[go: up one dir, main page]

JP2012154667A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP2012154667A
JP2012154667A JP2011011812A JP2011011812A JP2012154667A JP 2012154667 A JP2012154667 A JP 2012154667A JP 2011011812 A JP2011011812 A JP 2011011812A JP 2011011812 A JP2011011812 A JP 2011011812A JP 2012154667 A JP2012154667 A JP 2012154667A
Authority
JP
Japan
Prior art keywords
ultrasonic
wave
meter case
amplification degree
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011011812A
Other languages
Japanese (ja)
Inventor
Itsuro Hori
逸郎 堀
Noriyuki Nabeshima
徳行 鍋島
Shinya Hasebe
臣哉 長谷部
Hiroto Uyama
浩人 宇山
Takashi Doge
孝 道下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Aichi Tokei Denki Co Ltd
Toshiba Toko Meter Systems Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Aichi Tokei Denki Co Ltd
Toshiba Toko Meter Systems Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Aichi Tokei Denki Co Ltd, Toshiba Toko Meter Systems Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011011812A priority Critical patent/JP2012154667A/en
Publication of JP2012154667A publication Critical patent/JP2012154667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】メータケースの追加加工又は設計変更や、部品点数及び組み付けの手間を抑えつつ、メータケース内の浸水を検知することが可能な超音波流量計の提供を目的とする。
【解決手段】本発明の超音波流量計10は、受波側の超音波送受波器30にて受波された超音波に含まれる複数のピークのうち、特定のピークの波高が予め設定された基準値を超えて低下した場合に浸水有りと判定する、異常判定手段(ステップS15,S16)を備えている。具体的には、受信波を、予め設定された基準波高になるように増幅するために設定された増幅度が、予め設定された所定の基準増幅度を超えたか否かを判定し(S15)、基準増幅度を超えた場合(S15でYes)には、メータケース20内への浸水有りと判定する(S16)。
【選択図】図4
An object of the present invention is to provide an ultrasonic flowmeter capable of detecting inundation in a meter case while suppressing the trouble of additional processing or design change of the meter case, the number of parts and assembly.
In an ultrasonic flowmeter of the present invention, a wave height of a specific peak is set in advance among a plurality of peaks included in an ultrasonic wave received by an ultrasonic transducer 30 on a receiving side. An abnormality determining means (steps S15 and S16) is provided for determining that there is water intrusion when the value falls below the reference value. Specifically, it is determined whether or not the amplification degree set for amplifying the received wave to a preset reference wave height exceeds a predetermined reference amplification degree (S15). If the reference amplification degree is exceeded (Yes in S15), it is determined that there is water in the meter case 20 (S16).
[Selection] Figure 4

Description

本発明は、メータケース内に1対の超音波送受波器を対向配置した超音波流量に関する。   The present invention relates to an ultrasonic flow rate in which a pair of ultrasonic transducers are arranged opposite to each other in a meter case.

従来より、この種の超音波流量計では、1対の超音波送受波器間における超音波の伝搬時間に基づいて流速を演算し、その流速に気体が流れる流路の断面積を乗じて流量を計測している(例えば、特許文献1参照)。   Conventionally, in this type of ultrasonic flowmeter, the flow rate is calculated based on the propagation time of ultrasonic waves between a pair of ultrasonic transducers, and the flow rate is multiplied by the cross-sectional area of the flow path through which the gas flows. (For example, refer to Patent Document 1).

特開2005−180988号公報(段落[0020]、第1図)Japanese Patent Laying-Open No. 2005-180988 (paragraph [0020], FIG. 1)

ところが、上述した従来の超音波流量計を、都市ガスメータとして使用した場合には、以下のような問題が生じ得る。即ち、地中に埋設されたガス管の破損によってガス管に入り込んだ水やガスに含まれる水分が、メータケース内に溜まり、この溜まった水によって、気体が実際に通過可能な流路の断面積が、本来の流路断面積よりも小さくなる。そのため、実際の流量(ガス使用量)よりも、本来の流路断面積に基づいて演算された流量(ガス使用量)の方が大きくなり、ガス利用者に不利益をもたらす可能性があった。   However, when the conventional ultrasonic flowmeter described above is used as a city gas meter, the following problems may occur. That is, the water that has entered the gas pipe due to the damage of the gas pipe buried in the ground and the water contained in the gas are accumulated in the meter case, and the accumulated water blocks the flow path through which the gas can actually pass. The area becomes smaller than the original channel cross-sectional area. Therefore, the flow rate (gas usage amount) calculated based on the original cross-sectional area of the flow path is larger than the actual flow rate (gas usage amount), which may cause a disadvantage to the gas user. .

この問題を解消する手段としては、メータケース内に溜まった水を検知するための浸水センサを取り付けることが考えられるが、浸水センサを追加するために、既存のメータケースの追加加工又は設計変更が必要になったり、部品点数や組み付けの手間が増えるといった新たな問題が生じる。   As a means to solve this problem, it is conceivable to install a submersion sensor for detecting the water accumulated in the meter case. However, in order to add a submersion sensor, additional processing or design change of the existing meter case is required. There arises a new problem that it becomes necessary and the number of parts and the labor for assembly increase.

本発明は、上記事情に鑑みてなされたもので、メータケースの追加加工又は設計変更や、部品点数及び組み付けの手間を抑えつつ、メータケース内の浸水を検知することが可能な超音波流量計の提供を目的とする。   The present invention has been made in view of the above circumstances, and an ultrasonic flowmeter capable of detecting water immersion in the meter case while suppressing the additional processing or design change of the meter case, the number of parts, and the assembly work. The purpose is to provide.

上記目的を達成するためになされた請求項1の発明に係る超音波流量計は、メータケース内に対向配置された1対の超音波送受波器の間における超音波の伝搬時間に基づいて、メータケース内を通過する気体の流量を測定する超音波流量計において、超音波送受波器にて受波された超音波に含まれる複数のピークのうち、特定のピークの波高が予め定められた基準値を超えて低下した場合に、浸水有りと判定する異常判定手段を備えたところに特徴を有する。   The ultrasonic flowmeter according to the invention of claim 1 made to achieve the above object is based on the propagation time of ultrasonic waves between a pair of ultrasonic transducers arranged opposite to each other in a meter case. In the ultrasonic flowmeter that measures the flow rate of the gas passing through the meter case, the wave height of a specific peak among a plurality of peaks included in the ultrasonic wave received by the ultrasonic transducer is predetermined. It has a feature in that it includes an abnormality determining means for determining that there is water intrusion when it falls below the reference value.

請求項2の発明は、請求項1に記載の超音波流量計において、超音波送受波器にて受波された超音波を増幅する増幅部と、増幅後の特定のピークの波高が、予め設定された基準波高になるように増幅部における増幅度を変更して設定する増幅度設定手段とを備え、波高異常判定手段は、増幅度設定手段によって設定された増幅度が予め定められた基準増幅度以上であるか否かを判定し、基準増幅度以上であることを以て、浸水有りと判定するところに特徴を有する。   According to a second aspect of the present invention, in the ultrasonic flowmeter according to the first aspect, an amplification unit that amplifies the ultrasonic wave received by the ultrasonic transducer, and a wave height of the specific peak after the amplification An amplification degree setting means for changing and setting the amplification degree in the amplification section so that the reference wave height is set, and the wave height abnormality determining means is a reference in which the amplification degree set by the amplification degree setting means is predetermined. It is characterized in that it is determined whether or not it is greater than or equal to the amplification degree, and it is determined that there is water immersion if it is greater than or equal to the reference amplification degree.

請求項3の発明は、請求項1又は2に記載の超音波流量計において、一方の超音波送受波器が超音波を送波してから他方の超音波送受波器が超音波を受波するまでの伝搬時間が、気体中を伝搬する超音波ではあり得ない所定の基準伝搬時間以下か否かを判定する時間判定手段と、伝搬時間が基準伝搬時間以下である場合に、浸水有りと判定する補助異常判定手段とを備えたところに特徴を有する。   The invention according to claim 3 is the ultrasonic flowmeter according to claim 1 or 2, wherein one ultrasonic transducer transmits an ultrasonic wave, and then the other ultrasonic transducer receives an ultrasonic wave. Time determination means for determining whether or not the propagation time until the time is equal to or less than a predetermined reference propagation time that cannot be an ultrasonic wave propagating in the gas, and when the propagation time is equal to or less than the reference propagation time, It has a feature in that it includes auxiliary abnormality determining means for determining.

請求項4の発明は、請求項1乃至3の何れか1項に記載の超音波流量計において、メータケースの内部空間を、メータケースの外部から気体が流入する流入空間とメータケースの外部へと気体が流出する流出空間とに仕切る隔壁と、その隔壁を貫通して流入空間と流出空間を連通する計測管とを備え、1対の超音波送受波器の一部が計測管を介して対向配置されると共に、1対の超音波送受波器のうち、超音波を送受波する送受波面の最下端が、計測管の端部開口より下方に配置されているところに特徴を有する。   According to a fourth aspect of the present invention, in the ultrasonic flowmeter according to any one of the first to third aspects, the internal space of the meter case is connected to an inflow space into which gas flows from the outside of the meter case and to the outside of the meter case. And a partition that divides the gas into an outflow space, and a measurement tube that penetrates the partition and communicates the inflow space and the outflow space. A part of the pair of ultrasonic transducers passes through the measurement tube. In addition to being arranged oppositely, the lowermost end of the transmission / reception surface for transmitting / receiving ultrasonic waves, of the pair of ultrasonic transducers, is characterized by being disposed below the end opening of the measurement tube.

請求項5の発明は、請求項4に記載の超音波流量計において、計測管のうち気体が流れる管路の断面が、上下方向に対して水平方向が長い扁平形状をなしたところに特徴を有する。   The invention according to claim 5 is characterized in that, in the ultrasonic flowmeter according to claim 4, the cross section of the pipe through which the gas flows in the measurement pipe has a flat shape that is long in the horizontal direction with respect to the vertical direction. Have.

請求項6の発明は、請求項1乃至5の何れか1項に記載の超音波流量計において、浸水有りと判定された場合に、メータケースへの気体の供給を遮断する遮断弁を備えたところに特徴を有する。   A sixth aspect of the invention is the ultrasonic flowmeter according to any one of the first to fifth aspects, further comprising a shutoff valve that shuts off gas supply to the meter case when it is determined that there is water immersion. However, it has characteristics.

請求項7の発明は、請求項1乃至6の何れか1項に記載の超音波流量計において、浸水有りと判定された場合に、警報を発する警報手段を備えたところに特徴を有する。   The invention according to claim 7 is characterized in that the ultrasonic flowmeter according to any one of claims 1 to 6 is provided with a warning means for issuing a warning when it is determined that there is water immersion.

[請求項1及び2の発明]
請求項1の発明によれば、送波側の超音波送受波器がメータケース内に溜まった水と接触した場合、その超音波送受波器から送波された超音波は、メータケース内を通過する気体だけでなく、メータケース内に溜まった水やメータケース自体に伝搬する。このとき、超音波のエネルギーが分散するため、メータケース内を通過する気体を伝搬して受波側の超音波送受波器に受波された超音波の波高が、正常時に比べて小さくなる。従って、受波側の超音波送受波器にて受波された超音波に含まれる複数のピークのうち、特定のピークの波高が予め設定された基準値を超えて低下した場合に、浸水有りと判定することができる。そして、本発明によれば、流量計測用の超音波送受波器を用いて、メータケース内の浸水を検知することができるから、既存の超音波流量計に浸水検知機能を付加する場合に、メータケースの追加加工又は設計変更が不要であり、部品点数や組み付け作業の増加も抑えることができる。なお、1対の超音波送受波器のうち、少なくとも一方の超音波送受波器が水と接触した状態になった時点で、上述の如く浸水を検知することができるので、比較的早期に対処することが可能となる。
[Inventions of Claims 1 and 2]
According to the first aspect of the present invention, when the ultrasonic transducer on the transmission side comes into contact with the water accumulated in the meter case, the ultrasonic wave transmitted from the ultrasonic transducer passes through the meter case. It propagates not only to the passing gas but also to water accumulated in the meter case and the meter case itself. At this time, since the energy of the ultrasonic wave is dispersed, the wave height of the ultrasonic wave propagated through the gas passing through the meter case and received by the ultrasonic wave transmitter / receiver on the receiving side becomes smaller than that in the normal state. Therefore, there is flooding when the peak height of a specific peak among the multiple peaks contained in the ultrasonic wave received by the ultrasonic transducer on the receiving side falls below a preset reference value. Can be determined. And according to the present invention, since it is possible to detect inundation in the meter case using an ultrasonic transducer for flow rate measurement, when adding an inundation detection function to an existing ultrasonic flow meter, No additional processing or design change of the meter case is required, and an increase in the number of parts and assembly work can be suppressed. In addition, since at least one of the pair of ultrasonic transducers comes into contact with water, it can detect inundation as described above. It becomes possible to do.

ここで、受波された超音波を直接監視して特定のピークが所定の基準値を超えて低下したか否かを判定してもよいが、通常は、気体の流れの影響を受けて波高が変動し得るため、浸水の判定基準である基準値を随時変更する必要がある。これに対し、請求項2の発明によれば、受波した超音波における特定のピーク波高が所定の基準波高になるように増幅度を変更しており、その増幅度が予め設定された基準増幅度以上になったことを以て、浸水有りと判定するので、浸水の判定基準である基準増幅度を一定にすることができる。   Here, the received ultrasonic wave may be directly monitored to determine whether or not a specific peak has dropped below a predetermined reference value, but normally the wave height is affected by the influence of the gas flow. Therefore, it is necessary to change the reference value, which is a criterion for inundation, at any time. On the other hand, according to the invention of claim 2, the amplification degree is changed so that a specific peak wave height in the received ultrasonic wave becomes a predetermined reference wave height, and the amplification degree is set in advance. Since it is determined that there is flooding when the temperature exceeds the specified level, the reference amplification degree that is a criterion for flooding can be made constant.

[請求項3の発明]
請求項3の発明によれば、送波側の超音波送受波器から送波された超音波が、メータケース内を通過する気体だけでなく、メータケース内に溜まった水やメータケース自体に伝搬すると、1対の超音波送受波器の間における伝搬時間が、気体中を伝搬する超音波ではあり得ない所定の基準伝搬時間以下になる。従って、1対の超音波送受波器間における伝搬時間が、基準伝搬時間以下か否かを判定することで、浸水の有無を判定することができる。また、2つの異なる異常判定手段、即ち、受波した超音波に含まれる特定のピークの波高に基づいて浸水を判定する異常判定手段と、超音波の伝搬時間に基づいて浸水を判定する補助異常判定手段とを備えたので、仮に何れか一方の判定手段が不能となった場合でも他方の判定手段で浸水を検知することができ、浸水検知の確実性が向上する。
[Invention of claim 3]
According to the invention of claim 3, the ultrasonic wave transmitted from the ultrasonic transducer on the transmission side is not only in the gas passing through the meter case but also in the water accumulated in the meter case and the meter case itself. When propagating, the propagation time between the pair of ultrasonic transducers becomes equal to or shorter than a predetermined reference propagation time that cannot be an ultrasonic wave propagating in the gas. Therefore, it is possible to determine the presence or absence of water immersion by determining whether or not the propagation time between a pair of ultrasonic transducers is equal to or shorter than the reference propagation time. Also, two different abnormality determining means, that is, an abnormality determining means for determining inundation based on the wave height of a specific peak contained in the received ultrasonic wave, and an auxiliary abnormality for determining inundation based on the propagation time of the ultrasonic wave Since the determination means is provided, even if any one of the determination means becomes impossible, the other determination means can detect the flooding, and the reliability of the flood detection is improved.

[請求項4及び5の発明]
請求項4の発明によれば、メータケースの流入空間に流入した気体が、全て計測管を通って流出空間へと移動し、流出空間からメータケースの外部へと排出される。そして、超音波の伝搬時間から求められた流速に、計測管の管路の断面積を乗じることで流量が演算される。ここで、請求項4の発明によれば、計測管の管路に水が入る水位より低い水位で、超音波送受波器の送受波面が水と接触するので、計測管の管路に水が入る前に浸水を検知することができる。これにより、気体が通過可能な流路断面積が減少して流量計測値に誤差が生じる前に、対策を講じることができる。
[Inventions of Claims 4 and 5]
According to the fourth aspect of the present invention, all of the gas flowing into the inflow space of the meter case moves through the measuring tube to the outflow space and is discharged from the outflow space to the outside of the meter case. Then, the flow rate is calculated by multiplying the flow velocity obtained from the propagation time of the ultrasonic wave by the cross-sectional area of the pipe line of the measurement pipe. According to the invention of claim 4, since the wave receiving / receiving surface of the ultrasonic transducer is in contact with water at a water level lower than the level at which water enters the pipe of the measuring pipe, water enters the pipe of the measuring pipe. Intrusion can be detected before entering. As a result, measures can be taken before the flow passage cross-sectional area through which the gas can pass decreases and an error occurs in the flow rate measurement value.

ここで、計測管の管路の断面は円形でもよいし、上下方向に対して水平方向が長くなった扁平形状でもよい(請求項5の発明)。扁平断面の計測管にすれば、比較的大きな流量を計測することが可能になる。   Here, the cross section of the pipe of the measuring pipe may be circular, or may be a flat shape whose horizontal direction is longer than the vertical direction (invention of claim 5). If the measuring tube has a flat cross section, a relatively large flow rate can be measured.

[請求項6及び7の発明]
請求項6及び7の発明によれば、不正確な超音波流量計と知らずに使用し続けるということを防止することができる。
[Inventions of Claims 6 and 7]
According to the sixth and seventh aspects of the present invention, it is possible to prevent an inaccurate ultrasonic flowmeter from being used without knowing it.

本発明の第1実施形態に係る超音波流量計の側断面図1 is a side sectional view of an ultrasonic flowmeter according to a first embodiment of the present invention. (A)制御処理部のブロック図、(B)受波回路のブロック図(A) Block diagram of control processing unit, (B) Block diagram of receiving circuit 受信波と基準波高との関係を示すグラフGraph showing the relationship between the received wave and the reference wave height 増幅度設定プログラムのフローチャートAmplitude setting program flowchart 浸水状態における超音波流量計の側断面図Cross-sectional side view of ultrasonic flowmeter in flooded condition 浸水状態における超音波流量計の側断面図Cross-sectional side view of ultrasonic flowmeter in flooded condition 第2実施形態に係る伝搬時間確定プログラムのフローチャートFlowchart of propagation time determination program according to the second embodiment 正常時及び浸水時の受信波と基準波高との関係を示すグラフGraph showing the relationship between the received wave and the reference wave height during normal and flooded (A)変形例に係る計測管の斜視図、(B)その計測管と超音波送受波器の位置関係を示す平断面図(A) Perspective view of measurement tube according to modification, (B) Plan sectional view showing positional relationship between measurement tube and ultrasonic transducer 変形例に係るメータケースの側断面図Side sectional view of meter case according to modification

[第1実施形態]
以下、本発明を適用した超音波流量計に係る第1実施形態を、図1〜図6に基づいて説明する。本実施形態の超音波流量計10は、例えば、都市ガスメータであって、都市ガスの配管90の途中に接続されたメータケース20を備えている。
[First Embodiment]
Hereinafter, a first embodiment of an ultrasonic flowmeter to which the present invention is applied will be described with reference to FIGS. The ultrasonic flow meter 10 of the present embodiment is, for example, a city gas meter, and includes a meter case 20 connected in the middle of a city gas pipe 90.

メータケース20は両端有底の筒形構造をなしている。メータケース20の上面からは、2つの管接続部21,21が長手方向に並んで起立しており、メータケース20の内部の計測管収容室22に連通している。   The meter case 20 has a cylindrical structure with bottoms at both ends. From the upper surface of the meter case 20, two pipe connection portions 21, 21 stand up in the longitudinal direction and communicate with the measurement tube housing chamber 22 inside the meter case 20.

メータケース20のうち、長手方向の両端部壁23,23の内面には、1対の超音波送受波器30,30が保持されている。   In the meter case 20, a pair of ultrasonic transducers 30, 30 are held on the inner surfaces of both end walls 23, 23 in the longitudinal direction.

超音波送受波器30,30は略円柱構造をなしており、その一方の端面に超音波の送受波面31が設けられ、他方の端面に接続端子(図示せず)が備えられている。接続端子は、メータケース20の両端部壁23,23を気密状態に貫通して外部に露出しており、この接続端子とメータケース20の外部に備えた後述する制御処理部40とが電気接続されている。   The ultrasonic transducers 30 and 30 have a substantially cylindrical structure, and an ultrasonic transmission / reception surface 31 is provided on one end face, and a connection terminal (not shown) is provided on the other end face. The connection terminal passes through both end walls 23 and 23 of the meter case 20 in an airtight state and is exposed to the outside. The connection terminal and a control processing unit 40 provided outside the meter case 20 are electrically connected to each other. Has been.

メータケース20の内部には、計測管収容室22をその長手方向(図1の左右方向)の中央部で2つの部屋に隔絶した隔壁24が備えられている。即ち、隔壁24は、計測管収容室22を上流側の流入部屋22Aと下流側の流出部屋22Bとに区画している。これら流入部屋22A及び流出部屋22Bには、それぞれ超音波送受波器30,30が収容されている。また、隔壁24を円形パイプ状の計測管25が貫通して、その両端部の開口が流入部屋22Aと流出部屋22Bとに配置されている。そして、超音波送受波器30,30の一部が計測管25を介して対向配置されている。以下、1対の超音波送受波器30,30を区別する場合は、「上流側の超音波送受波器30A」、「下流側の超音波送受波器30B」という。   Inside the meter case 20, a partition wall 24 is provided that separates the measurement tube housing chamber 22 into two rooms at the center in the longitudinal direction (left-right direction in FIG. 1). That is, the partition wall 24 divides the measurement tube housing chamber 22 into an upstream inflow chamber 22A and a downstream outflow chamber 22B. Ultrasonic transducers 30 and 30 are accommodated in the inflow chamber 22A and the outflow chamber 22B, respectively. Further, a circular pipe-shaped measuring tube 25 passes through the partition wall 24, and openings at both ends thereof are arranged in the inflow chamber 22A and the outflow chamber 22B. A part of the ultrasonic transducers 30, 30 are arranged to face each other via the measuring tube 25. Hereinafter, when a pair of ultrasonic transducers 30 and 30 is distinguished, they are referred to as “upstream ultrasonic transducer 30A” and “downstream ultrasonic transducer 30B”.

両管接続部21,21に都市ガスの配管90が接続されると、図1の点線矢印に示すように、上流側の管接続部21からメータケース20の流入部屋22Aにガスが流れ込み、計測管25を通過し、流出部屋22Bを経て下流側の管接続部21からメータケース20の外部に排出される。   When the city gas pipe 90 is connected to both pipe connection parts 21 and 21, gas flows into the inflow chamber 22A of the meter case 20 from the upstream pipe connection part 21 as shown by the dotted arrow in FIG. It passes through the pipe 25 and is discharged from the pipe connection portion 21 on the downstream side to the outside of the meter case 20 through the outflow chamber 22B.

ここで、本実施形態では、1対の超音波送受波器30,30における送受波面31,31の最下端が、計測管25の端部開口より下方に配置されている。   Here, in the present embodiment, the lowermost ends of the wave transmitting / receiving surfaces 31, 31 in the pair of ultrasonic transducers 30, 30 are disposed below the end opening of the measuring tube 25.

なお、各超音波送受波器30,30は、送受波面31,31以外の部分が防振部材(例えば、ゴム)で覆われている。   In addition, as for each ultrasonic transducer 30 and 30, parts other than the transmission / reception surfaces 31 and 31 are covered with the vibration proof member (for example, rubber | gum).

図2(A)には、超音波流量計10における制御処理部40の詳細が示されている。この図2を参照しつつ、本実施形態の超音波流量計10の動作について説明する。   FIG. 2A shows details of the control processing unit 40 in the ultrasonic flowmeter 10. The operation of the ultrasonic flowmeter 10 of this embodiment will be described with reference to FIG.

コントロール部41は、送受切替スイッチ45,46を制御して、まずは図2に示すように、上流側の超音波送受波器30Aを送波回路42に接続しかつ、下流側の超音波送受波器30Bを受波回路43に接続した状態にしてから、送波回路42及びクロックカウンタ44に送波指令信号を出力する。すると、送波回路42が上流側の超音波送受波器30Aを駆動し、超音波が上流側の超音波送受波器30Aから下流側の超音波送受波器30Bに向けて発信されると同時に、クロックカウンタ44がクロックパルスに基づいて時間計測を開始する。   The control unit 41 controls the transmission / reception change-over switches 45 and 46 to connect the upstream ultrasonic transducer 30A to the transmission circuit 42 and to connect the downstream ultrasonic transmission / reception wave as shown in FIG. After the device 30B is connected to the wave receiving circuit 43, the wave sending command signal is output to the wave sending circuit 42 and the clock counter 44. Then, the transmission circuit 42 drives the upstream ultrasonic transducer 30A, and at the same time, the ultrasonic waves are transmitted from the upstream ultrasonic transducer 30A toward the downstream ultrasonic transducer 30B. The clock counter 44 starts measuring time based on the clock pulse.

上流側の超音波送受波器30Aから発信された超音波は、下流側の超音波送受波器30Bにて受波される。受波された超音波(以下、適宜「受信波」という)は下流側の超音波送受波器30Bに接続された受波回路43に入力し、受波回路43は、受信波を検知すると受信波検知信号dをクロックカウンタ44に出力する。受信波検知信号dの入力によってクロックカウンタ44はカウントを停止して、そのカウント値(即ち、超音波の伝搬時間)をコントロール部41に出力し、0リセットされる。   The ultrasonic wave transmitted from the upstream ultrasonic transducer 30A is received by the downstream ultrasonic transducer 30B. The received ultrasonic wave (hereinafter referred to as “received wave” as appropriate) is input to the receiving circuit 43 connected to the downstream ultrasonic transducer 30B, and the receiving circuit 43 receives the received wave when detecting the received wave. The wave detection signal d is output to the clock counter 44. The clock counter 44 stops counting by receiving the received wave detection signal d, outputs the count value (that is, the ultrasonic wave propagation time) to the control unit 41, and is reset to zero.

コントロール部41にカウント値が入力すると、送波回路42は、上流側の超音波送受波器30を駆動停止し、次にコントロール部41から出力される送波指令信号の待ち状態になる。また、この間にコントロール部41が送受切替スイッチ45,46を駆動し、送波回路42を下流側の超音波送受波器30Bに接続し、受波回路43を上流側の超音波送受波器30Aに接続する。   When the count value is input to the control unit 41, the transmission circuit 42 stops driving the ultrasonic transducer 30 on the upstream side, and then waits for a transmission command signal output from the control unit 41. During this time, the control unit 41 drives the transmission / reception change-over switches 45 and 46, connects the transmission circuit 42 to the downstream ultrasonic transducer 30B, and connects the reception circuit 43 to the upstream ultrasonic transducer 30A. Connect to.

次いで、コントロール部41は、送波回路42に送波指令信号を出力する。これにより、今度は、超音波の送信方向を逆向きにして上記した場合と同様の処理が行われる。そして、コントロール部41において、ガスの流れに対する順方向と逆方向の両方向で計測されたクロックカウンタ44のカウント値の逆数差(伝搬時間の逆数差)が求められ、これに基づいて計測管25を流れるガスの流速が算出される。また、この流速に、計測管25の管路25Aの断面積を乗じて流量が算出される。   Next, the control unit 41 outputs a transmission command signal to the transmission circuit 42. As a result, this time, the same processing as described above is performed with the ultrasonic wave transmission direction reversed. Then, the control unit 41 obtains the reciprocal difference (reciprocal difference in propagation time) of the count value of the clock counter 44 measured in both the forward direction and the reverse direction with respect to the gas flow. The flow velocity of the flowing gas is calculated. Further, the flow rate is calculated by multiplying the flow velocity by the cross-sectional area of the pipe line 25 </ b> A of the measurement pipe 25.

図2(B)には、受波回路43の詳細が示されている。受波回路43のうち、基準波高設定部50には、複数段階(例えば、4段階)の基準波高Lv1〜Lv4が予め設定されている。   FIG. 2B shows details of the receiving circuit 43. In the receiving circuit 43, the reference wave height setting unit 50 is preset with a plurality of (for example, four) reference wave heights Lv1 to Lv4.

図3には、受波回路43に備えた増幅部51による増幅後の受信波Wと各基準波高Lv1〜Lv4との関係が示されている。同図に示すように、本実施形態では、受信波Wにおける第1ピークP1の波高が、最も低い第1の基準波高Lv1だけを超えるように増幅部51の増幅度を設定した場合に、第3ピークP3の波高が、第1〜第4の基準波高Lv1〜Lv4を一気に超えるように各基準波高Lv1〜Lv4を設定してある。また、増幅部51は、増幅後の受信波Wが、基準波高Lv1〜Lv4との間で上記関係を満たすように、増幅前の受信波の波高に応じて、増幅度を変更及び設定するようになっている。ここで、第1ピークP1及び第3ピークP3は、本発明における「特定のピーク」に相当し、第1の基準波高Lv1は第1ピークP1に対する「基準波高」であり、第4の基準波高Lv4は第3ピークP3に対する「基準波高」となっている。なお、増幅度の変更及び設定については後に詳説する。   FIG. 3 shows the relationship between the received wave W amplified by the amplifier 51 provided in the wave receiving circuit 43 and the reference wave heights Lv1 to Lv4. As shown in the figure, in this embodiment, when the amplification degree of the amplifying unit 51 is set so that the wave height of the first peak P1 in the received wave W exceeds only the lowest first reference wave height Lv1. The reference wave heights Lv1 to Lv4 are set so that the wave height of the three peaks P3 exceeds the first to fourth reference wave heights Lv1 to Lv4 at a stretch. Further, the amplification unit 51 changes and sets the amplification degree according to the wave height of the reception wave before amplification so that the reception wave W after amplification satisfies the above relationship with the reference wave heights Lv1 to Lv4. It has become. Here, the first peak P1 and the third peak P3 correspond to “specific peaks” in the present invention, the first reference wave height Lv1 is the “reference wave height” with respect to the first peak P1, and the fourth reference wave height. Lv4 is a “reference wave height” with respect to the third peak P3. The change and setting of the amplification degree will be described in detail later.

図3に戻って説明を続けると、基準波高設定部50は、4段階の基準波高Lv1〜Lv4のうち、連続した複数段階(例えば、3段階)の基準波高を選択して比較部52へ出力する。具体的には、最初は、最も小さい基準波高Lv1を含む第1〜第3の基準波高Lv1〜Lv3を選択して出力する。受波側の超音波送受波器30にて受波された受信波は、増幅部51に設定された増幅度で増幅された後、比較部52とゼロクロス検知部53とに入力する。   Returning to FIG. 3 and continuing the description, the reference wave height setting unit 50 selects a plurality of continuous (for example, three steps) reference wave heights from the four reference wave heights Lv1 to Lv4 and outputs them to the comparison unit 52. To do. Specifically, first, the first to third reference wave heights Lv1 to Lv3 including the smallest reference wave height Lv1 are selected and output. The received wave received by the ultrasonic transducer 30 on the receiving side is amplified with the amplification degree set in the amplification unit 51 and then input to the comparison unit 52 and the zero cross detection unit 53.

比較部52では、増幅後の受信波Wの第1ピークP1が、第1〜第3の基準波高Lv1〜Lv3と比較される。増幅後の受信波が図4に示す受信波形である場合、第1ピークP1は、第1の基準波高Lv1を超えるが、第2及び第3の基準波高Lv2,Lv3を超えない。このとき、比較部52は、第1ピークP1が第1の基準波高Lv1を超えたことをゼロクロス検知部53に伝える。   In the comparison unit 52, the first peak P1 of the amplified received wave W is compared with the first to third reference wave heights Lv1 to Lv3. When the amplified received wave has the received waveform shown in FIG. 4, the first peak P1 exceeds the first reference wave height Lv1, but does not exceed the second and third reference wave heights Lv2, Lv3. At this time, the comparison unit 52 notifies the zero cross detection unit 53 that the first peak P1 has exceeded the first reference wave height Lv1.

すると、ゼロクロス検知部53は第1ピークP1の直後のゼロクロス点を検知し、ゼロクロス検知信号aを基準波高設定部50に出力する。また、比較部52は、第1ピークP1が3つの基準波高Lv1〜Lv3のうち、第1の基準波高Lv1だけを超えたことを意味する信号bを基準波高設定部50に送信する。   Then, the zero cross detection unit 53 detects the zero cross point immediately after the first peak P1, and outputs the zero cross detection signal a to the reference wave height setting unit 50. Further, the comparison unit 52 transmits a signal b indicating that the first peak P1 exceeds only the first reference wave height Lv1 among the three reference wave heights Lv1 to Lv3 to the reference wave height setting unit 50.

基準波高設定部50は、比較部52からの信号bに基づき、第1ピークP1が超えた第1の基準波高Lv1に替えて、新たに第4の基準波高Lv4を設定し、この第4の基準波高Lv4と、第1ピークP1が超えなかった第2及び第3の基準波高Lv2,Lv3を比較部52へ出力する。   Based on the signal b from the comparison unit 52, the reference wave height setting unit 50 newly sets a fourth reference wave height Lv4 instead of the first reference wave height Lv1 that has exceeded the first peak P1, and the fourth reference wave height Lv4 is set. The reference wave height Lv4 and the second and third reference wave heights Lv2 and Lv3 that have not exceeded the first peak P1 are output to the comparison unit 52.

上記した基準波高の切り替えは、ゼロクロス検知信号a及び信号bが入力すると直ちに行われる。即ち、第1ピークP1の次に第1基準波高Lv1を超える第3ピークP3が、比較部52に入力する前に、新たな3つの基準波高Lv2〜Lv4が比較部52に設定される。そして、第3ピークP3が、これら3つの基準波高Lv2〜Lv4を一気に超えると、比較部52は、この第3ピークP3を狙った特定のピークであると判断して、特定ピーク検知信号cをゼロクロス検知部53へと出力する。ゼロクロス検知部53は、この第3ピークP3の直後のゼロクロス点を検知して、受信波検知信号dをクロックカウンタ44に出力する。   The switching of the reference wave height is performed immediately when the zero-cross detection signal a and the signal b are input. That is, before the third peak P3 exceeding the first reference wave height Lv1 after the first peak P1 is input to the comparison unit 52, three new reference wave heights Lv2 to Lv4 are set in the comparison unit 52. When the third peak P3 exceeds these three reference wave heights Lv2 to Lv4 at a stretch, the comparison unit 52 determines that the third peak P3 is a specific peak aimed at the third peak P3, and outputs the specific peak detection signal c. It outputs to the zero cross detection part 53. The zero cross detection unit 53 detects a zero cross point immediately after the third peak P3 and outputs a received wave detection signal d to the clock counter 44.

ところで、増幅部51は、増幅度(利得)を、例えば、段階的に変更可能な「利得可変増幅器」であり、増幅前の受信波の波高に応じて、最適な増幅度を設定するようになっている。増幅度の設定は、例えば、通常の流量計測の合間に定期的(例えば、1分間隔)に行われる。   By the way, the amplifying unit 51 is a “gain variable amplifier” whose gain (gain) can be changed stepwise, for example, and sets an optimum gain according to the wave height of the received wave before amplification. It has become. The amplification degree is set periodically (for example, at intervals of 1 minute) between normal flow rate measurements, for example.

増幅度の設定は、以下に説明する増幅度設定プログラムPG1に従って行われる。即ち、図4に示すように、まず、増幅度を最低値に設定(S11)し、受波側の超音波送受波器30で実際に受波した受信波を、設定した増幅度で増幅する。そして、増幅された受信波によって受信波検知に成功するか否か、即ち、上述したように、増幅後の受信波が各基準波高Lv1〜Lv4との間で、図4に示した関係を満たすようになり、狙った特定のピーク(具体的には、第3ピークP3)を検知可能か否かを判定する(S12)。   The amplification level is set according to the amplification level setting program PG1 described below. That is, as shown in FIG. 4, first, the amplification is set to the lowest value (S11), and the received wave actually received by the ultrasonic transducer 30 on the receiving side is amplified with the set amplification. . Then, whether or not the received wave is successfully detected by the amplified received wave, that is, as described above, the amplified received wave satisfies the relationship shown in FIG. 4 with each of the reference wave heights Lv1 to Lv4. Thus, it is determined whether or not the target specific peak (specifically, the third peak P3) can be detected (S12).

増幅度が小さく、受信波検知が成功しなかった場合(S12でNo)には、増幅度を1段階上げて(S13)、再度、受信波の増幅を行い、受信波検知(S12)を試みる。受信波検知が成功するまで増幅度を1段階ずつ上げていき、受信波検知が成功した場合(S12でYes)に、その増幅度(受信波検知可能な最低増幅度)を増幅部51に設定する(S14)。   If the amplification level is small and reception wave detection is not successful (No in S12), the amplification level is increased by one level (S13), the reception wave is amplified again, and reception wave detection (S12) is attempted. . The amplification level is increased by one step until reception wave detection is successful. When reception wave detection is successful (Yes in S12), the amplification level (the minimum amplification level at which reception wave detection is possible) is set in the amplification unit 51. (S14).

上記した増幅度設定処理(S11〜S14)は、ガスの流れに沿った順方向で超音波を送受波した場合と、ガスの流れに逆行した逆方向で超音波を送受波した場合とでそれぞれ行われ、順方向用の増幅度と逆方向用の増幅度とが設定される。そして、少なくとも次回の増幅度設定時(例えば、1分後)までは、この増幅度で受信波を増幅して流量計測を行う。なお、増幅度設定処理(S11〜S14)は、本発明の「増幅度設定手段」に相当する。   The amplification setting process (S11 to S14) described above is performed when the ultrasonic wave is transmitted and received in the forward direction along the gas flow and when the ultrasonic wave is transmitted and received in the reverse direction opposite to the gas flow. Is performed, and the forward amplification and the reverse amplification are set. Then, at least until the next amplification level is set (for example, after one minute), the received wave is amplified with this amplification level and the flow rate is measured. The amplification degree setting processing (S11 to S14) corresponds to “amplification degree setting means” of the present invention.

ところで、何らかの原因で都市ガス配管に水が入り込んだり、ガスに含まれる水分が結露すると、メータケース20内に少しずつ水が溜まる。そして、図5又は図6に示すように、溜まった水が少なくとも何れか一方の超音波送受波器30の送受波面31に接触した状態になると、水に接触した超音波送受波器30から送波された超音波が、計測管25の管路25Aを流れるガスだけでなく、溜まった水又は、水を介して計測管25に伝搬する。このとき、超音波のエネルギーが分散するため、計測管25を流れるガス中を伝搬して受波側の超音波送受波器30で受波される受信波の大きさ、即ち、受信波に含まれる各ピークの波高が、正常時に比べて小さくなる。すると、上述した増幅度設定処理(S11〜S14)において設定される増幅度(受信波検知可能な最低増幅度)が、正常時に比較して大きくなる。   By the way, when water enters the city gas pipe for some reason or moisture contained in the gas is condensed, water gradually accumulates in the meter case 20. Then, as shown in FIG. 5 or FIG. 6, when the accumulated water comes into contact with the transmission / reception surface 31 of at least one of the ultrasonic transducers 30, the ultrasonic transmission / reception unit 30 in contact with water transmits the water. The waved ultrasonic waves propagate not only to the gas flowing through the pipe line 25A of the measurement tube 25 but also to the measurement tube 25 through accumulated water or water. At this time, since the energy of the ultrasonic waves is dispersed, the magnitude of the received wave that propagates through the gas flowing through the measurement tube 25 and is received by the ultrasonic transducer 30 on the receiving side, that is, included in the received wave. The peak height of each peak is smaller than normal. Then, the amplification degree (minimum amplification degree at which the received wave can be detected) set in the amplification degree setting process (S11 to S14) described above becomes larger than that in the normal state.

そこで、本実施形態の超音波流量計10では、図4に示すように、増幅度設定処理(S11〜S14)において増幅部51に設定された増幅度が、予め設定された所定の基準増幅度を超えたか否かを判定し(S15)、基準増幅度を超えた場合(S15でYes)には、メータケース20内への浸水有りと判定して(S16)、メータケース20の外部に設けた警報器47(既存の流量表示器やランプを含む。図2参照)によって、異常(浸水)を報知する。また、メータケース20に内蔵された遮断弁18(図2参照)を作動させて、ガスの供給を停止する。さらに、通信手段を備えている場合には、ガス会社やガスメータの管理者に自動通報する。なお、ステップS15,S16は本発明の「異常判定手段」に相当する。   Therefore, in the ultrasonic flowmeter 10 of the present embodiment, as shown in FIG. 4, the amplification degree set in the amplification unit 51 in the amplification degree setting process (S11 to S14) is a predetermined reference amplification degree set in advance. (S15), and if the reference amplification degree is exceeded (Yes in S15), it is determined that there is water in the meter case 20 (S16) and is provided outside the meter case 20. An alarm (inundation) is reported by an alarm device 47 (including an existing flow rate indicator and lamp, see FIG. 2). Further, the shutoff valve 18 (see FIG. 2) built in the meter case 20 is operated to stop the gas supply. Furthermore, when a communication means is provided, it automatically reports to a gas company or a gas meter administrator. Steps S15 and S16 correspond to “abnormality determination means” of the present invention.

このように、本実施形態によれば、流量計測用の超音波送受波器30,30を用いて、メータケース20内の浸水を検知することができるから、既存の超音波流量計に浸水検知機能を付加する場合に、メータケース20の追加加工や設計変更が不要であり、部品点数や組み付け作業の増加も抑えることができる。また、1対の超音波送受波器30,30のうち、少なくとも一方の超音波送受波器30が水と接触した状態になった時点(図5に示す状態)で、浸水を検知することができ、比較的早期に対処することが可能になる。   As described above, according to the present embodiment, it is possible to detect the inundation in the meter case 20 using the ultrasonic transducers 30 and 30 for flow rate measurement. When adding a function, additional processing and design change of the meter case 20 are unnecessary, and an increase in the number of parts and assembly work can be suppressed. Moreover, when at least one ultrasonic transducer 30 out of the pair of ultrasonic transducers 30 and 30 comes into contact with water (state shown in FIG. 5), it is possible to detect inundation. Can be dealt with relatively early.

また、超音波送受波器30,30の送受波面31,31の最下端が、計測管25の端部開口より下方に配置されているので、計測管25の管路25Aに水が侵入する水位より低い水位で、送受波面31,31が溜まった水と接触し、受信波のピーク波高低下が起きる。従って、計測管25の管路25Aにおけるガスが通過可能な断面積が狭まる前、即ち、流量計測の誤差が生じる前に浸水を検知して、超音波流量計10の交換等の対策を講じることができる。   In addition, since the lowermost ends of the transmission / reception surfaces 31 and 31 of the ultrasonic transducers 30 and 30 are disposed below the end opening of the measurement tube 25, the water level at which water enters the pipe line 25 </ b> A of the measurement tube 25. At a lower water level, the transmitting and receiving surfaces 31 and 31 come into contact with the accumulated water, and the peak height of the received wave is lowered. Accordingly, before the cross-sectional area through which the gas in the pipe 25A of the measurement pipe 25 can pass is narrowed, that is, before the flow measurement error occurs, the inundation is detected and measures such as replacement of the ultrasonic flowmeter 10 are taken. Can do.

さらに、浸水を検知した場合に、警報器47や遮断弁18を作動させるので、不正確な超音波流量計10と知らずに使用し続けるということを防止することができる。   Furthermore, since the alarm device 47 and the shutoff valve 18 are actuated when inundation is detected, it is possible to prevent continuous use without knowing that the ultrasonic flowmeter 10 is inaccurate.

[第2実施形態]
この第2実施形態は、上記第1実施形態の構成に対し、超音波の伝搬時間に基づいて浸水を検知する機能を追加した構成となっている。以下、第1実施形態との相違点についてのみ説明し、第1実施形態と同一の部位については同一符号を付すことで重複した説明は省略する。
[Second Embodiment]
The second embodiment has a configuration in which a function of detecting inundation based on the propagation time of ultrasonic waves is added to the configuration of the first embodiment. Hereinafter, only differences from the first embodiment will be described, and the same parts as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.

図6に示すように、メータケース20内に溜まった水が1対の超音波送受波器30,30と計測管25との間に介在して、超音波送受波器30,30間が水及び計測管25で繋がった状態になると、水及び計測管25を伝搬した超音波が、ガス中を伝搬する超音波よりも速く受波側の超音波送受波器30に受波される。これに対し、本実施形態の超音波流量計10では、例えば、ガス中の音速、温度、使用時のガスの最大流速、その他使用条件等に基づいて予め設定された、ガス(都市ガス)中を伝搬する超音波ではあり得ない所定の基準伝搬時間が設定されており、1対の超音波送受波器30,30間における超音波の伝搬時間が、基準伝搬時間以下である場合にも、メータケース20内への浸水有りと判定するようになっている。   As shown in FIG. 6, water accumulated in the meter case 20 is interposed between a pair of ultrasonic transducers 30 and 30 and the measurement tube 25, and the water between the ultrasonic transducers 30 and 30 is water. When the measurement tube 25 is connected, the ultrasonic wave propagating through the water and the measurement tube 25 is received by the ultrasonic transducer 30 on the receiving side faster than the ultrasonic wave propagating in the gas. On the other hand, in the ultrasonic flowmeter 10 of the present embodiment, for example, in the gas (city gas) preset based on the speed of sound in the gas, the temperature, the maximum flow velocity of the gas at the time of use, and other use conditions. When a predetermined reference propagation time that cannot be an ultrasonic wave propagating through the ultrasonic wave is set and the ultrasonic wave propagation time between the pair of ultrasonic transducers 30 and 30 is equal to or less than the reference propagation time, It is determined that there is water in the meter case 20.

詳細には、図7に示すように、伝搬時間確定プログラムPG2では、まず、クロックカウンタ44のカウント値に基づいて、送波側の超音波送受波器30が超音波を送波してから所定の制限時間が経過したか否かを判定する(S21)。制限時間は、例えば、最大流速のガスの流れと逆行した方向で超音波を送受波した場合の、超音波の伝搬時間より僅かに長くなっている。   Specifically, as shown in FIG. 7, in the propagation time determination program PG2, first, based on the count value of the clock counter 44, the ultrasonic transducer 30 on the transmission side transmits an ultrasonic wave, and then the predetermined time. It is determined whether or not the time limit has elapsed (S21). For example, the time limit is slightly longer than the propagation time of the ultrasonic wave when the ultrasonic wave is transmitted and received in a direction opposite to the gas flow at the maximum flow velocity.

制限時間を超えていない場合(S21でNo)には、受波側の超音波送受波器30が、所定の条件を満たす超音波を受波したか否かを判定する(S22)。具体的には、増幅後の受信波が各基準波高Lv1〜Lv4との間で、図4に示した関係を満たし、狙った特定のピーク(例えば、第3ピークP3)を検知したか否かを判定する。この処理(S22)は、所定の条件を満たす受信波を検知するまで繰り返し行われる。そして、所定の条件を満たす受信波を検知する前に制限時間が経過した場合(S21でYes)は、受信波検知失敗(S23)であり、直ちにこの処理を抜ける。   When the time limit has not been exceeded (No in S21), it is determined whether or not the ultrasonic transducer 30 on the receiving side has received an ultrasonic wave that satisfies a predetermined condition (S22). Specifically, whether or not the amplified received wave satisfies the relationship shown in FIG. 4 with each of the reference wave heights Lv1 to Lv4 and detects a target specific peak (for example, the third peak P3). Determine. This process (S22) is repeated until a received wave satisfying a predetermined condition is detected. If the time limit elapses before detecting a received wave satisfying a predetermined condition (Yes in S21), the received wave detection has failed (S23), and this process is immediately exited.

一方、制限時間内に所定の条件を満たす超音波を受波した場合(S22でYes)は、受信波検知成功であり(S24)、クロックカウンタ44に受信波検知信号dが出力され、超音波の伝搬時間が確定する(S25)。次いで、計測された伝搬時間が基準伝搬時間と比較され(S26)、伝搬時間が基準伝搬時間を超えている場合(S26でNo)は、受信波が、ガスを伝搬した超音波であるとしてこの処理を抜ける。一方、伝搬時間が基準伝搬時間以下である場合(S26でYes)には、ガス以外の伝搬媒体、即ち、図6に示すように、メータケース20内に溜まった水及び計測管25を伝搬媒体として超音波が伝搬したとして、浸水有りと判定する(S27)。浸水有りと判定した場合には、警報器47で、異常を報知すると共に遮断弁18を作動させてガスの供給を停止する。   On the other hand, when an ultrasonic wave satisfying a predetermined condition is received within the time limit (Yes in S22), the reception wave detection is successful (S24), and the reception wave detection signal d is output to the clock counter 44, and the ultrasonic wave Is determined (S25). Next, the measured propagation time is compared with the reference propagation time (S26). If the propagation time exceeds the reference propagation time (No in S26), it is assumed that the received wave is an ultrasonic wave propagating gas. Exit processing. On the other hand, when the propagation time is equal to or shorter than the reference propagation time (Yes in S26), the propagation medium other than the gas, that is, the water accumulated in the meter case 20 and the measurement tube 25 as shown in FIG. As a result, it is determined that there is water immersion (S27). When it is determined that there is flooding, the alarm device 47 notifies the abnormality and operates the shutoff valve 18 to stop the gas supply.

ここで、ステップS26の処理は、本発明の「時間判定手段」に相当する。また、ステップ26,S27の処理を有する伝搬時間確定プロクラムPG2は、本発明の「補助異常判定手段」に相当する。なお、伝搬時間確定プロクラムPG2におけるステップS21〜S27の処理を、流量計測時の毎回の超音波送受波時に行うようにしてもよいし、通常時は、ステップS21〜S25の処理を行い、定期的にステップS26,S27の処理を追加して行うようにしてもよい。   Here, the process of step S26 corresponds to the “time determination means” of the present invention. Further, the propagation time determination program PG2 having the processes of steps 26 and S27 corresponds to the “auxiliary abnormality determination means” of the present invention. Note that the processing of steps S21 to S27 in the propagation time determination program PG2 may be performed at the time of each ultrasonic wave transmission / reception at the time of flow rate measurement, or during normal times, the processing of steps S21 to S25 is performed periodically. In addition, the processes of steps S26 and S27 may be additionally performed.

本実施形態によれば、上記第1実施形態と同等の効果を奏すると共に、以下の効果を奏する。即ち、2つの異なる手法の異常判定処理、つまり、受波した超音波に含まれる特定のピークの波高に基づいて浸水を判定する処理(図4におけるステップS15,S16の処理)と、超音波の伝搬時間に基づいて浸水を判定する処理(図7におけるステップS26,S27の処理)とを行うことができるので、仮に何れか一方の判定処理が不能となった場合でも他方の判定処理で浸水を検知することができ、浸水検知の確実性が向上する。   According to the present embodiment, the same effects as those of the first embodiment can be obtained, and the following effects can be obtained. That is, abnormality determination processing of two different methods, that is, processing for determining inundation based on the wave height of a specific peak included in received ultrasonic waves (processing in steps S15 and S16 in FIG. 4), and ultrasonic processing Since it is possible to perform the process of determining the inundation based on the propagation time (the processes of steps S26 and S27 in FIG. 7), even if one of the determination processes becomes impossible, It can be detected, and the reliability of inundation detection is improved.

なお、本願発明の技術的範囲には含まれないが、受信波の伝搬時間に基づいた浸水検知(図8参照)だけを行い、受波した超音波に含まれる特定のピークの波高に基づいた浸水検知(図4参照。より詳細には、ステップS15,S16)を行わない構成としてもよい。   Although not included in the technical scope of the present invention, only inundation detection (see FIG. 8) based on the propagation time of the received wave is performed, and based on the wave height of a specific peak included in the received ultrasonic wave. It is good also as a structure which does not perform inundation detection (refer FIG. 4. More specifically, step S15, S16).

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)上記第1実施形態では、増幅度の大きさに基づいて受信波に含まれる特定のピーク(第3ピークP3)の波高が所定の基準波高を超えて低下したか否かを判定するようにしていたが、増幅部51が、常に一定の増幅度で受信波を増幅するようにした場合は、以下のようにしてもよい。   (1) In the first embodiment, it is determined whether or not the wave height of the specific peak (third peak P3) included in the received wave has dropped below a predetermined reference wave height based on the magnitude of the amplification degree. However, when the amplification unit 51 always amplifies the received wave with a constant amplification factor, the following may be performed.

図8において実線で示された波形は、正常時における増幅後の受信波形であり、点線で示された波形は、送波側の超音波送受波器30が水と接触した場合における増幅後の受信波形である。このとき、所定の基準波高Lvは、正常時の受信波における第3ピークP3より小さく、送波側の超音波送受波器30が水と接触した場合の受信波における第3ピークP3より大きい値に設定されている。   The waveform shown by the solid line in FIG. 8 is the received waveform after amplification in the normal state, and the waveform shown by the dotted line is after the amplification when the ultrasonic transducer 30 on the transmission side is in contact with water. It is a received waveform. At this time, the predetermined reference wave height Lv is smaller than the third peak P3 in the normal received wave, and is larger than the third peak P3 in the received wave when the ultrasonic transducer 30 on the transmission side is in contact with water. Is set to

そして、図8に示すように、増幅後の受信波に含まれる複数のピークのうち、所定の基準波高Lv以上のピーク数が、予め設定した基準数未満(図8で示した受信波形では、5つ未満)となったことを以て、受波した超音波に含まれる特定のピーク(第3ピークP3)の波高が所定の基準波高Lvを超えて低下したと判定するようにしてもよい。   Then, as shown in FIG. 8, the number of peaks equal to or higher than a predetermined reference wave height Lv among a plurality of peaks included in the amplified received wave is less than a preset reference number (in the received waveform shown in FIG. It may be determined that the wave height of a specific peak (third peak P3) included in the received ultrasonic wave has decreased beyond a predetermined reference wave height Lv.

(2)また、超音波の送波(クロックカウンタ44に送波指令信号が入力したとき)から、所定の基準波高Lvを最初に超えたピーク(図8では第5ピークP5)の直後のゼロクロス点を検知するまでの時間T2が、正常時に予め実験的に求めておいた第3ピークP3のゼロクロス点を検知し得る最も遅い時間T1を超えた場合に、受波した超音波に含まれる特定のピーク(第3ピークP3)の波高が所定の基準波高Lvを超えて低下したと判定するようにしてもよい。   (2) Zero crossing immediately after a peak (fifth peak P5 in FIG. 8) that first exceeds a predetermined reference wave height Lv from ultrasonic transmission (when a transmission command signal is input to the clock counter 44). When the time T2 until the point is detected exceeds the latest time T1 at which the zero-cross point of the third peak P3 that has been experimentally obtained in advance under normal conditions can be detected, the specified included in the received ultrasonic wave It may be determined that the wave height of the peak (the third peak P3) has dropped below a predetermined reference wave height Lv.

(3)上記実施形態では、計測管25を円形パイプ状としていたが、図9(A)に示すように、管路26Aの断面が上下方向に対して水平方向が長くなった扁平形状の計測管26でもよい。このような計測管26とした場合には、図9(B)に示すように、1対の超音波送受波器30,30を、計測管26の長手方向に対して斜めに交差する方向で対向配置させてもよい。このような扁平断面の計測管26を使用すれば、比較的大きな流量を計測することが可能になる。   (3) In the above-described embodiment, the measurement tube 25 has a circular pipe shape. However, as shown in FIG. 9A, the cross-section of the pipe 26A has a flat shape in which the horizontal direction is longer than the vertical direction. The tube 26 may be used. In the case of such a measurement tube 26, as shown in FIG. 9B, the pair of ultrasonic transducers 30 and 30 are arranged in a direction that obliquely intersects the longitudinal direction of the measurement tube 26. You may arrange it facing. If such a flat cross-section measuring tube 26 is used, a relatively large flow rate can be measured.

(4)上記実施形態では、メータケース20内に計測管25を収容した構成であったが、図10に示すメータケース27のように、計測管を備えず、メータケース27の長手方向の中間部分を絞って管路27Aを形成した構成としてもよい。   (4) In the above embodiment, the measurement tube 25 is accommodated in the meter case 20. However, unlike the meter case 27 shown in FIG. It is good also as a structure which narrowed down the part and formed 27 A of pipe lines.

(5)上記実施形態では、ガスの流れの順方向と逆方向とで交互に超音波を送受波して、それらの伝搬時間に基づいて流量を演算していたが、以下のようにしてもよい。即ち、まずは、順方向で所定の複数回超音波を送受波し、1回目の送波開始から複数回目の受波検知までに要した時間をクロックカウンタ44にて計測する。次に、逆方向で所定の複数回超音波を送受波し、1回目の送波開始から複数回目の受波検知までに要した時間をクロックカウンタ44にて計測する。そして、順方向と逆方向の両方向で計測されたクロックカウンタ44のカウント値に基づいてガスの流速・流量を演算する。このようにすれば、上記第1実施形態に構成に比べて分解能が向上し、測定精度が向上する。   (5) In the above embodiment, ultrasonic waves are alternately transmitted and received in the forward and reverse directions of the gas flow, and the flow rate is calculated based on their propagation time. Good. That is, first, ultrasonic waves are transmitted and received a predetermined number of times in the forward direction, and the time required from the start of the first transmission to the detection of the plurality of receptions is measured by the clock counter 44. Next, ultrasonic waves are transmitted / received a predetermined number of times in the reverse direction, and the time required from the start of the first transmission to the detection of the plurality of receptions is measured by the clock counter 44. Then, based on the count value of the clock counter 44 measured in both the forward and reverse directions, the gas flow velocity and flow rate are calculated. In this way, the resolution is improved and the measurement accuracy is improved as compared with the configuration of the first embodiment.

10 超音波流量計
18 遮断弁
20 メータケース
24 隔壁
25 計測管
25A 管路
26 計測管
26A 管路
27 メータケース
27A 管路
30 超音波送受波器
31 送受波面
40 制御処理部
43 受波回路
47 警報器
51 増幅部
Lv 基準波高
Lv1〜Lv4 基準波高
P1 第1ピーク
P3 第3ピーク
DESCRIPTION OF SYMBOLS 10 Ultrasonic flow meter 18 Shut-off valve 20 Meter case 24 Bulkhead 25 Measurement pipe 25A Pipe line 26 Measurement pipe 26A Pipe line 27 Meter case 27A Pipe line 30 Ultrasonic transducer 31 Transmission / reception surface 40 Control processing part 43 Reception circuit 47 Alarm 51 Amplifying part Lv Reference wave height Lv1 to Lv4 Reference wave height P1 1st peak P3 3rd peak

Claims (7)

メータケース内に対向配置された1対の超音波送受波器の間における超音波の伝搬時間に基づいて、前記メータケース内を通過する気体の流量を測定する超音波流量計において、
前記超音波送受波器にて受波された超音波に含まれる複数のピークのうち、特定のピークの波高が予め定められた基準値を超えて低下した場合に、浸水有りと判定する異常判定手段を備えたことを特徴とする超音波流量計。
In the ultrasonic flowmeter for measuring the flow rate of the gas passing through the meter case based on the propagation time of the ultrasonic wave between the pair of ultrasonic transducers arranged opposite to each other in the meter case,
Abnormality determination that determines that there is inundation when the peak height of a specific peak among a plurality of peaks included in the ultrasonic wave received by the ultrasonic transducer has dropped below a predetermined reference value An ultrasonic flowmeter comprising means.
前記超音波送受波器にて受波された超音波を増幅する増幅部と、
増幅後の前記特定のピークの波高が、予め設定された基準波高になるように前記増幅部における増幅度を変更して設定する増幅度設定手段とを備え、
前記波高異常判定手段は、前記増幅度設定手段によって設定された増幅度が予め定められた基準増幅度以上であるか否かを判定し、前記基準増幅度以上であることを以て、浸水有りと判定することを特徴とする請求項1に記載の超音波流量計。
An amplifying unit for amplifying the ultrasonic wave received by the ultrasonic transducer;
Amplification degree setting means for changing and setting the amplification degree in the amplification unit so that the wave height of the specific peak after amplification becomes a preset reference wave height,
The wave height abnormality determining means determines whether or not the amplification degree set by the amplification degree setting means is equal to or higher than a predetermined reference amplification degree, and determines that there is flooding if it is equal to or higher than the reference amplification degree. The ultrasonic flowmeter according to claim 1, wherein:
一方の前記超音波送受波器が超音波を送波してから他方の前記超音波送受波器が前記超音波を受波するまでの伝搬時間が、前記気体中を伝搬する超音波ではあり得ない所定の基準伝搬時間以下か否かを判定する時間判定手段と、
前記伝搬時間が前記基準伝搬時間以下である場合に、浸水有りと判定する補助異常判定手段とを備えたことを特徴とする請求項1又は2に記載の超音波流量計。
The propagation time from when one ultrasonic transducer transmits an ultrasonic wave until the other ultrasonic transducer receives the ultrasonic wave may be an ultrasonic wave propagating in the gas. Time determination means for determining whether or not a predetermined reference propagation time or less,
The ultrasonic flowmeter according to claim 1, further comprising auxiliary abnormality determination means that determines that there is water immersion when the propagation time is equal to or shorter than the reference propagation time.
前記メータケースの内部空間を、前記メータケースの外部から前記気体が流入する流入空間と前記メータケースの外部へと前記気体が流出する流出空間とに仕切る隔壁と、その隔壁を貫通して前記流入空間と前記流出空間を連通する計測管とを備え、
前記1対の超音波送受波器の一部が前記計測管を介して対向配置されると共に、
前記1対の超音波送受波器のうち、超音波を送受波する送受波面の最下端が、前記計測管の端部開口より下方に配置されていることを特徴とする請求項1乃至3の何れか1項に記載の超音波流量計。
A partition that divides the internal space of the meter case into an inflow space into which the gas flows from the outside of the meter case and an outflow space from which the gas flows out of the meter case; and the inflow through the partition A measuring pipe that communicates the space and the outflow space;
A part of the pair of ultrasonic transducers is disposed opposite to each other via the measurement tube;
The lowermost end of a wave transmitting / receiving surface for transmitting / receiving ultrasonic waves among the pair of ultrasonic transducers is disposed below an end opening of the measurement tube. The ultrasonic flowmeter according to any one of the above.
前記計測管のうち前記気体が流れる管路の断面が、上下方向に対して水平方向が長い扁平形状をなしたことを特徴とする請求項4に記載の超音波流量計。   The ultrasonic flowmeter according to claim 4, wherein a cross section of the pipe through which the gas flows in the measurement pipe has a flat shape whose horizontal direction is long with respect to the vertical direction. 前記浸水有りと判定された場合に、前記メータケースへの前記気体の供給を遮断する遮断弁を備えたことを特徴とする請求項1乃至5の何れか1項に記載の超音波流量計。   6. The ultrasonic flowmeter according to claim 1, further comprising a shutoff valve that shuts off the supply of the gas to the meter case when it is determined that there is water immersion. 7. 前記浸水有りと判定された場合に、警報を発する警報手段を備えたことを特徴とする請求項1乃至6の何れか1項に記載の超音波流量計。   The ultrasonic flowmeter according to any one of claims 1 to 6, further comprising alarm means for issuing an alarm when it is determined that the water has been submerged.
JP2011011812A 2011-01-24 2011-01-24 Ultrasonic flow meter Pending JP2012154667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011812A JP2012154667A (en) 2011-01-24 2011-01-24 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011812A JP2012154667A (en) 2011-01-24 2011-01-24 Ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JP2012154667A true JP2012154667A (en) 2012-08-16

Family

ID=46836560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011812A Pending JP2012154667A (en) 2011-01-24 2011-01-24 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP2012154667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173199A (en) * 2016-03-25 2017-09-28 矢崎エナジーシステム株式会社 Ultrasonic gas meter
EP4317922A4 (en) * 2021-04-01 2024-10-02 Panasonic Intellectual Property Management Co., Ltd. ULTRASONIC FLOWMETER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085211A (en) * 2002-08-22 2004-03-18 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2005315717A (en) * 2004-04-28 2005-11-10 Toyo Gas Meter Kk Gas meter
JP2010210548A (en) * 2009-03-12 2010-09-24 Panasonic Corp Ultrasonic flowmeter for gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085211A (en) * 2002-08-22 2004-03-18 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2005315717A (en) * 2004-04-28 2005-11-10 Toyo Gas Meter Kk Gas meter
JP2010210548A (en) * 2009-03-12 2010-09-24 Panasonic Corp Ultrasonic flowmeter for gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173199A (en) * 2016-03-25 2017-09-28 矢崎エナジーシステム株式会社 Ultrasonic gas meter
EP4317922A4 (en) * 2021-04-01 2024-10-02 Panasonic Intellectual Property Management Co., Ltd. ULTRASONIC FLOWMETER

Similar Documents

Publication Publication Date Title
JP2014092467A (en) Flow rate measurement device
RU2637381C2 (en) Ultrasonic waveguide
JP2011145289A (en) Flow rate measuring device
JP5758066B2 (en) Ultrasonic gas meter
JP2022161052A (en) ultrasonic flow meter
JP2012154667A (en) Ultrasonic flow meter
JP5141613B2 (en) Ultrasonic flow meter
JP5965292B2 (en) Ultrasonic flow meter
JP2013156075A (en) Ultrasonic flowmeter
JP3637628B2 (en) Flow measuring device
JP5222648B2 (en) Electronic gas meter
JP2005091332A (en) Ultrasonic flowmeter
JP5126077B2 (en) Flow measuring device
JP2005098865A (en) Meter device
JP5946673B2 (en) Gas shut-off device
JP6120369B2 (en) Ultrasonic flow meter
JP2008014829A (en) Ultrasonic flow meter
JP4783989B2 (en) Flowmeter
JP4135432B2 (en) Flow measuring device
JP5691014B2 (en) Gas shut-off device
JP6064160B2 (en) Flow measuring device
JP5649476B2 (en) Ultrasonic flow meter
JP5974280B2 (en) Large flow rate measuring device
JP5990770B2 (en) Ultrasonic measuring device
JP2018025409A (en) Gas shut-off device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150107