前にCuクラスタが析出することはない。またその後の巻き取り条件に影響を及ぼすこともない。つまり、巻取温度に到達してからコイル状に巻き取った後は、熱延鋼板の靭性が低下する前に、巻取温度に応じて素早く水槽に浸漬し、Cuクラスタの析出を防ぐ必要がある。従って、上述した巻取温度Tとともに、巻取温度Tに到達してからコイル状に巻き取った後において、水槽に浸漬するまでの所要時間が重要となる。
本発明者らの調査の結果、本実施形態において、熱間圧延し冷却した後、巻取温度T(℃)で巻き取った後、浸漬するまでにかかる時間t(h)を、上記式(4)のtc以内とする。
Next, after winding up in a coil shape, it is immersed in a water tank. This is for suppressing the formation of Cu clusters.
Here, the time from when the temperature of the hot-rolled steel sheet reaches the coiling temperature by water cooling after finish rolling, until a Cu cluster having a maximum diameter of 5 nm or less is generated, its number density increases, and toughness starts to decrease. Strongly depends on the temperature change of the hot-rolled steel sheet. In addition, when winding at a coiling temperature of 300 to 500 ° C. in normal hot rolling, the time from hot rolling to reaching the coiling temperature is within 1 min, and the cooling rate during this time is 3 ° C./sec or more. It is. In such a cooling rate condition, Cu clusters are not deposited before winding. Moreover, it does not affect the subsequent winding conditions. In other words, after coiling after reaching the coiling temperature, it is necessary to quickly immerse in a water bath according to the coiling temperature and prevent Cu cluster precipitation before the toughness of the hot-rolled steel sheet decreases. is there. Therefore, together with the winding temperature T described above, the time required to immerse in the water tank after reaching the winding temperature T and winding it in a coil shape becomes important.
As a result of investigations by the present inventors, in this embodiment, after hot rolling and cooling, after winding at a winding temperature T (° C.), the time t (h) required for dipping is expressed by the above formula ( Within tc of 4).
巻取温度Tに到達してから、水槽に浸漬するまでの時間tがtcを超えると、5nm以下のサイズのCuクラスタの個数密度が増加し、2x1013個/mm3を超えてしまい、鋼板の靭性が低下してしまうため好ましくない。また、巻取温度Tが高い場合には、Cuクラスタの生成開始時間が早いためにtcは短くなり、巻取温度Tが低い場合にはtcは長くなる。 When the time t from reaching the coiling temperature T to immersing in the water tank exceeds tc, the number density of Cu clusters having a size of 5 nm or less increases and exceeds 2 × 10 13 pieces / mm 3. This is not preferable because the toughness of the steel is lowered. In addition, when the coiling temperature T is high, tc is shortened because the Cu cluster generation start time is early, and when the coiling temperature T is low, tc is long.
また、本実施形態において、水槽に浸漬してから水槽内に保持する時間(浸漬保持時間)も重要な項目である。Cuを1%以上と多量に含む成分系の鋼板の場合は、水槽内の浸漬保持時間が1時間未満と短い場合は冷却が不十分となり、Cuクラスタの生成の抑制が充分でなくなる。その結果、熱延鋼板の靱性が不良となる場合があるため、浸漬保持時間を1時間以上とする。なお、靭性の向上を考慮すると、1.2時間以上とすることが好ましい。なお、本実施形態においては、水槽内に保持する時間の下限は特に限定しないが、生産性を考慮すると、水槽内の浸漬保持時間は、48時間以内とすることが好ましい。 Moreover, in this embodiment, the time (immersion holding time) to hold | maintain in a water tank after being immersed in a water tank is also an important item. In the case of a steel sheet of a component system containing a large amount of Cu of 1% or more, if the immersion holding time in the water tank is as short as less than 1 hour, the cooling becomes insufficient and the formation of Cu clusters is not sufficiently suppressed. As a result, since the toughness of the hot-rolled steel sheet may be poor, the immersion holding time is set to 1 hour or more. In consideration of improvement in toughness, it is preferably 1.2 hours or longer. In addition, in this embodiment, although the minimum of the time hold | maintained in a water tank is not specifically limited, When productivity is considered, it is preferable that the immersion holding time in a water tank shall be less than 48 hours.
以上説明したような本発明に係るフェライト系ステンレス熱延鋼板によれば、上記成分及び構成により、熱延鋼板の靭性に影響を及ぼす微細なCuクラスタの個数密度が従来よりも低く分布されている。そのため、熱延鋼板の靭性の低下を抑制することができ、その結果、熱延鋼板の冷間割れを防ぐことができる。
また、本発明に係るフェライト系ステンレス熱延鋼板によれば、熱間圧延後の連続焼鈍あるいは酸洗工程を通っても冷間割れは生じない。
According to the ferritic stainless steel hot-rolled steel sheet according to the present invention as described above, the number density of fine Cu clusters that affect the toughness of the hot-rolled steel sheet is distributed lower than before due to the above components and configuration. . Therefore, the fall of the toughness of a hot-rolled steel plate can be suppressed, and as a result, the cold crack of a hot-rolled steel plate can be prevented.
Moreover, according to the ferritic stainless steel hot-rolled steel sheet according to the present invention, cold cracking does not occur even after continuous annealing or hot pickling after hot rolling.
また、本発明に係るフェライト系ステンレス熱延鋼板によれば、冷間割れを抑制することができるため、製造歩留りの増加、生産効率の向上をもたらすことができる。その結果、製造コスト低減などの面で産業上非常に有用な効果を発揮することができる。
また、生産効率向上により、製造工程における使用エネルギーを抑制することができるため、地球環境保全に貢献しうる。
Moreover, according to the ferritic stainless steel hot-rolled steel sheet according to the present invention, cold cracking can be suppressed, so that an increase in manufacturing yield and an improvement in production efficiency can be brought about. As a result, it is possible to exert a very useful effect on the industry in terms of manufacturing cost reduction and the like.
Moreover, since the energy used in the manufacturing process can be suppressed by improving the production efficiency, it can contribute to the conservation of the global environment.
また、本発明に係るフェライト系ステンレス熱延鋼板の製造方法によれば、上記のような巻取温度Tでコイル状に巻き取るとともに、巻き取り後、水槽に浸漬するまでにかかる時間tc及び浸漬保持時間を制御することにより、Cuクラスタの個数密度を制御することができる。その結果、熱延鋼板の靭性低下を抑制することができる。
これにより、冷間割れ性に優れた、フェライト系ステンレス熱延鋼板を提供することが可能となる。
Moreover, according to the manufacturing method of the ferritic stainless steel hot rolled steel sheet according to the present invention, the coil is wound in the coil shape at the winding temperature T as described above, and after the winding, it takes time tc and the immersion to be immersed in the water tank. By controlling the holding time, the number density of Cu clusters can be controlled. As a result, a decrease in toughness of the hot rolled steel sheet can be suppressed.
As a result, it is possible to provide a ferritic stainless hot-rolled steel sheet having excellent cold cracking properties.
以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。 Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.
本実施例では、まず、表1に示す成分の各鋼を溶製し、鋼塊を得た。この鋼塊を90mm厚まで研削し、熱間圧延により板厚5mmまで圧延し、熱延鋼板とした。次に、圧延後の鋼板温度を放射温度計でモニターしながら、水冷によって表2に示す所定の巻取温度T(℃)まで冷却した。なお、この時の冷却速度は約20℃/secであった。
次に、巻取温度T(℃)にて、熱延鋼板をコイル状に巻き取った。その後、表2に示すように、水槽に浸漬するまでの時間をt(h)とし、コイル状に巻き取った熱延鋼板を水槽内に浸漬した。
次いで、水槽内に、表2に示すような浸漬保持時間(h)の間浸漬させた後、熱延鋼板を取りだした。なお、表2中の時間tc(h)は、上記式(4)より算出した値であって、本発明の効果を発揮するためには、熱延鋼板の巻き取り後、この上限時間である時間tc以内に水槽に浸漬させる必要がある。
In this example, first, each steel having the components shown in Table 1 was melted to obtain a steel ingot. The steel ingot was ground to a thickness of 90 mm and hot rolled to a thickness of 5 mm to obtain a hot rolled steel sheet. Next, while monitoring the steel plate temperature after rolling with a radiation thermometer, the steel sheet was cooled to a predetermined coiling temperature T (° C.) shown in Table 2 by water cooling. The cooling rate at this time was about 20 ° C./sec.
Next, the hot-rolled steel sheet was wound in a coil shape at a winding temperature T (° C.). Then, as shown in Table 2, the time until dipping in the water tank was set to t (h), and the hot rolled steel sheet wound up in a coil shape was immersed in the water tank.
Subsequently, after being immersed in the water tank for the immersion holding time (h) as shown in Table 2, the hot rolled steel sheet was taken out. The time tc (h) in Table 2 is a value calculated from the above formula (4), and is the upper limit time after winding the hot-rolled steel sheet in order to exert the effect of the present invention. It is necessary to immerse in the water tank within the time tc.
得られた各熱延鋼板を用いて、3D−AP法により、熱延鋼板の結晶粒内のCuクラスタのサイズ(最大径)及び個数密度を測定した。測定結果を表2に示す。なお、表2の個数密度Xは、最大径5nm以下のCuクラスタの個数密度(×1013個/mm2)を表している。
さらに、得られた熱延鋼板から圧延方向と垂直方向にシャルピー試験片を採取し、25℃においてシャルピー試験を実施し、シャルピー衝撃値を求めた。結果を表2に示す。また、得られた結果より、熱延鋼板の冷間割れ性を下記の方法により評価した。なお、シャルピー試験は、JIS Z 2242に準拠し行った。
本実施例において、冷間割れ性の評価方法は、シャルピー衝撃値が20J/cm2未満の場合、その後の工程である、連続焼鈍や酸洗工程において冷間割れ等が発生し、歩留まりが低下したため、不良と判断した。また、20J/cm2以上の場合はこのような冷間割れは発生しなかった。
以上の製造条件及び評価結果を表2に示す。
Using each of the obtained hot-rolled steel sheets, the size (maximum diameter) and number density of Cu clusters in the crystal grains of the hot-rolled steel sheet were measured by the 3D-AP method. The measurement results are shown in Table 2. In addition, the number density X in Table 2 represents the number density (× 10 13 / mm 2 ) of Cu clusters having a maximum diameter of 5 nm or less.
Furthermore, Charpy test pieces were collected from the obtained hot-rolled steel sheet in the direction perpendicular to the rolling direction, and the Charpy test was performed at 25 ° C. to determine the Charpy impact value. The results are shown in Table 2. Moreover, from the obtained result, the cold cracking property of the hot rolled steel sheet was evaluated by the following method. The Charpy test was conducted in accordance with JIS Z 2242.
In this example, the evaluation method of the cold cracking property is such that when the Charpy impact value is less than 20 J / cm 2 , cold cracking or the like occurs in the subsequent process, such as continuous annealing or pickling process, and the yield decreases. Therefore, it was judged as bad. Further, in the case of 20 J / cm 2 or more, such a cold crack did not occur.
The above production conditions and evaluation results are shown in Table 2.
表2より明らかなとおり、本発明を適用した本発明例によれば熱延鋼板の靱性が良好、すなわち冷間割れ性に優れたフェライト系ステンレス熱延鋼板を得ることができる。 As apparent from Table 2, according to the present invention example to which the present invention is applied, a ferritic stainless hot rolled steel sheet having good toughness of the hot rolled steel sheet, that is, excellent cold cracking property, can be obtained.
一方、本発明例から外れる比較例では、いずれもシャルピー衝撃値が低かった。これにより、比較例における熱延鋼板の靭性が低下してしまったことが分かる。 On the other hand, in the comparative examples that deviated from the examples of the present invention, the Charpy impact value was low. Thereby, it turns out that the toughness of the hot-rolled steel sheet in the comparative example has decreased.
試験番号10及び25では、巻取温度Tが高すぎたため、Cuクラスタの生成を十分に抑制することができす、その結果、個数密度が非常に高くなってしまった。これにより、熱延鋼板の靱性が低下してしまったと考えられる。
In
試験番号2,5,6,9,14,15,17,21,23,24,25,26,31,34及び37では、熱延鋼板の巻き取り後、水槽に浸漬するまでの時間tが、上限時間である時間tcよりも長かった。そのため、その間にCuクラスタの生成が進行し、Cuクラスタの個数密度が高くなった。その結果、シャルピー衝撃値が低下してしまったと考えられる。 In test numbers 2, 5, 6, 9, 14, 15, 17, 17, 21, 24, 25, 26, 31, 34, and 37, the time t until the hot-rolled steel sheet is wound and immersed in the water tank is It was longer than the upper limit time tc. Therefore, the production of Cu clusters progressed during that time, and the number density of Cu clusters increased. As a result, it is considered that the Charpy impact value has decreased.
試験番号3,5,12,18,21,28,33,34及び37は、いずれも浸漬保持時間が1時間短かったため、熱延鋼板の冷却が不十分となり、Cuクラスタの生成の抑制が不十分であった。その結果、熱延鋼板の靱性が低下したと考えられる。 Test Nos. 3, 5, 12, 18, 21, 28, 33, 34 and 37 all had an immersion holding time of 1 hour, so that the hot-rolled steel sheet was not sufficiently cooled, and the suppression of the formation of Cu clusters was not possible. It was enough. As a result, it is considered that the toughness of the hot-rolled steel sheet has decreased.
試験番号35,36は、Cuクラスタの個数密度については低く抑えることができたが、鋼板中のCrの含有量が多すぎたため、靭性が低下したと考えられる。 In Test Nos. 35 and 36, the number density of Cu clusters could be kept low, but it was considered that the toughness was lowered because the Cr content in the steel sheet was too large.
また、J鋼を用いて巻取温度Tを種々変更し、巻き取りを行い、さらに、水槽に浸漬するまでの時間tを種々変えて水槽に2時間浸漬したものの靭性を評価した結果を図1に示す。×は、シャルピー衝撃値が20J/cm2未満と靭性において劣位であるものであり、○はシャルピー衝撃値が20J/cm2以上を示し、靭性において良好なものである。
図1において点線で示した直線は、靭性において劣位であるものと良好なものの境界を示すものであり、上記式(4)で示される、巻取温度Tと、巻取温度Tに到達し、巻き取りを行ってから水槽に浸漬するまでの時間の上限tcの関係を示すものである。更に、他の鋼種を用いて同様なグラフを作成しても同様な境界を示す直線が得られることが分かった。
Moreover, the coiling temperature T was changed variously using J steel, it wound up, and also the result of having evaluated the toughness of what was immersed in the water tank for 2 hours changing various time t until it immersed in a water tank is FIG. Shown in X indicates that the Charpy impact value is less than 20 J / cm 2 , which is inferior in toughness, and ○ indicates that the Charpy impact value is 20 J / cm 2 or more, which is favorable in toughness.
A straight line indicated by a dotted line in FIG. 1 indicates a boundary between an inferior toughness and a good one, and reaches the winding temperature T and the winding temperature T represented by the above formula (4), The relationship of the upper limit tc of time after winding up and immersing in a water tank is shown. Furthermore, it was found that even if a similar graph was created using other steel types, straight lines showing similar boundaries could be obtained.
これらの結果から、上述した知見を確認することができ、また、上述した各鋼組成及び構成を限定する根拠を裏付けることができた。 From these results, the above-mentioned findings could be confirmed, and the grounds for limiting the above-described steel compositions and configurations could be supported.
Claims (5)
C:0.0010%〜0.010%、
Si:0.01%〜1.0%、
Mn:0.01%〜2.00%、
P:0.040%未満、
S:0.010%以下、
Cr:10.0%〜30.0%、
Cu:1.0〜2.0%、
Al:0.001%〜0.10%、
及び、N:0.0030%〜0.0200%
をそれぞれ含有し、
残部がFeおよび不可避的不純物からなる鋼組成を有し、
結晶粒内において、Cuよりなる最大径5nm以下のCuクラスタの個数密度が2×1013個/mm3未満であることを特徴とする冷間割れ性に優れたフェライト系ステンレス熱延鋼板。 % By mass
C: 0.0010% to 0.010%,
Si: 0.01% to 1.0%
Mn: 0.01% to 2.00%,
P: less than 0.040%,
S: 0.010% or less,
Cr: 10.0% to 30.0%,
Cu: 1.0-2.0%,
Al: 0.001% to 0.10%,
And N: 0.0030% to 0.0200%
Each containing
The balance has a steel composition consisting of Fe and inevitable impurities,
A ferritic stainless hot-rolled steel sheet having excellent cold cracking properties, wherein the number density of Cu clusters having a maximum diameter of 5 nm or less made of Cu is less than 2 × 10 13 pieces / mm 3 in crystal grains.
Nb:0.10%〜0.70%以下、
Ti:0.05%〜0.30%以下、
のうち1種または2種以上を、下記式(1)を満足するように含むことを特徴とする請求項1に記載の冷間割れ性に優れたフェライト系ステンレス熱延鋼板。
Nb/93+Ti/48≧C/12+N/14 ・・・(1) Furthermore, in mass%,
Nb: 0.10% to 0.70% or less,
Ti: 0.05% to 0.30% or less,
The ferritic stainless steel hot-rolled steel sheet having excellent cold cracking properties according to claim 1, wherein one or more of them are included so as to satisfy the following formula (1).
Nb / 93 + Ti / 48 ≧ C / 12 + N / 14 (1)
Mo:0.1%〜1.0%、
Ni:0.1%〜1.0%、
Al:0.50%〜3.0%
のうち1種または2種以上を含むことを特徴とする請求項1または請求項2に記載の冷間割れ性に優れたフェライト系ステンレス熱延鋼板。 Furthermore, in mass%,
Mo: 0.1% to 1.0%
Ni: 0.1% to 1.0%
Al: 0.50% to 3.0%
The ferritic stainless steel hot-rolled steel sheet having excellent cold cracking properties according to claim 1 or 2, wherein one or more of them are included.
B:0.0001%〜0.0025%、
を含むことを特徴とする請求項1乃至請求項3の何れか一項に記載の冷間割れ性に優れたフェライト系ステンレス熱延鋼板。 Furthermore, in mass%,
B: 0.0001% to 0.0025%,
The ferritic stainless steel hot-rolled steel sheet having excellent cold cracking properties according to any one of claims 1 to 3, characterized by comprising:
請求項1乃至請求項4の何れか一項に記載の鋼組成を有するフェライト系ステンレス鋼を鋳造した鋼片を用いて熱間圧延を行うことにより熱延鋼板とする工程と、
熱間圧延後、巻取温度Tを300℃〜500℃とし、前記熱延鋼板をコイル状に巻き取る工程と、
コイル状とした前記熱延鋼板を、水槽に1時間以上浸漬させ、該浸漬後に前記熱延鋼板を前記水槽より取り出す工程と、
を有し、
前記熱延鋼板をコイル状に巻き取る工程後、前記熱延鋼板を、下記式(2)を満たすような時間tc(h)以内に前記水槽に浸漬させることを特徴とする冷間割れ性に優れたフェライト系ステンレス熱延鋼板の製造方法。
tc=10^((452−T)/76.7) ・・・ (2) A method for producing a ferritic stainless hot-rolled steel sheet according to any one of claims 1 to 4,
A step of forming a hot-rolled steel sheet by performing hot rolling using a steel piece obtained by casting the ferritic stainless steel having the steel composition according to any one of claims 1 to 4,
A step of winding the hot-rolled steel sheet into a coil after setting the coiling temperature T to 300C to 500C after hot rolling;
The step of immersing the coiled hot-rolled steel sheet in a water tank for 1 hour or more, and taking out the hot-rolled steel sheet from the water tank after the immersion;
Have
After the step of winding the hot-rolled steel sheet into a coil, the hot-rolled steel sheet is immersed in the water tank within a time tc (h) that satisfies the following formula (2). A method for producing excellent ferritic stainless steel hot-rolled steel sheets.
tc = 10 ^ ((452-T) /76.7) (2)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011026277A JP5715843B2 (en) | 2011-02-09 | 2011-02-09 | Ferritic stainless hot-rolled steel sheet with excellent cold cracking properties and method for producing the same |
US13/981,395 US9399809B2 (en) | 2011-02-08 | 2012-02-08 | Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet |
PCT/JP2012/052901 WO2012108479A1 (en) | 2011-02-08 | 2012-02-08 | Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet |
CN201280007705.5A CN103348023B (en) | 2011-02-08 | 2012-02-08 | The manufacture method of ferrite-group stainless steel hot-rolled steel sheet and manufacture method and ferrite series stainless steel plate |
US14/873,551 US10072323B2 (en) | 2011-02-08 | 2015-10-02 | Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011026277A JP5715843B2 (en) | 2011-02-09 | 2011-02-09 | Ferritic stainless hot-rolled steel sheet with excellent cold cracking properties and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012162795A true JP2012162795A (en) | 2012-08-30 |
JP5715843B2 JP5715843B2 (en) | 2015-05-13 |
Family
ID=46842460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011026277A Active JP5715843B2 (en) | 2011-02-08 | 2011-02-09 | Ferritic stainless hot-rolled steel sheet with excellent cold cracking properties and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5715843B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019039029A (en) * | 2017-08-23 | 2019-03-14 | 新日鐵住金株式会社 | Cu-CONTAINING STEEL SHEET |
CN112400031A (en) * | 2018-07-18 | 2021-02-23 | 杰富意钢铁株式会社 | Ferritic stainless steel sheet and method for producing same |
CN114686751A (en) * | 2022-04-11 | 2022-07-01 | 甘肃酒钢集团宏兴钢铁股份有限公司 | Brittle fracture prevention production method of high-chromium ferrite stainless steel |
US11377702B2 (en) | 2018-07-18 | 2022-07-05 | Jfe Steel Corporation | Ferritic stainless steel sheet and method of producing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10273731A (en) * | 1997-03-31 | 1998-10-13 | Sumitomo Metal Ind Ltd | Method for producing ferritic stainless steel strip containing Cu |
JP2001026826A (en) * | 1999-07-12 | 2001-01-30 | Sumitomo Metal Ind Ltd | Manufacturing method of hot-rolled stainless steel strip |
JP2004107704A (en) * | 2002-09-17 | 2004-04-08 | Sumitomo Metal Ind Ltd | Method for producing boron-containing ferritic stainless steel strip |
JP2006274436A (en) * | 2005-03-30 | 2006-10-12 | Jfe Steel Kk | Ferritic stainless steel sheet and pipe for curved pipes with cross-sectional shapes for parts |
JP2012140688A (en) * | 2011-01-05 | 2012-07-26 | Nisshin Steel Co Ltd | Nb CONTAINING FERRITIC STAINLESS STEEL HOT ROLLED COIL AND MANUFACTURING METHOD |
-
2011
- 2011-02-09 JP JP2011026277A patent/JP5715843B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10273731A (en) * | 1997-03-31 | 1998-10-13 | Sumitomo Metal Ind Ltd | Method for producing ferritic stainless steel strip containing Cu |
JP2001026826A (en) * | 1999-07-12 | 2001-01-30 | Sumitomo Metal Ind Ltd | Manufacturing method of hot-rolled stainless steel strip |
JP2004107704A (en) * | 2002-09-17 | 2004-04-08 | Sumitomo Metal Ind Ltd | Method for producing boron-containing ferritic stainless steel strip |
JP2006274436A (en) * | 2005-03-30 | 2006-10-12 | Jfe Steel Kk | Ferritic stainless steel sheet and pipe for curved pipes with cross-sectional shapes for parts |
JP2012140688A (en) * | 2011-01-05 | 2012-07-26 | Nisshin Steel Co Ltd | Nb CONTAINING FERRITIC STAINLESS STEEL HOT ROLLED COIL AND MANUFACTURING METHOD |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019039029A (en) * | 2017-08-23 | 2019-03-14 | 新日鐵住金株式会社 | Cu-CONTAINING STEEL SHEET |
CN112400031A (en) * | 2018-07-18 | 2021-02-23 | 杰富意钢铁株式会社 | Ferritic stainless steel sheet and method for producing same |
US11377702B2 (en) | 2018-07-18 | 2022-07-05 | Jfe Steel Corporation | Ferritic stainless steel sheet and method of producing same |
CN114686751A (en) * | 2022-04-11 | 2022-07-01 | 甘肃酒钢集团宏兴钢铁股份有限公司 | Brittle fracture prevention production method of high-chromium ferrite stainless steel |
Also Published As
Publication number | Publication date |
---|---|
JP5715843B2 (en) | 2015-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6324512B2 (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods thereof | |
JP5793459B2 (en) | Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof | |
JP5866378B2 (en) | Ferritic stainless steel hot-rolled steel sheet with excellent cold cracking property and method for producing the same | |
JP6385507B2 (en) | Nb-containing ferritic stainless steel sheet and method for producing the same | |
JP6070907B1 (en) | Hot-rolled steel sheet and method for producing the same, and method for producing cold-rolled steel sheet | |
US9243306B2 (en) | Ferritic stainless steel sheet excellent in oxidation resistance | |
WO2012108479A1 (en) | Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet | |
KR101692660B1 (en) | Ferritic stainless steel sheet having excellent heat resistance | |
CN112119174A (en) | Steel sheet and enamel product | |
JP5846445B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP5671400B2 (en) | Steel wire for springs excellent in wire drawing workability and fatigue properties after wire drawing, and steel wire for springs excellent in fatigue properties and spring workability | |
KR101732469B1 (en) | Ferritic stainless steel and method for manufacturing the same | |
EP3249067B1 (en) | Ferritic stainless steel for exhaust system member having excellent corrosion resistance after heating | |
JP5715843B2 (en) | Ferritic stainless hot-rolled steel sheet with excellent cold cracking properties and method for producing the same | |
WO2021125283A1 (en) | Steel sheet and method for manufacturing same | |
KR102658079B1 (en) | Ti-containing ferritic stainless steel sheet for exhaust pipe flange parts, manufacturing method, and flange parts | |
RU2511000C2 (en) | Cold-rolled steel plate with excellent formability and its manufacturing method | |
JP4870844B1 (en) | Precipitation hardening type martensitic stainless steel | |
KR101505260B1 (en) | Hot rolled steel sheet for steel pipe and method of manufacturing the steel pope | |
JP5653269B2 (en) | Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5715843 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |