JP2012143741A - Exhaust gas adsorbent and exhaust gas treatment method using the same - Google Patents
Exhaust gas adsorbent and exhaust gas treatment method using the same Download PDFInfo
- Publication number
- JP2012143741A JP2012143741A JP2011149973A JP2011149973A JP2012143741A JP 2012143741 A JP2012143741 A JP 2012143741A JP 2011149973 A JP2011149973 A JP 2011149973A JP 2011149973 A JP2011149973 A JP 2011149973A JP 2012143741 A JP2012143741 A JP 2012143741A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- etching process
- gas adsorbent
- semiconductor etching
- active component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/12—Naturally occurring clays or bleaching earth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
本発明は、排ガス吸着剤及びそれを利用した排ガス処理方法に関する。より具体的には、半導体製造工程中にエッチング工程を経て排出される排ガスに対して、優れた吸着能を発揮し、製品寿命などを向上させることができる排ガス吸着剤及びそれを利用した排ガス処理方法に関する。 The present invention relates to an exhaust gas adsorbent and an exhaust gas treatment method using the same. More specifically, an exhaust gas adsorbent capable of exhibiting excellent adsorption capacity and improving product life and the like, and exhaust gas treatment using the exhaust gas discharged through the etching process during the semiconductor manufacturing process Regarding the method.
リソグラフィ工程は、半導体素子の製造において必須な工程であって、フォトレジストの塗布、露光及び現像を行うフォトレジストパターンの形成工程と、前記フォトレジストパターンをマスクとしてエッチングする工程とに大別される。エッチング工程は、湿式エッチング工程と乾式エッチング工程とに大別される。 The lithography process is an indispensable process in the manufacture of semiconductor elements, and is broadly divided into a photoresist pattern forming process for applying a photoresist, exposing and developing, and an etching process using the photoresist pattern as a mask. . The etching process is roughly divided into a wet etching process and a dry etching process.
乾式エッチング工程では、塩素ガス(Cl2)三塩化ホウ素(BCl3)、フッ酸(HF)、フッ素ガス(F2)、六フッ化硫黄(SF6)、四塩化ケイ素(SiCl4)、四フッ化ケイ素(SiF4)、塩酸(HCl)、四フッ化炭素(CF4)、六塩化タングステン(WCl6)、臭化水素(HBr)などのハロゲン族化合物ガスが多く使われている。 In the dry etching process, chlorine gas (Cl 2 ), boron trichloride (BCl 3 ), hydrofluoric acid (HF), fluorine gas (F 2 ), sulfur hexafluoride (SF 6 ), silicon tetrachloride (SiCl 4 ), four Halogen group compound gases such as silicon fluoride (SiF 4 ), hydrochloric acid (HCl), carbon tetrafluoride (CF 4 ), tungsten hexachloride (WCl 6 ), and hydrogen bromide (HBr) are often used.
ところが、エッチング工程後のハロゲン族化合物排ガスは、空気との接触時に容易に反応し、高い反応熱を発生させて火災及び爆発などの危険性を有していることはもとより、霧、雨などと反応して酸性雨の原因となることがある。特に、塩素ガスは、毒性と腐蝕性とが非常に強く、空気中の含有量が30〜60ppmである場合、目や気管支を激しく刺激し、さらには肺水腫のような致命的な疾病を引き起こすなど人体にとって非常に有害な物質である。そのため、世界の多くの国で、その使用値に対する規制が非常に厳格になされている。一例として、韓国の場合、許容濃度を表わすTLV(Threshold Limit Value)が、1ppm以下になるように制限されている。 However, halogen compound exhaust gas after the etching process reacts easily when in contact with air, generates high reaction heat, and has the risk of fire and explosion, as well as fog, rain, etc. May react to cause acid rain. In particular, chlorine gas is extremely toxic and corrosive, and when the content in the air is 30 to 60 ppm, it stimulates eyes and bronchi violently and causes fatal diseases such as pulmonary edema. It is a very harmful substance for the human body. For this reason, many countries in the world have very strict regulations on their usage values. As an example, in the case of Korea, the TLV (Threshold Limit Value) representing the allowable concentration is limited to 1 ppm or less.
そこで、半導体製造工程中にエッチング工程で排出される排ガスを処理するために、実際の半導体製造工程では、エッチング工程の後工程において別途スクラバーを設置し、前記スクラバーによってエッチング工程後に排出される排ガスを大気中に放出する前に処理している。スクラバーは、湿式スクラバーと乾式スクラバーとに大別される。 Therefore, in order to treat the exhaust gas discharged in the etching process during the semiconductor manufacturing process, in the actual semiconductor manufacturing process, a separate scrubber is installed in the subsequent process of the etching process, and the exhaust gas discharged after the etching process by the scrubber is removed. Treated before being released into the atmosphere. Scrubbers are roughly classified into wet scrubbers and dry scrubbers.
湿式スクラバーは、従来から多く利用されている装置であるが、エッチング工程で湿式スクラバーを利用する場合、スクラバー内部に固体物質が形成されて排出ガスの排出口を塞ぐ現象が発生することがある。その結果、芳香族塩素化合物などの物質が未反応のまま残留してしまうという欠点を有している。 A wet scrubber is an apparatus that has been widely used in the past. However, when a wet scrubber is used in an etching process, a solid substance may be formed inside the scrubber to block the exhaust gas outlet. As a result, there is a drawback that substances such as aromatic chlorine compounds remain unreacted.
一方、乾式スクラバーは、ハロゲン族化合物を主に使うエッチング工程において、近年多く利用されている装置である。乾式スクラバーは、スクラバー内に排ガス吸着剤を装着し、エッチング工程中に発生した排ガスを物理的・化学的吸着反応、及び分解反応を通じて除去する装置である。 On the other hand, dry scrubbers are devices that have been widely used in recent years in etching processes that mainly use halogen group compounds. A dry scrubber is an apparatus that attaches an exhaust gas adsorbent in a scrubber and removes exhaust gas generated during the etching process through physical and chemical adsorption reactions and decomposition reactions.
しかしながら、従来のスクラバーは、実際の半導体製造工程において、中和反応により強度が低下してしまい、化学的な反応によって吸着剤同士に多少の凝集が生じる固化現象により吸着剤間の空隙が減り、流体の流れを妨害して差圧が大きくなってしまうという問題点がある。また、従来のスクラバーにおいて代表的な吸着剤として用いられる活性炭等は、特定の反応時に発熱して危険をもたらすおそれがある。このように、従来のスクラバーは、安定性、吸着能及び製品寿命の観点で改善しなければならない余地を多く有している。 However, in the conventional scrubber, in the actual semiconductor manufacturing process, the strength decreases due to the neutralization reaction, and the gap between the adsorbents decreases due to the solidification phenomenon in which some agglomeration occurs between the adsorbents due to the chemical reaction, There is a problem that the differential pressure becomes large by obstructing the flow of the fluid. Moreover, activated carbon or the like used as a typical adsorbent in conventional scrubbers may generate heat during a specific reaction, causing danger. Thus, the conventional scrubber has a lot of room for improvement in terms of stability, adsorption capacity and product life.
これにより、当該技術分野では、安定的でありながらも、吸着能に優れ、製品寿命を向上させることができる半導体エッチング工程用の排ガス吸着剤及びそれを利用した排ガス処理方法についての研究が必要とされている。 As a result, in this technical field, it is necessary to study an exhaust gas adsorbent for a semiconductor etching process and an exhaust gas treatment method using the same, which is stable but has excellent adsorption ability and can improve the product life. Has been.
本発明は、上記事情に鑑み、吸着能に優れ、製品寿命を向上させることができる半導体エッチング工程用の排ガス吸着剤及びそれを利用した排ガス処理方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an exhaust gas adsorbent for a semiconductor etching process that has excellent adsorption ability and can improve the product life, and an exhaust gas treatment method using the same.
本発明は、層状化合物と、吸着活性成分と、無機保湿剤とを含む半導体エッチング工程用の排ガス吸着剤であって、前記吸着活性成分は、アルカリ金属化合物、アルカリ土類金属化合物及び酸化鉄化合物からなる群から選択される1種以上の化合物からなることを特徴とする。 The present invention is an exhaust gas adsorbent for a semiconductor etching process comprising a layered compound, an adsorption active component, and an inorganic humectant, wherein the adsorption active component comprises an alkali metal compound, an alkaline earth metal compound, and an iron oxide compound It consists of 1 or more types of compounds selected from the group which consists of.
また、本発明の半導体エッチング工程用の排ガス処理方法は、前記半導体エッチング工程用の排ガス吸着剤を用いることを特徴とする。 Moreover, the exhaust gas treatment method for a semiconductor etching process of the present invention is characterized by using the exhaust gas adsorbent for the semiconductor etching process.
本発明は、層状化合物と、吸着活性成分と、無機保湿剤とを含む半導体エッチング工程用の排ガス吸着剤であって、前記吸着活性成分を、アルカリ金属化合物、アルカリ土類金属化合物及び酸化鉄化合物からなる群から選択される1種以上の化合物とすることによって、半導体エッチング工程において発生する排ガスに対する吸着能を向上させると共に、排ガス吸着剤としての製品寿命を向上させることができる。 The present invention is an exhaust gas adsorbent for a semiconductor etching process comprising a layered compound, an adsorption active component, and an inorganic humectant, wherein the adsorption active component comprises an alkali metal compound, an alkaline earth metal compound, and an iron oxide compound. By using one or more compounds selected from the group consisting of the above, it is possible to improve the adsorption capacity for the exhaust gas generated in the semiconductor etching process and improve the product life as an exhaust gas adsorbent.
以下、本発明の実施の形態についてさらに詳しく説明する。 Hereinafter, the embodiment of the present invention will be described in more detail.
本実施形態の排ガス吸着剤は、層状化合物と、吸着活性成分と、無機保湿剤とを含み、前記吸着活性成分は、アルカリ金属化合物、アルカリ土類金属化合物及び酸化鉄化合物からなる群から選択される1種以上の化合物からなる。 The exhaust gas adsorbent of this embodiment includes a layered compound, an adsorption active component, and an inorganic humectant, and the adsorption active component is selected from the group consisting of an alkali metal compound, an alkaline earth metal compound, and an iron oxide compound. Consisting of one or more compounds.
本実施形態の排ガス吸着剤において、前記層状化合物は、排ガス吸着剤内で気孔を確保して吸着活性成分の反応面積を増加させて性能を向上させるように作用する。 In the exhaust gas adsorbent of this embodiment, the layered compound acts to improve the performance by securing pores in the exhaust gas adsorbent and increasing the reaction area of the adsorbing active component.
前記層状化合物は、ベントナイト、ヒドロタルサイト、モンモリロナイト、バーミキュライトからなる群から選択されることが望ましい。 The layered compound is preferably selected from the group consisting of bentonite, hydrotalcite, montmorillonite, and vermiculite.
前記層状化合物は、500〜2000kg/m3の範囲の密度と、900〜1400m2/gの範囲の比表面積とを有することが望ましい。前記層状化合物が、前記範囲の密度及び比表面積を有することにより、排ガス吸着剤における吸着活性成分の反応面積を増加させることができる。 The layered compound preferably has a density in the range of 500 to 2000 kg / m 3 and a specific surface area in the range of 900 to 1400 m 2 / g. When the layered compound has the density and specific surface area within the above range, the reaction area of the adsorption active component in the exhaust gas adsorbent can be increased.
また、前記層状化合物は、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、6〜15重量%の範囲で含まれることが望ましい。前記層状化合物の含量が、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、6重量%未満である場合には、十分な吸着能を得ることができず、15重量%を超過する場合には、成形的な問題が発生するか、他の活性成分の割合が少なくなり、吸着能が低下するという問題が発生することがある。 Moreover, it is desirable that the layered compound is contained in a range of 6 to 15% by weight with respect to the total weight of the layered compound, the adsorption active component, and the inorganic humectant. When the content of the layered compound is less than 6% by weight with respect to the total weight of the layered compound, the adsorptive active component and the inorganic moisturizing agent, sufficient adsorptive capacity cannot be obtained, and 15% by weight. When the amount exceeds 50%, a molding problem may occur, or the ratio of other active ingredients may decrease, resulting in a problem that the adsorptivity may be reduced.
前記層状化合物は、最終的に製造される排ガス吸着剤の用途及び方法によって粉末または顆粒形態とすることができる。前記層状化合物の大きさは、排ガス吸着剤の使用用途及び適用対象によって適宜選択され、粉末形態である場合には、直径が1.2mm以下であり、顆粒形態である場合には、直径が1.2mm以上であることが望ましい。 The layered compound can be in powder or granule form depending on the use and method of the exhaust gas adsorbent that is finally produced. The size of the layered compound is appropriately selected depending on the intended use and application object of the exhaust gas adsorbent. In the case of a powder form, the diameter is 1.2 mm or less, and in the case of a granule form, the diameter is 1 It is desirable that it is 2 mm or more.
本実施形態の排ガス吸着剤において、前記吸着活性成分は、吸着反応時に発生する吸着熱を最小化することができる。また、前記吸着活性成分は、ハロゲン族元素との電気陰性度の差に起因して、ハロゲン族元素との反応性に優れているため、酸度を高くし吸着活性を増大させることができる。 In the exhaust gas adsorbent of the present embodiment, the adsorption active component can minimize the heat of adsorption generated during the adsorption reaction. Moreover, since the said adsorption active component is excellent in the reactivity with a halogen group element resulting from the difference in electronegativity with a halogen group element, it can raise acidity and can increase adsorption activity.
前記吸着活性成分は、アルカリ金属化合物、アルカリ土類金属化合物及び酸化鉄化合物からなる群から選択される1種以上を含むことが望ましい。 The adsorptive active component desirably contains one or more selected from the group consisting of alkali metal compounds, alkaline earth metal compounds, and iron oxide compounds.
前記アルカリ金属化合物としては、例えば、NaOH、KOHを挙げることができる。前記アルカリ土類金属化合物としては、例えば、Mg(OH)2、Ca(OH)2、Sr(OH)2を挙げることができる。前記酸化鉄化合物としては、例えば、FeO、FeO(OH)、Fe2O3、Fe3O4を挙げることができる。 Examples of the alkali metal compound include NaOH and KOH. Examples of the alkaline earth metal compound include Mg (OH) 2 , Ca (OH) 2 , and Sr (OH) 2 . Examples of the iron oxide compound include FeO, FeO (OH), Fe 2 O 3 , and Fe 3 O 4 .
前記吸着活性成分は、アルカリ金属化合物、アルカリ土類金属化合物、酸化鉄化合物を単独で用いてもよく、2種以上併用してもよい。 As the adsorption active component, an alkali metal compound, an alkaline earth metal compound, or an iron oxide compound may be used alone, or two or more kinds may be used in combination.
特に、前記吸着活性成分は、NaOH、Ca(OH)2及びFeO(OH)を含むことが望ましい。 In particular, it is desirable that the adsorption active component contains NaOH, Ca (OH) 2 and FeO (OH).
本実施形態の排ガス吸着剤は、前記吸着活性成分を、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、80〜90重量%の範囲で含むことが望ましい。前記吸着活性成分の含量が、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、80重量%未満である場合には、十分な吸着能を得ることができず、90重量%を超過する場合には、成形的な問題が発生するか、他の活性成分の割合が少なくなり、吸着能が低下するという問題が発生することがある。 The exhaust gas adsorbent of this embodiment desirably contains the adsorption active component in a range of 80 to 90% by weight with respect to the total weight of the layered compound, the adsorption active component, and the inorganic moisturizing agent. If the content of the adsorptive active component is less than 80% by weight with respect to the total weight of the layered compound, the adsorbing active component and the inorganic humectant, sufficient adsorbing ability cannot be obtained, and 90 When the weight percentage is exceeded, a molding problem may occur, or the ratio of other active ingredients may be reduced, resulting in a problem that the adsorptive capacity is lowered.
本実施形態の排ガス吸着剤において、前記無機保湿剤は、排ガス吸着剤の製造時に適切な水分を保持するように作用し、前記層状化合物と前記吸着活性成分との反応面積を効果的に広げることができる。そのため、ガス除去時、中和反応中に発生する水分の調節に寄与し、前記化学的な反応によって、吸着剤同士に多少の凝集が生じることで吸着剤間の空隙が減り、流体の流れが妨害されて発生する差圧の増大や偏流の発生等の問題を減少させる。また、前記無機保湿剤は、排ガス吸着剤に含まれることによって、半導体エッチング工程用の排ガス処理時に化学吸着、物理吸着、分解反応などを促進させて性能を向上させることができる。 In the exhaust gas adsorbent of this embodiment, the inorganic humectant acts to retain appropriate moisture during the production of the exhaust gas adsorbent, and effectively widens the reaction area between the layered compound and the adsorption active component. Can do. Therefore, when removing gas, it contributes to the regulation of moisture generated during the neutralization reaction, and the chemical reaction causes some agglomeration between the adsorbents, reducing the gaps between the adsorbents and reducing the flow of fluid. This reduces problems such as an increase in differential pressure caused by obstruction and the occurrence of drift. In addition, the inorganic moisturizing agent is included in the exhaust gas adsorbent, so that the chemical adsorption, physical adsorption, decomposition reaction, etc. can be promoted during the exhaust gas treatment for the semiconductor etching process to improve the performance.
前記無機保湿剤は、オルトケイ酸テトラエチル、ジルコニウムプロポキシドまたはチタンt−ブトキシドからなる群から選択される1種以上の化合物を用いることが望ましい。 The inorganic humectant is desirably one or more compounds selected from the group consisting of tetraethyl orthosilicate, zirconium propoxide, or titanium t-butoxide.
本実施形態の排ガス吸着剤は、前記無機保湿剤を、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、1〜6重量%の範囲で含むことが望ましい。前記無機保湿剤の含量が、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、1重量%未満である場合には、十分な吸着能を得ることができず、6重量%を超過する場合には、成形的な問題が発生するか、排ガス吸着剤の吸着能が低下することがある。 The exhaust gas adsorbent of this embodiment desirably contains the inorganic humectant in a range of 1 to 6% by weight with respect to the total weight of the layered compound, the adsorption active component, and the inorganic humectant. When the content of the inorganic humectant is less than 1% by weight with respect to the total weight of the layered compound, the adsorption active component, and the inorganic humectant, sufficient adsorbability cannot be obtained. When the weight percentage is exceeded, a molding problem may occur or the adsorption capacity of the exhaust gas adsorbent may be lowered.
また、本実施形態の排ガス吸着剤は、顔料または染料をさらに含み、水をさらに含んでもよい。 Moreover, the exhaust gas adsorbent of this embodiment further includes a pigment or a dye, and may further include water.
前記顔料または染料は、排ガス吸着剤の色を表わすためのものであって、有機顔料、無機顔料、染料などを単独または組み合わせて利用し、その含量も排ガス吸着剤の色を実現できるように適切に決定することができるものあればよく、特別に限定されるものではない。 The pigment or dye is used to represent the color of the exhaust gas adsorbent, and an organic pigment, an inorganic pigment, a dye or the like is used alone or in combination, and its content is also appropriate so that the color of the exhaust gas adsorbent can be realized. There is no particular limitation as long as it can be determined.
より具体的に、前記有機顔料としては、例えば、C.I.Pigment Blue15、C.I.Pigment Blue15:3などの青色顔料;C.I.Pigment Violet19、C.I.Pigment Violet23などのバイオレット顔料;C.I.Pigment Green7、C.I.Pigment Green10などの緑色顔料;C.I.Pigment Red5、C.I.Pigment Red9などの赤色顔料;C.I.Pigment Orange31、C.I.Pigment Orange36などのオレンジ顔料;C.I.Pigment Yellow13、C.I.Pigment Yellow42などの黄色顔料;C.I.Pigment Brown23、C.I.Pigment Brown25などのブラウン顔料;C.I.Pigment Black7などの黒色顔料を挙げることができる。 More specifically, examples of the organic pigment include C.I. I. Pigment Blue 15, C.I. I. A blue pigment such as Pigment Blue 15: 3; I. Pigment Violet 19, C.I. I. Violet pigments such as Pigment Violet 23; I. Pigment Green 7, C.I. I. Green pigments such as Pigment Green 10; C.I. I. Pigment Red5, C.I. I. Red pigments such as CI Pigment Red9; I. Pigment Orange 31, C.I. I. Orange pigments such as Pigment Orange 36; I. Pigment Yellow 13, C.I. I. Yellow pigments such as Pigment Yellow 42; I. Pigment Brown 23, C.I. I. A brown pigment such as Pigment Brown 25; I. And black pigments such as Pigment Black 7.
前記染料としては、例えば、アゾ系染料、フタロシアニン系染料、アントラキノン系染料、メチン系染料、オキサジン系染料、カルボニウム系染料、キノンイミン系染料、ベンゾキノン系染料、ナフトキノン系染料、トリフェニルメタン系染料、インジゴイド系染料、ペリノン系染料、ナフタルイミド系染料、キノリン系染料、及び前記染料含有の金属錯塩系染料などを挙げることができる。 Examples of the dye include azo dyes, phthalocyanine dyes, anthraquinone dyes, methine dyes, oxazine dyes, carbonium dyes, quinoneimine dyes, benzoquinone dyes, naphthoquinone dyes, triphenylmethane dyes, and indigoids. And dyes, perinone dyes, naphthalimide dyes, quinoline dyes, and metal complex dyes containing the dyes.
本実施形態の排ガス吸着剤は、0.6〜0.8g/cm3の範囲の比重であることが望ましい。本実施形態の排ガス吸着剤を、前記範囲の比重とすることにより、より優れた吸着能を発揮させ、製品寿命を増大させることができる。 The exhaust gas adsorbent of this embodiment desirably has a specific gravity in the range of 0.6 to 0.8 g / cm 3 . By setting the exhaust gas adsorbent of the present embodiment to a specific gravity in the above range, it is possible to exhibit more excellent adsorbability and increase the product life.
本実施形態の排ガス吸着剤は、前述したように、層状化合物と、アルカリ金属化合物、アルカリ土類金属化合物及び酸化鉄化合物からなる群から選択される1種以上の吸着活性成分と、無機保湿剤とを含むことによって、半導体エッチング工程時に発生する排ガスに対して、より優れた吸着能を発揮し、製品寿命を増大させることができる。 As described above, the exhaust gas adsorbent of the present embodiment includes a layered compound, one or more adsorbing active components selected from the group consisting of an alkali metal compound, an alkaline earth metal compound, and an iron oxide compound, and an inorganic moisturizing agent. By including the above, it is possible to exhibit a better adsorbing ability with respect to the exhaust gas generated during the semiconductor etching process and to increase the product life.
本実施形態の排ガス吸着剤において、前記半導体エッチング工程時に発生する排ガスは、例えば、Cl2、BCl3、HBrの1種以上を含み得る。 In the exhaust gas adsorbent of the present embodiment, the exhaust gas generated during the semiconductor etching process may include, for example, one or more of Cl 2 , BCl 3 , and HBr.
本実施形態の排ガス吸着剤は、層状化合物、吸着活性成分、無機保湿剤を除いて、当該技術分野において通常利用されている方法を用いて製造することができる。 The exhaust gas adsorbent of the present embodiment can be produced using a method usually used in the technical field, excluding the layered compound, the adsorption active component, and the inorganic humectant.
また、本発明は、本実施形態の排ガス吸着剤を用いる半導体エッチング工程用の排ガス処理方法を提供する。 The present invention also provides an exhaust gas treatment method for a semiconductor etching process using the exhaust gas adsorbent of the present embodiment.
前記半導体エッチング工程用の排ガス処理方法は、本実施形態の排ガス吸着剤を利用することを除いて、当該技術分野においてよく知られた方法を利用することができる。 As the exhaust gas treatment method for the semiconductor etching process, a method well known in the technical field can be used except that the exhaust gas adsorbent of the present embodiment is used.
以下、本発明の実施例及び比較例を示すが、下記の実施例は、本発明をより容易に理解するために提供するものであり、これによって、本発明の内容は限定されない。 Hereinafter, examples and comparative examples of the present invention will be shown. However, the following examples are provided for easier understanding of the present invention, and the contents of the present invention are not limited thereby.
<実施例1>
粒度が325メッシュである粉末形態の水酸化カルシウム(密度:0.31g/cm3、比表面積:26m2/g)250gと、C.I.Pigment yellow42.5gと、バーミキュライト30gと、オルトケイ酸テトラエチル10gと、93%試薬用NaOH5gとを水80gに添加し混練した。得られた混練物をエクストルーダーで5℃、60rpmの条件下で成形し、その後、120℃で6時間、180℃で6時間空気を循環させながら乾燥して、本実施例の排ガス吸着剤とした。本実施例で製造された排ガス吸着剤の強度を測定した。結果を表1に示す。
<Example 1>
250 g of calcium hydroxide in the form of powder having a particle size of 325 mesh (density: 0.31 g / cm 3 , specific surface area: 26 m 2 / g); I. 42.5 g of Pigment Yellow, 30 g of vermiculite, 10 g of tetraethyl orthosilicate, and 5 g of 93% NaOH for reagent were added to 80 g of water and kneaded. The obtained kneaded product was molded with an extruder under conditions of 5 ° C. and 60 rpm, and then dried while circulating air at 120 ° C. for 6 hours and at 180 ° C. for 6 hours. did. The strength of the exhaust gas adsorbent produced in this example was measured. The results are shown in Table 1.
<実施例2>
本実施例では、バーミキュライトに代えて、ヒドロタルサイトを用いたことを除いて、実施例1と全く同一にして排ガス吸着剤を製造した。本実施例で製造した排ガス吸着剤の強度を測定した。結果を表1に示す。
<Example 2>
In this example, an exhaust gas adsorbent was manufactured in exactly the same manner as in Example 1 except that hydrotalcite was used instead of vermiculite. The strength of the exhaust gas adsorbent produced in this example was measured. The results are shown in Table 1.
<実施例3>
本実施例では、オルトケイ酸テトラエチルに代えて、ジルコニウムプロポキシドを用いたことを除いて、実施例1と全く同一にして排ガス吸着剤を製造した。本実施例で製造した排ガス吸着剤の強度を測定した。結果を表1に示す。
<Example 3>
In this example, an exhaust gas adsorbent was produced in exactly the same manner as in Example 1 except that zirconium propoxide was used instead of tetraethyl orthosilicate. The strength of the exhaust gas adsorbent produced in this example was measured. The results are shown in Table 1.
<実施例4>
本実施例では、水酸化カルシウムに代えて、FeO(OH)を用いたことを除いて、実施例1と全く同一にして排ガス吸着剤を製造した。本実施例で製造した排ガス吸着剤の強度を測定した。結果を表1に示す。
<Example 4>
In this example, an exhaust gas adsorbent was produced in exactly the same manner as in Example 1 except that FeO (OH) was used instead of calcium hydroxide. The strength of the exhaust gas adsorbent produced in this example was measured. The results are shown in Table 1.
<比較例1>
本比較例では、バーミキュライトを用いていないことを除いて、実施例1と全く同一にして排ガス吸着剤を製造した。本比較例で製造された排ガス吸着剤の強度を測定した。結果を表1に示す。
<Comparative Example 1>
In this comparative example, an exhaust gas adsorbent was produced in exactly the same manner as in Example 1 except that vermiculite was not used. The strength of the exhaust gas adsorbent produced in this comparative example was measured. The results are shown in Table 1.
<比較例2>
本比較例では、オルトケイ酸テトラエチルを用いていないことを除いて、実施例1と全く同一にして排ガス吸着剤を製造した。本比較例で製造された排ガス吸着剤の強度を測定した。結果を表1に示す。
<Comparative example 2>
In this comparative example, an exhaust gas adsorbent was manufactured in exactly the same manner as in Example 1 except that tetraethyl orthosilicate was not used. The strength of the exhaust gas adsorbent produced in this comparative example was measured. The results are shown in Table 1.
<比較例3>
本比較例では、バーミキュライト、オルトケイ酸テトラエチルを用いていないことを除いて、実施例1と全く同一にして排ガス吸着剤を製造した。本比較例で製造された排ガス吸着剤の強度を測定した。結果を表1に示す。
<Comparative Example 3>
In this comparative example, an exhaust gas adsorbent was produced in exactly the same manner as in Example 1 except that vermiculite and tetraethyl orthosilicate were not used. The strength of the exhaust gas adsorbent produced in this comparative example was measured. The results are shown in Table 1.
<比較例4>
椰子系の活性炭(商品名:SGA−100、三千里活性炭素株式会社製)を排ガス吸着剤とし、その強度を測定した。結果を表1に示す。
<Comparative example 4>
An insulator activated carbon (trade name: SGA-100, manufactured by Michisato Activated Carbon Co., Ltd.) was used as an exhaust gas adsorbent, and its strength was measured. The results are shown in Table 1.
<実験例>
実施例1〜4及び比較例1〜4で製造したそれぞれの排ガス吸着剤に対して、吸着実験装置を用いて吸着能を評価した。前記吸着実験装置としては、社内製の実験装置を使った。これは、高圧ガス容器に充填された特殊ガスを吸着カラムに常温常圧で安全に供給するシステムの制御装備であって、タッチスクリーン方式となっていて画面を見ながら制御できるようになっている。半導体エッチング工程用の排ガスとしては、Cl2、BCl3、HBrなどを利用し、N2ガスをともに流して充填層を通過するガスの流量を1,000ml/分になるようにした。吸着カラムには、実施例1〜4及び比較例1〜4で製造した排ガス吸着剤を100ml充填し、除去ガス量は、排出されるガスの濃度を、20℃、大気圧の条件下で分析することにより評価した。評価結果を、表2に示す。
<Experimental example>
The adsorption capacity of each exhaust gas adsorbent produced in Examples 1 to 4 and Comparative Examples 1 to 4 was evaluated using an adsorption experimental apparatus. As the adsorption experimental apparatus, an in-house experimental apparatus was used. This is a control equipment for a system that safely supplies special gas filled in a high-pressure gas container to the adsorption column at normal temperature and normal pressure. It is a touch screen system that can be controlled while viewing the screen. . As the exhaust gas for the semiconductor etching process, Cl 2 , BCl 3 , HBr or the like was used, and N 2 gas was flowed together so that the flow rate of the gas passing through the packed bed was 1,000 ml / min. The adsorption column is filled with 100 ml of the exhaust gas adsorbent produced in Examples 1 to 4 and Comparative Examples 1 to 4, and the amount of removed gas is analyzed under the conditions of 20 ° C. and atmospheric pressure. It was evaluated by doing. The evaluation results are shown in Table 2.
表1及び表2の結果から、実施例1〜4の排ガス吸着剤は、層状化合物と、吸着活性成分と、無機保湿剤とを含むことによって、半導体エッチング工程時に発生する排ガスに対して、安定的であり、優れた吸着能を発揮し、製品寿命を向上させることができることが明らかである。 From the results of Table 1 and Table 2, the exhaust gas adsorbents of Examples 1 to 4 are stable against exhaust gas generated during the semiconductor etching process by including a layered compound, an adsorption active component, and an inorganic moisturizing agent. It is clear that it can exhibit excellent adsorption ability and improve product life.
特に、実施例1に示すように、バーミキュライト、水酸化カルシウム、オルトケイ酸テトラエチルを選択して使うことにより、非常に高い吸着能が得られるという格別な効果を奏することができることが確認された。 In particular, as shown in Example 1, it was confirmed that by using and selecting vermiculite, calcium hydroxide, and tetraethyl orthosilicate, a very high adsorbing ability can be obtained.
本発明は、排ガス吸着剤及びそれを利用した排ガス処理方法に関連する技術分野に適用可能である。
The present invention is applicable to a technical field related to an exhaust gas adsorbent and an exhaust gas treatment method using the same.
Claims (10)
前記吸着活性成分は、アルカリ金属化合物、アルカリ土類金属化合物及び酸化鉄化合物からなる群から選択される1種以上の化合物からなることを特徴とする半導体エッチング工程用の排ガス吸着剤。 An exhaust gas adsorbent for a semiconductor etching process comprising a layered compound, an adsorption active component, and an inorganic humectant,
The exhaust gas adsorbent for a semiconductor etching process, wherein the adsorption active component comprises one or more compounds selected from the group consisting of an alkali metal compound, an alkaline earth metal compound, and an iron oxide compound.
前記層状化合物は、ベントナイト、ヒドロタルサイト、モンモリロナイト、バーミキュライトからなる群から選択されることを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for the semiconductor etching process according to claim 1,
The exhaust gas adsorbent for a semiconductor etching process, wherein the layered compound is selected from the group consisting of bentonite, hydrotalcite, montmorillonite, and vermiculite.
前記層状化合物は、500〜2000kg/m3の範囲の密度と、900〜1400m2/gの範囲の比表面積とを有し、
前記層状化合物を、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、6〜15重量%の範囲で含むことを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for the semiconductor etching process according to claim 1 or 2,
The layered compound has a density in the range of 500 to 2000 kg / m 3 and a specific surface area in the range of 900 to 1400 m 2 / g;
An exhaust gas adsorbent for a semiconductor etching process, comprising the layered compound in a range of 6 to 15% by weight with respect to a total weight of the layered compound, the adsorption active component, and the inorganic humectant.
前記吸着活性成分は、NaOH、KOH、Mg(OH)2、Ca(OH)2、Sr(OH)2、FeO、FeO(OH)、Fe2O3、及びFe3O4からなる群から選択される1種以上を含むことを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for a semiconductor etching process according to any one of claims 1 to 3,
The selective adsorption active ingredient, NaOH, KOH, Mg (OH ) 2, Ca (OH) 2, Sr (OH) 2, FeO, FeO (OH), Fe 2 O 3, and from the group consisting of Fe 3 O 4 An exhaust gas adsorbent for a semiconductor etching process, comprising one or more of the above.
前記吸着活性成分を、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、80〜90重量%の範囲で含むことを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for a semiconductor etching process according to any one of claims 1 to 4,
An exhaust gas adsorbent for a semiconductor etching process, comprising the adsorbing active component in a range of 80 to 90 wt% with respect to a total weight of the layered compound, the adsorbing active component, and the inorganic humectant.
前記無機保湿剤は、オルトケイ酸テトラエチル、ジルコニウムプロポキシド、チタンt−ブトキシド及び2種以上のこれらの混合物のうちから選択されることを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for a semiconductor etching process according to any one of claims 1 to 5,
The exhaust gas adsorbent for a semiconductor etching process, wherein the inorganic humectant is selected from tetraethyl orthosilicate, zirconium propoxide, titanium t-butoxide, and a mixture of two or more thereof.
前記無機保湿剤を、前記層状化合物と前記吸着活性成分と前記無機保湿剤との合計重量に対し、1〜6重量%の範囲で含むことを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for a semiconductor etching process according to any one of claims 1 to 6,
An exhaust gas adsorbent for a semiconductor etching process, comprising the inorganic humectant in a range of 1 to 6% by weight based on a total weight of the layered compound, the adsorption active component, and the inorganic humectant.
前記半導体エッチング工程用の排ガス吸着剤は、顔料または染料、及び水からなる群から選択される1種以上をさらに含むことを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for a semiconductor etching process according to any one of claims 1 to 7,
The exhaust gas adsorbent for the semiconductor etching process further includes at least one selected from the group consisting of a pigment or a dye and water.
前記半導体エッチング工程用の排ガスは、Cl2、BCl3、HBrからなる群から選択される1種以上を含むことを特徴とする半導体エッチング工程用の排ガス吸着剤。 In the exhaust gas adsorbent for a semiconductor etching process according to any one of claims 1 to 8,
An exhaust gas adsorbent for a semiconductor etching process, wherein the exhaust gas for the semiconductor etching process contains at least one selected from the group consisting of Cl 2 , BCl 3 , and HBr.
An exhaust gas treatment method for a semiconductor etching process, wherein the exhaust gas adsorbent for the semiconductor etching process according to any one of claims 1 to 9 is used.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110001693 | 2011-01-07 | ||
KR10-2011-0001693 | 2011-01-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012143741A true JP2012143741A (en) | 2012-08-02 |
JP5318919B2 JP5318919B2 (en) | 2013-10-16 |
Family
ID=46713109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011149973A Active JP5318919B2 (en) | 2011-01-07 | 2011-07-06 | Exhaust gas adsorbent and exhaust gas treatment method using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5318919B2 (en) |
KR (1) | KR101305452B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105727686A (en) * | 2016-03-25 | 2016-07-06 | 张玲 | Method for adsorbing and purifying sulfur hexafluoride |
WO2017061115A1 (en) * | 2015-10-09 | 2017-04-13 | 高橋金属株式会社 | Adsorbent particles and granular adsorbent |
WO2024106415A1 (en) * | 2022-11-16 | 2024-05-23 | 栗田工業株式会社 | Method for manufacturing acidic gas adsorbent |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101961010B1 (en) * | 2017-02-06 | 2019-03-21 | 김영민 | Adsorbent For Exhaust Acid Gas And Manufacturing Method Thereof |
CN108854993A (en) * | 2018-05-23 | 2018-11-23 | 四川川能环保科技有限公司 | For removing the compound adsorbent of heavy metal in sewage |
CN109395692B (en) * | 2018-12-26 | 2021-08-31 | 江西理工大学 | Preparation of a modified magnetic perlite adsorbent and method for enriching rare earth from heavy yttrium rare earth wastewater |
KR102434658B1 (en) * | 2020-07-02 | 2022-08-23 | 주식회사 엠앤이테크 | Adsorbents for removing nitrogen oxides and method of treating nitrogen oxides using the same |
CN113694876B (en) * | 2021-09-06 | 2023-08-22 | 信阳学院 | Preparation and application of nano magnetic layered double hydroxide adsorbent |
KR102818373B1 (en) | 2022-11-04 | 2025-06-11 | 주식회사 동일씨앤이 | Apparatus and method for removing of halogen compounds included in the exhaust gas |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52128893A (en) * | 1976-04-23 | 1977-10-28 | Taisei Corp | Method of eliminating atomosphere polluting substances by bentonite admixtures |
JPS6271515A (en) * | 1985-09-25 | 1987-04-02 | Nippon Chem Ind Co Ltd:The | air purifier |
JPH0691126A (en) * | 1992-09-11 | 1994-04-05 | Kawasaki Heavy Ind Ltd | Method for separating and recording co2 from combustion exhaust gas and device therefor |
JPH07743A (en) * | 1993-06-10 | 1995-01-06 | Takuma Sogo Kenkyusho:Kk | Adsorbent and removing method for nitrogen oxide using adsorbent |
JPH07275646A (en) * | 1994-04-06 | 1995-10-24 | Japan Pionics Co Ltd | Hazardous gas purifier |
JPH08206432A (en) * | 1995-02-03 | 1996-08-13 | Nippon Sanso Kk | Gas processing method and gas processing agent |
JPH1043527A (en) * | 1996-05-31 | 1998-02-17 | Matsushita Electric Works Ltd | Filter |
JP2000024499A (en) * | 1998-07-07 | 2000-01-25 | Toyota Motor Corp | Exhaust gas purification catalyst and method for producing the same |
JP2000325737A (en) * | 1999-05-19 | 2000-11-28 | Hitachi Zosen Corp | Adsorbent for removing harmful substances in exhaust gas and method of using the same |
JP2006192388A (en) * | 2005-01-14 | 2006-07-27 | Osaka Gas Chem Kk | Gas adsorbing filter medium |
JP2008229610A (en) * | 2007-02-21 | 2008-10-02 | Tosoh Corp | Halogen-based gas scavenger and halogen-based gas scavenging method using the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10137581A (en) * | 1996-11-07 | 1998-05-26 | Kunimine Ind Co Ltd | Manufacturing method of granular adsorbent |
WO2001089666A1 (en) * | 2000-05-26 | 2001-11-29 | Showa Denko K.K. | Composition and method for rendering halogen-containing gas harmless |
KR100625219B1 (en) * | 2004-11-22 | 2006-09-20 | (주) 세라컴 | Manufacturing method of catalytic filter for diesel exhaust gas purification |
KR100653431B1 (en) * | 2005-03-29 | 2006-12-01 | 주식회사 코캣 | Chemical filter using metal compound and manufacturing method thereof |
-
2011
- 2011-06-17 KR KR1020110059098A patent/KR101305452B1/en active Active
- 2011-07-06 JP JP2011149973A patent/JP5318919B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52128893A (en) * | 1976-04-23 | 1977-10-28 | Taisei Corp | Method of eliminating atomosphere polluting substances by bentonite admixtures |
JPS6271515A (en) * | 1985-09-25 | 1987-04-02 | Nippon Chem Ind Co Ltd:The | air purifier |
JPH0691126A (en) * | 1992-09-11 | 1994-04-05 | Kawasaki Heavy Ind Ltd | Method for separating and recording co2 from combustion exhaust gas and device therefor |
JPH07743A (en) * | 1993-06-10 | 1995-01-06 | Takuma Sogo Kenkyusho:Kk | Adsorbent and removing method for nitrogen oxide using adsorbent |
JPH07275646A (en) * | 1994-04-06 | 1995-10-24 | Japan Pionics Co Ltd | Hazardous gas purifier |
JPH08206432A (en) * | 1995-02-03 | 1996-08-13 | Nippon Sanso Kk | Gas processing method and gas processing agent |
JPH1043527A (en) * | 1996-05-31 | 1998-02-17 | Matsushita Electric Works Ltd | Filter |
JP2000024499A (en) * | 1998-07-07 | 2000-01-25 | Toyota Motor Corp | Exhaust gas purification catalyst and method for producing the same |
JP2000325737A (en) * | 1999-05-19 | 2000-11-28 | Hitachi Zosen Corp | Adsorbent for removing harmful substances in exhaust gas and method of using the same |
JP2006192388A (en) * | 2005-01-14 | 2006-07-27 | Osaka Gas Chem Kk | Gas adsorbing filter medium |
JP2008229610A (en) * | 2007-02-21 | 2008-10-02 | Tosoh Corp | Halogen-based gas scavenger and halogen-based gas scavenging method using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017061115A1 (en) * | 2015-10-09 | 2017-04-13 | 高橋金属株式会社 | Adsorbent particles and granular adsorbent |
JPWO2017061115A1 (en) * | 2015-10-09 | 2018-07-26 | 高橋金属株式会社 | Adsorbent particles and granulated adsorbent |
CN105727686A (en) * | 2016-03-25 | 2016-07-06 | 张玲 | Method for adsorbing and purifying sulfur hexafluoride |
WO2024106415A1 (en) * | 2022-11-16 | 2024-05-23 | 栗田工業株式会社 | Method for manufacturing acidic gas adsorbent |
Also Published As
Publication number | Publication date |
---|---|
KR101305452B1 (en) | 2013-09-06 |
JP5318919B2 (en) | 2013-10-16 |
KR20120080512A (en) | 2012-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5318919B2 (en) | Exhaust gas adsorbent and exhaust gas treatment method using the same | |
AU2019204609B2 (en) | Sorbents for removal of mercury | |
Fan et al. | Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@ SiO2 composite particles | |
JP3840877B2 (en) | Halogen-based gas detoxifying agent, detoxifying method and use thereof | |
TW201829049A (en) | Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas | |
JP2581642B2 (en) | Etching exhaust gas abatement agent and exhaust gas treatment method | |
JP3716030B2 (en) | How to clean harmful gases | |
CN113784787A (en) | Neutralizing sorbent for decontaminating spilled chemicals, method of making the same, and neutralizer filled with neutralizing sorbent | |
KR100481584B1 (en) | Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof | |
JP5499816B2 (en) | Halogen gas removal method | |
JP4630237B2 (en) | Recycling method of iron powder for arsenic removal | |
KR920007856B1 (en) | Method of removing gassy acidic halogen compound | |
CN100571862C (en) | Adsorbent for adsorbing acid gas | |
WO2004020087A1 (en) | A composition for filtration particulate material | |
JP4037475B2 (en) | Method for treating exhaust gas containing halogen compounds | |
CN109589780A (en) | Hydrogen fluoride gas adsorbent and preparation method thereof | |
JP2013086088A (en) | Detoxifying method of gas including halide particle | |
JP2001029742A (en) | Treating agent for exhaust metal halide gas and treating method therefor | |
KR102241969B1 (en) | Chemical decontamination of vx using acidic inorganic compounds | |
JP3362918B2 (en) | Exhaust gas purification method | |
KR102043186B1 (en) | Bead for removing inorganic acid and manufacturing method thereof | |
JP2008119628A (en) | Hazardous gas purification agent and purification method | |
JP2008302338A (en) | Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas | |
JP3507995B2 (en) | Remover of harmful components | |
JPS61293547A (en) | Air purifying agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130219 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130710 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5318919 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |