[go: up one dir, main page]

JP2012149979A - Fatigue testing device - Google Patents

Fatigue testing device Download PDF

Info

Publication number
JP2012149979A
JP2012149979A JP2011008508A JP2011008508A JP2012149979A JP 2012149979 A JP2012149979 A JP 2012149979A JP 2011008508 A JP2011008508 A JP 2011008508A JP 2011008508 A JP2011008508 A JP 2011008508A JP 2012149979 A JP2012149979 A JP 2012149979A
Authority
JP
Japan
Prior art keywords
specimen
sample
vibration
pressure sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008508A
Other languages
Japanese (ja)
Other versions
JP5556678B2 (en
Inventor
Koreichi Ehata
維一 江畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011008508A priority Critical patent/JP5556678B2/en
Publication of JP2012149979A publication Critical patent/JP2012149979A/en
Application granted granted Critical
Publication of JP5556678B2 publication Critical patent/JP5556678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0005Repeated or cyclic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fatigue testing device which vibrates a sample to detect presence or absence of a fatigue failure such as a crack in the sample and is capable of detecting occurrence of the crack in the sample without removing the sample even when the sample stops sympathetic vibration before reaching a prescribed vibration cycle.SOLUTION: A fatigue testing device comprises: a non-contact vibration exciter 4 which vibrates a sample 101 by intermittently applying pressure wave to the sample 101 at a constant frequency; displacement sensors 9 and 10 which measure displacement of the sample 101; a pressure sensor 14 which measures the pressure wave generated by the non-contact vibration exciter 4; a band-pass filter 15 which extracts a frequency component corresponding to a resonance frequency of the sample 101 from an output of the pressure sensor 14; and measurement circuits 11 and 13 which detect a vibration phase of the sample 101 by measuring the outputs from the displacement sensors 9 and 10 with the output from the pressure sensor 14 via the band-pass filter 15 as a reference signal.

Description

本発明は、ジェットエンジンを含むガスタービン等の圧縮機やタービンの翼部品等の供試物における疲労強度を確認するために、供試物を振動させる疲労試験装置に関する。   The present invention relates to a fatigue test apparatus that vibrates a specimen in order to confirm the fatigue strength of the specimen such as a compressor such as a gas turbine including a jet engine and blade components of the turbine.

従来、特許文献1及び特許文献2に記載されているように、共振現象を利用した非接触の疲労試験装置が提案されている。この疲労試験装置においては、図4に示すように、固定治具102により基端側を固定された供試物(翼部品等)101に対して、高周波モータ103により駆動されるパルス発生部104から発せられる高周波パルス状の圧力波を当てる。   Conventionally, as described in Patent Document 1 and Patent Document 2, a non-contact fatigue test apparatus using a resonance phenomenon has been proposed. In this fatigue test apparatus, as shown in FIG. 4, a pulse generator 104 driven by a high-frequency motor 103 with respect to a specimen (blade part or the like) 101 whose base end side is fixed by a fixing jig 102. A high-frequency pulsed pressure wave emitted from is applied.

パルス発生部104は、いわゆるサイレン式エアパルス発生器であり、多数の孔が設けられたステータ及びロータを備えている。このパルス発生部104は、流量調整弁105を経てエア配管106より空気が供給されるとともに、ロータが高周波モータ103により高速で回転されることにより、パルス状の圧力波を発生する。   The pulse generator 104 is a so-called siren type air pulse generator, and includes a stator and a rotor provided with a number of holes. The pulse generator 104 generates a pulsed pressure wave by supplying air from the air pipe 106 through the flow rate adjusting valve 105 and rotating the rotor at a high speed by the high-frequency motor 103.

流量調整弁105は、コントローラ107により流量の制御をされる。高周波モータ103は、インバータ108を介して、コントローラ107により回転数の制御をされる。   The flow rate adjustment valve 105 is controlled by the controller 107. The high frequency motor 103 is controlled by the controller 107 through the inverter 108.

供試物101は、パルス状の圧力波により振動する。このとき、圧力波の圧力変化の周波数(加振周波数)が供試物101の共振周波数に一致するように調整され、供試物101の振動周波数は、共振周波数となる。また供試物101の加振レベルは、エアの流量を流量調整弁5により調整する。このような共振周波数及び加振レベルの調整は、手動調整により行なっている。   The sample 101 is vibrated by a pulsed pressure wave. At this time, the pressure change frequency (excitation frequency) of the pressure wave is adjusted so as to coincide with the resonance frequency of the specimen 101, and the vibration frequency of the specimen 101 becomes the resonance frequency. In addition, the vibration level of the specimen 101 is adjusted by adjusting the flow rate of air with the flow rate adjusting valve 5. Such adjustment of the resonance frequency and the excitation level is performed by manual adjustment.

供試物101の振動は、レーザ変位計等の非接触変位計(またはレーザドップラ等の速度計)109及び歪みゲージ110により計測される。レーザ変位計109による振幅の計測結果は、FFTアナライザ111に送られる。一方、歪みゲージ110からの出力は、動歪み計112を経て、動歪みの信号出力としてFFTアナライザ111に送られる。その後、FFTアナライザ111による解析結果は、コントローラ107に送られる。   The vibration of the specimen 101 is measured by a non-contact displacement meter such as a laser displacement meter (or a velocity meter such as a laser Doppler) 109 and a strain gauge 110. The measurement result of the amplitude by the laser displacement meter 109 is sent to the FFT analyzer 111. On the other hand, the output from the strain gauge 110 is sent to the FFT analyzer 111 as a dynamic strain signal output through the dynamic strain meter 112. Thereafter, the analysis result by the FFT analyzer 111 is sent to the controller 107.

供試物101の振幅を一定に保ち、高サイクル(10サイクル程度)の振動をさせている間に、供試物101にクラック等の疲労破壊が生じているかを確認する。 Maintaining the amplitude of the test article 101 to be constant, while by the vibration of high cycle (about 10 7 cycles), checks whether fatigue fracture such as a crack occurs in the test article 101.

特開2004−028976号公報JP 2004-028976 A 特開2003−270081号公報JP 2003-270081 A

ところで、前述のような疲労試験装置において、所定の振動サイクルに達する前に供試物101が共振しなくなった場合には、加振周波数を微調整して加振レベルの回復を確認したり、または、供試物101にクラックが発生しているか否かを非破壊検査(蛍光浸透探傷等)により確認しないと、試験続行ができなかった。   By the way, in the fatigue test apparatus as described above, when the specimen 101 does not resonate before reaching the predetermined vibration cycle, the excitation frequency is finely adjusted to confirm the recovery of the excitation level, Alternatively, the test could not be continued unless the specimen 101 was cracked by a nondestructive inspection (fluorescent penetration flaw detection, etc.).

非破壊検査をするには、供試物101を固定治具102から取り外さなければならず、その後に再び供試物101を固定治具102に取り付けたときには、固定状態や振幅モニター位置が微妙に変化して振動状態も変化してしまう虞がある。   In order to perform nondestructive inspection, the specimen 101 must be removed from the fixing jig 102, and when the specimen 101 is attached to the fixing jig 102 again, the fixed state and the amplitude monitor position are subtly. There is a risk that the vibration state will also change.

そこで、本発明は、前述した実情に鑑みて提案されるものであって、供試物における疲労強度をを確認するために、供試物を振動させる疲労試験装置であって、所定の振動サイクルに達する前に供試物が共振しなくなった場合に、供試物を取り外すことなく、供試物におけるクラック等の発生を検出することができる疲労試験装置を提供することを目的とする。   Therefore, the present invention is proposed in view of the above-described circumstances, and is a fatigue test apparatus that vibrates a specimen to confirm the fatigue strength of the specimen, and has a predetermined vibration cycle. An object of the present invention is to provide a fatigue test apparatus capable of detecting the occurrence of cracks or the like in a specimen without removing the specimen when the specimen stops resonating before reaching the value.

前述の課題を解決し、前記目的を達成するため、本発明に係る疲労試験装置は、供試物における疲労強度を確認するために該供試物の共振周波数において該供試物を振動させる疲労試験装置であって、一定周期の圧力波を供試物に当てて該供試物を振動させる非接触加振器と、非接触加振器により振動されている供試物の振動変位(または速度)を計測する変位センサ(または速度センサ)と、非接触加振器より発せられる圧力波を計測する圧力センサ(またはマイクロフォン等の音圧計)と、圧力センサからの出力から供試物の共振周波数に対応する周波数成分を抽出するバンドパスフィルタと、バンドパスフィルタを経た圧力センサからの出力を参照信号として変位センサからの出力を計測して供試物の振動振幅と位相を検出する計測回路とを備えたことを特徴とするものである。   In order to solve the above-described problems and achieve the object, the fatigue test apparatus according to the present invention is a fatigue tester that vibrates the specimen at the resonance frequency of the specimen in order to confirm the fatigue strength of the specimen. A test apparatus, which applies a pressure wave of a certain period to a specimen and vibrates the specimen, and vibration displacement of the specimen vibrated by the non-contact vibrator (or Displacement sensor (or speed sensor) that measures the speed), pressure sensor (or sound pressure gauge such as a microphone) that measures the pressure wave emitted from the non-contact vibrator, and resonance of the specimen from the output from the pressure sensor A bandpass filter that extracts frequency components corresponding to the frequency, and a measurement circuit that detects the vibration amplitude and phase of the specimen by measuring the output from the displacement sensor using the output from the pressure sensor that has passed through the bandpass filter as a reference signal. It is characterized in that it comprises and.

本発明に係る疲労試験装置においては、供試物を振動させる非接触加振器と、供試物の振動変位(または速度)を計測する変位センサ(または速度センサ)と、非接触加振器より発せられる圧力波を計測する圧力センサ(またはマイクロフォン)とを備え、計測回路が、バンドパスフィルタを経た圧力センサからの出力を参照信号として変位センサからの出力を計測して供試物の振動振幅と位相を検出するので、応答信号の振幅と位相を高精度で分析でき、クラック等の疲労破壊の発生の有無及び発生時点を判断できる。   In the fatigue test apparatus according to the present invention, a non-contact vibrator that vibrates the specimen, a displacement sensor (or speed sensor) that measures the vibration displacement (or speed) of the specimen, and a non-contact vibrator And a pressure sensor (or microphone) that measures the pressure wave emitted by the measurement circuit, and the measurement circuit measures the output from the displacement sensor using the output from the pressure sensor that has passed through the bandpass filter as a reference signal. Since the amplitude and phase are detected, the amplitude and phase of the response signal can be analyzed with high accuracy, and the presence or absence of occurrence of fatigue failure such as cracks can be determined.

また、位相変化を監視することにより、共振点追従も自動化することができる。すなわち、位相一定制御(モータ回転数の調整)を行なうことで、共振点自動追従が可能であり、さらに、加振力(エア流量)調整により振幅一定制御も可能である。   In addition, the resonance point tracking can be automated by monitoring the phase change. That is, by performing constant phase control (adjustment of motor rotation speed), automatic resonance point tracking is possible, and furthermore, constant amplitude control is possible by adjusting excitation force (air flow rate).

したがって、この疲労試験装置においては、超々寿命域高サイクル疲労試験(例えば、ギガサイクルの疲労試験)を容易に短時間で実施することができる。   Therefore, in this fatigue test apparatus, an ultra-long life region high cycle fatigue test (for example, a gigacycle fatigue test) can be easily performed in a short time.

なお、この疲労試験装置においては、非接触加振の特徴を維持しつつ、従来、加振信号が単一正弦波でないために参照信号として使用できなかったという問題を解決し、加振信号の高調波成分等をバンドパスフィルタにより取り除いて単一の正弦波信号に加工して参照信号としているので、2位相式のロックインアンプ等を用いて応答信号を分析できるようにしたものである。   In this fatigue test apparatus, while maintaining the characteristics of non-contact excitation, the conventional problem that the excitation signal was not a single sine wave and could not be used as a reference signal was solved. Since the harmonic component and the like are removed by a band-pass filter and processed into a single sine wave signal as a reference signal, the response signal can be analyzed using a two-phase lock-in amplifier or the like.

さらに、供試体には強制的にエアを吹き付けるので、常に空冷した状態での試験となり、供試体の温度上昇を抑えることができる。   Furthermore, since air is forcibly blown to the specimen, the test is always performed in an air-cooled state, and the temperature rise of the specimen can be suppressed.

すなわち、本発明は、供試物における疲労強度を確認するために供試物を振動させる疲労試験装置であって、所定の振動サイクルに達する前に供試物が共振しなくなった場合に、供試物を取り外すことなく、供試物におけるクラック等の発生を検出することができる疲労試験装置を提供することができるものである。   That is, the present invention is a fatigue test apparatus that vibrates a specimen in order to confirm the fatigue strength of the specimen, and when the specimen stops resonating before reaching a predetermined vibration cycle, It is possible to provide a fatigue test apparatus that can detect the occurrence of cracks or the like in a specimen without removing the specimen.

本発明に係る疲労試験装置の構成を示すブロック図である。It is a block diagram which shows the structure of the fatigue test apparatus which concerns on this invention. 本発明に係る疲労試験装置における2位相式ロックインアンプの構成を示すブロック図である。It is a block diagram which shows the structure of the two phase type lock-in amplifier in the fatigue test apparatus which concerns on this invention. 本発明に係る疲労試験装置において、経過時間に対する振幅及び位相の変化を示すグラフである。5 is a graph showing changes in amplitude and phase with respect to elapsed time in the fatigue test apparatus according to the present invention. 従来の疲労試験装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional fatigue test apparatus.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る疲労試験装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a fatigue test apparatus according to the present invention.

この疲労試験装置においては、図1に示すように、固定治具102により基端側を固定された供試物(翼部品等)101に対して、高周波モータ3により駆動される非接触加振器となるパルス発生部4から発せられるパルス状の圧力波を当てる。   In this fatigue test apparatus, as shown in FIG. 1, non-contact excitation driven by a high-frequency motor 3 is applied to a specimen (blade component or the like) 101 whose base end is fixed by a fixing jig 102. A pulsed pressure wave emitted from the pulse generator 4 serving as a container is applied.

パルス発生部4は、いわゆるサイレン式エアパルス発生器であり、多数の孔が設けられたステータ及びロータを備えている。このパルス発生部4は、流量調整弁5を経てエア配管6より空気が供給されるとともに、ロータが高周波モータ3により高速で回転されることにより、圧力波を発生する。   The pulse generator 4 is a so-called siren type air pulse generator, and includes a stator and a rotor provided with a number of holes. The pulse generator 4 is supplied with air from the air pipe 6 via the flow rate adjusting valve 5 and generates a pressure wave when the rotor is rotated at a high speed by the high frequency motor 3.

流量調整弁5は、コントローラ7により流量の制御をされる。高周波モータ3は、インバータ8を介して、コントローラ7により回転数の制御をされる。高周波モータ3の回転数は、例えば、55000rpm程度である。   The flow rate adjustment valve 5 is controlled in flow rate by the controller 7. The high frequency motor 3 is controlled by the controller 7 through the inverter 8. The number of rotations of the high frequency motor 3 is, for example, about 55000 rpm.

供試物101は、パルス状の圧力波により振動する。このとき、圧力波の圧力変化の周波数(加振周波数)が供試物101の共振周波数に一致するように調整され、供試物101の振動周波数は、共振周波数となる。   The sample 101 is vibrated by a pulsed pressure wave. At this time, the pressure change frequency (excitation frequency) of the pressure wave is adjusted so as to coincide with the resonance frequency of the specimen 101, and the vibration frequency of the specimen 101 becomes the resonance frequency.

供試物101の振動(変位)は、変位センサとなるレーザ変位計9及び歪みゲージ10により計測される。レーザ変位計9による振幅の計測結果は、計測回路となる第1の2位相式ロックインアンプ11に送られる。歪みゲージ10からの出力は、動歪み計12を経て、動歪み計の出力信号として、計測回路となる第2の2位相式ロックインアンプ13に送られる。   The vibration (displacement) of the specimen 101 is measured by a laser displacement meter 9 and a strain gauge 10 serving as a displacement sensor. The measurement result of the amplitude by the laser displacement meter 9 is sent to a first two-phase lock-in amplifier 11 serving as a measurement circuit. The output from the strain gauge 10 is sent to the second two-phase lock-in amplifier 13 serving as a measurement circuit as an output signal of the dynamic strain meter through the dynamic strain meter 12.

そして、圧力波の圧力変化の周波数(加振周波数)は、圧力センサ(またはマイクロフォン等の音圧センサ)14により検出される。加振周波数には、供試物101の共振周波数に等しい主成分の周波数の他に、高周波成分が含まれている。そのため、圧力センサ14からの出力は、プログラマブルフィルタ(バンドパスフィルタ)15を経て、主成分の周波数のみが抽出されて、参照信号として、第1及び第2の2位相式ロックインアンプ11,13に送られる。   The pressure change frequency (excitation frequency) of the pressure wave is detected by a pressure sensor (or a sound pressure sensor such as a microphone) 14. The excitation frequency includes a high frequency component in addition to the main component frequency equal to the resonance frequency of the specimen 101. Therefore, the output from the pressure sensor 14 passes through a programmable filter (bandpass filter) 15 and only the main component frequency is extracted, and the first and second two-phase lock-in amplifiers 11 and 13 are used as reference signals. Sent to.

プログラマブルフィルタ15の特性は、供試物101の共振周波数を中心として、±5%程度の周波数帯域を通過させるものであることが望ましい。プログラマブルフィルタ15の特性は、高周波モータ3の回転数に連動して、コントローラ7により制御され、調整される。   The characteristic of the programmable filter 15 is desirably such that it allows a frequency band of about ± 5% to pass through the resonance frequency of the specimen 101 as a center. The characteristics of the programmable filter 15 are controlled and adjusted by the controller 7 in conjunction with the rotational speed of the high-frequency motor 3.

第1の2位相式ロックインアンプ11は、プログラマブルフィルタ15を経た圧力センサ14からの出力を参照信号として、供試物101の振動変位の振幅及び位相を解析し、振幅及び位相の計測結果をコントローラ7に送る。第2の2位相ロックインアンプ13は、プログラマブルフィルタ15を経た圧力センサ14からの出力を参照信号として、供試物101の動歪みの振幅及び位相を解析し、動歪みの振幅及び位相の計測結果をコントローラ7に送る。   The first two-phase lock-in amplifier 11 analyzes the amplitude and phase of the vibration displacement of the specimen 101 using the output from the pressure sensor 14 that has passed through the programmable filter 15 as a reference signal, and the measurement result of the amplitude and phase is obtained. Send to controller 7. The second two-phase lock-in amplifier 13 uses the output from the pressure sensor 14 that has passed through the programmable filter 15 as a reference signal, analyzes the dynamic strain amplitude and phase of the specimen 101, and measures the dynamic strain amplitude and phase. The result is sent to the controller 7.

また、供試物101の先端部は、CCDカメラ16により撮像され、モニタ17により先端振幅が確認できるようになっている。   The tip of the specimen 101 is imaged by the CCD camera 16 and the tip amplitude can be confirmed by the monitor 17.

図2は、本発明に係る疲労試験装置における2位相ロックインアンプの構成を示すブロック図である。   FIG. 2 is a block diagram showing a configuration of a two-phase lock-in amplifier in the fatigue test apparatus according to the present invention.

第1及び第2の2位相ロックインアンプ11,13においては、図2に示すように、圧力センサ14からの圧力変動を示す信号(sin(ωt))がプログラマブルフィルタ15を介することで余分な成分が取り除かれ、この信号が参照信号(sin(ωt))として第1のミキサ18に入力されるとともに、90°の位相シフタ20を介して、位相シフトされた信号(cos(ωt))として第2のミキサ19に入力される。   In the first and second two-phase lock-in amplifiers 11 and 13, as shown in FIG. 2, an extra signal (sin (ωt)) indicating the pressure fluctuation from the pressure sensor 14 is passed through the programmable filter 15. The component is removed, and this signal is input to the first mixer 18 as a reference signal (sin (ωt)) and also as a phase-shifted signal (cos (ωt)) via a 90 ° phase shifter 20. Input to the second mixer 19.

一方、レーザ変位計等の変位計(または速度計)9及び歪みゲージ10からの変位振幅及び動歪みを示す信号(主成分としてはAsin(ωt+α))が、第1及び第2のミキサ18,19に入力される。第1及び第2のミキサ18,19からの出力は、それぞれローパスフィルタ21,22を経て、それぞれの信号(X=(A/2)cos(α)、Y=(A/2)sin(α))が演算回路23に送られる。   On the other hand, a signal indicating displacement amplitude and dynamic strain (Asin (ωt + α) as a main component) from the displacement meter (or speedometer) 9 such as a laser displacement meter and the strain gauge 10 is supplied to the first and second mixers 18, 19 is input. The outputs from the first and second mixers 18 and 19 pass through the low-pass filters 21 and 22, respectively, and the respective signals (X = (A / 2) cos (α), Y = (A / 2) sin (α) )) Is sent to the arithmetic circuit 23.

演算回路23は、各信号(X=(A/2)cos(α)、Y=(A/2)sin(α))に基づいて、振幅(R)及び位相(α)を演算する。   The arithmetic circuit 23 calculates the amplitude (R) and the phase (α) based on each signal (X = (A / 2) cos (α), Y = (A / 2) sin (α)).

この疲労試験装置においては、供試物101の振幅を一定に保ち、試験サイクル数(10サイクル等)を負荷し、変化なくサイクル数に達するか、供試物101にクラック等の疲労破壊が生じているかを確認する。そして、この疲労試験装置においては、所定の振動サイクルに達する前に供試物101が共振しなくなった場合には、供試物101を固定治具102から取り外すことなく、供試物101におけるクラック等の発生を検出することができる。 In the fatigue test apparatus, maintaining the amplitude of the test article 101 to be constant, the number of test cycles (107 cycles, etc.) loaded, changed without reached or the number of cycles, the fatigue fracture such as a crack test article 101 Check if it has occurred. In this fatigue test apparatus, when the specimen 101 does not resonate before reaching the predetermined vibration cycle, the specimen 101 is not cracked in the specimen 101 without removing the specimen 101 from the fixture 102. And the like can be detected.

図3は、本発明に係る疲労試験装置において、経過時間に対する振動変位の振幅及び位相の変化を示すグラフである。   FIG. 3 is a graph showing changes in amplitude and phase of vibration displacement with respect to elapsed time in the fatigue test apparatus according to the present invention.

すなわち、図3に示すように、加振開始からの経過時間に対する振動変位の振幅及び位相の変化を監視していると、供試物101にクラック等の疲労破壊が生じたときに、振動変位の振幅及び位相が急激に変化する。このときの経過時間を加振周期で除すれば、疲労破壊が生じたときの振動サイクル、すなわち、何回振動したときにクラックが発生したかを特定することができる。   That is, as shown in FIG. 3, when changes in the amplitude and phase of vibration displacement with respect to the elapsed time from the start of vibration are monitored, vibration displacement occurs when fatigue failure such as cracks occurs in the specimen 101. The amplitude and phase of the signal change rapidly. By dividing the elapsed time at this time by the vibration period, it is possible to specify the vibration cycle when fatigue failure occurs, that is, how many times the crack has occurred.

なお、本発明に係る疲労試験装置においては、位相変化を監視することにより、共振点追従も自動化することができる。すなわち、位相一定制御(モータ回転数の調整)を行なうことで、共振点自動追従が可能であり、さらに、加振力(エア流量)調整により振幅一定制御も可能である。   In the fatigue test apparatus according to the present invention, the resonance point tracking can be automated by monitoring the phase change. That is, by performing constant phase control (adjustment of motor rotation speed), automatic resonance point tracking is possible, and furthermore, constant amplitude control is possible by adjusting excitation force (air flow rate).

また、本発明の実施の形態においては、振動変位と動歪みの関係を正確に求めるため、これらを同時に計測する構成を記載したが、レーザ変位計等を用いて、振動変位のみを計測する構成としてもよい。   In the embodiment of the present invention, in order to accurately obtain the relationship between the vibration displacement and the dynamic strain, the configuration for measuring these simultaneously is described. However, the configuration for measuring only the vibration displacement using a laser displacement meter or the like. It is good.

本発明において、計測回路は、圧力センサ14からの出力を参照信号として、各変位センサ9,10からの出力を計測して、供試物101の振動の位相を検出することでできる回路であれば、2位相式ロックインアンプに限定されない。   In the present invention, the measurement circuit is a circuit that can detect the phase of vibration of the specimen 101 by measuring the output from each of the displacement sensors 9 and 10 using the output from the pressure sensor 14 as a reference signal. For example, it is not limited to a two-phase lock-in amplifier.

本発明は、ジェットエンジンを含むガスタービン等の圧縮機やタービンの翼部品等の供試物における疲労強度を確認するために、供試物を振動させる疲労試験装置に適用される。   INDUSTRIAL APPLICABILITY The present invention is applied to a fatigue test apparatus that vibrates a specimen to confirm the fatigue strength of the specimen such as a compressor such as a gas turbine including a jet engine and a blade component of the turbine.

4 パルス発生部
9 レーザ変位計
10 歪み計
14 圧力センサ
15 プログラマブルフィルタ
11 第1の2位相式ロックインアンプ
13 第2の2位相式ロックインアンプ
101 供試物
4 Pulse generator 9 Laser displacement meter 10 Strain meter 14 Pressure sensor 15 Programmable filter 11 First two-phase lock-in amplifier 13 Second two-phase lock-in amplifier 101 Specimen

Claims (1)

供試物における疲労強度を確認するために該供試物の共振周波数において該供試物を振動させる疲労試験装置であって、
一定周期の圧力波を前記供試物に当てて、該供試物を振動させる非接触加振器と、
前記非接触加振器により振動されている前記供試物の振動変位を計測する変位センサと、
前記非接触加振器より発せられる圧力波を計測する圧力センサと、
前記圧力センサからの出力から前記供試物の共振周波数に対応する周波数成分を抽出するバンドパスフィルタと、
前記バンドパスフィルタを経た前記圧力センサからの出力を参照信号として、前記変位センサからの出力を計測して、前記供試物の振動振幅と位相を検出する計測回路と
を備えたことを特徴とする疲労試験装置。
A fatigue test apparatus that vibrates the specimen at a resonance frequency of the specimen in order to confirm the fatigue strength of the specimen,
A non-contact vibrator that applies a constant-period pressure wave to the specimen to vibrate the specimen;
A displacement sensor for measuring the vibration displacement of the specimen being vibrated by the non-contact vibrator;
A pressure sensor for measuring a pressure wave emitted from the non-contact vibrator;
A bandpass filter for extracting a frequency component corresponding to the resonance frequency of the specimen from the output from the pressure sensor;
A measurement circuit that measures the output from the displacement sensor using the output from the pressure sensor that has passed through the band-pass filter as a reference signal, and detects the vibration amplitude and phase of the specimen. Fatigue testing equipment.
JP2011008508A 2011-01-19 2011-01-19 Fatigue testing equipment Active JP5556678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008508A JP5556678B2 (en) 2011-01-19 2011-01-19 Fatigue testing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008508A JP5556678B2 (en) 2011-01-19 2011-01-19 Fatigue testing equipment

Publications (2)

Publication Number Publication Date
JP2012149979A true JP2012149979A (en) 2012-08-09
JP5556678B2 JP5556678B2 (en) 2014-07-23

Family

ID=46792357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008508A Active JP5556678B2 (en) 2011-01-19 2011-01-19 Fatigue testing equipment

Country Status (1)

Country Link
JP (1) JP5556678B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156510A1 (en) 2013-03-27 2014-10-02 日新製鋼株式会社 Fatigue testing device
WO2015140945A1 (en) * 2014-03-19 2015-09-24 株式会社日立製作所 Fatigue tester
CN109643112A (en) * 2016-08-31 2019-04-16 通用电气技术有限公司 Advanced starting counter module for valve and actuator monitoring system
CN110022522A (en) * 2019-01-29 2019-07-16 浙江中科电声研发中心 The loudspeaker vibration component resonant frequency measuring system and measurement method motivated using vibration excitor
WO2020187755A1 (en) * 2019-03-18 2020-09-24 Université de Mons Resonant frequency vibrational test
WO2020208891A1 (en) * 2019-04-12 2020-10-15 株式会社Ihi Jig for vibration test of stator vane
CN113834621A (en) * 2020-06-08 2021-12-24 中国航发商用航空发动机有限责任公司 Blade vibration fatigue test method and system, control device and storage medium
CN114813125A (en) * 2022-03-31 2022-07-29 大连海事大学 Fatigue life examination test platform for squirrel-cage bearing sleeve of aero-engine
JPWO2023054257A1 (en) * 2021-09-28 2023-04-06
CN116429362A (en) * 2023-06-12 2023-07-14 西安航天动力研究所 Fatigue test method for engine pipeline structure
CN117914309A (en) * 2024-03-19 2024-04-19 成都中微达信科技有限公司 Molecular clock, molecular clock frequency control method and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093063B2 (en) 2019-04-12 2022-06-29 株式会社Ihi Vibration test jig for rotor blades

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305645A (en) * 1992-05-04 1994-04-26 The Center For Innovative Technology Dynamic measurement of material strength and life under cyclic loading
JPH0854331A (en) * 1994-08-12 1996-02-27 Eagle Ind Co Ltd Method and device for testing fatigue utilizing resonance
JPH10253490A (en) * 1997-03-07 1998-09-25 Ishikawajima Harima Heavy Ind Co Ltd Vibration stress measurement device
JP2003270081A (en) * 2002-03-19 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade support structure
JP2004028976A (en) * 2001-10-12 2004-01-29 Sekisui Chem Co Ltd Method and apparatus for inspecting reinforced concrete pipe
JP2004077163A (en) * 2002-08-12 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Pneumatic non-contact vibration device
JP2004117323A (en) * 2002-09-30 2004-04-15 Ishikawajima Harima Heavy Ind Co Ltd Vibration test apparatus and modal analysis method using the same
JP2007170891A (en) * 2005-12-20 2007-07-05 Saginomiya Seisakusho Inc Arithmetic apparatus and test apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305645A (en) * 1992-05-04 1994-04-26 The Center For Innovative Technology Dynamic measurement of material strength and life under cyclic loading
JPH0854331A (en) * 1994-08-12 1996-02-27 Eagle Ind Co Ltd Method and device for testing fatigue utilizing resonance
JPH10253490A (en) * 1997-03-07 1998-09-25 Ishikawajima Harima Heavy Ind Co Ltd Vibration stress measurement device
JP2004028976A (en) * 2001-10-12 2004-01-29 Sekisui Chem Co Ltd Method and apparatus for inspecting reinforced concrete pipe
JP2003270081A (en) * 2002-03-19 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade support structure
JP2004077163A (en) * 2002-08-12 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Pneumatic non-contact vibration device
JP2004117323A (en) * 2002-09-30 2004-04-15 Ishikawajima Harima Heavy Ind Co Ltd Vibration test apparatus and modal analysis method using the same
JP2007170891A (en) * 2005-12-20 2007-07-05 Saginomiya Seisakusho Inc Arithmetic apparatus and test apparatus

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158332B1 (en) * 2013-03-27 2020-09-21 닛테츠 닛신 세이코 가부시키가이샤 Fatigue testing device
JP2014190820A (en) * 2013-03-27 2014-10-06 Nisshin Steel Co Ltd Fatigue testing device
KR20150143519A (en) 2013-03-27 2015-12-23 닛신 세이코 가부시키가이샤 Fatigue testing device
CN105264354A (en) * 2013-03-27 2016-01-20 日新制钢株式会社 Fatigue testing device
US9921130B2 (en) 2013-03-27 2018-03-20 Nisshin Steel Co., Ltd. Fatigue testing device
WO2014156510A1 (en) 2013-03-27 2014-10-02 日新製鋼株式会社 Fatigue testing device
WO2015140945A1 (en) * 2014-03-19 2015-09-24 株式会社日立製作所 Fatigue tester
JPWO2015140945A1 (en) * 2014-03-19 2017-04-06 株式会社日立製作所 Fatigue testing equipment
EP3121586A4 (en) * 2014-03-19 2017-12-06 Hitachi, Ltd. Fatigue tester
CN109643112A (en) * 2016-08-31 2019-04-16 通用电气技术有限公司 Advanced starting counter module for valve and actuator monitoring system
CN109643112B (en) * 2016-08-31 2021-08-03 通用电气技术有限公司 Advanced Start Counter Module for Valve and Actuator Monitoring Systems
CN110022522A (en) * 2019-01-29 2019-07-16 浙江中科电声研发中心 The loudspeaker vibration component resonant frequency measuring system and measurement method motivated using vibration excitor
CN110022522B (en) * 2019-01-29 2023-11-07 浙江中科电声研发中心 System and method for measuring resonant frequency of loudspeaker vibrating component excited by vibration exciter
WO2020187755A1 (en) * 2019-03-18 2020-09-24 Université de Mons Resonant frequency vibrational test
US12000760B2 (en) * 2019-03-18 2024-06-04 Universite De Mons Resonant frequency vibrational test
US20220146367A1 (en) * 2019-03-18 2022-05-12 Universite De Mons Resonant frequency vibrational test
CN113785180A (en) * 2019-03-18 2021-12-10 蒙斯大学 Resonant Frequency Vibration Test
JPWO2020208891A1 (en) * 2019-04-12 2021-10-14 株式会社Ihi Vibration test jig for stationary wings
JP7078917B2 (en) 2019-04-12 2022-06-01 株式会社Ihi Vibration test jig for stationary wings
WO2020208891A1 (en) * 2019-04-12 2020-10-15 株式会社Ihi Jig for vibration test of stator vane
US12031451B2 (en) 2019-04-12 2024-07-09 Hi Corporation Jig for vibration test of stator vane
CN113834621A (en) * 2020-06-08 2021-12-24 中国航发商用航空发动机有限责任公司 Blade vibration fatigue test method and system, control device and storage medium
CN113834621B (en) * 2020-06-08 2024-03-29 中国航发商用航空发动机有限责任公司 Blade vibration fatigue test method and system, control device and storage medium
JPWO2023054257A1 (en) * 2021-09-28 2023-04-06
CN114813125A (en) * 2022-03-31 2022-07-29 大连海事大学 Fatigue life examination test platform for squirrel-cage bearing sleeve of aero-engine
CN116429362A (en) * 2023-06-12 2023-07-14 西安航天动力研究所 Fatigue test method for engine pipeline structure
CN116429362B (en) * 2023-06-12 2023-09-19 西安航天动力研究所 Fatigue test method for engine pipeline structure
CN117914309A (en) * 2024-03-19 2024-04-19 成都中微达信科技有限公司 Molecular clock, molecular clock frequency control method and electronic equipment
CN117914309B (en) * 2024-03-19 2024-05-31 成都中微达信科技有限公司 Molecular clock, molecular clock frequency control method and electronic equipment

Also Published As

Publication number Publication date
JP5556678B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5556678B2 (en) Fatigue testing equipment
US7854167B2 (en) Stator core loosening diagnosis device and stator core loosening diagnosis method
JP2000506262A (en) Multi-sensor device and method for monitoring a turbomachine
SE518997C2 (en) Method and apparatus for detecting damage in materials or articles
WO2008093349B1 (en) A method for non-intrusive on-line detection of turbine blade condition
JP2018100948A (en) Vibration test method and vibration test equipment
JP2006322934A (en) Test method of torsional vibration attenuator
KR101030325B1 (en) Natural frequency measuring device for dynamic damper
JP2013525803A (en) Methods and devices for nondestructive material testing by ultrasound
JP2020201050A (en) Method and device for testing screw fastening state
RU2340882C1 (en) Stand for vibration diagnostics of rotor systems
JP2009139343A (en) Vibration analyzer of engine
CN106932089B (en) Device and method for detecting faults of vibration monitoring device on line
JP2005037390A (en) Determination method and device of natural frequency of bearing system equipped with bearing support shaft
JP4699108B2 (en) Concrete placement inspection equipment
US20140202251A1 (en) Test apparatus and a method of testing
JP2013072688A (en) Natural frequency measuring device and natural frequency measuring method
JP2008185345A (en) Vibration measuring method and device
RU2334225C1 (en) Control method of product defectiveness
US9204109B1 (en) IR detection of small cracks during fatigue testing
JPH11197854A (en) Ultrasonic welding device and welding state in ultrasonic welding device
Badri et al. A method to calibrate the measured responses by MEMS accelerometers
RU2614458C1 (en) Method of diagnosing forms of resonance vibrations of turbomachinery impeller blades
Rao et al. Non intrusive method of detecting turbine blade vibration in an operating power plant
Mueller et al. Effects of debonding of PWAS on the wave propagation and the electro-mechanical impedance spectrum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R151 Written notification of patent or utility model registration

Ref document number: 5556678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250