[go: up one dir, main page]

JP2012162628A - Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire - Google Patents

Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire Download PDF

Info

Publication number
JP2012162628A
JP2012162628A JP2011023402A JP2011023402A JP2012162628A JP 2012162628 A JP2012162628 A JP 2012162628A JP 2011023402 A JP2011023402 A JP 2011023402A JP 2011023402 A JP2011023402 A JP 2011023402A JP 2012162628 A JP2012162628 A JP 2012162628A
Authority
JP
Japan
Prior art keywords
group
copolymer
conjugated
conjugated diene
diene compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011023402A
Other languages
Japanese (ja)
Other versions
JP5731216B2 (en
Inventor
Shojiro Aida
昭二郎 会田
Olivier Tardif
タルディフ オリビエ
Yasuo Horikawa
泰郎 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011023402A priority Critical patent/JP5731216B2/en
Publication of JP2012162628A publication Critical patent/JP2012162628A/en
Application granted granted Critical
Publication of JP5731216B2 publication Critical patent/JP5731216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】発明の目的は、ウェット性、低温特性、及び耐候性に優れたゴムを製造するのに用いられ、共役ジエン化合物由来部分にシス1,4結合を含む共役ジエン化合物と非共役オレフィンとの共重合体、該共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤを提供する。
【解決手段】共役ジエン化合物と非共役オレフィンとの共重合体において、共役ジエン化合物由来部分のシス1,4−結合含量が92%未満であり、且つ、非共役オレフィン由来部分の含有量が10mol%未満であることを特徴とする。
【選択図】なし
An object of the present invention is to produce a rubber having excellent wettability, low temperature characteristics, and weather resistance, and a conjugated diene compound containing a cis 1,4 bond in a conjugated diene compound-derived moiety and a non-conjugated olefin. Copolymer, a rubber composition containing the copolymer, a crosslinked rubber composition obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition .
In a copolymer of a conjugated diene compound and a non-conjugated olefin, the cis 1,4-bond content of the conjugated diene compound-derived moiety is less than 92%, and the content of the non-conjugated olefin-derived moiety is 10 mol. It is characterized by being less than%.
[Selection figure] None

Description

本発明は、共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤに関し、特に、ウェット性、低温特性、及び耐候性(耐オゾン性)に優れたゴムを製造するのに用いられ、共役ジエン化合物由来部分(共役ジエン部分)にシス1,4結合を含む共役ジエン化合物と非共役オレフィンとの共重合体、該共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤに関する。   The present invention relates to a copolymer of a conjugated diene compound and a non-conjugated olefin, a rubber composition, a crosslinked rubber composition, and a tire, and particularly a rubber excellent in wettability, low temperature characteristics, and weather resistance (ozone resistance). A copolymer of a conjugated diene compound containing a cis 1,4 bond in a conjugated diene compound-derived part (conjugated diene part) and a non-conjugated olefin, a rubber composition containing the copolymer, The present invention relates to a crosslinked rubber composition obtained by crosslinking a rubber composition, and a tire using the rubber composition or the crosslinked rubber composition.

チーグラー・ナッタ触媒に代表される触媒系を用いた配位アニオン重合では、オレフィ
ンやジエンの単独重合が可能であることがよく知られている。しかしながら、このような
重合反応系では、オレフィンとジエンとを効率良く共重合させることは困難であった。
特に、共役ジエンと非共役オレフィンの共重合体を配合ゴムへ適用することで、共重合
体中の共役ジエン化合物由来部分(共役ジエン部分)の二重結合が共役重合体に比べて少なくなるため、耐オゾン性が向上する。また、ゴム組成物を様々な用途(タイヤやベルトコンベア、防振ゴムなど)に適用したときに求められる耐オゾン性以外の要求特性の一つとして耐亀裂成長性を良好にすることが挙げられる。
It is well known that coordinated anionic polymerization using a catalyst system typified by a Ziegler-Natta catalyst can homopolymerize olefins and dienes. However, in such a polymerization reaction system, it has been difficult to efficiently copolymerize olefin and diene.
In particular, by applying a copolymer of conjugated diene and non-conjugated olefin to the compounded rubber, the double bond of the conjugated diene compound-derived part (conjugated diene part) in the copolymer is less than that of the conjugated polymer. , Ozone resistance is improved. Further, as one of the required properties other than the ozone resistance required when the rubber composition is applied to various uses (tires, belt conveyors, anti-vibration rubbers, etc.), it is mentioned that the crack growth resistance is improved. .

例えば、特許文献1には、シクロペンタジエン環構造を有する周期律表第IV族遷移金
属化合物を含む共役ジエン重合用触媒が開示されており、この共役ジエンと共重合可能な
単量体として、エチレン等のα−オレフィンが例示されている。しかしながら、共役ジエン化合物と非共役オレフィンとの共重合については、具体的に記載されていない。当然、シス含量やシス1,4結合含量を92%未満とすることで、ウェット性及び低温特性に優れたゴムを製造することについては記載も示唆もされていない。さらに、非共役オレフィン由来部分(非共役オレフィン)の含有量を10mol%未満とすることで、低温弾性率が低く、且つ耐候性に優れたゴムを製造することについては、記載も示唆もされていない。
For example, Patent Document 1 discloses a conjugated diene polymerization catalyst containing a group IV transition metal compound of the periodic table having a cyclopentadiene ring structure. As a monomer copolymerizable with this conjugated diene, ethylene is disclosed. Etc. α-olefins are exemplified. However, the copolymerization of the conjugated diene compound and the non-conjugated olefin is not specifically described. Naturally, there is no description or suggestion of producing a rubber having excellent wettability and low temperature characteristics by setting the cis content and the cis 1,4 bond content to less than 92%. Furthermore, description and suggestion have been made about producing a rubber having a low low-temperature elastic modulus and excellent weather resistance by setting the content of the non-conjugated olefin-derived part (non-conjugated olefin) to less than 10 mol%. Absent.

例えば、特許文献2には、チタン化合物などの遷移金属化合物と助触媒からなるオレフ
ィン重合用触媒が開示されており、α−オレフィンと共役ジエン化合物との共重合体が開
示されている。しかしながら、具体的にその製造と使用が裏づけられるのは、非共役オレ
フィンであるα−オレフィンの含有量は66.7〜99.1モル%の範囲だけであった。つまり、非共役オレフィン由来部分(非共役オレフィン)の含有量が10mol%未満である共役ジエン化合物−非共役オレフィン共重合体に関する具体的な記載や、シス含量やシス1,4結合含量を92%未満とすることで、ウェット性及び低温特性に優れたゴムを製造することについては、特許文献2には記載も示唆もされていない。さらに、非共役オレフィン由来部分(非共役オレフィン)の含有量を10mol%未満とすることで、低温弾性率が低く、且つ耐候性に優れたゴムを製造することについては、特許文献2には記載も示唆もされていない。
For example, Patent Document 2 discloses an olefin polymerization catalyst composed of a transition metal compound such as a titanium compound and a co-catalyst, and a copolymer of an α-olefin and a conjugated diene compound. However, it was confirmed that the production and use of the α-olefin, which is a non-conjugated olefin, was only in the range of 66.7 to 99.1 mol%. That is, the specific description about the conjugated diene compound-nonconjugated olefin copolymer in which the content of the nonconjugated olefin-derived portion (nonconjugated olefin) is less than 10 mol%, the cis content and the cis 1,4 bond content are 92% Patent Document 2 neither describes nor suggests producing a rubber having excellent wettability and low-temperature characteristics. Further, Patent Document 2 describes the production of a rubber having a low low-temperature elastic modulus and excellent weather resistance by setting the content of the non-conjugated olefin-derived portion (non-conjugated olefin) to less than 10 mol%. There is no suggestion.

また、特許文献3には、特殊な有機金属錯体を触媒成分として用いてエチレンとブタジ
エンを出発原料として合成したエチレンとブタジエンとの共重合体が開示されるものの、
単量体であるブタジエンがトランス−1,2−シクロヘキサンの形態で共重合体中に挿入
され、本発明の共重合体とは構造が異なったものである。また、非共役オレフィンである
エチレン含有量は69.6〜89.0モル%の範囲だけ具体的にその製造と使用が裏づけ
られていた。ここで、エチレン含有量は100mol%から数値が開示されているブタジ
エンから生じる単位のモル含量を引いて求めた。つまり、非共役オレフィン由来部分(非共役オレフィン)の含有量が10mol%未満である共役ジエン化合物−非共役オレフィン共重合体に関する具体的な記載や、シス含量やシス1,4結合含量を92%未満とすることで、ウェット性に優れたゴムを製造することについては、特許文献3には記載も示唆もされていない。さらに、非共役オレフィン由来部分(非共役オレフィン)の含有量を10mol%未満とすることで、低温弾性率が低く、且つ耐候性に優れたゴムを製造することについては、特許文献3には記載も示唆もされていない。
Patent Document 3 discloses a copolymer of ethylene and butadiene synthesized using ethylene and butadiene as starting materials using a special organometallic complex as a catalyst component.
Butadiene, which is a monomer, is inserted into the copolymer in the form of trans-1,2-cyclohexane, and has a structure different from that of the copolymer of the present invention. In addition, the production and use of the ethylene content, which is a non-conjugated olefin, was specifically supported only in the range of 69.6 to 89.0 mol%. Here, the ethylene content was determined by subtracting the molar content of units derived from butadiene whose numerical values are disclosed from 100 mol%. That is, the specific description about the conjugated diene compound-nonconjugated olefin copolymer in which the content of the nonconjugated olefin-derived portion (nonconjugated olefin) is less than 10 mol%, the cis content and the cis 1,4 bond content are 92% Patent Document 3 neither describes nor suggests producing a rubber having excellent wettability by setting the ratio to less than the above. Furthermore, Patent Document 3 describes that a rubber having a low low-temperature elastic modulus and excellent weather resistance can be produced by setting the content of the non-conjugated olefin-derived portion (non-conjugated olefin) to less than 10 mol%. There is no suggestion.

また、特許文献4には、シス含有量%が92%であり、エチレン含有量が3%又は9%のブタジエン重合体が開示されている。しかしながら、シス含量やシス1,4結合含量を92%未満とすることで、ウェット性及び低温特性に優れたゴムを製造することについては、特許文献4には記載も示唆もされていない。   Patent Document 4 discloses a butadiene polymer having a cis content of 92% and an ethylene content of 3% or 9%. However, Patent Document 4 does not describe or suggest that a rubber having excellent wettability and low-temperature characteristics is produced by setting the cis content and the cis 1,4 bond content to less than 92%.

特開2000−154210号公報JP 2000-154210 A 特開2006−249442号公報JP 2006-249442 A 特表2006−503141号公報JP-T-2006-503141 特開2000−86857号公報JP 2000-86857 A

そこで、本発明の目的は、ウェット性、低温特性、及び耐候性に優れたゴムを製造するのに用いられ、共役ジエン化合物由来部分(共役ジエン部分)にシス1,4結合を含み、共役ジエン化合物由来部分(共役ジエン部分)のシス1,4−結合含量が92%未満であり、非共役オレフィン由来部分(非共役オレフィン)の含有量が10mol%未満である共役ジエン化合物と非共役オレフィンとの共重合体、該共重合体を含むゴム組成物、該ゴム組成物を架橋して得られた架橋ゴム組成物、及び、前記ゴム組成物又は前記架橋ゴム組成物を用いたタイヤを提供することにある。   Accordingly, an object of the present invention is used to produce a rubber having excellent wettability, low temperature characteristics, and weather resistance. The conjugated diene compound-derived moiety (conjugated diene moiety) contains a cis 1,4 bond, and is a conjugated diene. A conjugated diene compound having a cis 1,4-bond content of the compound-derived portion (conjugated diene portion) of less than 92% and a non-conjugated olefin-derived portion (non-conjugated olefin) content of less than 10 mol%; Copolymer, a rubber composition containing the copolymer, a crosslinked rubber composition obtained by crosslinking the rubber composition, and a tire using the rubber composition or the crosslinked rubber composition There is.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定の触媒の存在下、共
役ジエン化合物及び非共役オレフィンを重合させ、得られる共役ジエン化合物−非共役オ
レフィン共重合体は、共役ジエン化合物由来部分(共役ジエン部分)のシス1,4−結合含量が92%未満であり、且つ、非共役オレフィン由来部分(非共役オレフィン)の含有量が10mol%未満であることを見出し、本発明を完成させるに至った。
As a result of intensive studies to achieve the above object, the present inventors polymerized a conjugated diene compound and a non-conjugated olefin in the presence of a specific catalyst, and the resulting conjugated diene compound-non-conjugated olefin copolymer is: It is found that the cis 1,4-bond content of the conjugated diene compound-derived portion (conjugated diene portion) is less than 92%, and the content of the non-conjugated olefin-derived portion (non-conjugated olefin) is less than 10 mol%, The present invention has been completed.

本発明の共役ジエン化合物と非共役オレフィンとの共重合体は、共役ジエン化合物由来部分(共役ジエン部分)のシス1,4−結合含量が92%未満であり、且つ、非共役オレフィン由来部分(非共役オレフィン)の含有量が10mol%未満であることを特徴とする。
ここで、シス1,4−結合含量とは、、共役ジエン化合物由来部分(共役ジエン化合物)中の共役ジエン単位における1,4−シス結合の割合を意味する。
The copolymer of a conjugated diene compound and a non-conjugated olefin of the present invention has a cis 1,4-bond content of a conjugated diene compound-derived portion (conjugated diene portion) of less than 92%, and a non-conjugated olefin-derived portion ( The content of non-conjugated olefin) is less than 10 mol%.
Here, the cis 1,4-bond content means the proportion of 1,4-cis bonds in the conjugated diene unit in the conjugated diene compound-derived portion (conjugated diene compound).

このような共重合体においてより好ましくは、共役ジエン化合物由来部分(共役ジエン部分)のシス1,4−結合含量が、50%以上であり、さらに好ましくは、75%以上である。   In such a copolymer, the cis 1,4-bond content of the conjugated diene compound-derived portion (conjugated diene portion) is preferably 50% or more, and more preferably 75% or more.

ところで、分子量分布(Mw/Mn)が10以下であることが好ましい。   By the way, it is preferable that molecular weight distribution (Mw / Mn) is 10 or less.

また好ましくは前記非共役オレフィンが、非環状オレフィンであり、より好ましくは炭
素数が2〜10のαオレフィンであり、さらに好ましくは、エチレン、プロピレン及び1−ブテンよりなる群から選択される少なくとも一種であり、最も好ましくは、エチレンである。
Preferably, the non-conjugated olefin is an acyclic olefin, more preferably an α-olefin having 2 to 10 carbon atoms, and still more preferably at least one selected from the group consisting of ethylene, propylene and 1-butene. And most preferably ethylene.

そしてまた好ましくは、前記共役ジエン化合物は、炭素数が4〜8であり、より好まし
くは1,3−ブタジエン及びイソプレンよりなる群から選択される少なくとも一種である
And preferably, the conjugated diene compound has 4 to 8 carbon atoms, more preferably at least one selected from the group consisting of 1,3-butadiene and isoprene.

本発明のゴム組成物は、本発明の共重合体を含むことを特徴とする。   The rubber composition of the present invention includes the copolymer of the present invention.

本発明のゴム組成物は、ゴム成分中に、前記共重合体を3質量%以上含むこと
が好ましい。
The rubber composition of the present invention preferably contains 3% by mass or more of the copolymer in the rubber component.

本発明のゴム組成物は、ゴム成分100質量部に対し、補強性充填剤5質量部〜200質量部と、架橋剤0.1質量部〜20質量部とを含むことが好ましい。   The rubber composition of the present invention preferably contains 5 to 200 parts by mass of a reinforcing filler and 0.1 to 20 parts by mass of a crosslinking agent with respect to 100 parts by mass of the rubber component.

本発明の架橋ゴム組成物は、本発明のゴム組成物を架橋して得られたことを特徴とする。   The crosslinked rubber composition of the present invention is obtained by crosslinking the rubber composition of the present invention.

本発明のタイヤは、本発明のゴム組成物、又は、本発明の架橋ゴム組成物を用いたことを特徴とする。   The tire of the present invention is characterized by using the rubber composition of the present invention or the crosslinked rubber composition of the present invention.

本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体では、共役ジエン化合物由来部分(共役ジエン部分)のシス1,4−結合含量を92%未満であり、且つ、前記非共役オレフィン由来部分(非共役オレフィン)の含有量を10mol%未満とすることにより、ウェット性、低温特性、及び耐候性に優れたゴムを製造することが可能となる。   In the copolymer of the conjugated diene compound and the non-conjugated olefin according to the present invention, the cis 1,4-bond content of the conjugated diene compound-derived portion (conjugated diene portion) is less than 92%, and is derived from the non-conjugated olefin. By setting the content of the part (non-conjugated olefin) to less than 10 mol%, it becomes possible to produce a rubber having excellent wettability, low temperature characteristics, and weather resistance.

以下に、本発明を詳細に説明する。
本発明の共役ジエン化合物と非共役オレフィンとの共重合体は、共役ジエン化合物由来部分(共役ジエン部分)のシス1,4−結合含量が92%未満であり、好ましくは50%以上であり、更に好ましくは75%以上であり、さらに、非共役オレフィン由来部分(非共役オレフィン)の含有量を10mol%未満、好ましくは、5.0mol%〜9.9mol%とする。
前記シス−1,4結合含量は、前記共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
The present invention is described in detail below.
The copolymer of a conjugated diene compound and a non-conjugated olefin of the present invention has a cis 1,4-bond content of a conjugated diene compound-derived portion (conjugated diene portion) of less than 92%, preferably 50% or more. More preferably, it is 75% or more, and the content of the non-conjugated olefin-derived portion (non-conjugated olefin) is less than 10 mol%, preferably 5.0 mol% to 9.9 mol%.
The cis-1,4 bond content is an amount in the portion derived from the conjugated diene compound, and is not a ratio to the whole copolymer.

共役ジエン化合物由来部分(共役ジエン部分)のシス1,4−結合含量が92%未満とすることにより、結晶性を低下させて、ウェット性、低温弾性率に優れたゴムを提供することが可能となる。
非共役オレフィン由来部分(非共役オレフィン)の含有量を10mol%未満とすることにより、低温弾性率を上げることなく、耐候性や耐熱性を向上させることが可能となる。さらに、非共役オレフィン由来部分(非共役オレフィン)の含有量を5.0mol%〜9.9mol%とすることが、耐候性や耐熱性の点で好ましい。
By setting the cis 1,4-bond content of the conjugated diene compound-derived part (conjugated diene part) to less than 92%, it is possible to provide a rubber having excellent wettability and low-temperature elastic modulus by reducing crystallinity. It becomes.
By setting the content of the non-conjugated olefin-derived portion (non-conjugated olefin) to less than 10 mol%, it is possible to improve weather resistance and heat resistance without increasing the low temperature elastic modulus. Furthermore, it is preferable in terms of weather resistance and heat resistance that the content of the non-conjugated olefin-derived portion (non-conjugated olefin) is 5.0 mol% to 9.9 mol%.

単量体として用いる非共役オレフィンは、共役ジエン化合物以外の非共役オレフィンで
あり、優れた耐熱性や、共重合体の主鎖中に占める二重結合の割合を減らすとともに、結
晶性を制御することでエラストマーとしての設計自由度を高めることが可能となる。
The non-conjugated olefin used as the monomer is a non-conjugated olefin other than the conjugated diene compound, and has excellent heat resistance and reduces the proportion of double bonds in the main chain of the copolymer and controls crystallinity. This makes it possible to increase the degree of design freedom as an elastomer.

非共役オレフィンとしては、非環状オレフィンであることが好ましく、また、この非共
役オレフィンの炭素数は2〜10のα−オレフィンであることが好ましい。α−オレフィンはオレフィンのα位に二重結合を有するため、共役ジエンとの共重合を効率よく行うことができる。従って、非共役オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1−ブテンが好ましく、エチレンが更に好ましい。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。
The non-conjugated olefin is preferably an acyclic olefin, and the non-conjugated olefin is preferably an α-olefin having 2 to 10 carbon atoms. Since the α-olefin has a double bond at the α-position of the olefin, copolymerization with the conjugated diene can be performed efficiently. Accordingly, preferred examples of non-conjugated olefins include α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, and among these, ethylene, propylene and 1-butene is preferred and ethylene is more preferred. These non-conjugated olefins may be used alone or in combination of two or more. In addition, an olefin refers to the compound which is an aliphatic unsaturated hydrocarbon and has one or more carbon-carbon double bonds.

共役ジエン化合物は、炭素数が4〜8であることが好ましい。この共役ジエン化合物と
して、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−
ジメチルブタジエン等が挙げられ、これらの中でも、1,3−ブタジエン及びイソプレン
が好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合
わせて用いてもよい。
上述した共役ジエン化合物の具体例のいずれを用いても、同様のメカニズムで本発明の共重合体を調製することができる。
The conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of the conjugated diene compound include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-
Examples thereof include dimethylbutadiene, and among these, 1,3-butadiene and isoprene are preferable. Moreover, these conjugated diene compounds may be used independently and may be used in combination of 2 or more type.
The copolymer of the present invention can be prepared by the same mechanism using any of the specific examples of the conjugated diene compound described above.

また、非共役オレフィンの単量体単位からなるブロック部分を備える場合には、静的結
晶性を示すため、破断強度等の機械的性質に優れることができる。
In addition, when a block portion composed of a monomer unit of a non-conjugated olefin is provided, it exhibits static crystallinity and can be excellent in mechanical properties such as breaking strength.

このような共重合体は、低分子量化の問題が起こることも無く、その重量平均分子量(
Mw)は特に限定されるものでもないが、高分子構造材料への適用の観点から、この共重
合体のポリスチレン換算重量平均分子量(Mw)は10,000〜10,000,000が好ましく、10,000〜1,000,000がより好ましく、50,000〜600,000が更に好ましい。Mwが10,000,000を超えると成形加工性が悪化するおそれがある。
Such a copolymer has no problem of lowering the molecular weight, and its weight average molecular weight (
Mw) is not particularly limited, but from the viewpoint of application to a polymer structure material, the polystyrene-converted weight average molecular weight (Mw) of this copolymer is preferably 10,000 to 10,000,000. 1,000 to 1,000,000 is more preferable, and 50,000 to 600,000 is more preferable. If Mw exceeds 10,000,000, the moldability may be deteriorated.

また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(
Mw/Mn)は、10以下が好ましく、6以下が更に好ましい。分子量分布が10を超え
ると物性が均質でなくなるためである。
ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(G
PC)によりポリスチレンを標準物質として求めることができる。
Further, a molecular weight distribution (Mw) expressed by a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn)
Mw / Mn) is preferably 10 or less, and more preferably 6 or less. This is because if the molecular weight distribution exceeds 10, the physical properties are not uniform.
Here, the average molecular weight and molecular weight distribution are determined by gel permeation chromatography (G
PC) polystyrene can be determined as a standard substance.

なお、本発明の共役ジエン化合物と非共役オレフィンとの共重合体では、非共役オレフ
ィンが連続して配置していないことが好ましい。
In the copolymer of the conjugated diene compound and the non-conjugated olefin of the present invention, it is preferable that the non-conjugated olefin is not continuously arranged.

次に、本発明の共重合体を製造することができる製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。
本発明の共重合体は、下記に示す重合触媒または重合触媒組成物の存在下、共役ジエン
化合物と非共役オレフィンとを重合させることができる。なお、重合方法としては、溶液
重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の
方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合
反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサ
ン、またそれらの混合物等が挙げられる。
Next, the manufacturing method which can manufacture the copolymer of this invention is demonstrated in detail. However, the manufacturing method described in detail below is merely an example.
The copolymer of the present invention can polymerize a conjugated diene compound and a non-conjugated olefin in the presence of the polymerization catalyst or polymerization catalyst composition described below. As a polymerization method, any method such as a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, a gas phase polymerization method, and a solid phase polymerization method can be used. Moreover, when using a solvent for a polymerization reaction, the solvent used should just be inactive in a polymerization reaction, For example, toluene, cyclohexane, normal hexane, mixtures thereof etc. are mentioned.

上記製造方法によれば、上記重合触媒または重合触媒組成物を用いること以外は、通常
の配位イオン重合触媒による重合体の製造方法と同様にして、単量体である共役ジエン化
合物と非共役オレフィンを共重合させることができる。
According to the above production method, except that the polymerization catalyst or the polymerization catalyst composition is used, the monomer conjugated diene compound and the non-conjugated compound are produced in the same manner as in the production method of a polymer using a normal coordination ion polymerization catalyst. Olefin can be copolymerized.

<第一の重合触媒組成物>
上記重合触媒組成物としては、下記一般式(I):
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、そ
れぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立して
炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0
〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(II):
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、そ
れぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子
、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基
を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセ
ン錯体、並びに下記一般式(III):
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp’は、
無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、
水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素
数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示
し、[B]は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体か
らなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物(以下、第一重合
触媒組成物ともいう)が挙げられ、該重合触媒組成物は、更に、通常のメタロセン錯体を
含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで
、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金
属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はそ
の誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。な
お、重合反応系において、第一重合触媒組成物に含まれる錯体の濃度は0.1〜0.00
01mol/Lの範囲であることが好ましい。
<First polymerization catalyst composition>
The polymerization catalyst composition includes the following general formula (I):
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R independently represents unsubstituted or substituted indenyl, and R a to R f each independently represents an alkyl having 1 to 3 carbon atoms. Represents a group or a hydrogen atom, L represents a neutral Lewis base, and w represents 0.
A metallocene complex represented by the following general formula (II):
(In the formula, M represents a lanthanoid element, scandium or yttrium, Cp R each independently represents an unsubstituted or substituted indenyl group, and X ′ represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group. , A silyl group or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents an integer of 0 to 3), and the following general formula (III ):
( Wherein M represents a lanthanoid element, scandium or yttrium, and Cp R ′ is
Represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, X is
A hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents an integer of 0 to 3. , [B] represents a non-coordinating anion) A polymerization catalyst composition containing at least one complex selected from the group consisting of a half metallocene cation complex (hereinafter referred to as a first polymerization catalyst composition). The polymerization catalyst composition may further contain other components contained in the polymerization catalyst composition containing a normal metallocene complex, such as a promoter. Here, the metallocene complex is a complex compound in which one or more cyclopentadienyl or a derivative thereof is bonded to a central metal, and in particular, one cyclopentadienyl or a derivative thereof bonded to the central metal. A certain metallocene complex may be called a half metallocene complex. In the polymerization reaction system, the concentration of the complex contained in the first polymerization catalyst composition is 0.1 to 0.00.
A range of 01 mol / L is preferred.

上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCp
、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCp
、C7−X又はC11−Xで示され得る。ここで、Xは0〜7又は0〜
11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であ
ることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜1
0であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基と
して、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる
。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリル
Siが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタ
ロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイ
ド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、
具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一
般式(I)及び式(II)における二つのCpは、それぞれ互いに同一でも異なってい
てもよい。
In the metallocene complexes represented by the general formula (I) and formula (II), Cp R in the formula is an unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton may be represented by C 9 H 7-X R X or C 9 H 11-X R X. Here, X is 0-7 or 0
It is an integer of 11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms,
It is more preferable that it is 0, and it is still more preferable that it is 1-8. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid group metalloids include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. is there. Specific examples of the metalloid group include a trimethylsilyl group. As substituted indenyl,
Specifically, 2-phenylindenyl, 2-methylindenyl, etc. are mentioned. Note that the two Cp Rs in the general formulas (I) and (II) may be the same as or different from each other.

上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCp
’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであ
り、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペ
ンタジエニル環を基本骨格とするCp’は、C5−Xで示される。ここで、X
は0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基
であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1
〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル
基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げら
れる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シ
リルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、
メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタ
ロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニ
ル環を基本骨格とするCp’として、具体的には、以下のものが例示される。
(式中、Rは水素原子、メチル基又はエチル基を示す。)
In the half metallocene cation complex represented by the general formula (III), Cp in the formula
R ′ is unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl, and among these, unsubstituted or substituted indenyl is preferable. Cp R ′ having a cyclopentadienyl ring as a basic skeleton is represented by C 5 H 5-X R X. Where X
Is an integer from 0 to 5. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms.
Is more preferably from 1 to 10, more preferably from 1 to 8. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloids of the metalloid group include germyl Ge, stannyl Sn, silyl Si, and the metalloid group preferably has a hydrocarbyl group,
The hydrocarbyl group of the metalloid group is the same as the above hydrocarbyl group. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of Cp R ′ having a cyclopentadienyl ring as a basic skeleton include the following.
(In the formula, R represents a hydrogen atom, a methyl group or an ethyl group.)

一般式(III)において、上記インデニル環を基本骨格とするCp’は、一般式(
I)のCpと同様に定義され、好ましい例も同様である。
In the general formula (III), Cp R ′ having the indenyl ring as a basic skeleton represents
It is similarly defined as Cp R in I), and their preferable examples are also the same.

一般式(III)において、上記フルオレニル環を基本骨格とするCp’は、C13
9−X又はC1317−Xで示され得る。ここで、Xは0〜9又は0〜17
の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であるこ
とが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10で
あることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として
、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一
方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSi
が挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイ
ド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基
として、具体的には、トリメチルシリル基等が挙げられる。
In the general formula (III), Cp R ′ having the fluorenyl ring as a basic skeleton is C 13.
It may be represented by H 9-X R X or C 13 H 17-X R X. Here, X is 0-9 or 0-17.
Is an integer. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. The hydrocarbyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, examples of metalloid-based metalloids include germyl Ge, stannyl Sn, silyl Si
Moreover, it is preferable that a metalloid group has a hydrocarbyl group, and the hydrocarbyl group which a metalloid group has is the same as said hydrocarbyl group. Specific examples of the metalloid group include a trimethylsilyl group.

一般式(I)、式(II)及び式(III)における中心金属Mは、ランタノイド元素
、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の
15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネ
オジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、ス
カンジウムSc及びイットリウムYが好適に挙げられる。
The central metal M in the general formulas (I), (II) and (III) is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. Preferred examples of the central metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.

一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR
]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるR〜R)は、
それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのう
ち少なくとも一つが水素原子であることが好ましい。R〜Rのうち少なくとも一つを
水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低く
なるため、非共役オレフィンが導入され易くなる。同様の観点から、R〜Rのうち少
なくとも一つが水素原子であり、R〜Rのうち少なくとも一つが水素原子であること
が更に好ましい。更に、アルキル基としては、メチル基が好ましい。
The metallocene complex represented by the general formula (I) is a silylamide ligand [—N (SiR 3 ) 2
]including. The R group contained in the silylamide ligand (R a to R f in the general formula (I)) is
Each independently represents an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. Moreover, it is preferable that at least one of R a to R f is a hydrogen atom. By making at least one of R a to R f a hydrogen atom, the synthesis of the catalyst is facilitated, and the bulk around silicon is reduced, so that non-conjugated olefin is easily introduced. From the same viewpoint, it is more preferable that at least one of R a to R c is a hydrogen atom and at least one of R d to R f is a hydrogen atom. Furthermore, a methyl group is preferable as the alkyl group.

一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX’]を含む。
シリル配位子[−SiX’]に含まれるX’は、下記で説明される一般式(III)の
Xと同様に定義される基であり、好ましい基も同様である。
The metallocene complex represented by the general formula (II) includes a silyl ligand [—SiX ′ 3 ].
X ′ contained in the silyl ligand [—SiX ′ 3 ] is a group defined in the same manner as X in the general formula (III) described below, and preferred groups are also the same.

一般式(III)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラー
ト基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基
である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基
、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂
肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6
−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−
ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェ
ノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が
挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
In the general formula (III), X is a group selected from the group consisting of a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, and a hydrocarbon group having 1 to 20 carbon atoms. Here, examples of the alkoxide group include aliphatic alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group; a phenoxy group and 2,6-dioxy -Tert-butylphenoxy group, 2,6
-Diisopropylphenoxy group, 2,6-dineopentylphenoxy group, 2-tert-
Examples include aryloxide groups such as butyl-6-isopropylphenoxy group, 2-tert-butyl-6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group, and among these, 2,6-di- A tert-butylphenoxy group is preferred.

一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエ
トキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−
ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2
,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ
基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピ
ルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−
イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオ
フェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリ
イソプロピルチオフェノキシ基が好ましい。
In the general formula (III), examples of the thiolate group represented by X include thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thiosec-
Aliphatic thiolate groups such as butoxy group and thio-tert-butoxy group; thiophenoxy group, 2
, 6-Di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2-tert-butyl -6-thioneopentylphenoxy group, 2-
Examples thereof include arylthiolate groups such as isopropyl-6-thioneopentylphenoxy group and 2,4,6-triisopropylthiophenoxy group. Among these, 2,4,6-triisopropylthiophenoxy group is preferable.

一般式(III)において、Xが表すアミド基としては、ジメチルアミド基、ジエチル
アミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ
−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,
6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニ
ルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロ
ピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミ
ド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリル
アミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
In the general formula (III), examples of the amide group represented by X include aliphatic amide groups such as a dimethylamide group, a diethylamide group, and a diisopropylamide group; a phenylamide group, a 2,6-di-tert-butylphenylamide group, 2 , 6-diisopropylphenylamide group, 2,
6-dineopentylphenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl-6-neopentylphenylamide group, 2, Examples include arylamide groups such as 4,6-tert-butylphenylamide group; bistrialkylsilylamide groups such as bistrimethylsilylamide group. Among these, bistrimethylsilylamide group is preferable.

一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス
(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチル
シリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル
基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
In the general formula (III), examples of the silyl group represented by X include trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl) silyl group, triisopropylsilyl (bistrimethylsilyl) silyl group, and the like. Among these, a tris (trimethylsilyl) silyl group is preferable.

一般式(III)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、
臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、
Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プ
ロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert
−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化
水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラ
ルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素
原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブ
チル基、トリメチルシリルメチル基等が好ましい。
In the general formula (III), the halogen atom represented by X is a fluorine atom, a chlorine atom,
Although a bromine atom or an iodine atom may be sufficient, a chlorine atom or a bromine atom is preferable. Also,
Specific examples of the hydrocarbon group having 1 to 20 carbon atoms represented by X include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert.
-Linear or branched aliphatic hydrocarbon groups such as butyl group, neopentyl group, hexyl group, octyl group; aromatic hydrocarbon groups such as phenyl group, tolyl group, naphthyl group; aralkyl groups such as benzyl group, etc. Others: Hydrocarbon groups containing silicon atoms such as trimethylsilylmethyl group and bistrimethylsilylmethyl group, and the like. Among these, methyl group, ethyl group, isobutyl group, trimethylsilylmethyl group and the like are preferable.

一般式(III)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1
〜20の炭化水素基が好ましい。
In the general formula (III), X is a bistrimethylsilylamide group or a carbon number of 1
~ 20 hydrocarbon groups are preferred.

一般式(III)において、[B]で示される非配位性アニオンとしては、例えば、
4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テト
ラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフ
ルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス
(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート
、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、
テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[
トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,
8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフル
オロフェニル)ボレートが好ましい。
In the general formula (III), as the non-coordinating anion represented by [B] - , for example,
A tetravalent boron anion is mentioned. Specific examples of the tetravalent boron anion include tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate,
Tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [
Tris (pentafluorophenyl), phenyl] borate, tridecahydride-7,
Examples include 8-dicarbaoundecaborate. Among these, tetrakis (pentafluorophenyl) borate is preferable.

上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(II
I)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の
中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフ
ラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中
性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中
性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
Metallocene complexes represented by the above general formulas (I) and (II), and the above general formula (II)
The half metallocene cation complex represented by I) further contains 0 to 3, preferably 0 to 1, neutral Lewis bases L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.

また、上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式
(III)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよ
く、二量体又はそれ以上の多量体として存在していてもよい。
Further, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the general formula (III) may exist as a monomer, It may exist as a body or higher multimer.

上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリス
ハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニル
の塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例
えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は
室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意
であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成
物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般
式(I)で表されるメタロセン錯体を得るための反応例を示す。
(式中、X’’はハライドを示す。)
The metallocene complex represented by the general formula (I) includes, for example, a lanthanoid trishalide, scandium trishalide or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt) and bis (trialkylsilyl). It can be obtained by reacting with an amide salt (for example, potassium salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (I) is shown.
(In the formula, X ″ represents a halide.)

上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリ
スハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニ
ルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム
塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので
、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時
間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であるこ
とが好ましく、例えばトルエンを用いればよい。以下に、一般式(II)で表されるメタ
ロセン錯体を得るための反応例を示す。
The metallocene complex represented by the general formula (II) includes, for example, a lanthanide trishalide, scandium trishalide, or yttrium trishalide in a solvent, an indenyl salt (for example, potassium salt or lithium salt), and a silyl salt (for example, potassium). Salt or lithium salt). In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene may be used. Below, the reaction example for obtaining the metallocene complex represented by general formula (II) is shown.

上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応
により得ることができる。
The half metallocene cation complex represented by the general formula (III) can be obtained, for example, by the following reaction.

ここで、一般式(IV)で表される化合物において、Mは、ランタノイド元素、スカン
ジウム又はイットリウムを示し、Cp’は、それぞれ独立して無置換もしくは置換シク
ロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子
、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基
を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A]
[B]で表されるイオン性化合物において、[A]は、カチオンを示し、[B]
は、非配位性アニオンを示す。
Here, in the compound represented by the general formula (IV), M represents a lanthanoid element, scandium or yttrium, and Cp R ′ each independently represents unsubstituted or substituted cyclopentadienyl, indenyl or fluorenyl. , X represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, or a hydrocarbon group having 1 to 20 carbon atoms, L represents a neutral Lewis base, and w represents 0 to 3 Indicates an integer. In addition, the general formula [A]
+ In the ionic compound represented by [B] , [A] + represents a cation, and [B]
Represents a non-coordinating anion.

[A]で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウム
カチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、
遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとして
は、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等
の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオン
として、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。ア
ミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチ
オン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリア
ルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチ
ルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等の
N,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシ
クロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる
。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフ
ェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のト
リアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジ
アルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキ
ルアニリニウムカチオンが特に好ましい。
[A] Examples of the cation represented by + include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation,
Examples include ferrocenium cations having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- Examples thereof include N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable.

上記反応に用いる一般式[A][B]で表されるイオン性化合物としては、上記の
非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N
−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニル
カルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般
式[A][B]で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10
倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(I
II)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(II
I)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよい
し、上記反応に用いる一般式(IV)で表される化合物と一般式[A][B]で表さ
れるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表さ
れるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は式(I
I)で表されるメタロセン錯体と一般式[A][B]で表されるイオン性化合物とを
組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロ
センカチオン錯体を形成させることもできる。
The ionic compound represented by the general formula [A] + [B] used for the reaction is a compound selected and combined from the non-coordinating anion and cation, and N, N
-Dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. The ionic compound represented by the general formula [A] + [B] is 0.1 to 10 with respect to the metallocene complex.
It is preferable to add 1 mol, and it is more preferable to add about 1 mol. The general formula (I
When the half metallocene cation complex represented by II) is used in the polymerization reaction, the general formula (II
The half metallocene cation complex represented by I) may be provided as it is in the polymerization reaction system, or the compound represented by the general formula (IV) used in the above reaction and the general formula [A] + [B] The ionic compound represented may be separately provided in the polymerization reaction system to form a half metallocene cation complex represented by the general formula (III) in the reaction system. In addition, general formula (I) or formula (I
Half metallocene represented by general formula (III) in a reaction system by using a combination of a metallocene complex represented by I) and an ionic compound represented by general formula [A] + [B] - Cationic complexes can also be formed.

一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)
で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが
好ましい。
Metallocene complexes represented by general formula (I) and formula (II), and the above general formula (III)
It is preferable to determine the structure of the half metallocene cation complex represented by X-ray structural analysis.

上記第一重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む
重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒として
は、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適
に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用い
てもよい。
The co-catalyst that can be used in the first polymerization catalyst composition can be arbitrarily selected from components used as a co-catalyst for a polymerization catalyst composition containing a normal metallocene complex. Suitable examples of the cocatalyst include aluminoxanes, organoaluminum compounds, and the above ionic compounds. These promoters may be used alone or in combination of two or more.

上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアル
ミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルア
ルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお
、上記第一重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金
属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜100
0程度、好ましくは100程度となるようにすることが好ましい。
The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. As the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. The aluminoxane content in the first polymerization catalyst composition is such that the element ratio Al / M between the central metal M of the metallocene complex and the aluminum element Al of the aluminoxane is 10 to 100.
It is preferable to be about 0, preferably about 100.

一方、上記有機アルミニウム化合物としては、一般式AlRR'R’’(式中、R及び
R’はそれぞれ独立してC1〜C10の炭化水素基又は水素原子であり、R’’はC1〜
C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機ア
ルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウ
ムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライ
ド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリア
ルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミ
ニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含
有量は、メタロセン錯体に対して2〜50倍モルであることが好ましく、約10倍モルで
あることが更に好ましい。
On the other hand, as the organoaluminum compound, the general formula AlRR′R ″ (wherein R and R ′ are each independently a C1 to C10 hydrocarbon group or a hydrogen atom, and R ″ is C1 to C1).
An organoaluminum compound represented by (C10 hydrocarbon group). Examples of the organoaluminum compound include trialkylaluminum, dialkylaluminum chloride, alkylaluminum dichloride, and dialkylaluminum hydride. Among these, trialkylaluminum is preferable. Examples of the trialkylaluminum include triethylaluminum and triisobutylaluminum. In addition, it is preferable that it is 2-50 times mole with respect to a metallocene complex, and, as for content of the organoaluminum compound in the said polymerization catalyst composition, it is still more preferable that it is about 10 times mole.

更に、上記重合触媒組成物においては、一般式(I)及び式(II)で表されるメタロ
セン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体をそれ
ぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分
子量を増大できる。
Further, in the above polymerization catalyst composition, the metallocene complex represented by the general formula (I) and the formula (II) and the half metallocene cation complex represented by the above general formula (III) are each used as an appropriate promoter. By combining, the amount of cis-1,4 bonds and the molecular weight of the resulting copolymer can be increased.

<第二の重合触媒組成物>
また、上記重合触媒組成物としては、
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であっ
て、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B−1)、アル
ミノキサン(B−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及
び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B−3)より
なる群から選択される少なくとも一種とを含む重合触媒組成物(以下、第二重合触媒組成
物ともいう)を好適に挙げることができ、
該第二重合触媒組成物が、イオン性化合物(B−1)及びハロゲン化合物(B−3)の
少なくとも一種を含む場合、該重合触媒組成物は、更に、
(C)成分:下記一般式(X):
YR ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であ
り、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R
は炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異な
っていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1
で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である
場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属
である場合には、a,b及びcは1である]で表される有機金属化合物を含むことを特徴
とする。
<Second polymerization catalyst composition>
In addition, as the polymerization catalyst composition,
(A) component: a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base, the rare earth element compound or the reaction product having no bond between the rare earth element and carbon,
Component (B): Contains ionic compound (B-1) composed of non-coordinating anion and cation, aluminoxane (B-2), Lewis acid, complex compound of metal halide and Lewis base, and active halogen. A polymerization catalyst composition containing at least one selected from the group consisting of at least one halogen compound (B-3) among organic compounds (hereinafter also referred to as a second polymerization catalyst composition) can be preferably exemplified.
When the second polymerization catalyst composition contains at least one of the ionic compound (B-1) and the halogen compound (B-3), the polymerization catalyst composition further comprises:
(C) Component: The following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms. A hydrocarbon group or a hydrogen atom, R
3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2 and Y is a metal selected from Group 1 of the Periodic Table. In some cases, a is 1.
And b and c are 0 and Y is a metal selected from groups 2 and 12 of the periodic table, a and b are 1 and c is 0, and Y is periodic In the case of a metal selected from Group 13 of the Table, a, b, and c are 1].

前記共重合体の製造方法に用いる第二重合触媒組成物は、上記(A)成分及び(B)成
分を含むことを要し、ここで、該重合触媒組成物が、上記イオン性化合物(B−1)及び
上記ハロゲン化合物(B−3)の少なくとも一種を含む場合には、更に、
(C)成分:下記一般式(X):
YR ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であ
り、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R
は炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異な
っていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1
で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である
場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属
である場合には、a,b及びcは1である]で表される有機金属化合物を含むことを要す
る。上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)は、(A)成分へ
供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(
C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B−2)を含
む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上
記第二重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の
成分、例えば助触媒等を含んでいてもよい。
The second polymerization catalyst composition used in the method for producing the copolymer needs to contain the component (A) and the component (B), and the polymerization catalyst composition is the ionic compound (B). -1) and at least one of the above halogen compounds (B-3),
(C) Component: The following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms. A hydrocarbon group or a hydrogen atom, R
3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2 and Y is a metal selected from Group 1 of the Periodic Table. In some cases, a is 1.
And b and c are 0 and Y is a metal selected from groups 2 and 12 of the periodic table, a and b are 1 and c is 0, and Y is periodic In the case of a metal selected from Group 13 of the Table, a, b and c are 1]. Since the ionic compound (B-1) and the halogen compound (B-3) do not have a carbon atom to be supplied to the component (A), the carbon source for the component (A) is the above (
Component C) is required. In addition, even if it is a case where the said polymerization catalyst composition contains the said aluminoxane (B-2), this polymerization catalyst composition can contain the said (C) component. The second polymerization catalyst composition may contain other components, such as a promoter, contained in a normal rare earth element compound-based polymerization catalyst composition.

上記第二重合触媒組成物に用いる(A)成分は、希土類元素化合物又は該希土類元素化
合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物
とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物
及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやす
い。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成さ
れるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネ
オジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジス
プロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げ
ることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み
合わせて用いてもよい。
The component (A) used in the second polymerization catalyst composition is a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base. Here, the reaction of the rare earth element compound and the rare earth element compound with a Lewis base is performed. The object does not have a bond between rare earth element and carbon. When the rare earth element compound and the reactant do not have a rare earth element-carbon bond, the compound is stable and easy to handle. Here, the rare earth element compound is a compound containing a lanthanoid element or scandium or yttrium composed of the elements of atomic numbers 57 to 71 in the periodic table.
Specific examples of the lanthanoid element include lanthanium, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In addition, the said (A) component may be used individually by 1 type, and may be used in combination of 2 or more type.

また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物で
あることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又
は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記
希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI
)又は(XII):
1111 ・L11w ・・・ (XI)
1111 ・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11
、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド
基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又は
リン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す]で表される
ことができる。
The rare earth element compound is preferably a divalent or trivalent salt or complex compound of a rare earth metal, and one or more coordinations selected from a hydrogen atom, a halogen atom and an organic compound residue. More preferably, the rare earth element compound contains a child. Furthermore, the rare earth element compound or a reaction product of the rare earth element compound and a Lewis base is represented by the following general formula (XI).
) Or (XII):
M 11 X 11 2 · L 11 w (XI)
M 11 X 11 3 · L 11 w (XII)
[Wherein M 11 represents a lanthanoid element, scandium or yttrium, and X 11 independently represents a hydrogen atom, a halogen atom, an alkoxide group, a thiolate group, an amide group, a silyl group, an aldehyde residue, a ketone residue. Represents a group, a carboxylic acid residue, a thiocarboxylic acid residue or a phosphorus compound residue, L 11 represents a Lewis base, and w represents 0 to 3].

上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素
原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、se
c−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6
−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−
ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、
2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペ
ンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブ
トキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等
の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキ
シ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキ
シ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチ
ル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェ
ノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;
ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フ
ェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロ
ピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチ
ル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェ
ニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−t
ert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基
等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル
)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)
シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フ
ッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、
サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナ
フトアルデヒド等のアルデヒドの残基;2’−ヒドロキシアセトフェノン、2’−ヒドロ
キシブチロフェノン、2’−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基
;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン
、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリ
ル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステ
アリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘ
キサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカル
ボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフト
エ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチル
ブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル
、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸
ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、
リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス
(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキ
シル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘ
キシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホ
ン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホ
スホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフ
ェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、
ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィ
ン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィ
ン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビ
ス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、
(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)
(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフ
ィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン
酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を
挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を
組み合わせて用いてもよい。
Specific examples of the group (ligand) bonded to the rare earth element of the rare earth element compound include a hydrogen atom; a methoxy group, an ethoxy group, a propoxy group, an n-butoxy group, an isobutoxy group, and se.
aliphatic alkoxy groups such as c-butoxy group and tert-butoxy group; phenoxy group, 2,6
-Di-tert-butylphenoxy group, 2,6-diisopropylphenoxy group, 2,6-
Dineopentylphenoxy group, 2-tert-butyl-6-isopropylphenoxy group,
2-tert-butyl-6-neopentylphenoxy group, 2-isopropyl-6-neopentylphenoxy group; thiomethoxy group, thioethoxy group, thiopropoxy group, thio n-butoxy group, thioisobutoxy group, thiosec-butoxy group Aliphatic thiolate groups such as thio tert-butoxy group; thiophenoxy group, 2,6-di-tert-butylthiophenoxy group, 2,6-diisopropylthiophenoxy group, 2,6-dineopentylthiophenoxy group, 2-tert-butyl-6-isopropylthiophenoxy group, 2-tert-butyl-6-thioneopentylphenoxy group, 2-isopropyl-6-thioneopentylphenoxy group, 2,4,6-triisopropylthiophenoxy group Arylthiolate groups such as;
Aliphatic amide groups such as dimethylamide group, diethylamide group, diisopropylamide group; phenylamide group, 2,6-di-tert-butylphenylamide group, 2,6-diisopropylphenylamide group, 2,6-dineopentyl Phenylamide group, 2-tert-butyl-6-isopropylphenylamide group, 2-tert-butyl-6-neopentylphenylamide group, 2-isopropyl-6-neopentylphenylamide group, 2,4,6-t
arylamide groups such as ert-butylphenylamide group; bistrialkylsilylamide groups such as bistrimethylsilylamide group; trimethylsilyl group, tris (trimethylsilyl) silyl group, bis (trimethylsilyl) methylsilyl group, trimethylsilyl (dimethyl)
Examples thereof include silyl groups such as silyl group and triisopropylsilyl (bistrimethylsilyl) silyl group; halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom. Furthermore,
Residues of aldehydes such as salicylaldehyde, 2-hydroxy-1-naphthaldehyde, 2-hydroxy-3-naphthaldehyde; hydroxyphenones such as 2′-hydroxyacetophenone, 2′-hydroxybutyrophenone, 2′-hydroxypropiophenone Residues of diketones such as acetylacetone, benzoylacetone, propionylacetone, isobutylacetone, valerylacetone, ethylacetylacetone; isovaleric acid, caprylic acid, octanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, Isostearic acid, oleic acid, linoleic acid, cyclopentanecarboxylic acid, naphthenic acid, ethylhexanoic acid, bivaric acid, versatic acid [commercial name of Shell Chemical Co., Ltd., composed of isomers of C10 monocarboxylic acid] Synthetic acids], residues of carboxylic acids such as phenylacetic acid, benzoic acid, 2-naphthoic acid, maleic acid, and succinic acid; thiocarboxylic acids such as hexanethioic acid, 2,2-dimethylbutanethioic acid, decanethioic acid, and thiobenzoic acid Acid residue, dibutyl phosphate, dipentyl phosphate, dihexyl phosphate, diheptyl phosphate, dioctyl phosphate, bis (2-ethylhexyl phosphate), bis (1-methylheptyl phosphate), dilauryl phosphate,
Dioleyl phosphate, diphenyl phosphate, bis (p-nonylphenyl) phosphate, bis (polyethylene glycol-p-nonylphenyl) phosphate, (butyl) phosphate (2-ethylhexyl), phosphate (1-methylheptyl) Residues of phosphate esters such as (2-ethylhexyl), phosphoric acid (2-ethylhexyl) (p-nonylphenyl); 2-ethylhexylphosphonate monobutyl, 2-ethylhexylphosphonate mono-2-ethylhexyl, phenylphosphonate mono 2-ethylhexyl, 2-ethylhexylphosphonic acid mono-p-nonylphenyl, phosphonic acid mono-2-ethylhexyl, phosphonic acid mono-1-methylheptyl,
Phosphonic acid ester residues such as mono-p-nonylphenyl phosphonate, dibutylphosphinic acid, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, dilaurylphosphinic acid, dioleylphosphinic acid, Diphenylphosphinic acid, bis (p-nonylphenyl) phosphinic acid, butyl (2-ethylhexyl) phosphinic acid,
(2-ethylhexyl) (1-methylheptyl) phosphinic acid, (2-ethylhexyl)
Residue of phosphinic acid such as (p-nonylphenyl) phosphinic acid, butylphosphinic acid, 2-ethylhexylphosphinic acid, 1-methylheptylphosphinic acid, oleylphosphinic acid, laurylphosphinic acid, phenylphosphinic acid, p-nonylphenylphosphinic acid Groups can also be mentioned. In addition, these ligands may be used individually by 1 type, and may be used in combination of 2 or more type.

上記第二重合触媒組成物に用いる(A)成分において、上記希土類元素化合物と反応す
るルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニ
リン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン
類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(
式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11
、同一であっても異なっていてもよい。
In the component (A) used in the second polymerization catalyst composition, examples of the Lewis base that reacts with the rare earth element compound include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, Diolefins and the like. Here, when the rare earth element compound reacts with a plurality of Lewis bases (
In the formulas (XI) and (XII), the Lewis base L 11 may be the same or different when w is 2 or 3.

上記第二重合触媒組成物に用いる(B)成分は、イオン性化合物(B−1)、アルミノ
キサン(B−2)及びハロゲン化合物(B−3)よりなる群から選択される少なくとも一
種の化合物である。なお、上記第二重合触媒組成物における(B)成分の合計の含有量は
、(A)成分に対して0.1〜50倍モルであることが好ましい。
The component (B) used in the second polymerization catalyst composition is at least one compound selected from the group consisting of an ionic compound (B-1), an aluminoxane (B-2), and a halogen compound (B-3). is there. In addition, it is preferable that content of the sum total of (B) component in said 2nd polymerization catalyst composition is 0.1-50 times mole with respect to (A) component.

上記(B−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり
、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチ
オン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非
配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロ
フェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフ
ルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキ
ス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)
ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、
ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]
ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。
一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウム
カチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有する
フェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例として
は、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等
の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオン
として、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチ
ルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例とし
ては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピ
ルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル
)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルア
ニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペ
ンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソ
プロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキル
アンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフ
ェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジ
メチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げ
られる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそ
れぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウ
ムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキ
ス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は
、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二
重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1〜10倍
モルであることが好ましく、約1倍モルであることが更に好ましい。
The ionic compound represented by the above (B-1) is composed of a non-coordinating anion and a cation, and reacts with a reaction product of the rare earth element compound or its Lewis base as the component (A) to be cationic. Examples thereof include ionic compounds capable of generating a transition metal compound. Here, as the non-coordinating anion, for example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (tetrafluorophenyl) borate, tetrakis ( Pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl)
Borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl,
Pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl]
Examples thereof include borates and tridecahydride-7,8-dicarbaoundecaborate.
On the other hand, examples of the cation include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal. Specific examples of the carbonium cation include trisubstituted carbonium cations such as triphenylcarbonium cation and tri (substituted phenyl) carbonium cation, and more specifically, as tri (substituted phenyl) carbonyl cation, Examples include tri (methylphenyl) carbonium cation, tri (dimethylphenyl) carbonium cation, and the like. Specific examples of ammonium cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation (for example, tri (n-butyl) ammonium cation); N, N-dimethylanilinium N, N-dialkylanilinium cation such as cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation; dialkylammonium cation such as diisopropylammonium cation and dicyclohexylammonium cation Is mentioned. Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Accordingly, the ionic compound is preferably a compound selected and combined from the above-mentioned non-coordinating anions and cations, specifically, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbohydrate. Preferred is nitrotetrakis (pentafluorophenyl) borate. Moreover, these ionic compounds can be used individually by 1 type, or 2 or more types can be mixed and used for them. In addition, it is preferable that it is 0.1-10 times mole with respect to (A) component, and, as for content of the ionic compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 1 time mole.

上記(B−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接
触させることによって得られる化合物であり、例えば、一般式:(−Al(R’)O−)
で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R
’は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はア
ルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上
が更に好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、
エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好まし
い。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例
えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム
等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが
特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を
原料として用いたアルミノキサンを好適に用いることができる。なお、上記第二重合触媒
組成物におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アル
ミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となる
ようにすることが好ましい。
The aluminoxane represented by the above (B-2) is a compound obtained by bringing an organoaluminum compound and a condensing agent into contact with each other. For example, the general formula: (—Al (R ′) O—)
A chain aluminoxane or cyclic aluminoxane having a repeating unit represented by the formula:
'Is a hydrocarbon group having 1 to 10 carbon atoms, and some of the hydrocarbon groups may be substituted with a halogen atom and / or an alkoxy group, and the degree of polymerization of the repeating unit is preferably 5 or more, more preferably 10 or more. More preferred). Here, as R ′, specifically, a methyl group,
An ethyl group, a propyl group, an isobutyl group, etc. are mentioned, Among these, a methyl group is preferable. Examples of the organoaluminum compound used as an aluminoxane raw material include trialkylaluminums such as trimethylaluminum, triethylaluminum, and triisobutylaluminum, and mixtures thereof, and trimethylaluminum is particularly preferable. For example, an aluminoxane using a mixture of trimethylaluminum and tributylaluminum as a raw material can be preferably used. The aluminoxane content in the second polymerization catalyst composition is such that the element ratio Al / M of the rare earth element M constituting the component (A) and the aluminum element Al of the aluminoxane is about 10 to 1000. It is preferable to do.

上記(B−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩
基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例え
ば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、
カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合
物を生成することができる。なお、上記第二重合触媒組成物におけるハロゲン化合物の合
計の含有量は、(A)成分に対して1〜5倍モルであることが好ましい。
The halogen compound represented by (B-3) is composed of at least one of a Lewis acid, a complex compound of a metal halide and a Lewis base, and an organic compound containing an active halogen, and is, for example, the component (A). Reacts with a rare earth element compound or its reactant with a Lewis base,
Cationic transition metal compounds, halogenated transition metal compounds, and compounds in which transition metal centers are insufficiently charged can be generated. In addition, it is preferable that content of the sum total of the halogen compound in the said 2nd polymerization catalyst composition is 1-5 times mole with respect to (A) component.

上記ルイス酸としては、B(C等のホウ素含有ハロゲン化合物、Al(C
等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,
IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもで
きる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。ま
た、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には
、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニ
ウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド
、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミ
ニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド
、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニ
ウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセス
キブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミ
ニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン
、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチ
ルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウム
ジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド
、エチルアルミニウムジブロマイドが特に好ましい。
Examples of the Lewis acid include boron-containing halogen compounds such as B (C 6 F 5 ) 3 , Al (C 6
F 5 ) Aluminum-containing halogen compounds such as 3 can be used, as well as III,
Halogen compounds containing elements belonging to groups IV, V, VI or VIII can also be used. Preferably, aluminum halide or organometallic halide is used. Moreover, as a halogen element, chlorine or bromine is preferable. Specific examples of the Lewis acid include methyl aluminum dibromide, methyl aluminum dichloride, ethyl aluminum dibromide, ethyl aluminum dichloride, butyl aluminum dibromide, butyl aluminum dichloride, dimethyl aluminum bromide, dimethyl aluminum chloride, diethyl aluminum bromide, diethyl Aluminum chloride, dibutylaluminum bromide, dibutylaluminum chloride, methylaluminum sesquibromide, methylaluminum sesquichloride, ethylaluminum sesquibromide, ethylaluminum sesquichloride, dibutyltin dichloride, aluminum tribromide, antimony trichloride, antimony pentachloride, phosphorus trichloride , Pentachloride , Tin tetrachloride, titanium tetrachloride, tungsten hexachloride, etc., among which diethylaluminum chloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminum bromide, ethylaluminum sesquibromide, ethylaluminum dibromide preferable.

上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては
、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネ
シウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩
化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カ
ドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化
マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウ
ム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げ
られ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガ
ン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅
が特に好ましい。
The metal halide constituting the complex compound of the above metal halide and Lewis base includes beryllium chloride, beryllium bromide, beryllium iodide, magnesium chloride, magnesium bromide, magnesium iodide, calcium chloride, calcium bromide, iodine. Calcium chloride, barium chloride, barium bromide, barium iodide, zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, mercury chloride, mercury bromide, mercury iodide, manganese chloride, Manganese bromide, manganese iodide, rhenium chloride, rhenium bromide, rhenium iodide, copper chloride, copper iodide, silver chloride, silver bromide, silver iodide, gold chloride, gold iodide, gold bromide, etc. Of these, magnesium chloride, calcium chloride, barium chloride, manganese chloride, zinc chloride, and copper chloride are preferred. , Magnesium chloride, manganese chloride, zinc chloride, copper chloride being particularly preferred.

また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては
、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好まし
い。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェ
ニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニ
ルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセ
トン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセ
チルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジ
メチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキ
サン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチ
ルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、
2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノ
ール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これら
の中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、
2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノー
ル、ラウリルアルコールが好ましい。
Moreover, as a Lewis base which comprises the complex compound of the said metal halide and a Lewis base, a phosphorus compound, a carbonyl compound, a nitrogen compound, an ether compound, alcohol, etc. are preferable. Specifically, tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate, triethylphosphine, tributylphosphine, triphenylphosphine, diethylphosphinoethane, diphenylphosphinoethane, acetylacetone, benzoylacetone , Propionitrile acetone, valeryl acetone, ethyl acetylacetone, methyl acetoacetate, ethyl acetoacetate, phenyl acetoacetate, dimethyl malonate, diethyl malonate, diphenyl malonate, acetic acid, octanoic acid, 2-ethyl-hexanoic acid, olein Acid, stearic acid, benzoic acid, naphthenic acid, versatic acid, triethylamine, N, N-dimethylacetamide, tetrahydrofuran, diphenyl ether,
2-ethyl-hexyl alcohol, oleyl alcohol, stearyl alcohol, phenol, benzyl alcohol, 1-decanol, lauryl alcohol, and the like. Among these, tri-2-ethylhexyl phosphate, tricresyl phosphate, acetylacetone,
2-ethylhexanoic acid, versatic acid, 2-ethylhexyl alcohol, 1-decanol and lauryl alcohol are preferred.

上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましく
は0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリ
マー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
The Lewis base is reacted at a ratio of 0.01 to 30 mol, preferably 0.5 to 10 mol, per mol of the metal halide. When the reaction product with the Lewis base is used, the metal remaining in the polymer can be reduced.
Examples of the organic compound containing the active halogen include benzyl chloride.

上記第二重合触媒組成物に用いる(C)成分は、下記一般式(X):
YR ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であ
り、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R
は炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は異な
っていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1
で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である
場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属
である場合には、a,b及びcは1である]で表される有機金属化合物であり、下記一般
式(Xa):
AlR ・・・ (Xa)
[式中、R及びRは、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で
、Rは炭素数1〜10の炭化水素基であり、但し、Rは上記R又はRと同一又は
異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X
)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウ
ム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチ
ルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペ
ンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、ト
リオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミ
ニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化
ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミ
ニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−
プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げ
られ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化
ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C
)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合
して用いることもできる。なお、上記第二重合触媒組成物における有機アルミニウム化合
物の含有量は、(A)成分に対して1〜50倍モルであることが好ましく、約10倍モル
であることが更に好ましい。
The component (C) used in the second polymerization catalyst composition is represented by the following general formula (X):
YR 1 a R 2 b R 3 c (X)
[Wherein Y is a metal selected from Group 1, Group 2, Group 12 and Group 13 of the Periodic Table, and R 1 and R 2 are the same or different and have 1 to 10 carbon atoms. A hydrocarbon group or a hydrogen atom, R
3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 may be the same as or different from R 1 or R 2 and Y is a metal selected from Group 1 of the Periodic Table. In some cases, a is 1.
And b and c are 0 and Y is a metal selected from groups 2 and 12 of the periodic table, a and b are 1 and c is 0, and Y is periodic In the case of a metal selected from Table Group 13, a, b and c are 1], and are represented by the following general formula (Xa):
AlR 1 R 2 R 3 (Xa)
[Wherein, R 1 and R 2 are the same or different and each represents a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 3 is a hydrocarbon group having 1 to 10 carbon atoms, provided that R 3 represents the above It may be the same as or different from R 1 or R 2 ]. Formula (X
) Organoaluminum compounds include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, trihexylaluminum , Tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride, hydrogen Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-
Examples thereof include propylaluminum dihydride and isobutylaluminum dihydride. Among these, triethylaluminum, triisobutylaluminum, diethylaluminum hydride and diisobutylaluminum hydride are preferable. (C
The organoaluminum compound as a component can be used alone or in combination of two or more. In addition, it is preferable that it is 1-50 times mole with respect to (A) component, and, as for content of the organoaluminum compound in the said 2nd polymerization catalyst composition, it is still more preferable that it is about 10 times mole.

<重合触媒および第三の重合触媒組成物>
上記重合触媒としては、共役ジエン化合物と非共役オレフィンとの重合用であり、下記
式(A):
MXQY ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位し
ており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独
立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されるメタロセン系複合触媒が挙げられる。
<Polymerization catalyst and third polymerization catalyst composition>
The polymerization catalyst is for polymerization of a conjugated diene compound and a non-conjugated olefin, and has the following formula (A):
R a MX b QY b (A)
[In the formula, each R independently represents an unsubstituted or substituted indenyl, the R is coordinated to M, M represents a lanthanoid element, scandium or yttrium; 20 represents a hydrocarbon group, X is μ-coordinated to M and Q, Q represents a group 13 element of the periodic table, and Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or A hydrogen atom, wherein Y is coordinated to Q and a and b are 2].

上記メタロセン系複合触媒の好適例においては、下記式(XV):
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cp
、それぞれ独立して無置換もしくは置換インデニルを示し、R及びRは、それぞれ独
立して炭素数1〜20の炭化水素基を示し、該R及びRは、M及びAlにμ配位し
ており、R及びRは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を
示す]で表されるメタロセン系複合触媒が挙げられる。
In a preferred example of the metallocene composite catalyst, the following formula (XV):
[ Wherein , M 1 represents a lanthanoid element, scandium or yttrium, Cp R independently represents an unsubstituted or substituted indenyl group, and R a and R b each independently have 1 to 20 carbon atoms. R a and R b are μ-coordinated to M 1 and Al, and R c and R d each independently represent a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Metallocene composite catalysts represented by

また、上記第三の重合触媒組成物は、上記のメタロセン系複合触媒と、ホウ素アニオン
とを含むことを特徴とする。
The third polymerization catalyst composition includes the metallocene composite catalyst and a boron anion.

<メタロセン系複合触媒>
以下に、上記メタロセン系複合触媒を詳細に説明する。上記メタロセン系複合触媒は、
ランタノイド元素、スカンジウム又はイットリウムの希土類元素と周期律表第13族元素
とを有し、下記式(A):
MXQY ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位し
ており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独
立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されることを特徴とする。上記メタロセン系重合触媒を用いることで、共役ジエン化合物と非共役オレフィンとの共重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
<Metalocene composite catalyst>
Hereinafter, the metallocene composite catalyst will be described in detail. The metallocene composite catalyst is
A lanthanoid element, a rare earth element of scandium or yttrium, and a Group 13 element of the periodic table, the following formula (A):
R a MX b QY b (A)
[Wherein, R independently represents unsubstituted or substituted indenyl, R is coordinated to M, M represents a lanthanoid element, scandium or yttrium, and each X independently represents 1 to 1 carbon atoms. 20 represents a hydrocarbon group, X is μ-coordinated to M and Q, Q represents a group 13 element of the periodic table, and Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or A hydrogen atom, wherein Y is coordinated to Q, and a and b are 2.] By using the metallocene polymerization catalyst, a copolymer of a conjugated diene compound and a non-conjugated olefin can be produced. In addition, by using the metallocene composite catalyst, for example, a catalyst previously combined with an aluminum catalyst, the amount of alkylaluminum used at the time of copolymer synthesis can be reduced or eliminated. If a conventional catalyst system is used, it is necessary to use a large amount of alkylaluminum at the time of copolymer synthesis. For example, in the conventional catalyst system, it is necessary to use 10 equivalents or more of alkylaluminum with respect to the metal catalyst. Is demonstrated.

上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、
スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の1
5元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジム
Nd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジ
ウムSc及びイットリウムYが好適に挙げられる。
In the metallocene composite catalyst, the metal M in the formula (A) is a lanthanoid element,
Scandium or yttrium. Lanthanoid elements include 1 of atomic numbers 57-71.
5 elements are included, and any of these may be used. Preferred examples of the metal M include samarium Sm, neodymium Nd, praseodymium Pr, gadolinium Gd, cerium Ce, holmium Ho, scandium Sc, and yttrium Y.

上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニル
であり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、
例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4
,5,6,7−ヘキサメチルインデニル基等が挙げられる。
In the formula (A), each R is independently an unsubstituted indenyl or a substituted indenyl, and the R is coordinated to the metal M. In addition, as a specific example of the substituted indenyl group,
For example, 1,2,3-trimethylindenyl group, heptamethylindenyl group, 1,2,4
, 5,6,7-hexamethylindenyl group and the like.

上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、ア
ルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
In the above formula (A), Q represents a group 13 element in the periodic table, and specific examples include boron, aluminum, gallium, indium, thallium and the like.

上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該
XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
In the above formula (A), each X independently represents a hydrocarbon group having 1 to 20 carbon atoms, and X is μ-coordinated to M and Q. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.

上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原
子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メ
チル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オク
チル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキ
サデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
In the formula (A), each Y independently represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom, and the Y is coordinated to Q. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

上記式(XV)において、金属Mは、ランタノイド元素、スカンジウム又はイットリ
ウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらの
いずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr
、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウ
ムYが好適に挙げられる。
In the above formula (XV), the metal M 1 is a lanthanoid element, scandium or yttrium. The lanthanoid elements include 15 elements having atomic numbers 57 to 71, and any of these may be used. As the metal M 1 is samarium Sm, neodymium Nd, praseodymium Pr
Gadolinium Gd, cerium Ce, holmium Ho, scandium Sc and yttrium Y are preferable.

上記式(XV)において、Cpは、無置換インデニル又は置換インデニルである。イ
ンデニル環を基本骨格とするCpは、C7−X又はC11−Xで示さ
れ得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒ
ドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1
〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが
一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル
基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、
ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカル
ビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロ
カルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が
挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチル
インデニル等が挙げられる。なお、式(XV)における二つのCpは、それぞれ互いに
同一でも異なっていてもよい。
In the above formula (XV), Cp R is unsubstituted indenyl or substituted indenyl. Cp R having an indenyl ring as a basic skeleton may be represented by C 9 H 7-X R X or C 9 H 11-X R X. Here, X is an integer of 0-7 or 0-11. In addition, each R is preferably independently a hydrocarbyl group or a metalloid group. Hydrocarbyl group has 1 carbon
It is preferably -20, more preferably 1-10, and even more preferably 1-8. Specific examples of the hydrocarbyl group include a methyl group, an ethyl group, a phenyl group, and a benzyl group. On the other hand, as an example of a metalloid-based metalloid,
Examples thereof include germyl Ge, stannyl Sn, and silyl Si, and the metalloid group preferably has a hydrocarbyl group, and the hydrocarbyl group that the metalloid group has is the same as the above hydrocarbyl group. Specific examples of the metalloid group include a trimethylsilyl group. Specific examples of the substituted indenyl include 2-phenylindenyl and 2-methylindenyl. Incidentally, the two Cp R in the formula (XV) may each be the same or different from each other.

上記式(XV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水
素基を示し、該R及びRは、M及Aにμ配位している。ここで、炭素数1〜20の
炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシ
ル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基
、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。な
お、μ配位とは、架橋構造をとる配位様式のことである。
In the above formula (XV), R A and R B each independently represent a hydrocarbon group having 1 to 20 carbon atoms, said R A and R are coordinated μ to M 1A l. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like. Note that the μ coordination is a coordination mode having a crosslinked structure.

上記式(XV)において、R及びRは、それぞれ独立して炭素数1〜20の炭化水
素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エ
チル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デ
シル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基
、ヘプタデシル基、ステアリル基等が挙げられる。
In the above formula (XV), R C and R D are each independently a hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom. Here, as a C1-C20 hydrocarbon group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group, tetradecyl group , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XVI):
(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Cpは、
それぞれ独立して無置換もしくは置換インデニルを示し、R〜Rは、それぞれ独立し
て炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、
0〜3の整数を示す)で表されるメタロセン錯体を、AlRで表される有機ア
ルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよい
ので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数
十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であ
ることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系
複合触媒の構造は、H−NMRやX線構造解析により決定することが好ましい。
The metallocene composite catalyst is, for example, in a solvent in the following formula (XVI):
( Wherein M 2 represents a lanthanoid element, scandium or yttrium, and Cp R is
Each independently represents unsubstituted or substituted indenyl; R E to R J each independently represents an alkyl group having 1 to 3 carbon atoms or a hydrogen atom; L represents a neutral Lewis base;
The metallocene complex represented by 0 to 3 an integer of), obtained by reacting an organoaluminum compound represented by AlR K R L R M. In addition, since reaction temperature should just be about room temperature, it can manufacture on mild conditions. The reaction time is arbitrary, but is about several hours to several tens of hours. The reaction solvent is not particularly limited, but is preferably a solvent that dissolves the raw material and the product. For example, toluene or hexane may be used. The structure of the metallocene composite catalyst is preferably determined by 1 H-NMR or X-ray structural analysis.

上記式(XVI)で表されるメタロセン錯体において、Cpは、無置換インデニル又
は置換インデニルであり、上記式(XV)中のCpと同義である。また、上記式(XV
I)において、金属Mは、ランタノイド元素、スカンジウム又はイットリウムであり、
上記式(XV)中の金属Mと同義である。
In the metallocene complex represented by the above formula (XVI), Cp R is unsubstituted indenyl or substituted indenyl, and has the same meaning as Cp R in the above formula (XV). In addition, the above formula (XV
In I), the metal M 2 is a lanthanoid element, scandium or yttrium,
It is synonymous with the metal M 1 in the formula (XV).

上記式(XVI)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR
]を含む。シリルアミド配位子に含まれるR基(R〜R基)は、それぞれ独立し
て炭素数1〜3のアルキル基又は水素原子である。また、R〜Rのうち少なくとも一
つが水素原子であることが好ましい。R〜Rのうち少なくとも一つを水素原子にする
ことで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
The metallocene complex represented by the above formula (XVI) is a silylamide ligand [—N (SiR 3
2 ] is included. The R groups (R E to R J groups) contained in the silylamide ligand are each independently an alkyl group having 1 to 3 carbon atoms or a hydrogen atom. In addition, it is preferable that at least one of R E to R J is a hydrogen atom. By making at least one of R E to R J a hydrogen atom, the synthesis of the catalyst becomes easy. Furthermore, a methyl group is preferable as the alkyl group.

上記式(XVI)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の
中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフ
ラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中
性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中
性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
The metallocene complex represented by the above formula (XVI) further contains 0 to 3, preferably 0 to 1, neutral Lewis bases L. Here, examples of the neutral Lewis base L include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride, neutral olefins, neutral diolefins, and the like. Here, when the complex includes a plurality of neutral Lewis bases L, the neutral Lewis bases L may be the same or different.

また、上記式(XVI)で表されるメタロセン錯体は、単量体として存在していてもよ
く、二量体又はそれ以上の多量体として存在していてもよい。
In addition, the metallocene complex represented by the above formula (XVI) may exist as a monomer, or may exist as a dimer or a higher multimer.

一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlR
で表され、ここで、R及びRは、それぞれ独立して炭素数1〜20の1価の
炭化水素基又は水素原子で、Rは炭素数1〜20の1価の炭化水素基であり、但し、R
は上記R又はRと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素
基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘ
プチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタ
デシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
On the other hand, the organoaluminum compound used to produce the metallocene composite catalyst is AlR K.
Represented by R L R M, wherein, R K and R L are independently a monovalent hydrocarbon group or a hydrogen atom having 1 to 20 carbon atoms, R M is a monovalent C1-20 Where R is a hydrocarbon group
M may be the same as or different from the above RK or RL . Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, decyl group, dodecyl group, tridecyl group and tetradecyl group. , Pentadecyl group, hexadecyl group, heptadecyl group, stearyl group and the like.

上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチル
アルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ
−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウ
ム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミ
ニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロ
ピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウ
ム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオク
チルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドラ
イド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライ
ド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウ
ム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、
これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用い
ることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合
物の量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モル
であることが更に好ましい。
Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, tripentylaluminum, Hexyl aluminum, tricyclohexyl aluminum, trioctyl aluminum; diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, diisohexyl aluminum hydride , Dioctylaluminum hydride, diisooctylaluminum hydride; ethylaluminum dihydride, n-propylaluminium Dihydride, isobutyl aluminum dihydride and the like. Among these, triethylaluminum, triisobutylaluminum, hydrogenated diethylaluminum, hydrogenated diisobutylaluminum are preferred. Also,
These organoaluminum compounds can be used singly or in combination of two or more. In addition, the amount of the organoaluminum compound used for the production of the metallocene composite catalyst is preferably 1 to 50 times mole, more preferably about 10 times mole relative to the metallocene complex.

<第三の重合触媒組成物>
また、上記重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含む
ことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の
成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素
アニオンとを合わせて2成分触媒ともいう。上記第三重合触媒組成物によれば、上記メタ
ロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の共重合
体中での含有量を任意に制御することが可能となる。
<Third polymerization catalyst composition>
The polymerization catalyst composition contains the metallocene composite catalyst and a boron anion, and further contains other components such as a cocatalyst contained in the polymerization catalyst composition containing a normal metallocene catalyst. Etc. are preferably included. The metallocene composite catalyst and boron anion are also referred to as a two-component catalyst. According to the third polymerization catalyst composition, since the boron anion is further contained in the same manner as the metallocene composite catalyst, the content of each monomer component in the copolymer can be arbitrarily controlled. It becomes possible.

上記第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体
的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラ
キス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、
テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)
ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオ
ロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート
、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェ
ニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレー
ト等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好
ましい。
In the third polymerization catalyst composition, specific examples of the boron anion constituting the two-component catalyst include a tetravalent boron anion. For example, tetraphenyl borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate,
Tetrakis (trifluorophenyl) borate, Tetrakis (tetrafluorophenyl)
Borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) borate, [tris (pentafluorophenyl), phenyl ] Borate, tridecahydride-7,8-dicarbaundecaborate, etc. are mentioned, and among these, tetrakis (pentafluorophenyl) borate is preferable.

なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用す
ることができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウム
カチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、
遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとして
は、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等
の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオン
として、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。ア
ミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチ
オン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリア
ルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチ
ルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等の
N,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシ
クロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる
。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフ
ェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のト
リアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジ
アルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキ
ルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N
−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニル
カルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ
素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して
0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。
In addition, the said boron anion can be used as an ionic compound combined with the cation. Examples of the cation include a carbonium cation, an oxonium cation, an amine cation, a phosphonium cation, a cycloheptatrienyl cation,
Examples include ferrocenium cations having a transition metal. Examples of the carbonium cation include trisubstituted carbonium cations such as a triphenylcarbonium cation and a tri (substituted phenyl) carbonium cation. The tri (substituted phenyl) carbonyl cation is specifically exemplified by tri (methylphenyl). ) Carbonium cation and the like. Examples of amine cations include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tripropylammonium cation, and tributylammonium cation; N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N- Examples thereof include N, N-dialkylanilinium cations such as 2,4,6-pentamethylanilinium cation; dialkylammonium cations such as diisopropylammonium cation and dicyclohexylammonium cation. Examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation. Among these cations, N, N-dialkylanilinium cation or carbonium cation is preferable, and N, N-dialkylanilinium cation is particularly preferable. Therefore, as the ionic compound, N, N
-Dimethylanilinium tetrakis (pentafluorophenyl) borate, triphenylcarbonium tetrakis (pentafluorophenyl) borate and the like are preferable. In addition, it is preferable to add 0.1-10 times mole with respect to the said metallocene type composite catalyst, and, as for the ionic compound which consists of a boron anion and a cation, it is still more preferable to add about 1 time mole.

なお、上記第三重合触媒組成物においては、上記メタロセン系複合触媒と上記ホウ素ア
ニオンとを用いる必要があるが、上記式(XVI)で表されるメタロセン触媒と有機アル
ミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XV
)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物
の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製
してからホウ素アニオンと組み合わせる必要がある。
In the third polymerization catalyst composition, it is necessary to use the metallocene composite catalyst and the boron anion, but a reaction system for reacting the metallocene catalyst represented by the formula (XVI) with an organoaluminum compound. In the presence of a boron anion, the above formula (XV
) Cannot be synthesized. Therefore, for the preparation of the third polymerization catalyst composition, it is necessary to synthesize the metallocene composite catalyst in advance, isolate and purify the metallocene composite catalyst, and then combine with the boron anion.

上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlR
で表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられ
る。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルア
ルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチル
アルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。な
お、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いて
もよい。
Examples of the co-catalyst that can be used in the third polymerization catalyst composition include the above-described AlR.
In addition to the organoaluminum compound represented by K R L R M , aluminoxane and the like are preferable. The aluminoxane is preferably an alkylaminoxan, and examples thereof include methylaluminoxane (MAO) and modified methylaluminoxane. As the modified methylaluminoxane, MMAO-3A (manufactured by Tosoh Finechem Co., Ltd.) and the like are preferable. These aluminoxanes may be used alone or in combination of two or more.

なお、共重合体の製造方法においては、上述の通り、上記重合触媒または重合触媒組成
物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして
、重合を行うことができる。ここで、共重合体の製造方法は、例えば、(1)単量体とし
て共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンを含む重合反応系中
に、重合触媒組成物の構成成分を別個に提供し、該反応系中において重合触媒組成物とし
てもよいし、(2)予め調製された重合触媒組成物を重合反応系中に提供してもよい。ま
た、(2)においては、助触媒によって活性化されたメタロセン錯体(活性種)を提供す
ることも含まれる。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、共役ジ
エン化合物及び該共役ジエン化合物以外の非共役オレフィンの合計に対して、0.000
1〜0.01倍モルの範囲が好ましい。
In the method for producing a copolymer, as described above, polymerization is carried out in the same manner as in the method for producing a polymer using a normal coordination ion polymerization catalyst, except that the polymerization catalyst or the polymerization catalyst composition is used. be able to. Here, in the method for producing a copolymer, for example, (1) the components of the polymerization catalyst composition are separately contained in a polymerization reaction system containing a conjugated diene compound as a monomer and a non-conjugated olefin other than the conjugated diene compound. The polymerization catalyst composition may be provided in the reaction system, or (2) a polymerization catalyst composition prepared in advance may be provided in the polymerization reaction system. Moreover, (2) includes providing a metallocene complex (active species) activated by a cocatalyst. In addition, the usage-amount of the metallocene complex contained in a polymerization catalyst composition is 0.000 with respect to the sum total of nonconjugated olefins other than a conjugated diene compound and this conjugated diene compound.
The range of 1-0.01 times mole is preferable.

また、共重合体の製造方法においては、メタノール、エタノール、イソプロパノール等
の重合停止剤を用いて、重合を停止させてもよい。
In the method for producing a copolymer, the polymerization may be stopped using a polymerization terminator such as methanol, ethanol, or isopropanol.

共重合体の製造方法において、共役ジエン化合物及び非共役オレフィンの重合反応は、
不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ま
しい。上記重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の
範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応の
シス−1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化
合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1〜10.0MP
aの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒〜1
0日の範囲が好ましいが、重合される単量体の種類、触媒の種類、重合温度等の条件によ
って適宜選択することができる。
In the method for producing a copolymer, the polymerization reaction of the conjugated diene compound and the non-conjugated olefin is
It is preferably carried out in an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The polymerization temperature of the polymerization reaction is not particularly limited, but is preferably in the range of −100 ° C. to 200 ° C., for example, and can be about room temperature. If the polymerization temperature is raised, the cis-1,4 selectivity of the polymerization reaction may be lowered. The pressure of the polymerization reaction is 0.1 to 10.0 MP in order to sufficiently incorporate the conjugated diene compound and the non-conjugated olefin into the polymerization reaction system.
A range of a is preferred. Further, the reaction time of the above polymerization reaction is not particularly limited, and for example, 1 second to 1
The range of 0 days is preferable, but can be appropriately selected depending on conditions such as the type of monomer to be polymerized, the type of catalyst, and the polymerization temperature.

前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の
非共役オレフィンとの重合の際、該非共役オレフィンの圧力は、0.1MPa〜10MP
aであることが好ましい。該非共役オレフィンの圧力が0.1MPa以上であれば、反応
混合物中に非共役オレフィンを効率的に導入することができる。また、非共役オレフィン
の圧力を高くし過ぎても、非共役オレフィンを効率的に導入する効果が頭打ちとなるため
、非共役オレフィンの圧力を10MPa以下とするのが好ましい。
In the method for producing the copolymer, when the conjugated diene compound is polymerized with a non-conjugated olefin other than the conjugated diene compound, the pressure of the non-conjugated olefin is 0.1 MPa to 10 MP.
a is preferred. When the pressure of the non-conjugated olefin is 0.1 MPa or more, the non-conjugated olefin can be efficiently introduced into the reaction mixture. Moreover, even if the pressure of the non-conjugated olefin is increased too much, the effect of efficiently introducing the non-conjugated olefin reaches a peak, and therefore the pressure of the non-conjugated olefin is preferably 10 MPa or less.

前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の
非共役オレフィンとの重合の際、重合開始時における該共役ジエン化合物の濃度(mol
/l)と該非共役オレフィンの濃度(mol/l)とは、下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.0
の関係を満たすことが好ましく、更に好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.3
の関係を満たし、一層好ましくは下記式:
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.7
の関係を満たす。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とする
ことで、反応混合物中に非共役オレフィンを効率的に導入することができる。
In the copolymer production method, when the conjugated diene compound is polymerized with a non-conjugated olefin other than the conjugated diene compound, the concentration of the conjugated diene compound at the start of polymerization (mol
/ L) and the concentration (mol / l) of the non-conjugated olefin is the following formula:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.0
It is preferable to satisfy the relationship:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.3
And more preferably the following formula:
Non-conjugated olefin concentration / conjugated diene compound concentration ≧ 1.7
Satisfy the relationship. By setting the value of the concentration of the non-conjugated olefin / the concentration of the conjugated diene compound to 1 or more, the non-conjugated olefin can be efficiently introduced into the reaction mixture.

(ゴム組成物)
本発明のゴム組成物としては、本発明の共重合体を含む限り、特に制限はなく、目的に応じて適宜選択することができるが、本発明の共重合体以外のゴム成分、無機充填剤、カーボンブラック、架橋剤、などを含むことが好ましい。
(Rubber composition)
The rubber composition of the present invention is not particularly limited as long as it contains the copolymer of the present invention, and can be appropriately selected according to the purpose. However, rubber components other than the copolymer of the present invention, inorganic fillers , Carbon black, a crosslinking agent, and the like are preferable.

<共重合体>
本発明の共重合体のゴム成分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%以上が好ましい。
前記共重合体のゴム成分中の含有量が、3質量%未満であると、本発明の特徴が小さかったり、またはその特徴を発揮しなかったりすることがある。
<Copolymer>
There is no restriction | limiting in particular as content in the rubber component of the copolymer of this invention, Although it can select suitably according to the objective, 3 mass% or more is preferable.
When the content of the copolymer in the rubber component is less than 3% by mass, the characteristics of the present invention may be small or the characteristics may not be exhibited.

<ゴム成分>
前記ゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の共重合体、天然ゴム、各種ブタジエンゴム、各種スチレン−ブタジエン共重合体ゴム、イソプレンゴム、ブチルゴム、イソブチレンとp−メチルスチレンの共重合体の臭化物、ハロゲン化ブチルゴム、アクリロニトリロブタジエンゴム、クロロプレンゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<Rubber component>
The rubber component is not particularly limited and may be appropriately selected depending on the purpose. For example, the copolymer of the present invention, natural rubber, various butadiene rubbers, various styrene-butadiene copolymer rubbers, isoprene rubber, Butyl rubber, isobutylene and p-methylstyrene copolymer bromide, halogenated butyl rubber, acrylonitrile butadiene rubber, chloroprene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, styrene-isoprene copolymer Polymer rubber, styrene-isoprene-butadiene copolymer rubber, isoprene-butadiene copolymer rubber, chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polysulfide rubber, silicone rubber, fluorine rubber, urethane rubber, etc. . These may be used individually by 1 type and may use 2 or more types together.

前記ゴム組成物には、必要に応じて補強性充填剤を配合することができる。前記補強性充填剤としては、カーボンブラック、無機充填剤、などを挙げることができ、カーボンブラック及び無機充填剤から選択される少なくとも一種が好ましい。
<無機充填剤>
前記無機充填剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、無機充填剤を用いる時は適宜シランカップリング剤を使用してもよい。
A reinforcing filler can be blended with the rubber composition as necessary. Examples of the reinforcing filler include carbon black and inorganic filler, and at least one selected from carbon black and inorganic filler is preferable.
<Inorganic filler>
The inorganic filler is not particularly limited and may be appropriately selected depending on the intended purpose.For example, silica, aluminum hydroxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, Examples thereof include magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide, titanium oxide, potassium titanate, and barium sulfate. These may be used individually by 1 type and may use 2 or more types together.
In addition, when using an inorganic filler, you may use a silane coupling agent suitably.

前記補強性充填剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、5質量部〜200質量部が好ましい。
前記補強性充填剤の含有量が、5質量部未満であると、補強性充填剤を入れる効果があまりみられないことがあり、200質量部を超えると前記ゴム成分に補強性充填剤が混ざり込まなくなる傾向があり、ゴム組成物としての性能を低下させることがある。
There is no restriction | limiting in particular as content of the said reinforcing filler, Although it can select suitably according to the objective, 5 mass parts-200 mass parts are preferable with respect to 100 mass parts of rubber components.
If the content of the reinforcing filler is less than 5 parts by mass, the effect of adding the reinforcing filler may not be seen so much, and if it exceeds 200 parts by mass, the rubber filler is mixed with the reinforcing filler. There is a tendency that it does not get caught, and the performance as a rubber composition may be reduced.

<架橋剤>
前記架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤硫黄、などが挙げられるが、中でもタイヤ用ゴム組成物としては硫黄系架橋剤がより好ましい。
<Crosslinking agent>
There is no restriction | limiting in particular as said crosslinking agent, According to the objective, it can select suitably, For example, a sulfur type crosslinking agent, an organic peroxide type crosslinking agent, an inorganic crosslinking agent, a polyamine crosslinking agent, a resin crosslinking agent, sulfur Compound-based crosslinking agents, oxime-nitrosamine-based crosslinking agent sulfur, and the like can be mentioned. Among them, sulfur-based crosslinking agents are more preferable as the rubber composition for tires.

前記架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分100質量部に対し、0.1質量部〜20質量部が好ましい。
前記架橋剤の含有量が0.1質量部未満では、架橋がほとんど進行しなかったり、20質量部を超えると一部の架橋剤により混練り中に架橋が進んでしまう傾向があったり、加硫物の物性が損なわれたりすることがある。
There is no restriction | limiting in particular as content of the said crosslinking agent, Although it can select suitably according to the objective, 0.1 mass part-20 mass parts are preferable with respect to 100 mass parts of rubber components.
When the content of the cross-linking agent is less than 0.1 parts by mass, the cross-linking hardly proceeds, and when the content exceeds 20 parts by mass, the cross-linking tends to progress during kneading with a part of the cross-linking agent. The physical properties of the sulfide may be impaired.

<その他の成分>
その他に加硫促進剤や架橋剤を併用することも可能であり、加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。
また必要に応じて、補強剤、軟化剤、充填剤、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
<Other ingredients>
In addition, it is also possible to use a vulcanization accelerator and a crosslinking agent in combination. Examples of the vulcanization accelerator include guanidine, aldehyde-amine, aldehyde-ammonia, thiazole, sulfenamide, thiourea, Compounds such as thiuram, dithiocarbamate, xanthate and the like can be used.
If necessary, reinforcing agents, softeners, fillers, vulcanization aids, colorants, flame retardants, lubricants, foaming agents, plasticizers, processing aids, antioxidants, anti-aging agents, scorch prevention agents, Known materials such as ultraviolet ray inhibitors, antistatic agents, anti-coloring agents, and other compounding agents can be used depending on the intended use.

(架橋ゴム組成物)
本発明の架橋ゴム組成物は、本発明のゴム組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
前記架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120℃〜200℃、加温時間1分間〜900分間が好ましい。
(Crosslinked rubber composition)
The crosslinked rubber composition of the present invention is not particularly limited as long as it is obtained by crosslinking the rubber composition of the present invention, and can be appropriately selected according to the purpose.
The crosslinking conditions are not particularly limited and may be appropriately selected depending on the intended purpose. However, a temperature of 120 ° C. to 200 ° C. and a heating time of 1 minute to 900 minutes are preferable.

(タイヤ)
本発明のタイヤは、本発明のゴム組成物、又は、本発明の架橋ゴム組成物を用いたものである限り、特に制限はなく、目的に応じて適宜選択することができる。
本発明のゴム組成物、又は、本発明の架橋ゴム組成物のタイヤにおける適用部位としては、例えば、トレッド、ベーストレッド、サイドウォール、サイド補強ゴム及びビードフィラーなどが挙げられるが、これに限定されない。
前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴムからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤを製造することができる。
(tire)
The tire of the present invention is not particularly limited as long as it uses the rubber composition of the present invention or the crosslinked rubber composition of the present invention, and can be appropriately selected according to the purpose.
Examples of the application site in the tire of the rubber composition of the present invention or the crosslinked rubber composition of the present invention include, but are not limited to, a tread, a base tread, a sidewall, a side reinforcing rubber, and a bead filler. .
As a method for manufacturing the tire, a conventional method can be used. For example, on a tire molding drum, members usually used for manufacturing a tire such as a carcass layer, a belt layer, and a tread layer made of unvulcanized rubber are sequentially laminated, and the drum is removed to obtain a green tire. Next, the desired tire can be manufactured by heat vulcanizing the green tire according to a conventional method.

(タイヤ以外の用途)
タイヤ用途以外にも、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース、モランなどに本発明のゴム組成物、又は、本発明の架橋ゴム組成物を使用することができる。
(Applications other than tires)
In addition to tire applications, the rubber composition of the present invention or the crosslinked rubber composition of the present invention may be used for anti-vibration rubber, seismic isolation rubber, belts (conveyor belts), rubber crawlers, various hoses, Moran and the like. it can.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら
限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
十分に乾燥した2Lステンレス反応器に、1,3−ブタジエン28.0g(0.52mol)を含むトルエン溶液700mlを添加した後、エチレンを0.4MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にジメチルアルミニウム(μ−ジメチル)ビス(2−フェニルインデニル)ネオジウム[(2−PhCNd(μ−Me)AlMe]400.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)200.0μmolを仕込み、トルエン80mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ネオジウム換算で390.0μmolとなる量をモノマー溶液へ添加し、室温で120分間重合を行った。重合後、2,2´−メチレンービス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体Aを得た。得られた共重合体Aの収量は17.50gであった。
Example 1
After adding 700 ml of a toluene solution containing 28.0 g (0.52 mol) of 1,3-butadiene to a sufficiently dry 2 L stainless steel reactor, ethylene was introduced at 0.4 MPa. On the other hand, dimethylaluminum (μ-dimethyl) bis (2-phenylindenyl) neodium [(2-PhC 9 H 6 ) 2 Nd (μ-Me) 2 AlMe 2 in a glass container in a glove box under a nitrogen atmosphere. 400.0 μmol, 200.0 μmol of triphenylcarbonium tetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) were charged and dissolved in 80 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 390.0 μmol in terms of neodymium was added to the monomer solution, and polymerization was performed at room temperature for 120 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass isopropanol solution was added to stop the reaction, and the copolymer was separated with a large amount of methanol. And dried in a vacuum at 70 ° C. to obtain a polymer A. The yield of the obtained copolymer A was 17.50 g.

(実施例2)
十分に乾燥した400ml耐圧ガラス反応器に、1,3−ブタジエン2.83g(0.052mol)を含むトルエン溶液120mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−メチルインデニル)プラセオジウムビス(ジメチルシリルアミド)(2−MeCPr{N(SiHMe} 27.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)27.0μmol、及びトリイソブチルアルミニウム1.35mmolを仕込み、トルエン5mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、モノマー溶液へ添加し、50℃で60分間重合を行った。重合後、2,2´−メチレンービス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し共重合体Bを得た。得られた共重合体Bの収量は1.50gであった。
(Example 2)
After adding 120 ml of a toluene solution containing 2.83 g (0.052 mol) of 1,3-butadiene to a sufficiently dried 400 ml pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, in a glove box under a nitrogen atmosphere, bis (2-methylindenyl) praseodymium bis (dimethylsilylamide) (2-MeC 9 H 6 ) 2 Pr {N (SiHMe 2 ) 2 } is placed in a glass container. 0 μmol, triphenylcarbonium tetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) 27.0 μmol, and 1.35 mmol of triisobutylaluminum were charged and dissolved in 5 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, added to the monomer solution, and polymerized at 50 ° C. for 60 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass isopropanol solution was added to stop the reaction, and the copolymer was separated with a large amount of methanol. And dried in a vacuum at 70 ° C. to obtain a copolymer B. The yield of the obtained copolymer B was 1.50 g.

(実施例3)
十分に乾燥した400ml耐圧ガラス反応器に、1,3−ブタジエン2.83g(0.052mol)を含むトルエン溶液120mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)プラセオジウムビス(ジメチルシリルアミド)(2−PhCPr{N(SiHMe} 27.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)27.0μmol、及びトリイソブチルアルミニウム1.35mmolを仕込み、トルエン5mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、モノマー溶液へ添加し、80℃で135分間重合を行った。重合後、2,2´−メチレンービス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し重合体Cを得た。得られた共重合体Cの収量は2.20gであった。
(Example 3)
After adding 120 ml of a toluene solution containing 2.83 g (0.052 mol) of 1,3-butadiene to a sufficiently dried 400 ml pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, in a glove box under a nitrogen atmosphere, bis (2-phenylindenyl) praseodymium bis (dimethylsilylamide) (2-PhC 9 H 6 ) 2 Pr {N (SiHMe 2 ) 2 } is placed in a glass container. 0 μmol, triphenylcarbonium tetrakis (pentafluorophenyl) borate (Ph 3 CB (C 6 F 5 ) 4 ) 27.0 μmol, and triisobutylaluminum 1.35 mmol were charged and dissolved in 5 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, added to the monomer solution, and polymerized at 80 ° C. for 135 minutes. After polymerization, 1 ml of 2,2'-methylene-bis (4-ethyl-6-t-butylphenol) (NS-5) 5% by mass isopropanol solution was added to stop the reaction, and the copolymer was separated with a large amount of methanol. And dried in vacuo at 70 ° C. to obtain polymer C. The yield of the obtained copolymer C was 2.20 g.

(比較例1)
比較例サンプルとして、ブタジエンゴム(BR01、JSR製)を準備した。
(Comparative Example 1)
Butadiene rubber (BR01, manufactured by JSR) was prepared as a comparative sample.

(比較例2)
十分に乾燥した400ml耐圧ガラス反応器に、1,3−ブタジエン18.28g(0.34mol)を含むトルエン溶液320mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhCGdN(SiHMe]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(MeNHPhB(C)34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で80分間重合を行った。重合後、2,2´−メチレンービス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し共重合体Dを得た。得られた共重合体Dの収量は16.00gであった。
(Comparative Example 2)
After adding 320 ml of a toluene solution containing 18.28 g (0.34 mol) of 1,3-butadiene to a sufficiently dried 400 ml pressure-resistant glass reactor, ethylene was introduced at 0.8 MPa. On the other hand, bis (2-phenylindenyl) gadolinium bis (dimethylsilylamide) [(2-PhC 9 H 6 ) 2 GdN (SiHMe 2 ) 2 ] 28.5 μmol in a glass container in a glove box under a nitrogen atmosphere. , 34.2 μmol of dimethylanilinium tetrakis (pentafluorophenyl) borate (Me 2 NHPhB (C 6 F 5 ) 4 ) and 1.43 mmol of diisobutylaluminum hydride were dissolved in 8 ml of toluene to obtain a catalyst solution. Thereafter, the catalyst solution was taken out from the glove box, an amount of 28.2 μmol in terms of gadolinium was added to the monomer solution, and polymerization was performed at room temperature for 80 minutes. After the polymerization, 1 ml of 2,2′-methylene-bis (4-ethyl-6-tert-butylphenol) (NS-5) 5% by mass isopropanol solution was added to stop the reaction, and the copolymer was separated with a large amount of methanol. And dried in a vacuum at 70 ° C. to obtain a copolymer D. The yield of the obtained copolymer D was 16.00 g.

以上のようにして得られた共重合体A〜D及びブタジエンゴム(BR01、JSR製)について、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)、シス−1,4結合含量、エチレン含有率を下記の方法で測定・評価した。   For the copolymers A to D and butadiene rubber (BR01, manufactured by JSR) obtained as described above, the weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), cis-1,4 bond content, ethylene The content rate was measured and evaluated by the following method.

(1)重量平均分子量(Mw)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]を用いて、測定温度140℃で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。
(2)シス−1,4結合含量
共重合体中のブタジエン部分のミクロ構造を、H−NMRスペクトル(1,2−ビニ
ル結合の結合量)及び13C−NMRスペクトル(シス−1,4結合とトランス−1,4
結合の含有量比)の積分比より求めた。シス−1,4結合量(%)の計算値を表3に示す。
(3)エチレンの含有率
共重合体中のエチレン部分の含有率(mol%)を 13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)により全体のエチレン結合成分(28.5−30.0ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。エチレン部分の含有率(mol%)を表1に示す。
(1) Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)
Using gel permeation chromatography [GPC: Tosoh HLC-8121GPC / HT, column: Tosoh GMH HR- H (S) HT × 2, detector: differential refractometer (RI)], measuring temperature 140 The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) in terms of polystyrene of the polymer were determined on the basis of monodisperse polystyrene at ° C.
(2) Cis-1,4 bond content The microstructure of the butadiene moiety in the copolymer was measured by 1 H-NMR spectrum (bonding amount of 1,2-vinyl bond) and 13 C-NMR spectrum (cis-1,4). Coupling and Trans-1,4
It was determined from the integral ratio of the bond content ratio. The calculated values of cis-1,4 bond amount (%) are shown in Table 3.
(3) Content of ethylene The content (mol%) of the ethylene moiety in the copolymer was determined by 13 C-NMR spectrum (100 ° C., d-tetrachloroethane standard: 73.8 ppm) as a whole ethylene-bound component (28. 5-30.0 ppm) and the total butadiene bond component (26.5-27.5 ppm + 31.5-32.5 ppm). Table 1 shows the ethylene content (mol%).

実施例1〜3および比較例1、2については表1に示す配合処方のゴム配合物を調製し、160℃で20分間加硫して得た加硫ゴムに対し、下記の方法に従って、低温特性、ウェット性及び耐侯性を測定した。   For Examples 1 to 3 and Comparative Examples 1 and 2, a rubber compound having the compounding recipe shown in Table 1 was prepared, and vulcanized rubber obtained by vulcanizing at 160 ° C. for 20 minutes was subjected to low temperature according to the following method. Characteristics, wettability and weather resistance were measured.

※1:N−(1,3−ジメチルブチル)−N’−p−フェニレンジアミン、大内新興化学(株)製、ノックラック6C
※2:N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製、ノクセラーCZ−G
※3:ジベンゾチアジルジスルフィド、大内新興化学(株)製、ノクセラーDM−P
* 1: N- (1,3-dimethylbutyl) -N′-p-phenylenediamine, manufactured by Ouchi Shinsei Chemical Co., Ltd., knock rack 6C
* 2: N-cyclohexyl-2-benzothiazolylsulfenamide, manufactured by Ouchi Shinsei Chemical Co., Ltd., Noxeller CZ-G
* 3: Dibenzothiazyl disulfide, manufactured by Ouchi Shinsei Chemical Co., Ltd., Noxeller DM-P

《低温特性》
動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪1%、周波数15Hzの条件で0℃における弾性率G‘を測定した。表2においては、比較例1を100として指数表示した。指数値が小さい程、低温特性に優れることを示す。
<Low temperature characteristics>
Using a dynamic spectrometer (manufactured by Rheometrics, USA), the elastic modulus G ′ at 0 ° C. was measured under conditions of a tensile dynamic strain of 1% and a frequency of 15 Hz. In Table 2, the index is shown with Comparative Example 1 as 100. The smaller the index value, the better the low-temperature characteristics.

《ウェット性》
ポータブルウェットスキッドテスターを用い、表面を水で濡らしたコンクリート路面上で、室温にて滑り抵抗を測定した表2においては、比較例1を100として指数表示した。指数が大きい程ウェット性が良好であることを示す。
<< wetness >>
In Table 2 in which the slip resistance was measured at room temperature on a concrete road surface wetted with water using a portable wet skid tester, Comparative Example 1 was set as 100 and indicated as an index. A larger index indicates better wettability.

《耐オゾン性試験》
JIS K 6259に従って、耐オゾン性を測定した。短冊状試験片を30%の動的伸張を与えながら、40℃、オゾン濃度50pphm条件で暴露し、12時間後の試料の状況(亀裂の有無)を目視で判断した。結果を表2に示す。
《Ozone resistance test》
The ozone resistance was measured according to JIS K 6259. The strip-shaped test piece was exposed under the conditions of 40 ° C. and ozone concentration of 50 pphm while giving a dynamic elongation of 30%, and the state of the sample after 12 hours (presence of cracks) was visually judged. The results are shown in Table 2.

Claims (14)

共役ジエン化合物と非共役オレフィンとの共重合体において、
共役ジエン化合物由来部分のシス1,4−結合含量が92%未満であり、且つ、非共役オレフィン由来部分の含有量が10mol%未満であることを特徴とする共役ジエン化合物と非共役オレフィンとの共重合体。
In a copolymer of a conjugated diene compound and a non-conjugated olefin,
A conjugated diene compound and a non-conjugated olefin characterized in that the cis 1,4-bond content of the conjugated diene compound-derived moiety is less than 92% and the content of the non-conjugated olefin-derived moiety is less than 10 mol%. Copolymer.
前記共役ジエン化合物由来部分のシス1,4−結合含量が50%以上であることを特徴とする請求項1に記載の共役ジエン化合物と非共役オレフィンとの共重合体。   2. The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 1, wherein the cis 1,4-bond content of the conjugated diene compound-derived moiety is 50% or more. 前記共役ジエン化合物由来部分のシス1,4−結合含量が75%以上であることを特徴とする請求項2に記載の共役ジエン化合物と非共役オレフィンとの共重合体。   The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 2, wherein a cis 1,4-bond content of the conjugated diene compound-derived moiety is 75% or more. 分子量分布(Mw/Mn)が10以下であることを特徴とする請求項1に記載の共役ジエン化合物と非共役オレフィンとの共重合体。   The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 1, wherein the molecular weight distribution (Mw / Mn) is 10 or less. 前記非共役オレフィンが、非環状オレフィンであることを特徴とする請求項1に記載の共役ジエン化合物と非共役オレフィンとの共重合体。   The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 1, wherein the non-conjugated olefin is an acyclic olefin. 前記非共役オレフィンは、炭素数が2〜10のαオレフィンであることを特徴とする請求項1に記載の共役ジエン化合物と非共役オレフィンとの共重合体。   The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 1, wherein the non-conjugated olefin is an α-olefin having 2 to 10 carbon atoms. 前記非共役オレフィンが、エチレン、プロピレン及び1−ブテンよりなる群から選択さ
れる少なくとも一種であることを特徴とする請求項5又は6に記載の共役ジエン化合物と非共役オレフィンとの共重合体。
The copolymer of a conjugated diene compound and a nonconjugated olefin according to claim 5 or 6, wherein the nonconjugated olefin is at least one selected from the group consisting of ethylene, propylene, and 1-butene.
前記非共役オレフィンが、エチレンであることを特徴とする請求項7に記載の共役ジエン化合物と非共役オレフィンとの共重合体。   The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 7, wherein the non-conjugated olefin is ethylene. 前記共役ジエン化合物は、炭素数が4〜8であることを特徴とする請求項1に記載の共役ジエン化合物と非共役オレフィンとの共重合体。   2. The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 1, wherein the conjugated diene compound has 4 to 8 carbon atoms. 前記共役ジエン化合物が、1,3−ブタジエン及びイソプレンよりなる群から選択され
る少なくとも一種であることを特徴とする請求項9に記載の共役ジエン化合物と非共役オレフィンとの共重合体。
The copolymer of a conjugated diene compound and a non-conjugated olefin according to claim 9, wherein the conjugated diene compound is at least one selected from the group consisting of 1,3-butadiene and isoprene.
請求項1に記載の共重合体を含むことを特徴とするゴム組成物。   A rubber composition comprising the copolymer according to claim 1. ゴム成分100質量部に対し、補強性充填剤5質量部〜200質量部と、架橋剤0.1質量部〜20質量部とを含むことを特徴とする請求項11に記載のゴム組成物。   The rubber composition according to claim 11, comprising 5 to 200 parts by mass of a reinforcing filler and 0.1 to 20 parts by mass of a crosslinking agent with respect to 100 parts by mass of the rubber component. 請求項11に記載のゴム組成物を架橋して得られたことを特徴とする架橋ゴム組成物。   A crosslinked rubber composition obtained by crosslinking the rubber composition according to claim 11. 請求項11に記載のゴム組成物、又は、請求項13に記載の架橋ゴム組成物を用いたことを特徴とするタイヤ。   A tire comprising the rubber composition according to claim 11 or the crosslinked rubber composition according to claim 13.
JP2011023402A 2011-02-04 2011-02-04 Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire Active JP5731216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011023402A JP5731216B2 (en) 2011-02-04 2011-02-04 Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023402A JP5731216B2 (en) 2011-02-04 2011-02-04 Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire

Publications (2)

Publication Number Publication Date
JP2012162628A true JP2012162628A (en) 2012-08-30
JP5731216B2 JP5731216B2 (en) 2015-06-10

Family

ID=46842346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023402A Active JP5731216B2 (en) 2011-02-04 2011-02-04 Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire

Country Status (1)

Country Link
JP (1) JP5731216B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940378A (en) * 1970-05-14 1976-02-24 Bridgestone Tire Company Limited Method for manufacturing of butadiene-propylene copolymers
JPS525549B1 (en) * 1970-05-15 1977-02-15
JPH08259733A (en) * 1995-03-22 1996-10-08 Asahi Carbon Kk Rubber composition
JPH0931128A (en) * 1995-07-21 1997-02-04 Goodyear Tire & Rubber Co:The Catalyst system for rubber-like polymer synthesis
JPH09291121A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Butene/butadiene copolymer, its production, and vulcanized rubber
JP2000256423A (en) * 1999-03-05 2000-09-19 Jsr Corp Ethylene copolymer rubber and composition thereof
JP2007501881A (en) * 2003-08-13 2007-02-01 ソシエテ ド テクノロジー ミシュラン Catalysts for obtaining conjugated diene / monoolefin copolymers and copolymers thereof
JP2008280384A (en) * 2007-05-08 2008-11-20 Bridgestone Corp Copolymer and process for producing the same
WO2008146643A1 (en) * 2007-05-23 2008-12-04 Bridgestone Corporation Polybutadiene and rubber composition and tire both containing the same
WO2009148140A1 (en) * 2008-06-04 2009-12-10 株式会社ブリヂストン Aromatic vinyl compound-conjugated diene compound copolymer, method for producing the same, rubber composition and tire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940378A (en) * 1970-05-14 1976-02-24 Bridgestone Tire Company Limited Method for manufacturing of butadiene-propylene copolymers
JPS525549B1 (en) * 1970-05-15 1977-02-15
JPH08259733A (en) * 1995-03-22 1996-10-08 Asahi Carbon Kk Rubber composition
JPH0931128A (en) * 1995-07-21 1997-02-04 Goodyear Tire & Rubber Co:The Catalyst system for rubber-like polymer synthesis
JPH09291121A (en) * 1996-04-26 1997-11-11 Asahi Chem Ind Co Ltd Butene/butadiene copolymer, its production, and vulcanized rubber
JP2000256423A (en) * 1999-03-05 2000-09-19 Jsr Corp Ethylene copolymer rubber and composition thereof
JP2007501881A (en) * 2003-08-13 2007-02-01 ソシエテ ド テクノロジー ミシュラン Catalysts for obtaining conjugated diene / monoolefin copolymers and copolymers thereof
JP2008280384A (en) * 2007-05-08 2008-11-20 Bridgestone Corp Copolymer and process for producing the same
WO2008146643A1 (en) * 2007-05-23 2008-12-04 Bridgestone Corporation Polybutadiene and rubber composition and tire both containing the same
WO2009148140A1 (en) * 2008-06-04 2009-12-10 株式会社ブリヂストン Aromatic vinyl compound-conjugated diene compound copolymer, method for producing the same, rubber composition and tire

Also Published As

Publication number Publication date
JP5731216B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5918131B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5918134B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, and tire
JP5918132B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5775873B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5918133B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5739991B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5731217B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
WO2012105258A1 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, rubber composition for tire tread use, crosslinked rubber composition, and tire
JP5932224B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP2012131965A (en) Copolymer and method for producing the same, and rubber composition, crosslinked rubber composition, and tire
WO2013132849A1 (en) Rubber composition and tire having rubber composition
JP5917810B2 (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP5612511B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5612512B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5656686B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5973737B2 (en) Rubber composition for tire, crosslinked rubber composition for tire, and tire
JP5917808B2 (en) Copolymer, rubber composition, crosslinked rubber composition, and tire
JP5656687B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP5922874B2 (en) Gas barrier material
JP2012180457A (en) Rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire
JP2012180456A (en) Rubber composition, rubber composition for tire tread use, crosslinked rubber composition, and tire
JP5639506B2 (en) Rubber composition, crosslinked rubber composition, and tire
JP2012162628A (en) Copolymer of conjugated diene compound and non-conjugated olefin, rubber composition, crosslinked rubber composition, and tire
JP2012197423A (en) Rubber composition and tire
JP2013155215A (en) Rubber composition for tire, crosslinked rubber composition for tire, and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250