JP2012147678A - Multiple culture apparatus for single sample - Google Patents
Multiple culture apparatus for single sample Download PDFInfo
- Publication number
- JP2012147678A JP2012147678A JP2009135543A JP2009135543A JP2012147678A JP 2012147678 A JP2012147678 A JP 2012147678A JP 2009135543 A JP2009135543 A JP 2009135543A JP 2009135543 A JP2009135543 A JP 2009135543A JP 2012147678 A JP2012147678 A JP 2012147678A
- Authority
- JP
- Japan
- Prior art keywords
- culture
- medium
- scaffold
- culture vessel
- vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002609 medium Substances 0.000 claims abstract description 202
- 239000001963 growth medium Substances 0.000 claims abstract description 54
- 210000004748 cultured cell Anatomy 0.000 claims abstract description 26
- 238000004113 cell culture Methods 0.000 claims abstract description 19
- 238000012544 monitoring process Methods 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 84
- 230000002265 prevention Effects 0.000 claims description 51
- 238000002347 injection Methods 0.000 claims description 47
- 239000007924 injection Substances 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 31
- 238000010899 nucleation Methods 0.000 claims description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 24
- 230000033001 locomotion Effects 0.000 claims description 15
- 239000000560 biocompatible material Substances 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 12
- 239000001569 carbon dioxide Substances 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 238000012258 culturing Methods 0.000 claims description 10
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 230000010412 perfusion Effects 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 230000004087 circulation Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 238000004904 shortening Methods 0.000 claims description 5
- 230000001464 adherent effect Effects 0.000 claims description 3
- 108010045569 atelocollagen Proteins 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 230000001954 sterilising effect Effects 0.000 claims description 2
- 238000004659 sterilization and disinfection Methods 0.000 claims description 2
- 229920003002 synthetic resin Polymers 0.000 claims description 2
- 239000000057 synthetic resin Substances 0.000 claims description 2
- 229920003051 synthetic elastomer Polymers 0.000 claims 8
- 239000005061 synthetic rubber Substances 0.000 claims 8
- 230000006837 decompression Effects 0.000 claims 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 2
- 229920001296 polysiloxane Polymers 0.000 claims 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 claims 1
- 238000012790 confirmation Methods 0.000 claims 1
- 239000004570 mortar (masonry) Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000004033 plastic Substances 0.000 claims 1
- 239000007779 soft material Substances 0.000 claims 1
- 238000009423 ventilation Methods 0.000 claims 1
- 238000011161 development Methods 0.000 abstract description 14
- 238000001139 pH measurement Methods 0.000 abstract description 10
- 239000002699 waste material Substances 0.000 abstract description 10
- 238000012136 culture method Methods 0.000 abstract description 6
- 238000011109 contamination Methods 0.000 abstract description 5
- 208000035473 Communicable disease Diseases 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract description 2
- 208000015181 infectious disease Diseases 0.000 abstract 1
- 210000001519 tissue Anatomy 0.000 description 22
- 230000001172 regenerating effect Effects 0.000 description 14
- 239000003814 drug Substances 0.000 description 13
- 230000018109 developmental process Effects 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 235000015097 nutrients Nutrition 0.000 description 11
- 239000000243 solution Substances 0.000 description 9
- 238000010992 reflux Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000024245 cell differentiation Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 210000001612 chondrocyte Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 239000012531 culture fluid Substances 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000012806 monitoring device Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 210000001988 somatic stem cell Anatomy 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
Landscapes
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
【課題】長期培地自動交換、効率的な培養方法、コンタミネーション、感染症等の対策に閉鎖系培養装置の開発、医療機器としての開発にモニタリングの遠隔操作を課題とした開発。
【解決手段】閉鎖系培養装置の培養容器蓋部分にダイヤフラムポンプ機能を装着、培地注入口は培養容器底部中央部に、湧出培地を四方に分散させるため、整流板を取り付け、排出口は培養容器上部に設け、長期培地交換と多孔体足場シートを回転させる多重培養法で、培養細胞シート面に付着した浮遊老廃物、沈下老廃物を離脱させ、培地内を回転移動する事で、培地との接触効率を促進させる。細胞培養状態をカメラ、pH測定装置を取り付け遠隔操作でモニタリングを可能にした一検体用多重培養装置。
【選択図】図2[PROBLEMS] Development of closed-system culture devices for long-term automatic culture medium replacement, efficient culture methods, contamination, infectious disease countermeasures, and remote monitoring operations for medical device development.
A diaphragm pump function is attached to a culture vessel lid portion of a closed culture device, a medium inlet is attached to the center of the bottom of the culture vessel, a rectifying plate is attached in order to disperse a spring medium in all directions, and a discharge port is a culture vessel It is provided in the upper part, and it is a multiple culture method that rotates the porous scaffolding sheet for a long period of time.By removing floating wastes and subsidence wastes attached to the cultured cell sheet surface, and rotating and moving in the medium, Promote contact efficiency. A multi-culture device for a single specimen that can be monitored remotely by attaching a camera and pH measurement device to the cell culture state.
[Selection] Figure 2
Description
本発明は生体適合材料で構成した一検体用多重培養装置で細胞の増殖、分化を促し、生体組織の再生を誘導する培養装置と内視カメラ、pH測定装置を遠隔操作で培養状況の観察を行い、細胞培養を効率良く培養する方法を確立し人体の欠損組織の修復等に必要な細胞や組織を生体外で培養を行う培養装置に関するものである。The present invention is a multi-culture apparatus for one specimen composed of a biocompatible material, which promotes cell proliferation and differentiation, and induces regeneration of living tissue, and remotely monitors the culture state, an endoscope camera, and a pH measurement apparatus. The present invention relates to a culture apparatus that performs culture in vitro and establishes a method for efficiently cultivating cell culture and cultures cells and tissues necessary for repairing a defective tissue of a human body.
生体組織の再生誘導には二つの方法がある。一つは細胞を生体に直接移植する細胞移植治療であり、もう一つは、生体適合材料で構成した培養装置を利用して細胞の増殖、分化を促し、生体外で生体組織の再生を誘導する方法である。There are two methods for inducing regeneration of living tissue. One is cell transplantation treatment in which cells are transplanted directly into the living body, and the other is to promote cell proliferation and differentiation by using a culture device composed of biocompatible materials, and to induce regeneration of living tissues in vitro. It is a method to do.
本発明は生体外で細胞・組織培養を培養装置で行う技術であり、培養装置は閉鎖系ヒト細胞培養装置や自動培地交換方法の安全性を保証できる培養装置の開発が重点課題とされている。The present invention is a technique for performing cell / tissue culture in vitro using a culture apparatus, and the culture apparatus is focused on the development of a culture apparatus capable of ensuring the safety of a closed human cell culture apparatus or an automatic medium exchange method. .
通常の培養皿や培養フラスコ等、汎用的な培養容器による操作は、医師、研究者等の専門知識や熟練した技術が必要であり、人件費や管理費等が高騰し、再生培養物の単価は高価となり、医療事業の実現としては極めて困難な価格形態となる。Operations with general-purpose culture vessels such as ordinary culture dishes and culture flasks require specialized knowledge and skill of doctors, researchers, etc., which increases labor costs and management costs. Becomes expensive and extremely difficult to achieve in the medical business.
細胞や組織の培養には培養液が用いられ、細胞・組織を収容する培養容器内の培養液中で細胞・組織を成長させるには培養液から細胞・組織に栄養分や酸素等を供給し、栄養分の供給や老廃物等の除去により、細胞・組織の成長を促進するため、培養液の交換は細胞・組織の培養に極めて重要な事柄であり広く自動化が求められている。A culture solution is used for culturing cells and tissues, and in order to grow cells / tissues in a culture solution in a culture vessel containing cells / tissues, nutrients, oxygen, etc. are supplied from the culture solution to the cells / tissues, In order to promote the growth of cells and tissues by supplying nutrients and removing wastes, the exchange of culture medium is an extremely important matter for culturing cells and tissues, and automation is widely required.
荷重系軟骨(半月板等)の生体外培養に力学加圧刺激を負荷させる装置として、米国のハーバード大学の研究グループや東京大学の研究グループ(文献3)は静水圧培養装置を開発しており、静水圧刺激の培養システムとしてポンプで培地を介して圧力負荷を軟骨細胞への刺激負荷例を示しており、培地に負荷をかけ関節部内圧力に相当する圧力を負荷するという方法で軟骨細胞への刺激負荷例を示しており培地の交換もプランジャーポンプで行っている。As a device to apply mechanical pressure stimulus to in vitro culture of load-type cartilage (meniscus etc.), the research group of Harvard University in the United States and the research group of the University of Tokyo (Reference 3) have developed hydrostatic pressure culture devices. As an example of a culture system for hydrostatic pressure stimulation, an example of stimulation load on a chondrocyte through a culture medium by a pump is shown, and a load corresponding to the pressure in the joint is applied to the chondrocyte by applying a load to the culture medium. An example of the stimulation load is shown, and the medium is replaced by a plunger pump.
血管培養の実験用装置については傾斜培養装置についての例が示されており、静脈血管内皮細胞を播種したガーゼと線維芽細胞を播種したガーゼを重ね、ガーゼを平板にのせ両端に培地の貯留槽が設けてあり、上側の培地槽にガーゼを垂らして先端を培地に湿るようにすると、毛管現象で端からガーゼは徐々に濡れていき、培地は下側の培地槽に流れ込み、この下側の培地槽に貯まった培地をポンプで上側の培地槽に戻し、連続的に培地を供給する実験装置もある。An example of a tilting culture device is shown for an experimental device for blood vessel culture. A gauze seeded with venous vascular endothelial cells and a gauze seeded with fibroblasts are stacked, and the gauze is placed on a flat plate and a medium reservoir at both ends. When gauze is hung in the upper medium tank and the tip is moistened with the medium, the gauze gradually gets wet from the end due to capillary action, and the medium flows into the lower medium tank. There is also an experimental apparatus in which the medium stored in the medium tank is returned to the upper medium tank by a pump and the medium is continuously supplied.
培養液の交換は細菌による感染症や汚染を防止するために、密封容器や閉鎖系循環回路が用いられるようになり、ベローズを用いた(特許文献1)、(特許文献2)の培地交換法やプランジャーポンプを用いた(特許文献3)やチューブポンプを用いた(特許文献4)培地交換法、さらに培養液の流れによる影響を防ぐためにチャンバー内を改良し整流にする(特許文献5)、モニタリングとしては培養容器内をカメラで撮影、培地のpHの測定にpH試薬を用いて確認する(特許文献6)方法等が有る。In order to prevent bacterial infection and contamination, the culture medium is replaced with a sealed container or a closed circuit circuit, and the medium replacement method using bellows (Patent Document 1) and (Patent Document 2) is used. In order to prevent the influence of the culture medium exchange method, and further the flow of the culture solution (Patent Document 3) using a tube pump (Patent Document 3) or a tube pump (Patent Document 4) (Patent Document 5) As the monitoring, there is a method of photographing the inside of the culture container with a camera and confirming the pH of the medium using a pH reagent (Patent Document 6).
培養液を灌流させ培養液用流路構造を有す細胞培養チャンバーを積層する方法(特許文献7)や、細胞培養担体を挟持して細胞培養用カセット(特許文献8)もある。There are also a method of laminating cell culture chambers having a culture fluid flow channel structure by perfusing culture fluid (Patent Document 7) and a cell culture cassette (Patent Document 8) sandwiching a cell culture carrier.
本発明は上記のような従来技術の問題点を解決するとともに、NEDOのロードマップに示されている、再生医療培養装置として、小型化(研究機関における普及)、低価格装置の開発、カセット型培養容器の実用化、密封容器の開発、培養期間短縮化等が培養装置の開発指針として明確に示されている。さらに厚生労働省は再生医療用培養装置としては一検体一装置であること、検体の培養細胞、培養液と接した部品は廃棄処分とする事が望ましいとしている。The present invention solves the problems of the prior art as described above, and as a regenerative medical culture apparatus shown in the NEDO roadmap, it is downsized (spread in research institutions), development of a low-cost apparatus, cassette type Practical use of culture containers, development of sealed containers, shortening of culture period, etc. are clearly shown as development guidelines for culture apparatuses. Furthermore, the Ministry of Health, Labor and Welfare states that it is desirable to dispose of specimens that are in contact with cultured cells and culture solutions as a culture apparatus for regenerative medicine.
本発明は一検体用多重培養装置で他検体の培養細胞と共有する部品等は無く、他検体の培養細胞とのコンタミネーションを未然に防ぎ、検体の培養細胞と接触した部品はすべて廃棄処分可能である。In the present invention, there are no parts shared with cultured cells of other specimens in a multi-culture apparatus for one specimen, contamination with other cultured cells is prevented in advance, and all parts in contact with the cultured cells of the specimen can be discarded. It is.
培養部は閉鎖系装置で細菌の侵入を防ぎ、培養部の組み立てをクリンベンチ内で滅菌作業を行い、さらに滅菌された密閉恒温ケース内に培養部装着もクリンベンチ内で行う。閉鎖系培養部と密閉恒温ケースで二重閉鎖を行った後、クリンベンチから取り出し、駆動装置付きコントローラー部を装着した二重閉鎖培養装置。The culture unit is a closed system that prevents bacteria from entering, the culture unit is sterilized in the clean bench, and the culture unit is also mounted in the clean and constant temperature case in the clean bench. Double-closed culture device equipped with a controller unit with a drive unit after double-closure with a closed culture unit and a closed thermostatic case and then removed from the clean bench.
再生医療の研究開発には内務省、文部科学省、経済産業省、厚生労働省の4省によっても推進されており、細胞培養システムの開発には、閉鎖系・全自動細胞培養装置の開発、防湿パッキンしたカメラ+遠隔操作技術による自動モニタリング装置の開発と明確に開発方向が示されており、こうした指針を本発明は解決すべき重点課題とした。Research and development of regenerative medicine is promoted by the Ministry of Home Affairs, Ministry of Education, Culture, Sports, Science and Technology, Ministry of Economy, Trade and Industry, and Ministry of Health, Labor and Welfare. The development of cell culture systems includes the development of closed and fully automatic cell culture devices, and moisture-proof packing. The development direction of the automatic monitoring device by the camera + remote operation technology and the development direction are clearly shown, and this guideline has been regarded as a priority issue to be solved.
本発明の開発の課題について発明者らは協議を重ね下記、記載事項を定めた。
1・自動培地交換(培養細胞に培地の流れによる侵害影響を未然に防ぐ)
2・効率的な培養方法(効果的な養分・酸素等の補給方法、培養時間の短縮)
3・感染症等の対策(献体の培養細胞・培養培地と接したパーツの廃棄)
4・閉鎖系・全自動培養装置
5・モニタリングの遠隔操作
これらの課題を解決するための第一段階として自動培地交換から着手した。The inventors have repeatedly discussed the subject of development of the present invention and have determined the following items to be described.
1. Automatic medium exchange (prevents infringement of cultured cells due to medium flow)
2. Efficient culture method (effective nutrient / oxygen supplementation method, shortening culture time)
3. Measures against infectious diseases (disposal of parts in contact with cultured cells and culture medium of the contributor)
4. Closed system / Fully automatic culture device 5. Remote operation of monitoring As a first step to solve these problems, we started automatic medium exchange.
本発明に係る培地交換方法は従来技術と全く異なった発想から独自の培地自動交換方法を開発した。培養容器蓋部分にダイヤフラムを取り付け、培養容器底面中央に培地注入口を設け、さらに少し間隔を開けた位置に整流板を装着し、上部排出口はダイヤフラム下横方向に設け、ダイヤフラムに直動アクチュエーターとジョイントで連動可能な状態に連結し、直動アクチュエーターを伸縮させることで培養容器内の培養培地に加圧、減圧を行い培地の排出、注入を行い培地を自動交換する。The culture medium exchange method according to the present invention has developed a unique automatic culture medium exchange method from a completely different idea from the prior art. A diaphragm is attached to the lid of the culture vessel, a medium injection port is provided at the center of the bottom of the culture vessel, a rectifying plate is installed at a slightly spaced position, an upper discharge port is provided laterally below the diaphragm, and a linear actuator on the diaphragm And a joint that can be interlocked with the joint, and by expanding and contracting the linear actuator, the culture medium in the culture container is pressurized and depressurized to discharge and inject the medium, and the medium is automatically replaced.
培地交換方法は手作業によるスポイド交換からピペットノズルで培養液を吸引、注入を繰り返す方法や、培養容器にプランジャーポンプ、遠心ポンプ、チューブポンプ、ダイヤフラムポンプ等を利用した方法が発表されているが、流入量や培養容器の形状によっては培養細胞を流出させ、また培地流による刺激が細胞に加わる事もあったが、培地交換を行う最も重要課題は培養中の細胞に無用なストレスを与えないことである。As for the medium exchange method, a method of using a plunger pump, a centrifugal pump, a tube pump, a diaphragm pump, etc. as the culture container has been announced, as well as a method of repeatedly sucking and injecting the culture solution with a pipette nozzle from a manual spoid exchange. Depending on the amount of inflow and the shape of the culture vessel, the cultured cells may flow out, and the cells may be stimulated by the flow of the medium. However, the most important issue for changing the medium is not to apply unnecessary stress to the cells being cultured. That is.
本発明の培地交換方法は培地排出時は培地注入側の逆流防止装置は閉じ、培地注入時は培地排出側の逆流防止装置は閉じており、培地の流れは外部ポンプからの注入時のように培養容器内の注入口から排出口までの流れは発生しない。本発明の培地交換方法は排出時は培養容器内にダイヤフラム挿入体積分の上部培地が排出され、底部の培地は流出する事はない。注入時はダイヤフラムの上昇体積分を注入するが、注入時は排出側の逆流防止装置は閉じており、培養容器内底部から注入されるが培地が排出口から流れ出ることはない。In the medium exchange method of the present invention, the backflow prevention device on the medium injection side is closed when the medium is discharged, the backflow prevention device on the medium discharge side is closed when the medium is injected, and the flow of the medium is as in the case of injection from an external pump. There is no flow from the inlet to the outlet in the culture vessel. In the medium exchange method of the present invention, when the medium is discharged, the upper medium corresponding to the diaphragm insertion volume is discharged into the culture container, and the bottom medium does not flow out. At the time of injection, the rising volume of the diaphragm is injected, but at the time of injection, the backflow prevention device on the discharge side is closed and injected from the bottom of the culture vessel, but the medium does not flow out from the discharge port.
さらに培養容器内に湧出した培地は整流板にぶつかり四方に分散され、分散された注入培地は注入量分だけ培養容器内の培地を押し上げる。排出時は培養容器内培地は加圧され、注入培地はその場に留まり上部培地は排出され、注入培地は下方から上方に層になって移動する培地注入法で、従来の培地注入法とまったく異なった培地注入法となった。Furthermore, the medium that has flowed into the culture container collides with the rectifying plate and is dispersed in all directions, and the dispersed injected medium pushes up the medium in the culture container by the amount of injection. At the time of discharge, the culture medium in the culture container is pressurized, the infusion medium stays in place, the upper medium is discharged, and the infusion medium moves in layers from the bottom to the top, completely different from the conventional medium injection method. Different medium injection methods.
直動アクチュエーターは回転駆動(モーター)を回転カムとクランプで直動に変更する事で、直動アクチュエーターの形状が小型化でき、さらに回転カムとクランプの連動固定位置を変え、回転カムの中心からの固定距離でダイヤフラムの振幅を可変とし、培養容器内の培地交換量を変える事ができる。By changing the rotation drive (motor) to linear movement with a rotating cam and clamp, the shape of the direct acting actuator can be reduced, and the interlocking fixed position of the rotating cam and clamp can be changed, starting from the center of the rotating cam. The amplitude of the diaphragm can be varied at a fixed distance, and the amount of medium exchange in the culture vessel can be changed.
直動アクチュエーターのコントロ−ルの方法としては、電流をパルス的にON,OFFを繰り返し電流を間欠的に流し、ONの時間OFFの時間を調整する事で直動アクチュエーター(モーター)の回転時間の調整を行い、クランプの上下時間をカムの一回転時間で決定し、ダイヤフラムの振幅決定と一回転のカム駆動時間の決定を行う事で、一回転の駆動時間による培地交換量を決定する。As a method of controlling the direct acting actuator, the ON time and OFF time of the direct acting actuator (motor) are adjusted by adjusting the ON time and OFF time by repeatedly turning the current ON and OFF in a pulsed manner. Adjustment is performed, the up / down time of the clamp is determined by the cam rotation time, the diaphragm amplitude is determined, and the cam driving time of the rotation is determined, thereby determining the medium exchange amount according to the driving time of the rotation.
上記、ダイヤフラムの振幅とクランプの直動時間の調整と、更に一日の直動アクチュエーターの駆動時間をタイマーで設定すると、一日の培地交換量が決定でき、アクチュエーターの振幅の幅、クランプ上下運動の時間設定と一日の駆動時間を決定する事で、1日の培地交換量が決定でき、さらに駆動日数を決めれば培地交換を長期間の自動交換が可能である。By adjusting the diaphragm amplitude and clamp linear movement time, and setting the daily linear actuator drive time with a timer, the amount of medium exchange per day can be determined. By determining the time setting and the daily driving time, it is possible to determine the daily medium replacement amount. Further, if the number of driving days is determined, medium replacement can be performed automatically for a long period of time.
培養皿等で静置培養を行う場合、細胞に培地からの栄養、酸素等の供給は細胞シート上面からの一方向で行われ、静置培養の場合は老廃物等で新鮮な培地と培養細胞が効果的に栄養、酸素等を取り込んでいるとは言えない。When static culture is performed on a culture dish or the like, nutrients, oxygen, etc. are supplied to the cells in one direction from the top of the cell sheet. In the case of static culture, fresh media and cultured cells such as waste products are used. However, it cannot be said that it has taken in nutrients, oxygen, etc. effectively.
重層培養についても、多孔体シート装着した足場の表裏に細胞を播種し、表面、裏面の二重培養が行われているが、裏面の培養細胞面に浮遊老廃物が付着し、培養液からの栄養分、酸素等の供給が阻害される。この浮遊老廃物を現在は培養容器の培養液を完全に抜き取る事で処理されているが、閉鎖系培養容器内では浮遊老廃物の排出は極めて困難である。In the multi-layer culture, cells are seeded on the front and back of the scaffold equipped with a porous sheet, and double culture on the front and back surfaces is performed, but suspended wastes adhere to the cultured cell surface on the back surface, Supply of nutrients, oxygen, etc. is hindered. This floating waste is currently processed by completely extracting the culture solution from the culture vessel, but it is extremely difficult to discharge the floating waste in the closed culture vessel.
本発明はその浮遊老廃物の処理に多孔体シート足場を反転させ、裏面を表面に反転させる事で浮遊老廃物を離脱させ、さらに足場固定部を極めて緩やかに回転させ、培養細胞と培地との接触効率を高め、栄養、酸素等の供給を潤沢にし、細胞培養の培養効率を高め培養期間の短縮化が望める。The present invention reverses the porous sheet scaffold to the treatment of the floating waste, disengages the floating waste by reversing the back surface to the surface, and further rotates the scaffold fixing part very gently, It is possible to increase the contact efficiency, increase the supply of nutrients, oxygen, etc., increase the culture efficiency of cell culture, and shorten the culture period.
培養装置に直接ダイヤフラムポンプを備えたことで、本発明の自動培養装置の培地交換構造が極めてシンプルとなり、配管も培地槽から培養容器へ、培養容器から排出用培地槽への配管のみで、外部ポンプへの配管が不要で極めてシンプルな構造の培養装置である。Since the culture apparatus is directly equipped with a diaphragm pump, the culture medium exchange structure of the automatic culture apparatus of the present invention is extremely simple, and the piping is only from the culture medium tank to the culture container and from the culture container to the discharge medium tank, It is a culture device with an extremely simple structure that does not require piping to the pump.
シンプルな培養装置の培地槽、培養容器、排出用培地槽と配管、付属品は、すべて廃棄可能であり生体適合材料で柔軟性、耐久性を備えた合成樹脂製のバッグ(袋)を培地槽、排出用培地槽を使用することで、本発明の培養装置は培地が灌流する部分を、すべて密封状態が可能で完全閉鎖系培養装置となる。Simple culture device culture tank, culture vessel, drainage culture tank and piping, and accessories are all disposable, biocompatible material, flexible plastic, and durable synthetic resin bags. By using the draining medium tank, the culture apparatus of the present invention can completely seal a portion where the medium is perfused, and becomes a completely closed culture apparatus.
前記記載の閉鎖系培養装置であると同時に、一検体用多重培養装置であり、培養容器、培地槽、排出用培地槽の配管、逆流防止装置等の部品すべてが、一検体用装置であり、検体の培養細胞と他検体の培養細胞とがコンタミネーションの危険性は無い。At the same time as the closed system culture apparatus described above, it is a multiple culture apparatus for one specimen, and all parts such as a culture vessel, a medium tank, a pipe for a discharge medium tank, a backflow prevention apparatus, etc. are a single sample apparatus, There is no risk of contamination between the cultured cells of the specimen and the cultured cells of other specimens.
培養容器から排出された培地のpH測定に、培地が排出側逆流防止弁を通過後の配管途中にpH測定用のセンサーを装着する。培養に使用された培地の状態を測定するセンサーからの信号を測定装置に送り、信号を分析、記録を行い、培養細胞の培養状態を遠隔操作で管理する。For pH measurement of the medium discharged from the culture container, a pH measurement sensor is attached in the middle of the pipe after the medium passes through the discharge side check valve. A signal from a sensor that measures the state of the medium used for culture is sent to a measuring device, the signal is analyzed and recorded, and the culture state of the cultured cells is managed remotely.
pH測定装置のセンサーを培養装置から逆流防止装置と排出用培地槽の配管途中に装着する事は、装着センサーの影響を培養容器内の細胞に影響を与えずに、pHの測定を遠隔操作が可能である。Mounting the sensor of the pH measurement device in the middle of the piping of the backflow prevention device and the discharge medium tank from the culture device allows remote control of pH measurement without affecting the cells in the culture vessel. Is possible.
内視カメラを培養容器の側面に穴を開け、培養容器に直接、内視カメラを装着できるよう構成した生体適合透明材料(アクリル、ガラス等)のカメラ装着具を培養容器側面に装着し、内視カメラを生体適合透明材料(アクリル、ガラス等)のカメラ装着具に装着、培養容器内の細胞培養状態の情報をパソコンで、画像、解析、記録を行い培養容器内細胞の培養状況の情報をパソコンで遠隔操作を行いモニタリングを行う。Make a hole in the side of the culture vessel and attach a camera fitting made of a biocompatible transparent material (acrylic, glass, etc.) that can be attached directly to the culture vessel. A visual camera is attached to a camera fitting made of a biocompatible transparent material (acrylic, glass, etc.), and information on the cell culture state in the culture vessel is imaged, analyzed, and recorded on a personal computer, and information on the culture status of the cells in the culture vessel is obtained. Remote control is performed with a personal computer for monitoring.
培地の還流配管、灌流配管途中の注入配管の注入側逆流防止装置と培養容器注入側配管途中にチューブクランプを取り付け、培養容器排出側配管の排出側逆流防止装置までの途中にチューブクランプを付け、培養後に両方のチューブクランプを閉じ、逆流防止装置側のチューブを切断、2カ所の駆動装置のジョイントを外すと培養容器は閉鎖状態で培養装置から外せ、培養細胞を閉鎖培養容器内のままで手術室に、他の医療施設等や遠隔地の場合は滅菌恒温ケースに入れ移動、輸送が可能である。Attach a tube clamp in the middle of the reflux line of the culture medium, the injection side backflow prevention device of the injection pipe in the middle of the perfusion pipe and the culture vessel injection side pipe, and attach the tube clamp to the discharge side backflow prevention device of the culture container discharge side pipe, After culturing, both tube clamps are closed, the tube on the backflow prevention device is cut, and the joints of the two drive devices are removed. The culture vessel can be removed from the culture device in a closed state, and the cultured cells remain in the closed culture vessel. In the case of other medical facilities or remote places, the room can be moved and transported in a sterilized thermostatic case.
本発明に係る培養装置は小型でシンプルな構成で閉鎖系培養装置として長期間自動培地交換が行え、閉鎖環境で多孔体足場シートを回転させることで、表裏2面の重層培養も可能であり、培養容器に直接、内視可能なカメラを装着、pH測定装置のセンサーも備え、遠隔操作でモニタリングが可能で細胞・組織の分化、増殖を促進し細胞・組織の形成に効果的に働く可能性を秘めた培養装置である。The culture apparatus according to the present invention can perform automatic medium exchange for a long time as a closed system culture apparatus with a small and simple configuration, and by rotating the porous scaffold sheet in a closed environment, two-layer culture on the front and back sides is also possible. Equipped with an endoscopic camera directly on the culture vessel, also equipped with a pH measurement device sensor, can be monitored remotely, and may promote cell / tissue differentiation and proliferation and effectively work on cell / tissue formation It is a culture device with a secret.
上記、細胞自動培養装置は再生医療の現場で、有効性の確認等の研究が必要であるが、閉鎖系培養装置、長期培地交換、回転培養方法等の自動操作が可能で一検体用多重培養装置としてコンタミネーション、感染症等に細心の注意を基に開発を行っており、再生医療早期実現のサポートに十分可能な培養装置と想定する。Although the above automatic cell culture device requires research on the effectiveness of regenerative medicine in the field of regenerative medicine, automatic operation such as closed-system culture device, long-term medium exchange, and rotation culture method is possible, and multiple culture for one specimen The device is being developed based on careful attention to contamination, infectious diseases, etc., and is assumed to be a culture device that is sufficient to support early realization of regenerative medicine.
培養施設でのCPC室の施設建造費や維持費は大変な費用がかかり、この施設費、維持費が直接、医療費に加算され、医療費は高騰となり、価格的にも問題が発生するだけでなく、将来、一般の病院への普及にも、大きな弊害となる。本発明の培養装置は培養部と密閉恒温ケースの二重閉鎖培養装置であるために、CPC室以外でも培養が行える可能性が高く、極めて有益な培養装置になりうる。The cost of constructing and maintaining the CPC room at the culture facility is very expensive, and the facility and maintenance costs are directly added to the medical costs, and the medical costs are soaring, causing problems in terms of price. Not only that, but it will also be a serious negative effect in the future. Since the culture apparatus of the present invention is a double-closed culture apparatus having a culture part and a closed thermostatic case, there is a high possibility that the culture can be performed outside the CPC room, and it can be a very useful culture apparatus.
本発明に係る培養装置について具体的に実施例で説明するが、これら実施例が本発明を限定するものでない。
図1は本実施形態の還流式培養装置全体の構成図で、請求項1に記載した還流(循環)培養法である。培地を還流させるために請求項2に記載した方法で炭酸ガスインキュベーター1内の炭酸ガス等を排出培地に取り込み再利用しなければならない。培地を還流させる必要性は、生体の血流を生体外で再現するには、1分60回、24時間、3週間の培養期間、連続的に拍動流で供給しなければならない。その為に培地を循環させる還流自動培養装置が必要で、炭酸ガスインキュベーター1内に設置した培養部と駆動部の遠隔操作を行うコントローラー部である。The culture apparatus according to the present invention will be specifically described in Examples, but these Examples do not limit the present invention.
FIG. 1 is a configuration diagram of the entire reflux culture apparatus of the present embodiment, and shows the reflux (circulation) culture method according to claim 1. In order to recirculate the medium, the carbon dioxide gas in the carbon dioxide incubator 1 must be taken into the exhaust medium and reused by the method described in claim 2. In order to reproduce the blood flow of a living body ex vivo, the necessity of refluxing the medium must be supplied by continuous pulsatile flow for 60 minutes per minute, 24 hours, and 3 weeks of culture. For this purpose, an automatic reflux culture apparatus that circulates the culture medium is required, and a controller unit that remotely operates the culture unit and the drive unit installed in the carbon dioxide incubator 1.
請求項3に記載した培地を灌流させる培養装置で、培養部を閉鎖系とし、滅菌した恒温ケース内で培養を行い、恒温ケースを開閉せずに長期間培地交換を自動的に行う。直動アクチュエーター13でダイヤフラム23を上下させ、培養容器内を培地で充満させ、培養容器内の培地を加圧、減圧を行い、振幅、駆動速度、駆動時間を設定、培地の交換量を決定する。A culture apparatus for perfusing a culture medium according to claim 3, wherein the culture part is a closed system, culture is performed in a sterilized constant temperature case, and medium change is automatically performed for a long time without opening and closing the constant temperature case. The diaphragm 23 is moved up and down by the linear actuator 13, the inside of the culture container is filled with the medium, the medium in the culture container is pressurized and depressurized, the amplitude, the driving speed and the driving time are set, and the exchange amount of the medium is determined. .
請求項3に記載された灌流式閉鎖系培養装置は培地槽11から培地を汲み出し、培養容器10を通過後に排出用培地槽12に排出される、その為に培地槽11の内部は減圧され、排出用培地槽12は排出用培地が注入され、排出用培地槽はだんだんと加圧状態になり背圧がかかり、圧力のバランスが崩れ培地の流れに悪影響を与える為、請求項4、請求項5に記載された方法で、培養装置全体の圧力バランスをとる。The perfusion-type closed culture apparatus described in claim 3 pumps out the medium from the medium tank 11 and is discharged to the discharge medium tank 12 after passing through the culture container 10. For this purpose, the inside of the medium tank 11 is decompressed, The discharge medium tank 12 is injected with the discharge medium, and the discharge medium tank is gradually pressurized and back pressure is applied, and the balance of the pressure is lost and adversely affects the flow of the medium. 5 is used to balance the pressure of the entire culture apparatus.
培養容器内の構造による培養容器内の培地注入法の特徴を図面4の培養容器断面図にて説明をする。培養容器上部排出口32は培養容器上部のダイヤフラム下方横に、培地注入口は培養容器底面中央注入口48に設け、すぐ上部に整流板24を設置したことで、培地注入時の湧出培地は整流板24で培地を四方に分散し、排出時は加圧され注入培地は底部にその状態で停止する。次の注入時に培養容器底面中央注入口48から同様に湧出され、先に注入された培地を押し上げる。The features of the culture medium injection method in the culture container according to the structure in the culture container will be described with reference to the culture container sectional view of FIG. The culture vessel upper discharge port 32 is provided on the upper side of the culture vessel below the diaphragm, the medium injection port is provided at the center injection port 48 at the bottom of the culture vessel, and the rectifying plate 24 is installed immediately above, thereby rectifying the spring medium at the time of medium injection. The plate 24 is used to disperse the medium in all directions, and when discharged, the medium is pressurized and the injected medium is stopped at that state at the bottom. At the time of the next injection, the medium is similarly ejected from the culture container bottom center injection port 48, and the previously injected medium is pushed up.
前記記載された培地の流れを試作機での実験写真、図18、図19、図20にて説明する。直動用モーターは1分5回転、1回転培地注入量2.5cc、足場回転モーターは1分1回転で実験を行う。実験結果、培地注入口から吐出された培地は整流板24で四方に分散され培養容器底部に留まり、注入を続けると培地は下層から上方に層になって上昇する注入法となり非侵襲性の極めて穏やかな培地注入法となった。The flow of the medium described above will be described with reference to experimental photographs in a prototype, FIGS. 18, 19, and 20. FIG. The experiment is performed with the linear motion motor rotating 5 times per minute, 1 rotation medium injection amount of 2.5 cc, and the scaffold rotating motor rotating once per minute. As a result of the experiment, the medium discharged from the medium injection port is dispersed in all directions by the rectifying plate 24 and stays at the bottom of the culture vessel. If the injection is continued, the medium becomes an injection method in which the medium rises from the lower layer to the upper layer. It was a gentle medium injection method.
実験法は、培地槽から透明水を培養容器10内に満たした後、透明水を着色し培養容器10に注入。図18では整流板24まで、図19では足場より下面まで、図20では足場より上部まで注入、ここまで連続的に着色培地の注入を行う。培地は層になって注入される。In the experimental method, after filling the culture vessel 10 with clear water from the medium tank, the transparent water is colored and injected into the culture vessel 10. In FIG. 18, up to the current plate 24, in FIG. 19 from the scaffold to the lower surface, and in FIG. 20 from the scaffold to the top, the colored medium is continuously injected up to this point. The medium is injected in layers.
図20で培地の注入を止め、回転足場外径20ミリ、足場の回転を1分1回転で10分間の駆動を行い足場による培地の攪拌影響の確認実験。図20の状態にまったく変化がなく培地の撹乱はなく、培地注入、足場回転による培養細胞への影響は極めて微弱と想定される。In FIG. 20, the experiment of confirming the influence of the stirring of the medium by the scaffold was performed by stopping the injection of the medium, driving the outer diameter of the rotating scaffold 20 mm, and rotating the scaffold for 10 minutes at 1 minute rotation. There is no change in the state of FIG. 20 and there is no disturbance of the medium, and the influence on the cultured cells due to the medium injection and scaffold rotation is assumed to be extremely weak.
回転アクチュエーター14で細胞を播種した回転足場の回転速度を調節、回転停止等の設定を行う。カメラを培養容器10の側面に固定し、内視カメラからの情報を操作端末機(パソコン)4で 培養細胞の培養状況の映像、解析、記録を行い、pH測定センサーの情報をpH測定機に記録、分析を行う。モニター装置付き一検体用多重培養装置。The rotary actuator 14 adjusts the rotational speed of the rotary scaffold seeded with the cells, and performs settings such as rotation stop. The camera is fixed to the side of the culture vessel 10, and information from the endoscopic camera is imaged, analyzed, and recorded on the operation terminal (personal computer) 4 and information on the pH measurement sensor is stored in the pH measurement machine. Record and analyze. Multi-culture device for one specimen with monitor device.
培地の自動交換に付いて図1、図3を用いて詳細な説明を行う。
回転アクチュエーター(モーター)の回転数を1RPM〜70RPMの範囲のギヤードモーターを使用し、回転動力をカム20とクランプ21で上下直動運動に変え、クランプ下降時はダイヤフラム23を培養容器10内へ加圧、挿入させ、培養容器内の培地を排出させる。クランプ21上昇時は、ダイヤフラム23を上昇させ、培養容器10内を減圧、培養容器10内に培地を吸引する。Detailed description will be given with reference to FIG. 1 and FIG.
Using a geared motor with a rotational actuator (motor) in the range of 1 RPM to 70 RPM, the rotational power is changed to a linear motion by the cam 20 and the clamp 21, and the diaphragm 23 is added into the culture vessel 10 when the clamp is lowered. Press the pressure and insert to drain the medium in the culture vessel. When the clamp 21 is raised, the diaphragm 23 is raised, the inside of the culture vessel 10 is decompressed, and the medium is sucked into the culture vessel 10.
培地量の決定は、クランプ21の直動運動を伝えるダイヤフラム23の振幅の幅とクランプ21の上下運動の1行程の時間と直動アクチュエーター13の駆動時間を決定することで上下運動の行程数が決定できる。The amount of medium is determined by determining the width of the amplitude of the diaphragm 23 that transmits the linear motion of the clamp 21, the time of one stroke of the vertical motion of the clamp 21, and the driving time of the linear actuator 13 to determine the number of strokes of the vertical motion. Can be determined.
培地量の自動交換の決定には、ダイヤフラム23の振幅とアクチュエーター(モーター)の回転制御にある。振動幅の決定にはカム20とクランプ21の固定位置にある、カム20の回転運動の中心からの位置で決まる。中心から4ミリの位置に固定すると振幅は8ミリとなる。The determination of the automatic exchange of the medium amount is based on the amplitude control of the diaphragm 23 and the rotation control of the actuator (motor). The vibration width is determined by the position from the center of the rotational movement of the cam 20 at the fixed position of the cam 20 and the clamp 21. When fixed at a position 4 mm from the center, the amplitude is 8 mm.
直動アクチュエーター13に流す電源をON、OFFのパルス電流として流す。ONの時間を短く、OFFの時間を長くすると直動アクチュエーター13の動きは遅くなり、クランプ21の1行程の時間がかかり遅くなる。またONの時間を長く、OFFの時間を短くするとクランプの1行程が早くなる。The power supplied to the linear actuator 13 is supplied as an ON / OFF pulse current. When the ON time is shortened and the OFF time is lengthened, the movement of the linear actuator 13 is slowed down, and the time required for one stroke of the clamp 21 is slowed down. Also, if the ON time is lengthened and the OFF time is shortened, one stroke of the clamp is accelerated.
試作機の図14の振幅を8ミリに決め、5PPMのアクチュエーター(モーター)を直動アクチュエーター13に電流を流し培地量を計測すると、1行程で2.5CCの培地を排出(交換量)し、1分間で12.5CCとなった。ONの通電時間0.5秒、OFFの切断時間0.5秒のサイクルを作り1RPMのアクチュエーター(モーター)で実験をする。2分で5行程になり、1分間の排出量6.25CCになった。When the amplitude of the prototype shown in FIG. 14 is set to 8 mm and a 5 PPM actuator (motor) is passed through the linear actuator 13 to measure the amount of medium, 2.5 CC medium is discharged (replacement amount) in one stroke. It became 12.5CC in 1 minute. A cycle with an ON energization time of 0.5 seconds and an OFF disconnection time of 0.5 seconds is made and an experiment is performed with a 1 RPM actuator (motor). It took 5 strokes in 2 minutes, and the discharge amount per minute was 6.25CC.
実験結果から0.5秒の通電時間での交換量は6.25÷60で約0.104CCになり、パルス回路のONの通電時間を0.5秒、OFF停止時間を20秒と長くするサイクルで行うと、1分で約0.42CCとなり、さらにタイマーで一日の通電時間を設定することで一日の培地交換量が決定できる。1分0.42CCの時、一日の通電時間を10分に設定すると4.2CCの培地交換量となり、培養期間中培地交換が持続できる。培地注入については極めて微量な培地注入量になり、さらに整流板24で4方に分散され非侵襲性の極めて穏やかな培地の交換が可能となる。From the experimental results, the exchange amount in the energization time of 0.5 seconds is 6.25 ÷ 60, which is about 0.104 CC, and the energization time of the pulse circuit is increased to 0.5 seconds and the OFF stop time is increased to 20 seconds. When it is performed in a cycle, it becomes about 0.42 CC in 1 minute, and further, the daily medium replacement amount can be determined by setting the daily energization time with a timer. When the energization time of one day is set to 10 minutes at 1 minute 0.42 CC, the medium exchange amount is 4.2 CC, and the medium exchange can be continued during the culture period. Regarding the medium injection, a very small amount of medium is injected, and further, a non-invasive and extremely gentle medium can be exchanged by the rectifying plate 24 in four directions.
図5に記載された足場固定部26に多孔体足場シートをのせ、足場固定用0リング28で足場固定部26に固定し、細胞を播種後に培養容器に蓋部分を固定する。さらに足場支持体27を装着した回転足場固定具25を培養容器10の側面に装着、足場支持体27と回転アクチュエーター14のシャフトをジョイント19で連結し回転させる。A porous scaffold sheet is placed on the scaffold fixing part 26 shown in FIG. 5 and fixed to the scaffold fixing part 26 with a scaffold fixing 0-ring 28. After seeding the cells, the lid part is fixed to the culture vessel. Further, a rotary scaffold fixture 25 equipped with a scaffold support 27 is mounted on the side surface of the culture vessel 10, and the scaffold support 27 and the shaft of the rotary actuator 14 are connected by a joint 19 and rotated.
回転アクチュエーター用コントローラー3で培地を満たした培養容器10内を回転足場固定具25を回転させ、細胞培養の裏培養面を表培養面と回転により表裏を入れ替え、裏面培養面に付着した浮遊老廃物を離脱させる。The rotary scaffolding fixture 25 is rotated in the culture vessel 10 filled with the culture medium by the controller 3 for the rotary actuator, the front and back surfaces of the cell culture are switched by rotating the front and back surfaces of the cell culture, and the floating waste material attached to the back surface culture surface. To leave.
回転足場固定具25を回転させることで、培養容器10内の培地内を回転移動し、細胞培養面に新鮮な培地と接触させ、栄養、酸素を供給する。また足場固定部26を何段にも重ねることで、小さな培養容器10を有効的に活用できる。By rotating the rotary scaffold fixture 25, the inside of the culture medium in the culture vessel 10 is rotated and brought into contact with the fresh culture medium on the cell culture surface to supply nutrients and oxygen. Moreover, the small culture container 10 can be effectively utilized by stacking the scaffold fixing portions 26 in many stages.
請求項16に記載された回転メッシュ円柱培養具29については、図7で説明する。培地通過可能な生体適合材のメッシュで円柱状に構成した。メッシュ円柱部内にアテロコラーゲンに細胞を播種した培養物や、3次元多孔体足場に細胞を播種した3次元培養物を挿入し、回転培養を行う。接着系細胞とメッシュとの接触面の位置を回転で変えることで接着系細胞を接着させず、培地からの栄養、酸素等の供給を3次元体の全方向から行う。The rotating mesh columnar culture device 29 described in claim 16 will be described with reference to FIG. It was configured in a cylindrical shape with a mesh of a biocompatible material that can pass through the medium. A culture in which cells are seeded on atelocollagen or a three-dimensional culture in which cells are seeded on a three-dimensional porous scaffold is inserted into the mesh cylinder, and rotational culture is performed. By changing the position of the contact surface between the adherent cells and the mesh by rotation, the adherent cells are not adhered, and nutrients, oxygen, etc. are supplied from the medium from all directions of the three-dimensional body.
足場回転速度のパルス波形はボリューム調整可能とし、回転速度を1分間70回転から1時間1回転の可変可能とし、図20の実験は1RPMで行い、培地の撹拌は殆ど発生はなく、回転による培地からの圧力等による培養細胞に悪影響は発生しないと思われる。The pulse waveform of the scaffold rotation speed can be adjusted, the rotation speed can be varied from 70 rotations per minute to one rotation per hour, the experiment of FIG. 20 is performed at 1 RPM, and the medium is hardly stirred, and the medium by rotation It seems that there is no adverse effect on cultured cells due to pressure from
図1、図2に記載の一検体用培養装置の培養容器10の内視カメラ装着具18に内視カメラを装着し、培養容器内部を撮影する。撮影時には回転足場固定具を回転させ、培養シートがカメラと正面にあるいは斜めに調整可能で、内視カメラに付けられた光源からの映像、反対側側面に取り付けられた光源からの透過量や細胞密度の解析を行い、過去の顕微鏡画像等の資料との比較を行う。An endoscopic camera is mounted on the endoscopic camera mounting tool 18 of the culture container 10 of the one-sample culture apparatus shown in FIGS. 1 and 2, and the inside of the culture container is photographed. At the time of shooting, the rotating scaffold fixture can be rotated so that the culture sheet can be adjusted in front of or obliquely to the camera, the image from the light source attached to the endoscopic camera, the amount of transmission from the light source attached to the opposite side, and the cells Analyze the density and compare it with materials such as past microscope images.
さらに培養装置に取り付けられた光源は、一点のみでなく多くの部位に取り付ける事も可能であり、光源の波長も検討を重ね、撮影された画像の解析を行い、カメラ操作端末機の遠隔操作で細胞画像処理や画像データを取り込み、培養の状況分析、培養の進行解析、培地の流量、足場回転を決定する。Furthermore, the light source attached to the culture device can be attached not only to one point but also to many parts. The wavelength of the light source is also studied, the captured image is analyzed, and the camera operation terminal can be operated remotely. Cell image processing and image data are taken in, and the situation analysis of the culture, the progress analysis of the culture, the flow rate of the medium, and the scaffold rotation are determined.
pH測定器のセンサーを培養容器上部排出口32側の逆流防止装置15から排出用培地槽12までの配管途中にpHセンサー挿入容器17にpHセンサーを入れ、使用済み培地のpH変化量をpH測定機5に自動的に情報を送り、pH測定機で測定された結果を分析をして培地注入量を決定する。The pH sensor is inserted into the pH sensor insertion container 17 in the middle of the piping from the backflow prevention device 15 on the culture container upper discharge port 32 side to the discharge medium tank 12, and the pH change amount of the used medium is measured. Information is automatically sent to the machine 5 and the result of measurement by the pH measuring machine is analyzed to determine the amount of medium to be injected.
請求項20に記載された細胞播種治具33は回転足場に細胞播種方法として、図7、図8で説明する。図8は培養容器断面図、細胞播種治具断面図で足場固定部26を培地で漬した状態で、培養容器に細胞播種治具33を挿入、培養容器内径と細胞播種治具33とは外径に装着された気密用0リング35で密封され、足場固定部に細胞播種治具33を挿入接触させ、細胞混濁培地34を細胞播種治具33内部に注入、注入細胞混濁培地34は細胞播種治具33から培養容器10内に流れ出る事は無く、細胞は足場シートに沈下接着する。The cell seeding jig 33 described in claim 20 will be described with reference to FIGS. 7 and 8 as a cell seeding method on a rotary scaffold. FIG. 8 is a cross-sectional view of a culture vessel and a cross-sectional view of a cell seeding jig. The cell seeding jig 33 is inserted into the culture container in a state where the scaffold fixing part 26 is dipped in the culture medium. The cell seeding jig 33 is inserted and brought into contact with the scaffold fixing part, the cell turbid medium 34 is injected into the cell seeding jig 33, and the injected cell turbid medium 34 is cell seeded. The cells do not flow out from the jig 33 into the culture vessel 10, and the cells settle and adhere to the scaffold sheet.
請求項21は請求項3の灌流式培養装置で、図9の培養部をクリンベンチ内でパーツを滅菌作業で組み立て、培地槽11に培地を注入、足場固定部26の足場シート44に細胞播種治具33で細胞を播種後に、図9に記載した状態に閉鎖系培養部を組み立てる。21 is a perfusion culture apparatus according to claim 3, in which the culture part of FIG. 9 is assembled by sterilization in a clean bench, the medium is injected into the medium tank 11, and the cell seeding is performed on the scaffold sheet 44 of the scaffold fixing part 26 After seeding the cells with the jig 33, the closed culture unit is assembled in the state shown in FIG.
図9に記載された閉鎖系培養部をクリンベンチ内で図10に記載されたように、密閉恒温ケース36にカム20とクランプ21をジョイント19で連動固定、足場支持体27をジョイント19に固定することで培養部と密閉恒温ケース36で二重密閉とする。As shown in FIG. 10, the closed culture unit shown in FIG. 9 is fixed to the sealed constant temperature case 36 by interlocking the cam 20 and the clamp 21 with the joint 19, and the scaffold support 27 is fixed to the joint 19. By doing so, the culture part and the sealed thermostatic case 36 are double sealed.
二重密閉した培養部をクリンベンチから取り出し、図11に示したように、密閉恒温ケース36から外部に出された駆動装置付きコントローラー部37とのコントローラー用ジョイント38で固定する。The double-sealed culture part is taken out from the clean bench, and fixed with a controller joint 38 with a controller part 37 with a drive unit which is taken out from the sealed thermostatic case 36 as shown in FIG.
請求項22に記載された逆流防止装置15について図12と図13で説明する。注入口側と排出口側とに分けられ、図13は逆流防止装置の断面図で逆流防止用排出口40につながった補助排出口41を設け、球体弁42は比重の異なる、生体適合材の樹脂製、セラミック製、金属製で製造する。また注入口径を変えることでも培養容器に加える圧力を変化させることが可能である。注入口側の内部構造はすり鉢形状部43にする。The backflow prevention device 15 described in claim 22 will be described with reference to FIGS. 12 and 13. FIG. 13 is a cross-sectional view of the backflow prevention device, and FIG. 13 is a cross-sectional view of the backflow prevention device. An auxiliary discharge port 41 connected to the backflow prevention discharge port 40 is provided, and the spherical valve 42 has a different specific gravity. It is made of resin, ceramic, or metal. It is also possible to change the pressure applied to the culture vessel by changing the inlet diameter. The internal structure on the inlet side is a mortar-shaped portion 43.
逆流防止用排出口40側に補助排出口41を設けた事は、比重の軽い樹脂製の球体弁42を使用すると培地注入の勢いで浮き上げられ、球体弁42が逆流防止用排出口40を閉じて培地の流れに弊害を発生させることがあり、その解決策として補助排出口41を設けた、さらに逆流防止用注入口39をすり鉢形状部43とし、球体弁42が必ず逆流防止用注入口39に落ち込み逆流防止用注入口39を塞ぐ。The fact that the auxiliary discharge port 41 is provided on the side of the backflow prevention discharge port 40 is that when a resin spherical valve 42 having a light specific gravity is used, the medium valve is lifted by the momentum of the medium injection, and the spherical valve 42 opens the backflow prevention discharge port 40. As a solution to this problem, an auxiliary discharge port 41 is provided, the backflow prevention inlet 39 is a mortar-shaped portion 43, and the spherical valve 42 is always a backflow prevention inlet. It falls into 39 and closes the backflow prevention inlet 39.
逆流防止装置15の球体弁42の比重の異なる材質を利用する事は、培地に加える圧力を変化させる為で、比重の大きい球体弁42の場合はダイヤフラム23から培地に加える圧力が大きくなる。排出口径を変えることで、同じ重さの球体弁42でも培養容器内培地に加える圧力は可変となる。これらの圧力の選択は、動脈血管、荷重系軟骨等の培養に必要となる。この培養装置の重要な点は、逆流防止装置15の精度と培地槽11と排出用培地槽12の圧力差を発生させないことで、培地交換量を正確に行う事が可能となる。The use of a material having a different specific gravity for the spherical valve 42 of the backflow prevention device 15 changes the pressure applied to the culture medium. In the case of the spherical valve 42 having a large specific gravity, the pressure applied to the culture medium from the diaphragm 23 increases. By changing the discharge diameter, the pressure applied to the culture medium in the culture vessel can be changed even with the spherical valve 42 having the same weight. Selection of these pressures is necessary for culturing arterial blood vessels, load-type cartilage and the like. The important point of this culture apparatus is that the medium exchange amount can be accurately performed by preventing the accuracy of the backflow prevention device 15 and the pressure difference between the medium tank 11 and the discharge medium tank 12.
以下、本発明を実施例に基づいて詳しく説明するが、本発明を限定するものではない。
図1は本発明の還流(循環)式培養装置の全体構成図で培地槽11から培養容器10へ、培養容器10から培地槽11の還流系培養装置の基本である。培地の交換は培養容器10に装着されたダイヤフラム23に直動アクチュエーター用コントローラー2で駆動時間、駆動回数を設定し直動アクチュエーター13を駆動しダイヤフラム23を上下させる。下降時は培養容器10内にダイヤフラム23の下降挿入体積分培地を排出、上昇時はダイヤフラム23を引き上げ培養容器10の増加体積分の培地を吸引をする。EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited.
FIG. 1 is an overall configuration diagram of a reflux (circulation) culture apparatus according to the present invention, which is a basic configuration of a reflux system culture apparatus from a culture vessel 11 to a culture vessel 10 and from the culture vessel 10 to the culture vessel 11. For exchanging the medium, the driving time and the number of times of driving are set for the diaphragm 23 attached to the culture vessel 10 by the controller 2 for the linear actuator, and the diaphragm 23 is moved up and down by driving the linear actuator 13. When descending, the descending insertion volume integral medium of the diaphragm 23 is discharged into the culture vessel 10, and when rising, the diaphragm 23 is pulled up and the medium of the increased volume of the culture vessel 10 is aspirated.
培養法は足場固定部26に足場シート44を固定し、足場シート44に細胞を播種し、回転アクチュエーター14にジョイント19で連動固定し、回転重層培養を行う。培地の流れは、培地槽11から逆流防止装置15を通り培養容器10に吸引され、排出時は培養容器10から逆流防止装置15を経て培地槽11に還流する。In the culture method, the scaffold sheet 44 is fixed to the scaffold fixing part 26, the cells are seeded on the scaffold sheet 44, and the joint is fixed to the rotary actuator 14 by the joint 19 to perform rotary multi-layer culture. The flow of the culture medium is sucked from the culture medium tank 11 through the backflow prevention device 15 to the culture container 10 and is discharged from the culture container 10 to the culture medium tank 11 through the backflow prevention apparatus 15 when discharged.
細胞培養後の培地を再利用の為、炭酸ガスインキュベーター1内の炭酸ガス、酸素等を培地に取り込む必要があり、請求項2に記載した方法で使用培地に炭酸ガスインキュベーター1内の気体との接触面を増加させ使用培地に炭酸ガス等を取り込み培地を循環させる。In order to reuse the medium after cell culture, it is necessary to take carbon dioxide, oxygen, etc. in the carbon dioxide incubator 1 into the medium, and the medium used with the gas in the carbon dioxide incubator 1 by the method described in claim 2 is used. The contact surface is increased, carbon dioxide is taken into the working medium, and the medium is circulated.
図2は本発明の灌流式培養装置の全体構成図で請求項3に記載された密閉恒温ケース36内での培養も可能で培地槽11から培養容器10に、培養容器10から排出用培地槽12に培地を灌流させ、培養部は閉鎖系培養装置となる。FIG. 2 is an overall configuration diagram of the perfusion culture apparatus according to the present invention, and culture is possible in the closed thermostatic case 36 described in claim 3, and the culture vessel 10 is transferred from the culture vessel 11 to the culture vessel 10, and the discharge culture vessel from the culture vessel 10. 12, the culture medium is perfused, and the culture section becomes a closed culture apparatus.
図1、図2の循環式、灌流式とも、培地量の決定には、直動アクチュエーター用コントローラー2から直動アクチュエーター13の上下移動距離を設定しダイヤフラム23の振幅を決め、ダイヤフラム23の振幅設定と一日の駆動時間を設定し、培養日数を決定する。In both the circulation type and perfusion type shown in FIGS. 1 and 2, the medium amount is determined by setting the vertical movement distance of the linear actuator 13 from the linear actuator controller 2 and determining the amplitude of the diaphragm 23, and setting the diaphragm 23 amplitude. Set the driving time of the day and determine the number of days of culture.
図5の回転足場固定具25の足場固定部26に足場シート44を生体適合材の足場固定用0リング28で足場シート44を固定。回転足場挿入口から培養容器10内に挿入固定、細胞播種後に、足場支持体27と回転アクチュエーター14のシリンダーとジョイント19で連動固定する。回転アクチュエーター用コントローラー3で回転速度、一日の回転数の設定を行い、培養日数を決め回転アクチュエーター14に指令し、自動培養を行う。The scaffold sheet 44 is fixed to the scaffold fixing portion 26 of the rotary scaffold fixture 25 of FIG. 5 with the scaffold fixing 0 ring 28 of a biocompatible material. After inserting and fixing in the culture vessel 10 from the rotary scaffold insertion port, and seeding the cells, the scaffold support 27, the cylinder of the rotary actuator 14 and the joint 19 are fixed together. The rotation speed and the number of rotations per day are set by the controller 3 for the rotation actuator, the number of culture days is determined, and the rotation actuator 14 is commanded to perform automatic culture.
培養中、内視カメラを内視カメラ装着具18に固定する。内視カメラからの情報をカメラ操作端末機(パソコン)4に送り、撮影、解析、分析、記録等の処理を遠隔操作で行い、培養容器10内の細胞・組織の培養状況を観察する。During the culture, the endoscope camera is fixed to the endoscope camera mounting tool 18. Information from the endoscope camera is sent to a camera operation terminal (personal computer) 4, and processing such as photographing, analysis, analysis, and recording is performed by remote control to observe the culture state of cells / tissues in the culture vessel 10.
培養容器10に内視カメラ装着反対側等に取り付けられた光源を利用して培養シートの光の透過率や反射率等、また光源のサイクルを変え、さらに回転足場固定具25を回転させ色々な方面からの映像を解析する。Using a light source attached to the culture container 10 on the opposite side of the endoscope camera, etc., the light transmittance and reflectance of the culture sheet, and the light source cycle are changed, and the rotating scaffold fixture 25 is further rotated. Analyze the video from the direction.
pHセンサー挿入容器17にpHセンサーを挿入、培養済み培地のpHを測定し、情報をpH測定機5に送り、pH測定の結果、培養状態を分析。A pH sensor is inserted into the pH sensor insertion container 17, the pH of the cultured medium is measured, information is sent to the pH measuring machine 5, and the culture state is analyzed as a result of the pH measurement.
図3は直動アクチュエーター13(回転)をカム20とクランプ21で直動運動に変える説明図面で、カム20とクランプ21を固定するクランプ固定位置22で、ダイヤフラム23の振幅を変えることができる。FIG. 3 is an explanatory drawing in which the linear actuator 13 (rotation) is changed to a linear motion by the cam 20 and the clamp 21. The amplitude of the diaphragm 23 can be changed at a clamp fixing position 22 where the cam 20 and the clamp 21 are fixed.
図4は培養容器10の断面図で培養容器の特徴を説明する。クランプ21の上下運動をクランプ安定具46を通過させ、ダイヤフラム23に伝える。クランプ安定具46はクランプ21の上下振幅に応じクランプ安定具46を上下安定具高さ調整ネジ47で調節する。FIG. 4 is a cross-sectional view of the culture vessel 10 and explains the characteristics of the culture vessel. The vertical movement of the clamp 21 is passed through the clamp stabilizer 46 and transmitted to the diaphragm 23. The clamp stabilizer 46 adjusts the clamp stabilizer 46 with the vertical stabilizer height adjustment screw 47 in accordance with the vertical amplitude of the clamp 21.
ダイヤフラム23の上昇時は、培養容器底面中央注入口48から培地が注入され、整流板24で四方に分散し、培養容器上部排出口32に培地は層になって上昇する。足場固定部26に足場シート44を固定した足場支持体27をジョイント19で回転アクチュエーター14に固定させ、足場固定部26に固定した足場シート44を回転させる。When the diaphragm 23 is raised, the culture medium is injected from the center inlet 48 on the bottom surface of the culture vessel, dispersed in all directions by the rectifying plate 24, and the culture medium rises in layers at the upper outlet 32 of the culture vessel. The scaffold support 27 having the scaffold sheet 44 fixed to the scaffold fixing part 26 is fixed to the rotary actuator 14 by the joint 19, and the scaffold sheet 44 fixed to the scaffold fixing part 26 is rotated.
図5は足場固定具25で足場固定部26に足場シート44を足場固定用0リング28で固定する足場支持体27の説明図。FIG. 5 is an explanatory view of the scaffold support 27 that fixes the scaffold sheet 44 to the scaffold fixing portion 26 with the scaffold fixing tool 25 and the scaffold fixing 0-ring 28.
図6はメッシュ製回転円柱培養具29でメッシュ円柱部30内に軟骨細胞を播種したアテロコラーゲンや3次元多孔体足場を挿入し、回転培養を行い四方から培地と接触させる。In FIG. 6, atelocollagen or a three-dimensional porous scaffold in which chondrocytes are seeded is inserted into the mesh column part 30 with the mesh rotation column culture tool 29, and then rotated and contacted with the medium from all directions.
図7、図8は本発明の培養容器10の断面図と回転足場固定具25に足場シート44を固定し、細胞を播種する細胞播種治具33の説明図である。7 and 8 are cross-sectional views of the culture vessel 10 of the present invention and an explanatory view of a cell seeding jig 33 for fixing the scaffold sheet 44 to the rotary scaffold fixture 25 and seeding cells.
培地を培地注入線まで入れ、細胞播種治具33を培養容器内10内に挿入、培養容器内面と細胞播種治具33の外径と装着された気密用0リング35で密封状態になり、細胞播種治具33内に細胞混濁培地34を注入、注入した細胞混濁培地34は細胞播種治具33から流れ出る事はなく、細胞は沈下し足場シート44に接着する。The medium is inserted up to the medium injection line, the cell seeding jig 33 is inserted into the culture container 10, and the inside of the culture container and the outer diameter of the cell seeding jig 33 and the airtight 0-ring 35 attached are sealed. The cell turbid medium 34 is injected into the seeding jig 33, and the injected cell turbid medium 34 does not flow out of the cell seeding jig 33, and the cells sink and adhere to the scaffold sheet 44.
図9は灌流式培養装置の培養部で、培養部は完全閉鎖系培養部として組み立てる。FIG. 9 is a culture part of a perfusion culture apparatus, and the culture part is assembled as a completely closed culture part.
図10は図9の閉鎖系培養部を密閉恒温ケース36内に挿入、ジョイント19で固定した図である。FIG. 10 is a diagram in which the closed culture unit shown in FIG. 9 is inserted into the sealed constant temperature case 36 and fixed by the joint 19.
図11は図9の閉鎖系培養部を密閉恒温ケース36内に挿入した密閉恒温ケース36と駆動装置付きコントローラー部37をコントローラー用ジョイント38で固定した一検体用多重培養装置の完成図。FIG. 11 is a completed view of a multi-culture apparatus for one sample in which a closed thermostatic case 36 in which the closed culture unit of FIG. 9 is inserted into a closed thermostatic case 36 and a controller unit 37 with a drive device are fixed by a controller joint 38.
図12、図13は本発明の逆流防止装置15で、球体弁42は生体適合材の樹脂、セラミック、金属等で、培養物により比重の異なる球体弁42を選別使用する。培地循環に抵抗を少なくする場合は比重の小さい樹脂製の球体弁42を利用すると、樹脂製の球体弁は比重が小さいために培地に押し上げられ、逆流防止装置15の逆流防止用排出口40を塞ぐ場合があり、培地の流れを止める事があった。その為に逆流防止用排出口40に接した補助排出口41を設けた。12 and 13 show the backflow prevention device 15 of the present invention, and the spherical valve 42 is made of a biocompatible material such as resin, ceramic, metal, and the like, and the spherical valve 42 having a different specific gravity is selected and used depending on the culture. In order to reduce the resistance to the circulation of the culture medium, if the resin spherical valve 42 having a low specific gravity is used, the resin spherical valve is pushed up by the culture medium due to the low specific gravity, and the backflow prevention discharge port 40 of the backflow prevention device 15 is opened. In some cases, the medium flow was stopped. For this purpose, an auxiliary discharge port 41 in contact with the backflow prevention discharge port 40 is provided.
逆流防止装置15内の球体弁42の密度を変えた球体弁の利用や逆流防止用注入口39の口径を変えることで、培養容器10内の圧力を変えることができる。たとえば排出側逆流防止装置の逆流防止用注入口39の口径を注入側逆流防止装置15の逆流防止用注入口より小さくすれば、培養容器10内の圧力は注入時より排出時の圧力が大きくなる。The pressure in the culture vessel 10 can be changed by using a spherical valve in which the density of the spherical valve 42 in the backflow prevention device 15 is changed or by changing the diameter of the backflow prevention inlet 39. For example, if the diameter of the backflow prevention injection port 39 of the discharge side backflow prevention device is made smaller than the backflow prevention injection port of the injection side backflow prevention device 15, the pressure in the culture vessel 10 becomes higher than the pressure at the time of discharge. .
本発明の閉鎖系培養装置の重要点は、培地槽11と排出用培地槽12との圧力バランスと逆流防止装置15の精密度である。循環配管の内径は4ミリ程度で逆流防止装置15は、従来の産業用に比較して極めて小型であり、専用の逆流防止装置15が必要で、弁も球体弁42を使用し、球体弁42に逆流防止用排出口40から圧力を受ければ、すり鉢形状部43から逆流防止用注入口39へ落ち確実に逆流防止用注入口39を塞ぐ。The important points of the closed culture apparatus of the present invention are the pressure balance between the medium tank 11 and the discharge medium tank 12 and the precision of the backflow prevention apparatus 15. The internal diameter of the circulation pipe is about 4 mm, and the backflow prevention device 15 is extremely small compared to the conventional industrial use. The dedicated backflow prevention device 15 is necessary, and the valve also uses the spherical valve 42. If the pressure is received from the backflow prevention discharge port 40, the mortar-shaped portion 43 falls into the backflow prevention injection port 39 to reliably close the backflow prevention injection port 39.
図18、図19、図20は本発明の実験装置での培地注入状態の写真で、培地が層になって上部に押し上げられている実験写真。本発明の最も重要な培地注入法である。FIG. 18, FIG. 19, and FIG. 20 are photographs of the medium injection state in the experimental apparatus of the present invention, in which the medium is layered and pushed upward. It is the most important medium injection method of the present invention.
図21は培養後に培養組織を目的の場所に移動する方法で、チューブクランプ16を閉じ、培養容器10を密封状態とし、培養容器10とクランプとの反対側チューブを切断し、培養容器全体を密封状態で目的の場所に移動。目的場所が遠隔地である場合は、密封培養容器を恒温ケースに入れ、密封状態で移動可能とした。FIG. 21 shows a method of moving a cultured tissue to a target place after culturing. The tube clamp 16 is closed, the culture vessel 10 is sealed, the tube opposite to the culture vessel 10 and the clamp is cut, and the entire culture vessel is sealed. Move to the desired location in the state. When the target location was a remote location, the sealed culture vessel was placed in a constant temperature case and allowed to move in a sealed state.
再生医療は夢の医療として、1988年米国NSF主催の生体組織工学においてTE(TissueEngineering)関連の潜在的世界市場規模を48兆と予測し、1996年・FDA主導のTE製品認可統一基準作成準備のためワークショップが開催され、多くのTEベンチャー企業が設立された。Regenerative medicine is a dream medicine, and the potential global market size related to TE (Tissue Engineering) is estimated to be 48 trillion in biological tissue engineering sponsored by the US NSF in 1988. Therefore, workshops were held and many TE venture companies were established.
国内においても夢の医療として研究者の成果を基に2.000年前後にTEベンチャー企業が創出し、厚生労働省から融資を受けたTEベンチャー企業も現れたが、まだ殆ど収益が見込めないのが現状である。In Japan, a TE venture company was created around 2.000 based on the results of researchers as a dream medicine, and a TE venture company that received a loan from the Ministry of Health, Labor and Welfare also appeared. Currently.
細胞培養の基本原理は細胞・材料・刺激因子が基本的3要素といわれ、当面倫理的問題の解決等で胚性幹細胞(ES)細胞は別にして体性幹細胞や体細胞の分離・分化誘導技術は再生医療の出発点で、培養細胞源の確保、無血清培地の開発、3次元足場の材料の開発、細胞の分化・増殖に生化学的因子、物理刺激的因子である。The basic principle of cell culture is said to be the three basic elements of cells, materials, and stimulating factors. For the time being to solve ethical problems, etc., separation and differentiation induction of somatic stem cells and somatic cells apart from embryonic stem cells (ES) cells The technology is the starting point for regenerative medicine, and is a source of cultured cells, development of serum-free medium, development of materials for three-dimensional scaffolds, biochemical factors and physical stimulating factors for cell differentiation and proliferation.
これら細胞・材料・刺激因子が整い、研究室で細胞培養に熟知した研究者によって細胞・組織培養に成功し、その成果をすぐに事業化に利用達成される訳ではない。再生医療を早期実現させるためには、細胞に基盤をおく培養医療用具、すなわち安全性が保たれた環境下で無菌的、無人的に細胞・組織培養を可能にしてこそ産業上の利用が可能になり、培養医療用具の開発第一ステップとして、細胞・組織培養には培養媒体であるとともに栄養分や酸素の伝達媒体として培養液が用いられる。培養期間は数週間は必要であり、その間に細胞・組織培養に必要な栄養、酸素をいかに細胞に与えるかが重要な課題として、本発明の一検体用多重培養装置を開発した。These cells, materials, and stimulating factors are in place, and researchers who are familiar with cell culture in the laboratory have succeeded in culturing cells and tissues, and the results are not immediately utilized for commercialization. In order to realize regenerative medicine at an early stage, cell-based culture medical devices, that is, industrial use is possible only by enabling aseptic and unattended cell / tissue culture in a safe environment. Thus, as a first step in the development of a cultured medical device, a culture solution is used as a culture medium and a nutrient or oxygen transmission medium in cell / tissue culture. The culture period requires several weeks, and the multi-culture apparatus for one specimen of the present invention has been developed as an important issue on how to provide the cells with nutrients and oxygen necessary for cell / tissue culture.
再生医療用の培養装置は一検体、一装置、培養期間3〜4週間とした場合、一台の培養装置で年間20例程度の細胞・組織培養しか再生できず、生産装置としては極めて経済性が悪い、高価な培養装置であると培養装置の償却費がそのまま医療費に加算され、再生医療実現に安価な培養装置が強く望まれている。When the culture apparatus for regenerative medicine is one sample, one apparatus, and the culture period is 3 to 4 weeks, only about 20 cell / tissue cultures can be regenerated per year with one culture apparatus. However, if the culture apparatus is poor and expensive, the depreciation cost of the culture apparatus is added to the medical expenses as it is, and an inexpensive culture apparatus is strongly desired for realizing regenerative medicine.
本発明のモニター装置付き一検体用培養装置は小型、軽量培養装置であり、さらに遠隔操作可能なモニタリング装置も備え、多重、多層培養シートの培養も可能であり、今後のモニタリングにより医療機器として成長させ、再生医療用培養装置としての認可の可能性を十分に期待できる培養装置である。The single-sample culture device with a monitor device according to the present invention is a small and light-weight culture device, and also has a monitoring device that can be operated remotely, and can cultivate multiple and multi-layer culture sheets, and grow as a medical device through future monitoring. Thus, the culture device can be sufficiently expected to be approved as a regenerative medical culture device.
再生医療の経済規模は前記の48兆とも言われ、そのうち培養装置や培地、足場等の経済規模も20〜30兆とも言われており、再生医療用培養装置として、医療の現場での確認が必要であるが、本発明の一検体用多重培養装置は再生医療用装置として十分な可能性を秘めている。The economic scale of regenerative medicine is said to be 48 trillion, of which the economic scale of culture devices, culture media, scaffolds, etc. is also said to be 20 to 30 trillion. Although necessary, the multi-culture apparatus for one specimen of the present invention has sufficient potential as a regenerative medical apparatus.
1:炭酸ガスインキュベーター
2:直動アクチュエーター用コントローラー
3:回転アクチュエーター用コントローラー
4:カメラ端末操作機(パソコン)
5:pH測定器
10:培養容器
11:培地槽
12:排出用培地槽
13:直動アクチュエーター
14:回転アクチュエーター
15:逆流防止装置
16:チューブクランプ
17:pHセンサー挿入容器
18:内視カメラ装着具
19:ジョイント
20:カム
21:クランプ
22:クランプ固定位置
23:ダイヤフラム
24:整流板
25:回転足場固定具
26:足場固定部
27:足場支持体
28:足場固定用0リング
29:メッシュ製回転円柱培養具
30:メッシュ円柱部
31:培地挿入口
32:培養容器上部排出口
33:細胞播種治具
34:細胞混濁培地
35:気密用0リング
36:密閉恒温ケース
37:駆動装置付きコントローラー部
38:コントローラー用ジョイント
39:逆流防止用注入口
40:逆流防止用排出口
41:補助排出口
42:球体弁
43:すり鉢形状部
44:足場シート
45:通気管
46:クランプ安定具
47:上下安定具高さ調整ネジ
48:培養容器底面中央注入口1: Carbon dioxide incubator 2: Controller for linear actuator 3: Controller for rotary actuator 4: Camera terminal controller (PC)
5: pH measuring device 10: Culture container 11: Medium tank 12: Medium tank for discharge 13: Direct acting actuator 14: Rotating actuator 15: Backflow prevention device 16: Tube clamp 17: pH sensor insertion container 18: Endoscopic camera mounting tool 19: Joint 20: Cam 21: Clamp 22: Clamp fixing position 23: Diaphragm 24: Rectifying plate 25: Rotating scaffold fixture 26: Scaffold fixing part 27: Scaffold support 28: 0 ring for fixing scaffold 29: Rotating cylinder made of mesh Cultivation tool 30: Mesh cylindrical part 31: Medium insertion port 32: Culture container upper discharge port 33: Cell seeding jig 34: Cell turbid medium 35: Airtight 0 ring 36: Sealed constant temperature case 37: Controller with drive unit 38: Controller joint 39: Backflow prevention inlet 40: Backflow prevention outlet 4 : Auxiliary outlet 42: spherical valve 43: bowl-shaped portion 44: scaffold sheet 45: vent 46: Clamp stable fixture 47: vertical stabilizer instrument height adjustment screw 48: the culture vessel bottom central inlet
Claims (22)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135543A JP2012147678A (en) | 2009-05-14 | 2009-05-14 | Multiple culture apparatus for single sample |
PCT/JP2010/058124 WO2010131715A1 (en) | 2009-05-14 | 2010-05-13 | Culture apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135543A JP2012147678A (en) | 2009-05-14 | 2009-05-14 | Multiple culture apparatus for single sample |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012147678A true JP2012147678A (en) | 2012-08-09 |
Family
ID=43085088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009135543A Pending JP2012147678A (en) | 2009-05-14 | 2009-05-14 | Multiple culture apparatus for single sample |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012147678A (en) |
WO (1) | WO2010131715A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016533177A (en) * | 2013-10-16 | 2016-10-27 | メディカン インコーポレーテッド | Apparatus and method for continuously culturing cells |
JP2018033419A (en) * | 2016-09-02 | 2018-03-08 | 東洋紡株式会社 | Cell culture device |
US20190269390A1 (en) * | 2011-08-21 | 2019-09-05 | Transenterix Europe S.A.R.L. | Device and method for assisting laparoscopic surgery - rule based approach |
WO2020040118A1 (en) * | 2018-08-20 | 2020-02-27 | アイ ピース, インコーポレイテッド | Cell incubator |
WO2020162125A1 (en) * | 2019-02-04 | 2020-08-13 | 富士フイルム株式会社 | Cell culturing device, cell culturing method, and method for preparing product |
WO2022010594A1 (en) * | 2020-07-09 | 2022-01-13 | University Of Virginia Patent Foundation | Hermetically or aseptically sealed bioreactor system and related method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6043934B2 (en) * | 2008-10-31 | 2016-12-14 | 国立大学法人名古屋大学 | Antigen-specific cytotoxic T cell preparation kit |
JP2016123336A (en) * | 2014-12-26 | 2016-07-11 | 大日本印刷株式会社 | Cell culture container |
CN112753557A (en) * | 2021-01-25 | 2021-05-07 | 陕西金慧方中药科技有限公司 | Device and method capable of enabling gastrodia elata seeds to germinate uniformly and massively |
CN115287188B (en) * | 2022-08-11 | 2024-07-09 | 中右康恒(上海)干细胞有限责任公司 | Stem cell culture instrument |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5928945A (en) * | 1996-11-20 | 1999-07-27 | Advanced Tissue Sciences, Inc. | Application of shear flow stress to chondrocytes or chondrocyte stem cells to produce cartilage |
JPH1143198A (en) * | 1997-07-25 | 1999-02-16 | Marcom:Kk | Liquid supply device |
JP4274454B2 (en) * | 2002-06-12 | 2009-06-10 | 財団法人電力中央研究所 | Electric culture device |
JP4242618B2 (en) * | 2002-09-03 | 2009-03-25 | オリンパス株式会社 | Incubator |
CN101810882B (en) * | 2004-09-24 | 2013-07-24 | Hi-Lex株式会社 | Body hard tissue or soft tissue inductive scaffolding material |
JP4689383B2 (en) * | 2005-07-19 | 2011-05-25 | 高木産業株式会社 | Culturing chamber, culturing apparatus, and method for feeding culture solution |
JP2008092935A (en) * | 2006-10-13 | 2008-04-24 | Otake:Kk | Culturing apparatus in which pump function is provided in hermetically sealed culture container |
JP2009125068A (en) * | 2007-11-23 | 2009-06-11 | Otake:Kk | Multilayered culturing apparatus |
-
2009
- 2009-05-14 JP JP2009135543A patent/JP2012147678A/en active Pending
-
2010
- 2010-05-13 WO PCT/JP2010/058124 patent/WO2010131715A1/en active Application Filing
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190269390A1 (en) * | 2011-08-21 | 2019-09-05 | Transenterix Europe S.A.R.L. | Device and method for assisting laparoscopic surgery - rule based approach |
JP2016533177A (en) * | 2013-10-16 | 2016-10-27 | メディカン インコーポレーテッド | Apparatus and method for continuously culturing cells |
JP2018033419A (en) * | 2016-09-02 | 2018-03-08 | 東洋紡株式会社 | Cell culture device |
JP7280574B2 (en) | 2018-08-20 | 2023-05-24 | アイ ピース,インコーポレイテッド | cell incubator |
WO2020040118A1 (en) * | 2018-08-20 | 2020-02-27 | アイ ピース, インコーポレイテッド | Cell incubator |
JP7688363B2 (en) | 2018-08-20 | 2025-06-04 | アイ ピース,インコーポレイテッド | cell culture vessel |
JPWO2020040118A1 (en) * | 2018-08-20 | 2021-08-10 | アイ ピース,インコーポレイテッド | Cell incubator |
US11898130B2 (en) | 2018-08-20 | 2024-02-13 | Peace, Inc. | Cell culture equipment |
JP2023086915A (en) * | 2018-08-20 | 2023-06-22 | アイ ピース,インコーポレイテッド | cell incubator |
CN113396212B (en) * | 2019-02-04 | 2023-12-12 | 富士胶片株式会社 | Cell culture apparatus, cell culture method, and method for producing product |
JP7270657B2 (en) | 2019-02-04 | 2023-05-10 | 富士フイルム株式会社 | CELL CULTURE DEVICE, CELL CULTURE METHOD, AND PRODUCT MANUFACTURING METHOD |
JPWO2020162125A1 (en) * | 2019-02-04 | 2021-11-25 | 富士フイルム株式会社 | Cell culture device, cell culture method, and product manufacturing method |
CN113396212A (en) * | 2019-02-04 | 2021-09-14 | 富士胶片株式会社 | Cell culture apparatus, cell culture method, and method for producing product |
WO2020162125A1 (en) * | 2019-02-04 | 2020-08-13 | 富士フイルム株式会社 | Cell culturing device, cell culturing method, and method for preparing product |
US12331280B2 (en) | 2019-02-04 | 2025-06-17 | Fujifilm Corporation | Cell culture device, method for culturing cells, and method for producing product |
WO2022010594A1 (en) * | 2020-07-09 | 2022-01-13 | University Of Virginia Patent Foundation | Hermetically or aseptically sealed bioreactor system and related method thereof |
Also Published As
Publication number | Publication date |
---|---|
WO2010131715A1 (en) | 2010-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012147678A (en) | Multiple culture apparatus for single sample | |
US12110484B2 (en) | Disposable bioprocess system supporting biological activity | |
US7906323B2 (en) | Automated bioculture and bioculture experiments system | |
JP3865354B2 (en) | Cell or tissue culture method | |
TWI695065B (en) | Automated cell culturing and harvesting device and method for expanding and preparing mesenchymal stem cells | |
JP2009125068A (en) | Multilayered culturing apparatus | |
US20060257998A1 (en) | Supply system for cell culture module | |
JP2004510431A (en) | Automated bioculture and bioculture experiment system | |
KR20110091078A (en) | Stem cell culture vessel to prevent microbial contamination | |
JP2002315566A (en) | Cell and tissue-culturing apparatus | |
JP2008086264A (en) | Device for feeding and discharging cell-culture solution | |
Baba et al. | Development of biomimetic system for scale up of cell spheroids-building blocks for cell transplantation | |
JP4607432B2 (en) | Cell or tissue culture device | |
IL269839A (en) | System and method for seeding and culturing | |
US20230056468A1 (en) | Retention system | |
CN101486968A (en) | Intellectualized bionic cultivation apparatus for tissue engineering tissue | |
US20210371783A1 (en) | Bioreactor | |
CN1740314A (en) | Continuous filling automatic cell culture system | |
US20230042475A1 (en) | Disposable bioprocess system supporting biological activity | |
CN105754856B (en) | A kind of drawer type three-dimensional class blood vessel tissue culture organ chip and its construction method | |
Abbatiello et al. | Development of an In-House Customized Perfusion-Based Bioreactor for 3D Cell Culture | |
CN211394493U (en) | Tissue engineering product culture apparatus | |
CN110373324A (en) | Collect the device of biopsy 3D printing and histocyte culture function integration | |
Cerulli et al. | Perfusion bioreactor for development of tissue-engineered blood vessels | |
CN2923716Y (en) | Automatic cell culturing system |