JP2012142551A - Heat treatment method and apparatus - Google Patents
Heat treatment method and apparatus Download PDFInfo
- Publication number
- JP2012142551A JP2012142551A JP2011180440A JP2011180440A JP2012142551A JP 2012142551 A JP2012142551 A JP 2012142551A JP 2011180440 A JP2011180440 A JP 2011180440A JP 2011180440 A JP2011180440 A JP 2011180440A JP 2012142551 A JP2012142551 A JP 2012142551A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- vacuum
- workpiece
- heat
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Plasma Technology (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Furnace Details (AREA)
Abstract
【課題】熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる加熱処理方法およびその装置を提供することを目的とする。
【解決手段】銀の微粒子が塗布されたPET(ポリエチレンテレフタレート)を被処理物(ワーク)としてチャンバー内に送り込んで収容する。ステップS2でチャンバーの内部にワークを収容して、ワークに対して加熱処理を行う。このステップS2での加熱処理とは別に、ステップS2では、ワークを収容した状態でチャンバーの内部を真空でワークを処理する真空処理を加熱処理と並行して行っている。この真空処理を加熱処理に組み合わせることで、加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。
【選択図】図2An object of the present invention is to provide a heat treatment method and apparatus capable of efficiently sintering fine particles at a low temperature while preventing thermal deformation and damage due to heat.
PET (polyethylene terephthalate) coated with silver fine particles is fed into a chamber as an object to be processed (work) and accommodated. In step S2, the workpiece is accommodated in the chamber, and the workpiece is heated. Apart from the heat treatment in step S2, in step S2, a vacuum treatment is performed in parallel with the heat treatment in which the workpiece is treated in a vacuum in the chamber while the workpiece is accommodated. By combining this vacuum treatment with the heat treatment, the heating time can be reduced to a low temperature, and the fine particles can be efficiently sintered at a low temperature while preventing thermal deformation and damage due to heat.
[Selection] Figure 2
Description
本発明は、被処理物に対して加熱処理を行う加熱処理方法およびその装置に係り、特に、金属の微粒子が塗布された被処理物に対して加熱処理を行って、微粒子を焼結させる技術に関する。 The present invention relates to a heat treatment method and apparatus for performing heat treatment on an object to be treated, and more particularly, a technique for sintering fine particles by performing heat treatment on an object to be treated on which metal fine particles are applied. About.
従来、ナノサイズの銀や銅などの金属の微粒子からなる金属ペーストが、印刷配線基板を作る目的で開発されている。具体的には、金属の微粒子を溶剤に溶かし、分散剤により微粒子を分散させた金属ペーストを印刷技術(インクジェットやスクリーン印刷)により基板などの被処理物に塗布する。その後、加熱処理により分散剤や溶剤を分散させて微粒子を焼結させる。 Conventionally, metal pastes made of fine metal particles such as nano-sized silver and copper have been developed for the purpose of producing printed wiring boards. Specifically, metal fine particles are dissolved in a solvent, and a metal paste in which the fine particles are dispersed by a dispersant is applied to an object to be processed such as a substrate by a printing technique (inkjet or screen printing). Thereafter, the fine particles are sintered by dispersing the dispersant and the solvent by heat treatment.
加熱処理に際しては、銀の微粒子を用いてガラス基板を被処理物として用いる場合には220℃で60分での焼結条件で行われる。また、ガラス基板よりも薄い基材を被処理物として用いる場合には、熱変形や熱による損傷を防止するために120℃〜150℃の低温で60分での焼結条件で行われる。 The heat treatment is performed under sintering conditions at 220 ° C. for 60 minutes when a glass substrate is used as an object to be processed using silver fine particles. Moreover, when using a base material thinner than a glass substrate as a to-be-processed object, in order to prevent a thermal deformation and damage by heat | fever, it is performed on the sintering conditions for 60 minutes at the low temperature of 120 to 150 degreeC.
しかし、実際には120℃〜150℃でもPET(ポリエチレンテレフタレート)では熱変形や熱による損傷があり、PET用の材料としては、100℃前後で焼結することが要求され、適切な材料がなかった。そこで、プラズマ放電によって発生したプラズマを利用したプラズマ処理を適用して、プラズマ中に被処理物(ワーク)を置いてプラズマ処理を行い、PETなどの被処理物に塗布された微粒子を低温で焼結させる技術などがある(例えば、特許文献1参照)。 However, PET (polyethylene terephthalate) is actually deformed and damaged by heat even at 120 ° C to 150 ° C, and as a material for PET, it is required to sinter at around 100 ° C, and there is no appropriate material. It was. Therefore, plasma treatment using plasma generated by plasma discharge is applied, and the object to be processed (work) is placed in the plasma to perform the plasma treatment, and fine particles applied to the object to be processed such as PET are sintered at a low temperature. There exists a technique etc. (for example, refer to patent documents 1).
しかしながら、上述した特許文献1の手法を用いてプラズマ処理を行う場合には、次のような問題がある。すなわち、プラズマ処理を用いたとしても実際には焼結条件は120℃〜150℃であり、100℃前後で焼結させることができない。上述した特許文献1では被処理物を冷却させて、熱変形や熱による損傷を防止することが開示されているが、冷却によってプラズマ処理部(チャンバー)で温度が不均一になってしまうことが判明されている。仮に冷却しなかったとしても、プラズマを均一にすることは難しく、プラズマの熱エネルギでの加熱は不安定となってしまう。 However, when performing the plasma processing using the method of Patent Document 1 described above, there are the following problems. That is, even if the plasma treatment is used, the sintering conditions are actually 120 ° C. to 150 ° C. and cannot be sintered at around 100 ° C. In Patent Document 1 described above, it is disclosed that the object to be processed is cooled to prevent thermal deformation or damage due to heat. However, the temperature may be uneven in the plasma processing unit (chamber) due to cooling. It has been found. Even if it is not cooled, it is difficult to make the plasma uniform, and heating with the heat energy of the plasma becomes unstable.
さらに、プラズマ処理のみでは、上述した不均一の他に、急激な温度上昇により処理再現性が安定しない、プラズマ照射を長時間にわたって行うので被処理物への損傷が大きい、被処理物の表面と裏面との温度差が大きいので被処理物の基材自体に損傷が生じるということも新たに判明されている。 Furthermore, in addition to the above-mentioned non-uniformity only by plasma processing, processing reproducibility is not stable due to a rapid temperature rise, plasma irradiation is performed for a long time, and damage to the processing object is large, and the surface of the processing object It has also been newly found that the substrate itself of the object to be processed is damaged because of the large temperature difference from the back surface.
本発明は、このような事情に鑑みてなされたものであって、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる加熱処理方法およびその装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a heat treatment method and apparatus capable of efficiently sintering fine particles at a low temperature while preventing thermal deformation and damage due to heat. For the purpose.
発明者らは、上記の問題を解決するために鋭意研究した結果、次のような知見を得た。 As a result of earnest research to solve the above problems, the inventors have obtained the following knowledge.
すなわち、従来の加熱処理では、加熱処理部(チャンバー)で被処理物を置いて大気圧で行っているので、大気圧下での空気などに代表されるガスなどにより熱が均一に分布し、プラズマ処理と比較するとチャンバーで温度が均一になると考えられる。してみると、従来の加熱処理と別の処理とを組み合わせることが上記の問題の解決の糸口になると考えられる。 That is, in the conventional heat treatment, since the object to be treated is placed in the heat treatment part (chamber) and performed at atmospheric pressure, heat is uniformly distributed by a gas typified by air under atmospheric pressure, Compared with the plasma treatment, the temperature is considered to be uniform in the chamber. In view of this, a combination of the conventional heat treatment and another treatment is considered to be a clue to solving the above problem.
そこで、従来の加熱処理を「プレヒート(pre-heat)」として、プレヒート後に別の処理を組み合わせれば、プレヒートでの加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることが可能であるという知見を得た。つまり、上述した特許文献1での冷却とは逆の発想で、積極的に加熱するもののその加熱を低温で行うプレヒートとその後の処理とを組み合わせるという発想に至った。その後の処理としては、被処理物を収容した状態で加熱処理部(チャンバー)の内部を真空で被処理物を処理する真空処理や、上述した特許文献1と同様に、被処理物に対してプラズマ処理を行うプラズマ処理が考えられる。 Therefore, if the conventional heat treatment is called “pre-heat” and combined with another treatment after preheating, the heating time in the preheating is reduced to a low temperature, while preventing thermal deformation and damage due to heat. The inventors have found that it is possible to sinter fine particles efficiently at a low temperature. In other words, the idea is the opposite of the cooling in Patent Document 1 described above, and the idea of combining preheating and subsequent processing for heating at a low temperature, although actively heating, has been reached. As the subsequent processing, the vacuum processing for processing the processing object in a vacuum inside the heat treatment unit (chamber) in a state in which the processing target is accommodated, and the processing target as in the above-described Patent Document 1. Plasma processing for performing plasma processing is conceivable.
このような知見に基づく本発明は、次のような構成をとる。
すなわち、本発明に係る加熱処理方法は、金属の微粒子が塗布された被処理物に対して加熱処理を行って、前記微粒子を焼結させる加熱処理方法であって、加熱処理部の内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理過程と、前記被処理物を収容した状態で前記加熱処理部の内部を真空で前記被処理物を処理する真空処理過程とを備えることを特徴とするものである。
The present invention based on such knowledge has the following configuration.
That is, the heat treatment method according to the present invention is a heat treatment method in which heat treatment is performed on an object to which metal fine particles are applied to sinter the fine particles, and the heat treatment portion includes the heat treatment portion. A heat treatment process in which the object to be processed is accommodated and the heat treatment is performed on the object to be processed, and the object to be processed is processed in a vacuum inside the heat treatment unit while the object to be processed is accommodated. And a vacuum processing step.
[作用・効果]本発明に係る加熱処理方法(前者の発明)によれば、加熱処理過程は、加熱処理部の内部に被処理物を収容して、被処理物に対して加熱処理を行い、従来の加熱処理での過程に相当する。この加熱処理過程とは別に、真空処理過程は、被処理物を収容した状態で加熱処理部の内部を真空で被処理物を処理する。この真空処理過程を組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間も短く済むので被処理物への損傷も少なく、表裏面の温度差も緩和され被処理物の基材自体の損傷も少なくなる。その結果、加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。 [Operation / Effect] According to the heat treatment method according to the present invention (the former invention), in the heat treatment process, the object to be treated is accommodated in the heat treatment part, and the object to be treated is subjected to the heat treatment. This corresponds to the conventional heat treatment process. Separately from this heat treatment process, the vacuum treatment process treats the object to be processed in a vacuum inside the heat treatment part in a state in which the object to be processed is accommodated. By combining this vacuum treatment process, it is possible to heat uniformly, improving the uniformity of treatment, shortening the heating time, so there is little damage to the object to be treated, the temperature difference between the front and back surfaces is reduced, and the object to be treated Damage to the substrate itself is also reduced. As a result, it is possible to efficiently sinter the fine particles at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat.
また、上述した発明に係る加熱処理方法(前者の発明)とは別の加熱処理方法は、金属の微粒子が塗布された被処理物に対して加熱処理を行って、前記微粒子を焼結させる加熱処理方法であって、加熱処理部の内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理過程と、その加熱処理過程の後で前記被処理物に対してプラズマ処理を行うプラズマ処理過程とを備えることを特徴とするものである。 In addition, a heat treatment method different from the heat treatment method according to the above-described invention (the former invention) is a heating method in which a heat treatment is performed on an object to which metal fine particles are applied to sinter the fine particles. A treatment method, wherein the object to be treated is accommodated in a heat treatment unit, the heat treatment process for performing the heat treatment on the object to be treated, and the object to be treated after the heat treatment process. And a plasma processing process for performing plasma processing.
[作用・効果]本発明に係る加熱処理方法(後者の発明)によれば、真空処理過程を備えた発明(前者の発明)と同様に、加熱処理過程は、加熱処理部の内部に被処理物を収容して、被処理物に対して加熱処理を行い、従来の加熱処理での過程に相当する。この加熱処理過程とは別に、加熱処理過程の後で被処理物に対してプラズマ処理を行うプラズマ処理過程を備える。このプラズマ処理過程を組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間やプラズマ照射時間も短く済むので被処理物への損傷も少なく、表裏面の温度差も緩和され被処理物の基材自体の損傷も少なくなる。その結果、加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。また、プラズマ処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 [Operation / Effect] According to the heat treatment method according to the present invention (the latter invention), as in the case of the invention having the vacuum treatment process (the former invention), the heat treatment process is performed inside the heat treatment section. The object is accommodated and the object to be processed is subjected to heat treatment, which corresponds to the process in the conventional heat treatment. In addition to the heat treatment process, a plasma treatment process for performing plasma treatment on an object to be processed is provided after the heat treatment process. By combining this plasma treatment process, it is possible to heat uniformly, improving the uniformity of treatment, shortening the heating time and plasma irradiation time, so there is little damage to the object to be processed, and the temperature difference between the front and back surfaces is reduced. In addition, damage to the substrate itself of the object to be processed is reduced. As a result, it is possible to efficiently sinter the fine particles at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat. Further, by performing the heating in advance of the plasma treatment, the temperature fluctuation range is reduced, and the reproducibility of the treatment can be improved.
上述した(プラズマ処理過程を備えた)本発明(後者の発明)の発明では、上述した真空処理過程を備えた発明(前者の発明)を組み合わせるのが好ましい。すなわち、被処理物を収容した状態で加熱処理部の内部を真空で被処理物を処理する真空処理過程を備え、その真空処理過程の後で上述のプラズマ処理過程でのプラズマ処理を行う。これらの真空処理過程およびプラズマ処理を組み合わせることで、上述した処理の均一性の向上、加熱時間やプラズマ照射時間の低減、これらの時間の低減による被処理物への損傷の防止、表裏面の温度差の緩和による被処理物の基材自体への損傷の防止をより一層実現することができる。加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。 In the invention of the present invention (including the plasma processing process) described above (the latter invention), it is preferable to combine the above-described invention including the vacuum processing process (the former invention). That is, a vacuum processing process is performed in which the object to be processed is processed in vacuum while the object to be processed is accommodated, and the plasma processing in the above-described plasma processing process is performed after the vacuum processing process. Combining these vacuum treatment processes and plasma treatments improves the above processing uniformity, reduces heating time and plasma irradiation time, prevents damage to the object to be processed by reducing these times, front and back surface temperatures It is possible to further prevent damage to the substrate itself of the object to be processed by relaxing the difference. The fine particles can be efficiently sintered at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat.
上述した真空処理過程を備えた本発明の一例(前者の一例)は、上述の加熱処理過程と上述の真空処理過程とを並行に行うことで、真空で被処理物に対して加熱処理を行う。加熱処理過程での加熱処理で例えばランプヒータを用いた場合には、大気圧下での空気などに代表されるガスなどにより熱を均一に分布させなくとも、真空下で熱が均一に分布し、加熱処理過程と真空処理過程とを並行に行い、真空で被処理物に対して加熱処理を行うことができる。 An example of the present invention (an example of the former) having the above-described vacuum treatment process performs heat treatment on an object to be processed in vacuum by performing the above-described heat treatment process and the above-described vacuum treatment process in parallel. . When a lamp heater is used in the heat treatment in the heat treatment process, for example, the heat is evenly distributed under vacuum even if the heat is not uniformly distributed by a gas typified by air at atmospheric pressure. The heat treatment process and the vacuum treatment process can be performed in parallel, and the heat treatment can be performed on the workpiece in vacuum.
上述した真空処理過程を備えた本発明の他の一例(後者の一例)は、上述の加熱処理過程は、大気圧で被処理物に対して加熱処理を行い、上述の真空処理過程は、上述の大気圧での加熱処理過程の後で被処理物を収容した状態で上述の加熱処理部の内部を減圧して上述の真空にする真空化過程である。前者の(加熱処理過程と真空処理過程とを並行に行った)一例と相違して、後者の一例の場合には、加熱処理過程は、大気圧で被処理物に対して加熱処理を先に行い(すなわちプレヒートを行い)、大気圧での加熱処理過程(すなわちプレヒート)の後で被処理物を収容した状態で加熱処理部の内部を減圧して真空にする(いわゆる「真空引き」を行う)。後者の一例の場合には、大気圧下での空気などに代表されるガスなどにより加熱処理過程(プレヒート)で熱を均一に分布させた後に、加熱処理部の内部を減圧して真空にする真空引きを行うので、真空下で熱が均一に分布して微粒子を焼結させることができる。また、真空処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 In another example (the latter example) of the present invention having the above-described vacuum treatment process, the above-described heat treatment process heats an object to be processed at atmospheric pressure, and the above-described vacuum treatment process includes the above-described vacuum treatment process. This is a evacuation process in which the inside of the heat treatment portion is depressurized to the above-described vacuum in a state in which the object to be processed is accommodated after the heat treatment process at atmospheric pressure. Unlike the former example (where the heat treatment process and the vacuum treatment process were performed in parallel), in the case of the latter example, the heat treatment process is performed by first heating the object to be processed at atmospheric pressure. (I.e., preheating), and after the heat treatment process at atmospheric pressure (i.e., preheating), the inside of the heat treatment unit is depressurized and evacuated (so-called "evacuation") in a state where the object to be processed is accommodated ). In the case of the latter, after the heat is uniformly distributed in the heat treatment process (preheating) with a gas typified by air at atmospheric pressure, the inside of the heat treatment unit is depressurized and evacuated. Since vacuuming is performed, heat can be uniformly distributed under vacuum to sinter the fine particles. Further, by performing heating in advance of vacuum processing, the temperature fluctuation range is reduced, and the reproducibility of processing can be improved.
また、上述した発明に係る加熱処理装置は、金属の微粒子が塗布された被処理物に対して加熱処理を行って、前記微粒子を焼結させる加熱処理装置であって、内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理部を備え、前記被処理物を収容した状態で前記加熱処理部の内部を真空で前記被処理物を処理することを特徴とするものである。 Moreover, the heat treatment apparatus according to the above-described invention is a heat treatment apparatus for performing heat treatment on a workpiece to which metal fine particles are applied to sinter the fine particles, and having the workpiece to be processed therein. A heat treatment unit that performs the heat treatment on the object to be processed, and processing the object to be processed in a vacuum inside the heat treatment unit in a state in which the object to be processed is accommodated. It is a feature.
[作用・効果]本発明に係る加熱処理装置によれば、真空処理過程を備えた発明(前者の発明)を好適に実施することができる。 [Operation / Effect] According to the heat treatment apparatus of the present invention, the invention having the vacuum treatment process (the former invention) can be suitably implemented.
また、上述した発明に係る加熱処理装置とは別の加熱処理装置は、金属の微粒子が塗布された被処理物に対して加熱処理を行って、前記微粒子を焼結させる加熱処理装置であって、内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理部と、その加熱処理の後で前記被処理物に対してプラズマ処理を行うプラズマ処理部とを備えることを特徴とするものである。 Further, a heat treatment apparatus different from the heat treatment apparatus according to the above-described invention is a heat treatment apparatus for performing heat treatment on a workpiece to which metal fine particles are applied and sintering the fine particles. A heat treatment unit that houses the object to be treated and performs the heat treatment on the object to be treated, and a plasma treatment unit that performs a plasma treatment on the object to be treated after the heat treatment. It is characterized by providing.
[作用・効果]本発明に係る加熱処理装置によれば、プラズマ処理過程を備えた発明(後者の発明)を好適に実施することができる。 [Operation / Effect] According to the heat treatment apparatus of the present invention, the invention having the plasma treatment process (the latter invention) can be suitably implemented.
また、上述したこれらの発明に係る加熱処理装置の好ましい一例は、被処理物を送り込む送り込み手段を備え、その送り込み手段によって被処理物が送り込まれながら、処理をそれぞれ行うことである。 In addition, a preferable example of the heat treatment apparatus according to these inventions described above includes a feeding unit that feeds an object to be processed, and performs processing while the object to be processed is fed by the feeding unit.
本発明に係る加熱処理方法によれば、加熱処理過程の他に、真空処理過程あるいはプラズマ処理過程を組み合わせることで、加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。
また、本発明に係る加熱処理装置によれば、これらの加熱処理方法を好適に実施することができる。
According to the heat treatment method of the present invention, in addition to the heat treatment process, a vacuum treatment process or a plasma treatment process is combined to reduce the heating time to a low temperature, while preventing thermal deformation and damage due to heat. The fine particles can be efficiently sintered at a low temperature.
Moreover, according to the heat processing apparatus which concerns on this invention, these heat processing methods can be implemented suitably.
以下、図面を参照して本発明の実施例1を説明する。
図1は、実施例1に係る加熱処理装置の概略図である。後述する実施例2も含めて、本実施例1では、被処理物として、ローラによって送り込まれるPETを例に採って説明する。
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram of a heat treatment apparatus according to the first embodiment. In Example 1, including Example 2 to be described later, PET that is fed by a roller will be described as an example of an object to be processed.
本実施例1では、加熱処理装置は、図1に示すように、チャンバー1を備えており、チャンバー1内にランプヒータ2を備えている。チャンバー1の内部を減圧して真空にするために真空ポンプ3を設けている。図1ではランプヒータ2を1つのみ図示しているが、複数であってもよい。本実施例1では、チャンバー1は、本発明における加熱処理部に相当する。 In the first embodiment, the heat treatment apparatus includes a chamber 1 and a lamp heater 2 in the chamber 1 as shown in FIG. A vacuum pump 3 is provided in order to reduce the pressure inside the chamber 1 to make a vacuum. Although only one lamp heater 2 is shown in FIG. 1, a plurality of lamp heaters 2 may be provided. In Example 1, the chamber 1 corresponds to the heat treatment unit in the present invention.
その他に、加熱処理装置は、チャンバー1内に長尺状の被処理物(ワーク)Wを図1中の矢印に示す方向に送り込むローラ4を備えている。図1ではローラ4を2つ図示しているが、3つ以上であってもよい。ワークWは、銀の微粒子が塗布されたPET(ポリエチレンテレフタレート)である。各実施例では銀の微粒子を例に採って説明しているが、金や銅の微粒子などに例示されるように、通常において印刷技術(インクジェットやスクリーン印刷)で用いられる金属の微粒子であれば、塗布される微粒子については特に限定されない。ローラ4は、本発明における送り込み手段に相当し、ワークWは、本発明における被処理物に相当する。 In addition, the heat treatment apparatus includes a roller 4 that feeds a long workpiece (workpiece) W into the chamber 1 in the direction indicated by the arrow in FIG. Although two rollers 4 are shown in FIG. 1, three or more rollers may be used. The workpiece W is PET (polyethylene terephthalate) coated with silver fine particles. In each example, silver fine particles are described as examples. However, as exemplified by gold and copper fine particles, metal fine particles that are usually used in printing technology (inkjet or screen printing) may be used. The fine particles to be applied are not particularly limited. The roller 4 corresponds to the feeding means in the present invention, and the workpiece W corresponds to the workpiece in the present invention.
続いて、本実施例1に係る加熱処理方法について、図2を参照して説明する。図2は、実施例1に係る加熱処理方法の一連の流れを示すフローチャートである。図2では、ステップS1の段階では、チャンバー1内は、真空ポンプ3により減圧されて既に真空となっており、ランプヒータ2によってランプヒータ2付近では所定の温度(例えば100℃程度)に既に達しているものとして説明する。 Then, the heat processing method which concerns on the present Example 1 is demonstrated with reference to FIG. FIG. 2 is a flowchart illustrating a series of flows of the heat treatment method according to the first embodiment. In FIG. 2, in the step S <b> 1, the inside of the chamber 1 is already evacuated by the vacuum pump 3, and has already reached a predetermined temperature (for example, about 100 ° C.) near the lamp heater 2 by the lamp heater 2. Explain that it is.
(ステップS1)ワークの送り込み
ワークWとして、銀の微粒子が塗布されたPETをローラ4により送り込む。そして、2つのローラ2間に設けられたランプヒータ2にワークWを送り込む。
(Step S <b> 1) Feeding the Work As the work W, PET coated with silver fine particles is fed by the roller 4. Then, the workpiece W is fed into the lamp heater 2 provided between the two rollers 2.
(ステップS2)加熱処理・真空処理
ワークWを送り込みつつ、送り込まれたワークWをランプヒータ2が加熱することで、ワークWに対して加熱処理を行う。なお、チャンバー1内は真空となっているので、真空でワークWを処理することになる。したがって、このステップS2は、本発明における加熱処理過程に相当し、本発明における真空処理過程にも相当する。そして、加熱処理過程と真空処理過程とを並行に行うことになる。
(Step S2) Heat Treatment / Vacuum Treatment While the workpiece W is being fed, the workpiece W is heated by the lamp heater 2 so that the workpiece W is heated. Since the inside of the chamber 1 is in a vacuum, the workpiece W is processed in a vacuum. Therefore, this step S2 corresponds to the heat treatment process in the present invention, and also corresponds to the vacuum treatment process in the present invention. Then, the heat treatment process and the vacuum treatment process are performed in parallel.
(ステップS3)ワークがない?
送り込まれるワークWがなくなるまで、ワークWを送り込みつつステップS2を繰り返し行う。送り込まれるワークWがなくなれば、一連の加熱処理を終了する。
(Step S3) Is there no work?
Step S2 is repeated while feeding the workpiece W until there is no workpiece W to be fed. When there are no more workpieces W to be sent, the series of heat treatment is finished.
本実施例1に係る加熱処理方法によれば、ステップS2での加熱処理過程は、加熱処理部(本実施例1ではチャンバー1)の内部に被処理物(ワーク)Wを収容して、ワークWに対して加熱処理を行い、従来の加熱処理での過程に相当する。この加熱処理過程とは別に、ステップS2での真空処理過程は、ワークWを収容した状態でチャンバー1の内部を真空でワークWを処理する。この真空処理過程を組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間も短く済むのでワークWへの損傷も少なく、表裏面の温度差も緩和されワークWの基材自体の損傷も少なくなる。その結果、加熱時間を低減させて低温(本実施例1では100℃程度)にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。 According to the heat treatment method according to the first embodiment, the heat treatment process in step S2 is performed by accommodating the workpiece (workpiece) W in the heat treatment section (chamber 1 in the first embodiment), The heat treatment is performed on W, which corresponds to the conventional heat treatment process. Apart from this heat treatment process, the vacuum process in step S2 processes the workpiece W in a vacuum in the chamber 1 in a state in which the workpiece W is accommodated. By combining this vacuum processing process, uniform heating can be achieved, the processing uniformity can be improved, and the heating time can be shortened, so there is little damage to the workpiece W, the temperature difference between the front and back surfaces is reduced, and the workpiece W base is reduced. Damage to the material itself is also reduced. As a result, the heating time is reduced to a low temperature (about 100 ° C. in the first embodiment), and the fine particles can be efficiently sintered at a low temperature while preventing thermal deformation and damage due to heat.
本実施例1では、上述の加熱処理過程と上述の真空処理過程とをステップS2で並行に行うことで、真空でワークWに対して加熱処理を行っている。ステップS2での加熱処理過程での加熱処理で本実施例1のようにランプヒータ2を用いた場合には、大気圧下での空気などに代表されるガスなどにより熱を均一に分布させなくとも、真空下で熱が均一に分布し、加熱処理過程と真空処理過程とをステップS2で並行に行い、真空でワークWに対して加熱処理を行うことができる。 In the first embodiment, the heat treatment process and the vacuum treatment process described above are performed in parallel in step S2, so that the heat treatment is performed on the workpiece W in a vacuum. When the lamp heater 2 is used in the heat treatment in the heat treatment process in step S2 as in the first embodiment, the heat is not uniformly distributed by a gas typified by air or the like under atmospheric pressure. In both cases, heat is uniformly distributed under vacuum, and the heat treatment process and the vacuum treatment process are performed in parallel in step S2, and the workpiece W can be heat-treated in vacuum.
本実施例1に係る加熱処理装置は、内部にワークWを収容して、ワークWに対して加熱処理を行うチャンバー1を備え、ワークWを収容した状態でチャンバー1の内部を真空でワークWを処理している。上述の構成を備えた本実施例1に係る加熱処理装置によれば、ステップS2での真空処理過程を備えた本実施例1に係る加熱処理方法を好適に実施することができる。 The heat treatment apparatus according to the first embodiment includes a chamber 1 that accommodates a workpiece W therein and performs heat treatment on the workpiece W. The workpiece W is accommodated in a vacuum while the workpiece W is accommodated. Is processing. According to the heat treatment apparatus according to the first embodiment having the above-described configuration, the heat treatment method according to the first embodiment having the vacuum treatment process in step S2 can be suitably performed.
本実施例1では、ワークWを送り込む送り込み手段(本実施例1ではローラ4)を備え、そのローラ4によってワークWが送り込まれながら、処理をそれぞれ行っている。 In the first embodiment, a feeding means (roller 4 in the first embodiment) for feeding the workpiece W is provided, and the processing is performed while the workpiece W is being fed by the roller 4.
次に、図面を参照して本発明の実施例2を説明する。
図3は、実施例2に係る加熱処理装置の概略図である。本実施例2では、上述した実施例1と同様に、被処理物として、ローラによって送り込まれるPETを例に採って説明する。なお、上述した実施例1と同じ構成については同じ符号を付してその説明を省略する。
Next, Embodiment 2 of the present invention will be described with reference to the drawings.
FIG. 3 is a schematic diagram of a heat treatment apparatus according to the second embodiment. In the second embodiment, as in the first embodiment described above, the PET to be sent by a roller will be described as an example of the object to be processed. In addition, the same code | symbol is attached | subjected about the same structure as Example 1 mentioned above, and the description is abbreviate | omitted.
上述した実施例1と同様に、加熱処理装置は、図3に示すように、チャンバー1とランプヒータ2と真空ポンプ3とローラ4とを備えている。本実施例2では、加熱処理装置は、プラズマのためのガス(図3では「Gas」で表記)を供給する供給流路5と、プラズマのための電力(図3では「Power」で表記)を印加する電極6とを備えている。図3では供給流路5を2つ図示しているが、単数であってもよいし、3つ以上であってもよい。プラズマのためのガスについては、水素や酸素や窒素であるが、アルゴン(Ar)やヘリウム(He)などの希ガスなどに例示されるように、通常においてプラズマで用いられるガスであれば、ガスについては特に限定されない。本実施例2においても、ローラ4は、本発明における送り込み手段に相当し、ワークWは、本発明における被処理物に相当する。 As in the first embodiment described above, the heat treatment apparatus includes a chamber 1, a lamp heater 2, a vacuum pump 3, and a roller 4, as shown in FIG. In the second embodiment, the heat treatment apparatus includes a supply flow path 5 for supplying a gas for plasma (indicated as “Gas” in FIG. 3), and electric power for plasma (indicated as “Power” in FIG. 3). And an electrode 6 for applying. Although two supply flow paths 5 are illustrated in FIG. 3, the number may be one or three or more. The gas for plasma is hydrogen, oxygen, or nitrogen, but any gas that is normally used in plasma as exemplified by rare gases such as argon (Ar) and helium (He) can be used. Is not particularly limited. Also in the second embodiment, the roller 4 corresponds to the feeding means in the present invention, and the workpiece W corresponds to the workpiece in the present invention.
ただし、プラズマのためのガスについては、上述のヘリウム(He)や水素(H2)が最適である。ヘリウムや水素は、分子サイズの大きい元素と比べて内部へ浸透するので、ワークWの表面へのダメージ(損傷)が緩和される。なお、上述した特許文献1では水素単体を用いてプラズマを生成している旨が開示されているが、水素単体のみならず、ヘリウム単体を用いてプラズマを生成してもよいし、ヘリウムと水素との混合ガスを用いてプラズマを生成してもよい。 However, the above-mentioned helium (He) and hydrogen (H 2 ) are optimal for the gas for plasma. Since helium and hydrogen penetrate into the inside as compared with an element having a large molecular size, damage (damage) to the surface of the workpiece W is alleviated. In addition, in Patent Document 1 described above, it is disclosed that plasma is generated using only hydrogen, but plasma may be generated using not only hydrogen but also helium alone, or helium and hydrogen. Plasma may be generated using a mixed gas.
水素は還元効果があるので、酸化しやすい材料からなるワークWに対してプラズマ処理を行う場合には、当該ワークWに対して酸化を防止しつつプラズマ処理を行うことができる。ただし、安全性の向上を考えると、水素単体よりも、ヘリウム単体あるいはヘリウムと水素との混合ガスを用いてプラズマ処理を行う方がより好ましい。全体の3%程度の水素を混ぜたヘリウムと水素との混合ガスであっても、還元効果があり、水素単体を用いてプラズマ処理を行ったときと(ダメージ緩和の効果を奏した)同等の処理を行うことができる。したがって、銅(Cu)等の酸化しやすい金属にヘリウムと水素との混合ガスは有効である。また、水素単体と比較して安全性も向上する。また、還元量により適正状態が存在するような材料については、水素のみでは還元し過ぎる場合があり、ヘリウムと水素との混合比を調整することにより、還元量を軽減することが可能である。 Since hydrogen has a reducing effect, when plasma processing is performed on the workpiece W made of a material that easily oxidizes, the plasma processing can be performed on the workpiece W while preventing oxidation. However, in view of improving safety, it is more preferable to perform plasma treatment using helium alone or a mixed gas of helium and hydrogen than hydrogen alone. Even if it is a mixed gas of helium and hydrogen mixed with about 3% of the total hydrogen, there is a reduction effect, which is equivalent to when plasma treatment is performed using hydrogen alone (having an effect of mitigating damage) Processing can be performed. Therefore, a mixed gas of helium and hydrogen is effective for a metal that is easily oxidized such as copper (Cu). In addition, safety is improved as compared with hydrogen alone. In addition, a material that has an appropriate state depending on the amount of reduction may be reduced too much by hydrogen alone, and the amount of reduction can be reduced by adjusting the mixing ratio of helium and hydrogen.
また、ヘリウム単体を用いてプラズマ処理を行う場合には、酸化しない材料からなるワークWに対しては水素単体を用いてプラズマ処理を行ったときと(ダメージ緩和の効果を奏した)同等の処理を行うことができる。また、水素単体と比較して安全性も向上する。 Further, in the case where plasma processing is performed using helium alone, the workpiece W made of a material that is not oxidized is equivalent to the plasma processing using hydrogen alone (with the effect of mitigating damage). It can be performed. In addition, safety is improved as compared with hydrogen alone.
本実施例2では、供給流路5を通してチャンバー1内にガスを供給して、電力を電極6に印加して、プラズマ放電によりプラズマをチャンバー1内で発生させる。そして、ローラ4により送り込まれたワークWに対してプラズマ処理を行う。したがって、本実施例2では、チャンバー1は、本発明における加熱処理部に相当し、本発明におけるプラズマ処理部にも相当する。そして、チャンバー1の加熱処理部はプラズマ処理部を兼用することになる。 In the second embodiment, gas is supplied into the chamber 1 through the supply flow path 5, electric power is applied to the electrode 6, and plasma is generated in the chamber 1 by plasma discharge. Then, plasma processing is performed on the work W fed by the roller 4. Therefore, in the second embodiment, the chamber 1 corresponds to the heat treatment unit in the present invention and also corresponds to the plasma processing unit in the present invention. And the heat processing part of the chamber 1 also serves as a plasma processing part.
続いて、本実施例2に係る加熱処理方法について、図4を参照して説明する。図4は、実施例2に係る加熱処理方法の一連の流れを示すフローチャートである。上述した実施例1の図2と同様に、本実施例2の図4では、ステップT1の段階では、チャンバー1内は、真空ポンプ3により減圧されて既に真空となっており、ランプヒータ2によってランプヒータ2付近では所定の温度(例えば100℃程度)に既に達しているものとして説明する。 Next, the heat treatment method according to the second embodiment will be described with reference to FIG. FIG. 4 is a flowchart illustrating a series of flows of the heat treatment method according to the second embodiment. Similar to FIG. 2 of the first embodiment described above, in FIG. 4 of the second embodiment, the chamber 1 is already evacuated by the vacuum pump 3 at the stage of step T1 and is already evacuated by the lamp heater 2. A description will be given assuming that a predetermined temperature (for example, about 100 ° C.) has already been reached in the vicinity of the lamp heater 2.
(ステップT1)ワークの送り込み
ワークWとして、銀の微粒子が塗布されたPETをローラ4により送り込む。このステップT1は、上述した実施例1の図2のステップS1と同じである。
(Step T <b> 1) Feeding of Work As the work W, PET coated with silver fine particles is fed by the roller 4. This step T1 is the same as step S1 of FIG.
(ステップT2)加熱処理・真空処理
ワークWを送り込みつつ、送り込まれたワークWをランプヒータ2が加熱することで、ワークWに対して加熱処理を行う。このステップT2は、上述した実施例1の図2のステップS2と同じである。したがって、本実施例2においても、このステップT2は、本発明における加熱処理過程に相当し、本発明における真空処理過程にも相当する。そして、本実施例2においても、加熱処理過程と真空処理過程とを並行に行うことになる。
(Step T2) Heat Treatment / Vacuum Treatment While the workpiece W is being fed, the workpiece W is heated by the lamp heater 2 so that the workpiece W is heated. This step T2 is the same as step S2 of FIG. Therefore, also in the second embodiment, this step T2 corresponds to the heat treatment process in the present invention and also corresponds to the vacuum treatment process in the present invention. And also in the present Example 2, a heat processing process and a vacuum processing process are performed in parallel.
(ステップT3)ワークがない?
送り込まれるワークWがなくなるまで、ワークWを送り込みつつステップT2を繰り返し行う。送り込まれるワークWがなくなれば、次のステップT4に進む。
(Step T3) Is there no work?
Step T2 is repeated while feeding the workpiece W until there is no workpiece W to be fed. If there is no workpiece W to be sent, the process proceeds to the next step T4.
(ステップT4)プラズマ発生
次に、供給流路5を通してチャンバー1内にガスを所定の圧力(例えば20パスカル程度)に達するまで供給する。そして、2KW程度の電力を電極6に印加して、プラズマ放電によりプラズマをチャンバー1内で発生させる。
(Step T4) Plasma Generation Next, gas is supplied into the chamber 1 through the supply flow path 5 until a predetermined pressure (for example, about 20 Pascals) is reached. Then, a power of about 2 KW is applied to the electrode 6 to generate plasma in the chamber 1 by plasma discharge.
(ステップT5)ワークの再度の送り込み
ステップT2での加熱処理・真空処理後のワークWをローラ4により再度に送り込む。なお、ランプヒータ2の付近に設けられたローラ4とは別のローラによって加熱処理・真空処理後のワークWを送り込んでもよい。
(Step T5) Refeeding of work The work W after the heat treatment / vacuum treatment in Step T2 is fed again by the roller 4. The work W after the heat treatment / vacuum treatment may be fed by a roller different from the roller 4 provided in the vicinity of the lamp heater 2.
(ステップT6)プラズマ処理
ワークWを送り込みつつ、送り込まれたワークWをチャンバー1内のプラズマに送り込むことで、ワークWに対してプラズマ処理を行う。このステップT6は、本発明におけるプラズマ処理過程に相当する。
(Step T6) Plasma processing The workpiece W is fed into the plasma in the chamber 1 while feeding the workpiece W, so that the workpiece W is subjected to plasma treatment. This step T6 corresponds to the plasma processing process in the present invention.
(ステップT7)ワークがない?
送り込まれるワークWがなくなるまで、ワークWを送り込みつつステップT6を繰り返し行う。送り込まれるワークWがなくなれば、一連の加熱処理を終了する。
(Step T7) Is there no work?
Step T6 is repeatedly performed while feeding the workpiece W until there is no workpiece W to be fed. When there are no more workpieces W to be sent, the series of heat treatment is finished.
本実施例2に係る加熱処理方法によれば、ステップS2での真空処理過程を備えた実施例1と同様に、ステップT2での加熱処理過程は、加熱処理部(本実施例2ではチャンバー1)の内部に被処理物(ワーク)Wを収容して、ワークWに対して加熱処理を行い、従来の加熱処理での過程に相当する。この加熱処理過程とは別に、この加熱処理過程とは別に、ステップT2での加熱処理過程の後でワークWに対してプラズマ処理を行うステップT6でのプラズマ処理過程を備えている。このプラズマ処理過程を組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間やプラズマ照射時間も短く済むのでワークWへの損傷も少なく、表裏面の温度差も緩和されワークWの基材自体の損傷も少なくなる。その結果、加熱時間を低減させて低温(本実施例2では100℃程度)にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。また、プラズマ処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 According to the heat treatment method according to the second embodiment, similarly to the first embodiment including the vacuum treatment process in step S2, the heat treatment process in step T2 is performed by the heat treatment unit (chamber 1 in the second embodiment). The workpiece (work) W is accommodated in the interior of the workpiece, and the workpiece W is subjected to heat treatment, which corresponds to the conventional heat treatment process. Apart from this heat treatment process, a plasma treatment process in step T6 is performed separately from the heat treatment process, in which the workpiece W is subjected to plasma treatment after the heat treatment process in step T2. By combining this plasma treatment process, it is possible to heat uniformly, improving the uniformity of treatment, shortening the heating time and plasma irradiation time, so there is less damage to the workpiece W, and the temperature difference between the front and back surfaces is reduced. Damage to the substrate of the work W itself is also reduced. As a result, the heating time is reduced to a low temperature (about 100 ° C. in the second embodiment), and the fine particles can be efficiently sintered at a low temperature while preventing thermal deformation and damage due to heat. Further, by performing the heating in advance of the plasma treatment, the temperature fluctuation range is reduced, and the reproducibility of the treatment can be improved.
ステップT6でのプラズマ処理過程を備えた本実施例2では、好ましくは、ステップS2での真空処理過程を備えた実施例1を組み合わせている。すなわち、ワークWを収容した状態でチャンバー1の内部を真空でワークWを処理する真空処理過程(ステップT2)を備え、その真空処理過程の後で上述のステップT6でのプラズマ処理過程でのプラズマ処理を行っている。これらの真空処理過程およびプラズマ処理を組み合わせることで、上述した処理の均一性の向上、加熱時間やプラズマ照射時間の低減、これらの時間の低減によるワークWへの損傷の防止、表裏面の温度差の緩和によるワークWの基材自体への損傷の防止をより一層実現することができる。加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。 In the second embodiment including the plasma processing process in step T6, the first embodiment including the vacuum processing process in step S2 is preferably combined. That is, a vacuum processing process (step T2) is performed in which the workpiece W is processed in a vacuum in the chamber 1 in a state in which the workpiece W is accommodated, and the plasma in the plasma processing process in the above-described step T6 after the vacuum processing process. Processing is in progress. By combining these vacuum processing steps and plasma processing, improvement of the above processing uniformity, reduction of heating time and plasma irradiation time, prevention of damage to the workpiece W due to reduction of these times, temperature difference between the front and back surfaces It is possible to further prevent the workpiece W from being damaged by the relaxation of the workpiece W. The fine particles can be efficiently sintered at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat.
本実施例2では、上述した実施例1と同様に上述の加熱処理過程と上述の真空処理過程とをステップT2で並行に行うことで、真空でワークWに対して加熱処理を行っている。そして、その後でステップT6でのプラズマ処理過程でのプラズマ処理を行っている。実施例1、2のようにランプヒータ2を用いた場合には、真空下で熱が均一に分布し、加熱処理過程と真空処理過程とをステップS2で並行に行いつつ、その後でステップT6においてプラズマ処理を行い、真空でワークWに対して加熱処理を行うことができる。 In the second embodiment, similarly to the first embodiment described above, the heat treatment process and the vacuum treatment process described above are performed in parallel at step T2, so that the heat treatment is performed on the workpiece W in a vacuum. After that, plasma processing is performed in the plasma processing process in step T6. When the lamp heater 2 is used as in the first and second embodiments, heat is uniformly distributed under vacuum, and the heat treatment process and the vacuum treatment process are performed in parallel in step S2, and then in step T6. Plasma processing is performed, and the heat treatment can be performed on the workpiece W in a vacuum.
本実施例2に係る加熱処理装置は、内部にワークWを収容して、ワークWに対して加熱処理を行うチャンバー1を備え、その加熱処理の後でワークWに対してプラズマ処理をプラズマ処理部(本実施例2では同じチャンバー1)が行っている。上述の構成を備えた本実施例2に係る加熱処理装置によれば、ステップT6でのプラズマ処理過程を備えた本実施例2に係る加熱処理方法を好適に実施することができる。 The heat treatment apparatus according to the second embodiment includes a chamber 1 that accommodates a work W therein and performs heat treatment on the work W, and performs plasma treatment on the work W after the heat treatment. (The same chamber 1 in this embodiment 2) is performed. According to the heat treatment apparatus according to the second embodiment having the above-described configuration, the heat treatment method according to the second embodiment having the plasma treatment process in step T6 can be suitably performed.
本実施例2では、加熱処理部はプラズマ処理部をチャンバー1として兼用し、好ましくは、チャンバー1の加熱処理部の内部に加熱処理後のワークWを収容した状態でプラズマ処理を行っている。加熱処理部がプラズマ処理部を兼用することで、同じ加熱処理部(すなわちチャンバー1)にて加熱処理に引き続いてプラズマ処理を行うことができ、効率良く加熱処理およびプラズマ処理を行うことで、装置を簡易化することができる。 In the second embodiment, the heat treatment unit also serves as the plasma processing unit as the chamber 1 and preferably performs the plasma treatment in a state where the heat-treated workpiece W is accommodated in the heat treatment unit of the chamber 1. Since the heat treatment unit also serves as the plasma treatment unit, the same heat treatment unit (that is, the chamber 1) can perform the plasma treatment subsequent to the heat treatment, and the heat treatment and the plasma treatment can be performed efficiently. Can be simplified.
上述した実施例1と同様に、本実施例2では、ワークWを送り込む送り込み手段(本実施例2ではローラ4)を備え、そのローラ4によってワークWが送り込まれながら、処理をそれぞれ行っている。 Similar to the above-described first embodiment, the second embodiment includes a feeding means (roller 4 in the second embodiment) that feeds the workpiece W, and performs processing while the workpiece W is fed by the roller 4. .
次に、図面を参照して本発明の実施例3を説明する。
図5は、実施例3に係る加熱処理装置の概略図である。後述する実施例4も含めて、本実施例3では、被処理物として、枚葉処理されるPETを例に採って説明する。なお、上述した実施例1、2と同じ構成については同じ符号を付してその説明を省略する。
Next, Embodiment 3 of the present invention will be described with reference to the drawings.
FIG. 5 is a schematic diagram of a heat treatment apparatus according to the third embodiment. In Example 3, including Example 4 to be described later, PET to be processed as a workpiece will be described as an example. In addition, about the same structure as Example 1, 2 mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
上述した実施例1、2と同様に、加熱処理装置は、図5に示すように、チャンバー1と真空ポンプ3とを備えている。上述した実施例1、2と相違して、本実施例3では、加熱処理装置は、実施例1、2のランプヒータ2(図1または図3を参照)の替わりに電気ヒータ12を備えている。上述した実施例1と同様に、本実施例3においても、チャンバー1は、本発明における加熱処理部に相当する。 As in the first and second embodiments described above, the heat treatment apparatus includes a chamber 1 and a vacuum pump 3 as shown in FIG. Unlike the first and second embodiments described above, in the third embodiment, the heat treatment apparatus includes an electric heater 12 instead of the lamp heater 2 of the first and second embodiments (see FIG. 1 or FIG. 3). Yes. Similar to the first embodiment described above, also in the third embodiment, the chamber 1 corresponds to the heat treatment unit in the present invention.
また、本実施例3では、加熱処理装置は、枚葉処理の被処理物(ワーク)Wを載置するステージ14を備えている。このステージ14を備えることで実施例1、2のローラ4(図1または図3を参照)は本実施例3では不要となる。ステージ14内に上述の電気ヒータ12を設けている。図5では、ステージ14内に電気ヒータ12を設けているが、必ずしもステージ14内に電気ヒータ12を設ける必要はなく、ワークWの近傍に電気ヒータ12を設けてもよい。また、必ずしも電気ヒータ12である必要はなく、炭化ケイ素(SiC)からなるシリコンカーバイトのマイクロ波加熱ヒータや、上述した実施例1、2と同じランプヒータ2(図1または図3を参照)などに例示されるように、通常において加熱処理に用いられる加熱部であれば、チャンバー1内に設けられる加熱部については特に限定されない。ワークWは、本発明における被処理物に相当する。 In the third embodiment, the heat treatment apparatus includes a stage 14 on which a workpiece (workpiece) W for single wafer processing is placed. By providing this stage 14, the roller 4 of the first and second embodiments (see FIG. 1 or FIG. 3) is not required in the third embodiment. The electric heater 12 described above is provided in the stage 14. In FIG. 5, the electric heater 12 is provided in the stage 14, but the electric heater 12 is not necessarily provided in the stage 14, and the electric heater 12 may be provided in the vicinity of the workpiece W. The electric heater 12 is not necessarily required. The silicon carbide microwave heater made of silicon carbide (SiC) or the same lamp heater 2 as in the first and second embodiments (see FIG. 1 or FIG. 3). As illustrated in the above, the heating unit provided in the chamber 1 is not particularly limited as long as it is a heating unit normally used for heat treatment. The workpiece W corresponds to an object to be processed in the present invention.
続いて、本実施例3に係る加熱処理方法について、図6を参照して説明する。図6は、実施例3に係る加熱処理方法の一連の流れを示すフローチャートである。実施例1、2のランプヒータ2(図1または図3を参照)を用いずに本実施例3では電気ヒータ12を用いていることにより、上述した実施例1の図2や実施例2の図4とは相違して、本実施例3での図6では、大気圧下で熱を均一に分布させるために、先ずステップU1を行うものとして説明する。 Then, the heat processing method which concerns on the present Example 3 is demonstrated with reference to FIG. FIG. 6 is a flowchart illustrating a series of flows of the heat treatment method according to the third embodiment. Since the electric heater 12 is used in the third embodiment without using the lamp heater 2 of the first and second embodiments (see FIG. 1 or FIG. 3), the above-described FIG. 2 and the second embodiment of the first embodiment are used. Unlike FIG. 4, FIG. 6 in the third embodiment will be described assuming that step U1 is first performed in order to uniformly distribute heat under atmospheric pressure.
(ステップU1)大気圧下での加熱
先ず、大気圧の状態で電気ヒータ12を作動させて、チャンバー1内を大気圧下で加熱する。大気圧下で加熱することにより、大気圧下で熱を均一に分布させる。
(Step U1) Heating under atmospheric pressure First, the electric heater 12 is operated under atmospheric pressure to heat the chamber 1 under atmospheric pressure. By heating under atmospheric pressure, heat is evenly distributed under atmospheric pressure.
(ステップU2)ワークの載置
大気圧の状態で電気ヒータ12を作動させ続けた状態で、ワークWとして、銀の微粒子が塗布されたPETをステージ14に載置する。
(Step U2) Placement of Work The PET coated with silver fine particles is placed on the stage 14 as the work W in a state where the electric heater 12 is continuously operated in the atmospheric pressure state.
(ステップU3)加熱処理
大気圧の状態で電気ヒータ12を作動させ続けた状態で、ワークWをステージ14に載置すると、ステージ14内に設けられた電気ヒータ12がワークWを加熱することで、大気圧でワークWに対して加熱処理を行う。本実施例3では、このステップU3は、本発明における加熱処理過程に相当する。
(Step U3) Heat Treatment When the work W is placed on the stage 14 in a state where the electric heater 12 is continuously operated in the atmospheric pressure state, the electric heater 12 provided in the stage 14 heats the work W. The workpiece W is heated at atmospheric pressure. In the third embodiment, this step U3 corresponds to the heat treatment process in the present invention.
(ステップU4)真空引き・真空処理
電気ヒータ12を作動させ続けた状態で、加熱処理後でワークWをステージ14に載置してチャンバー1内に収容した状態でチャンバー1の内部を真空ポンプ3により減圧して真空にする真空引きを行う。この真空引きによって、チャンバー1内は真空となるので、真空でワークWを処理することになる。したがって、このステップU4は、本発明における真空処理過程に相当し、本発明における真空化過程にも相当する。そして、真空にした状態で電気ヒータ12を作動させ続けることで、真空にした状態で加熱処理を引き続き行う。
(Step U4) Vacuuming / Vacuum Processing The vacuum pump 3 is placed inside the chamber 1 while the electric heater 12 is continuously operated and the work W is placed on the stage 14 and accommodated in the chamber 1 after the heat treatment. The vacuum is reduced to reduce the pressure to a vacuum. Due to this evacuation, the inside of the chamber 1 is evacuated, and the workpiece W is processed in a vacuum. Therefore, this step U4 corresponds to the vacuum processing process in the present invention, and also corresponds to the vacuuming process in the present invention. Then, by continuing to operate the electric heater 12 in a vacuum state, the heat treatment is continuously performed in a vacuum state.
(ステップU5)ワークがない?
ステップU3,U4での加熱処理後、さらにはステップU4での真空処理後のワークWをチャンバー1から引き揚げる。枚葉処理の対象となるワークWがなくなるまで、真空から大気圧下に戻してステップU1に戻ってステップU1〜U5を繰り返し行う枚葉処理を行う。すなわち、ステップU1〜U5での処理をそれぞれ行った後で次のワークWをステージ14に載置することを繰り返すことで枚葉処理を行う。枚葉処理の対象となるワークWがなくなれば、一連の加熱処理を終了する。なお、次のワークWをステージ14に載置する際に、熱の均一性に影響がなければ、必ずしも真空から大気圧下に戻してステップU1に戻る必要はなく、ステップU5からステップU2に戻って、ステップU2〜U5を繰り返し行えばよい。
(Step U5) Is there no work?
After the heat treatment in Steps U3 and U4, the workpiece W after the vacuum treatment in Step U4 is further lifted from the chamber 1. Until there is no workpiece W to be subjected to the single wafer processing, the single wafer processing is performed by returning from the vacuum to the atmospheric pressure and returning to step U1 to repeat steps U1 to U5. That is, the single wafer processing is performed by repeatedly placing the next workpiece W on the stage 14 after performing the processing in steps U1 to U5. When there is no work W to be subjected to the single wafer processing, the series of heating processes is terminated. When the next workpiece W is placed on the stage 14, it is not always necessary to return from the vacuum to the atmospheric pressure and return to step U 1 if there is no effect on the heat uniformity, and return from step U 5 to step U 2. Steps U2 to U5 may be repeated.
本実施例3に係る加熱処理方法によれば、ステップS2あるいはステップT2での真空処理過程を備えた実施例1、2と同様に、ステップU3での加熱処理過程は、加熱処理部(本実施例3ではチャンバー1)の内部に被処理物(ワーク)Wを収容して、ワークWに対して加熱処理を行い、従来の加熱処理での過程に相当する。この加熱処理過程とは別に、ステップU4での真空処理過程は、ワークWを収容した状態でチャンバー1の内部を真空でワークWを処理する。この真空処理過程を組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間も短く済むのでワークWへの損傷も少なく、表裏面の温度差も緩和されワークWの基材自体の損傷も少なくなる。その結果、加熱時間を低減させて低温(本実施例3では100℃程度)にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。 According to the heat treatment method according to the third embodiment, similarly to the first and second embodiments including the vacuum treatment process at step S2 or step T2, the heat treatment process at step U3 is performed by the heat treatment unit (this embodiment). In Example 3, the workpiece (workpiece) W is accommodated in the chamber 1), and the workpiece W is subjected to heat treatment, which corresponds to the conventional heat treatment process. Apart from this heat treatment process, the vacuum process in step U4 processes the workpiece W in a vacuum in the chamber 1 in a state in which the workpiece W is accommodated. By combining this vacuum processing process, uniform heating can be achieved, the processing uniformity can be improved, and the heating time can be shortened, so there is little damage to the workpiece W, the temperature difference between the front and back surfaces is reduced, and the workpiece W base is reduced. Damage to the material itself is also reduced. As a result, the heating time can be reduced to a low temperature (about 100 ° C. in the third embodiment), and fine particles can be efficiently sintered at a low temperature while preventing thermal deformation and damage due to heat.
本実施例3では、ステップU3での加熱処理過程は、大気圧でワークWに対して加熱処理を行い、ステップU4での真空処理過程は、上述の大気圧での加熱処理過程の後でワークWを収容した状態でチャンバー1の内部を減圧して上述の真空にする真空化過程である。加熱処理過程と真空処理過程とを並行に行った実施例1、2と相違して、本実施例3の場合には、ステップU3での加熱処理過程は、大気圧でワークWに対して加熱処理を先に行い(すなわちプレヒートを行い)、ステップU3での大気圧での加熱処理過程(すなわちプレヒート)の後でワークWを収容した状態でチャンバー1の内部を減圧して真空にする真空引きをステップU4で行っている。本実施例3の場合には、大気圧下での空気などに代表されるガスなどにより加熱処理過程(プレヒート)で熱を均一に分布させた後に、加熱処理部の内部を減圧して真空にする真空引きを行うので、真空下で熱が均一に分布して微粒子を焼結させることができる。また、真空処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 In the third embodiment, the heat treatment process in step U3 heats the workpiece W at atmospheric pressure, and the vacuum treatment process in step U4 is performed after the above-described heat treatment process at atmospheric pressure. This is a evacuation process in which the inside of the chamber 1 is depressurized to contain the above-described vacuum while W is accommodated. Unlike the first and second embodiments in which the heat treatment process and the vacuum treatment process are performed in parallel, in the case of the present third embodiment, the heat treatment process in Step U3 heats the workpiece W at atmospheric pressure. The process is performed first (that is, preheating is performed), and after the heat treatment process at atmospheric pressure (that is, preheating) in Step U3, the inside of the chamber 1 is evacuated and vacuumed in a state where the workpiece W is accommodated. In step U4. In the case of Example 3, after the heat is uniformly distributed in the heat treatment process (preheating) with a gas typified by air under atmospheric pressure, the inside of the heat treatment unit is depressurized and evacuated. Since vacuuming is performed, fine particles can be sintered by uniformly distributing heat under vacuum. Further, by performing heating in advance of vacuum processing, the temperature fluctuation range is reduced, and the reproducibility of processing can be improved.
本実施例3の図6では、大気圧での加熱処理過程(ステップU4も含む)の途中でステップU4で真空化過程を行って、真空にした状態で加熱処理を引き続き行っている。 In FIG. 6 of the third embodiment, the evacuation process is performed in step U4 in the middle of the heat treatment process (including step U4) at atmospheric pressure, and the heat treatment is continuously performed in a vacuum state.
本実施例3に係る加熱処理装置は、上述した実施例1と同様に、内部にワークWを収容して、ワークWに対して加熱処理を行うチャンバー1を備え、ワークWを収容した状態でチャンバー1の内部を真空でワークWを処理している。上述の構成を備えた本実施例3に係る加熱処理装置によれば、ステップU4での真空処理過程を備えた本実施例3に係る加熱処理方法を好適に実施することができる。 As in the first embodiment described above, the heat treatment apparatus according to the third embodiment includes the chamber 1 in which the workpiece W is housed and heat-treats the workpiece W, and the workpiece W is housed. The workpiece W is processed in a vacuum inside the chamber 1. According to the heat treatment apparatus according to the third embodiment having the above-described configuration, the heat treatment method according to the third embodiment having the vacuum processing process in step U4 can be suitably performed.
上述した実施例1、2と相違して、本実施例3では、ワークWを載置する載置台(本実施例3ではステージ14)をチャンバー1の内部に配置し、対象となるワークWに対して処理をそれぞれ行った後で次のワークWをステージ14に載置することを繰り返すことで枚葉処理を行っている。 Unlike the above-described first and second embodiments, in the third embodiment, a mounting table (the stage 14 in the third embodiment) on which the work W is placed is disposed inside the chamber 1, and the target work W is placed. On the other hand, the single wafer processing is performed by repeatedly placing the next workpiece W on the stage 14 after each processing.
次に、図面を参照して本発明の実施例4を説明する。
図7は、実施例4に係る加熱処理装置の概略図である。本実施例4では、上述した実施例3と同様に、被処理物として、枚葉処理されるPETを例に採って説明する。なお、上述した実施例1〜3と同じ構成については同じ符号を付してその説明を省略する。
Next, Embodiment 4 of the present invention will be described with reference to the drawings.
FIG. 7 is a schematic diagram of a heat treatment apparatus according to the fourth embodiment. In the fourth embodiment, as in the third embodiment described above, PET to be processed as a processing object will be described as an example. In addition, about the same structure as Examples 1-3 mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
上述した実施例1〜3と同様に、加熱処理装置は、図7に示すように、チャンバー1と真空ポンプ3とを備えている。上述した実施例3と同様に、本実施例4では、加熱処理装置は、実施例1、2のランプヒータ2(図1または図3を参照)の替わりに電気ヒータ12を備えている。 As in the first to third embodiments, the heat treatment apparatus includes a chamber 1 and a vacuum pump 3 as shown in FIG. Similar to the third embodiment described above, in the fourth embodiment, the heat treatment apparatus includes an electric heater 12 instead of the lamp heater 2 of the first and second embodiments (see FIG. 1 or FIG. 3).
また、上述した実施例3と同様に、本実施例4では、枚葉処理の被処理物(ワーク)Wを載置するステージ14を備えている。このステージ14を備えることで実施例1、2のローラ4(図1または図3を参照)は本実施例4では不要となる。ステージ14内に上述の電気ヒータ12を設けている。上述した実施例3と同様に、本実施例4においても、ワークWは、本発明における被処理物に相当する。 Similarly to the above-described third embodiment, the fourth embodiment includes a stage 14 on which a workpiece (workpiece) W for single wafer processing is placed. By providing this stage 14, the rollers 4 of the first and second embodiments (see FIG. 1 or FIG. 3) are not necessary in the fourth embodiment. The electric heater 12 described above is provided in the stage 14. Similar to the third embodiment described above, also in the fourth embodiment, the workpiece W corresponds to the workpiece in the present invention.
上述した実施例2と同様に、本実施例4では、プラズマ処理を行うために、加熱処理装置は、供給流路5と電極6とを備えている。上述した実施例2と同様に、本実施例4においても、チャンバー1は、本発明における加熱処理部に相当し、本発明におけるプラズマ処理部にも相当する。そして、チャンバー1の加熱処理部はプラズマ処理部を兼用することになる。 Similar to the second embodiment described above, in the fourth embodiment, the heat treatment apparatus includes a supply flow path 5 and an electrode 6 in order to perform plasma processing. Similar to the second embodiment described above, also in the fourth embodiment, the chamber 1 corresponds to the heat treatment section in the present invention and also corresponds to the plasma processing section in the present invention. And the heat processing part of the chamber 1 also serves as a plasma processing part.
以上の説明から明らかなように、本実施例4では、プラズマ処理を行うための供給流路5と電極6とを備えた実施例2の構造(図3を参照)と、ランプヒータ2(図1または図3を参照)の替わりに電気ヒータ12を備え、ローラ4(図1または図3を参照)の替わりに枚葉処理のためのステージ14を備えた実施例3の構造(図5を参照)とを組み合わせた構造となっている。したがって、図3の実施例2の構造と、図5の実施例3の構造とを組み合わせれば、図7の本実施例4の構造となる。 As is apparent from the above description, in the fourth embodiment, the structure of the second embodiment (see FIG. 3) including the supply flow path 5 and the electrode 6 for performing plasma processing, and the lamp heater 2 (see FIG. 3). 1 (see FIG. 3), an electric heater 12 is provided, and the roller 4 (see FIG. 1 or FIG. 3) is replaced with a stage 14 for sheet processing (see FIG. 5). (See also). Therefore, when the structure of Example 2 in FIG. 3 and the structure of Example 3 in FIG. 5 are combined, the structure of Example 4 in FIG. 7 is obtained.
続いて、本実施例4に係る加熱処理方法について、図8を参照して説明する。図8は、実施例4に係る加熱処理方法の一連の流れを示すフローチャートである。上述した実施例3の図6と同様に、本実施例4の図8では、大気圧下で熱を均一に分布させるために、先ずステップV1を行うものとして説明する。 Then, the heat processing method which concerns on the present Example 4 is demonstrated with reference to FIG. FIG. 8 is a flowchart illustrating a series of flows of the heat treatment method according to the fourth embodiment. Similar to FIG. 6 of the third embodiment described above, FIG. 8 of the fourth embodiment will be described on the assumption that step V1 is first performed in order to uniformly distribute heat at atmospheric pressure.
(ステップV1)大気圧下での加熱
先ず、大気圧の状態で電気ヒータ12を作動させて、チャンバー1内を大気圧下で加熱することにより、大気圧下で熱を均一に分布させる。このステップV1は、上述した実施例3の図6のステップU1と同じである。
(Step V1) Heating under atmospheric pressure First, the electric heater 12 is operated under atmospheric pressure to heat the chamber 1 under atmospheric pressure, thereby uniformly distributing heat under atmospheric pressure. This step V1 is the same as step U1 of FIG.
(ステップV2)ワークの載置
大気圧の状態で電気ヒータ12を作動させ続けた状態で、ワークWとして、銀の微粒子が塗布されたPETをステージ14に載置する。このステップV2は、上述した実施例3の図6のステップU2と同じである。
(Step V2) Placement of Work The PET coated with silver fine particles is placed on the stage 14 as the work W in a state where the electric heater 12 is continuously operated in the atmospheric pressure state. This step V2 is the same as step U2 of FIG.
(ステップV3)加熱処理
大気圧の状態で電気ヒータ12を作動させ続けた状態で、ワークWをステージ14に載置することで、大気圧でワークWに対して加熱処理を行う。このステップV3は、上述した実施例3の図6のステップU3と同じである。したがって、上述した実施例3と同様に、本実施例4においても、このステップV3は、本発明における加熱処理過程に相当する。
(Step V3) Heat Treatment With the electric heater 12 kept operating at atmospheric pressure, the workpiece W is placed on the stage 14 to heat the workpiece W at atmospheric pressure. This step V3 is the same as step U3 of FIG. Therefore, similarly to the above-described third embodiment, also in the fourth embodiment, this step V3 corresponds to the heat treatment process in the present invention.
(ステップV4)真空引き・真空処理
電気ヒータ12を作動させ続けた状態で、加熱処理後でワークWをステージ14に載置してチャンバー1内に収容した状態で真空引きを行う。このステップV4は、上述した実施例3の図6のステップU4と同じである。したがって、上述した実施例3と同様に、本実施例4においても、このステップV4は、本発明における真空処理過程に相当し、本発明における真空化過程にも相当する。そして、真空にした状態で加熱処理を引き続き行う。
(Step V4) Vacuuming / Vacuum Processing With the electric heater 12 kept operating, vacuuming is performed with the work W placed on the stage 14 and accommodated in the chamber 1 after the heat treatment. This step V4 is the same as step U4 of FIG. Therefore, similarly to the third embodiment described above, also in the fourth embodiment, this step V4 corresponds to the vacuum processing process in the present invention and also corresponds to the evacuation process in the present invention. Then, the heat treatment is continued in a vacuum state.
(ステップV5)プラズマ発生
次に、ステップV3,V4での加熱処理後、さらにはステップV4での真空処理後のワークWをステージ14に載置してチャンバー1内に収容した状態で、供給流路5を通してチャンバー1内にガスを所定の圧力(例えば20パスカル程度)に達するまで供給する。そして、2KW程度の電力を電極6に印加して、プラズマ放電によりプラズマをチャンバー1内で発生させる。なお、ワークWをチャンバー1内に収容することで、ワークWまたはプラズマ発生のいずれかに支障が生じる場合には、次のステップV6まで必要に応じてワークWをチャンバー1から一旦引き揚げてもよい。
(Step V5) Plasma Generation Next, after the heat treatment in steps V3 and V4, and further, the work W after the vacuum treatment in step V4 is placed on the stage 14 and accommodated in the chamber 1, the supply flow Gas is supplied through the passage 5 into the chamber 1 until a predetermined pressure (for example, about 20 Pascals) is reached. Then, a power of about 2 KW is applied to the electrode 6 to generate plasma in the chamber 1 by plasma discharge. When the work W is accommodated in the chamber 1 and any trouble occurs in the work W or plasma generation, the work W may be temporarily lifted from the chamber 1 as necessary until the next step V6. .
(ステップV6)プラズマ処理
ワークWをステージ14に載置してチャンバー1内に収容した状態で、ワークWに対してプラズマ処理を行う。このステップV6は、本発明におけるプラズマ処理過程に相当する。
(Step V6) Plasma Treatment Plasma treatment is performed on the workpiece W while the workpiece W is placed on the stage 14 and accommodated in the chamber 1. This step V6 corresponds to the plasma processing process in the present invention.
(ステップV7)ワークがない?
ステップV7でのプラズマ処理部後のワークWをチャンバー1から引き揚げる。枚葉処理の対象となるワークWがなくなるまで、プラズマ状態から大気圧下に戻してステップV1に戻ってステップV1〜V7を繰り返し行う枚葉処理を行う。すなわち、ステップV1〜V7での処理をそれぞれ行った後で次のワークWをステージ14に載置することを繰り返すことで枚葉処理を行う。枚葉処理の対象となるワークWがなくなれば、一連の加熱処理を終了する。なお、プラズマのためのガスでステップV1での大気圧下での加熱が代用できるのであれば、ガス抜きを行わずに大気圧下に戻して、電極6への電力の印加の停止のみを行えばよい。
(Step V7) Is there no work?
The workpiece W after the plasma processing unit in step V7 is lifted from the chamber 1. Until there is no workpiece W to be subjected to the single wafer processing, the single wafer processing is performed in which the plasma state is returned to the atmospheric pressure, the process returns to Step V1, and Steps V1 to V7 are repeated. That is, the single wafer processing is performed by repeatedly placing the next workpiece W on the stage 14 after performing the processing in steps V1 to V7. When there is no work W to be subjected to the single wafer processing, the series of heating processes is terminated. If heating under atmospheric pressure in step V1 can be substituted with a gas for plasma, the gas is returned to atmospheric pressure without degassing, and only the application of power to the electrode 6 is stopped. Just do it.
本実施例4に係る加熱処理方法によれば、ステップS2あるいはステップT2での真空処理過程を備えた実施例1、2と同様に、ステップV3での加熱処理過程は、加熱処理部(本実施例4ではチャンバー1)の内部に被処理物(ワーク)Wを収容して、ワークWに対して加熱処理を行い、従来の加熱処理での過程に相当する。この加熱処理過程とは別に、上述した実施例2と同様に、ステップV3での加熱処理過程の後でワークWに対してプラズマ処理を行うステップV6でのプラズマ処理過程を備えている。このプラズマ処理過程を組み合わせることで、均一に加熱することができ処理の均一性が向上し、加熱時間やプラズマ照射時間も短く済むのでワークWへの損傷も少なく、表裏面の温度差も緩和されワークWの基材自体の損傷も少なくなる。その結果、加熱時間を低減させて低温(本実施例4では100℃程度)にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。また、プラズマ処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 According to the heat treatment method according to the fourth embodiment, as in the first and second embodiments including the vacuum treatment process at step S2 or step T2, the heat treatment process at step V3 is performed by the heat treatment unit (this embodiment). In Example 4, the workpiece (work) W is accommodated in the chamber 1), and the workpiece W is subjected to heat treatment, which corresponds to the conventional heat treatment process. Apart from this heat treatment process, similarly to the above-described second embodiment, a plasma treatment process in step V6 is performed in which the plasma treatment is performed on the workpiece W after the heat treatment process in step V3. By combining this plasma treatment process, it is possible to heat uniformly, improving the uniformity of treatment, shortening the heating time and plasma irradiation time, so there is less damage to the workpiece W, and the temperature difference between the front and back surfaces is reduced. Damage to the substrate of the work W itself is also reduced. As a result, the heating time is reduced to a low temperature (about 100 ° C. in the fourth embodiment), and the fine particles can be efficiently sintered at a low temperature while preventing thermal deformation and damage due to heat. Further, by performing the heating in advance of the plasma treatment, the temperature fluctuation range is reduced, and the reproducibility of the treatment can be improved.
ステップV6でのプラズマ処理過程を備えた本実施例4では、好ましくは、上述した実施例2と同様に、ステップS2での真空処理過程を備えた実施例1を組み合わせている。すなわち、ワークWを収容した状態でチャンバー1の内部を真空でワークWを処理する真空処理過程(ステップV4)を備え、その真空処理過程の後で上述のステップV6でのプラズマ処理過程でのプラズマ処理を行っている。これらの真空処理過程およびプラズマ処理を組み合わせることで、上述した処理の均一性の向上、加熱時間やプラズマ照射時間の低減、これらの時間の低減によるワークWへの損傷の防止、表裏面の温度差の緩和によるワークWの基材自体への損傷の防止をより一層実現することができる。加熱時間を低減させて低温にして、熱変形や熱による損傷を防止しつつ、効率良く低温で微粒子を焼結させることができる。 In the fourth embodiment including the plasma processing process in step V6, the first embodiment including the vacuum processing process in step S2 is preferably combined as in the second embodiment described above. That is, a vacuum processing process (step V4) is performed in which the workpiece W is processed in a vacuum in the chamber 1 in a state in which the workpiece W is accommodated, and the plasma in the plasma processing process in the above-described step V6 after the vacuum processing process. Processing is in progress. By combining these vacuum processing steps and plasma processing, improvement of the above processing uniformity, reduction of heating time and plasma irradiation time, prevention of damage to the workpiece W due to reduction of these times, temperature difference between the front and back surfaces It is possible to further prevent the workpiece W from being damaged by the relaxation of the workpiece W. The fine particles can be efficiently sintered at a low temperature while reducing the heating time to a low temperature and preventing thermal deformation and damage due to heat.
上述した実施例3と同様に、本実施例4では、ステップV3での加熱処理過程は、大気圧でワークWに対して加熱処理を行い、ステップV4での真空処理過程は、上述の大気圧での加熱処理過程の後でワークWを収容した状態でチャンバー1の内部を減圧して上述の真空にする真空化過程である。そして、その真空化過程の後でステップV6でのプラズマ処理過程でのプラズマ処理を行っている。本実施例4の場合には、上述した実施例3と同様に、大気圧下での空気などに代表されるガスなどにより加熱処理過程(プレヒート)で熱を均一に分布させた後に、加熱処理部の内部を減圧して真空にする真空引きを行うので、真空下で熱が均一に分布して微粒子を焼結させることができる。また、真空処理よりも事前に加熱することにより温度の変動幅が少なくなり、処理の再現性が向上することができる。 Similar to the third embodiment described above, in the fourth embodiment, the heat treatment process in step V3 is performed on the workpiece W at atmospheric pressure, and the vacuum treatment process in step V4 is performed using the atmospheric pressure described above. This is a vacuuming process in which the inside of the chamber 1 is depressurized and the above-described vacuum is made in a state where the workpiece W is accommodated after the heat treatment process in FIG. After the evacuation process, the plasma process in the plasma process in step V6 is performed. In the case of the fourth embodiment, similarly to the third embodiment described above, after heat is uniformly distributed in the heat treatment process (preheating) with a gas typified by air or the like under atmospheric pressure, the heat treatment is performed. Since the inside of the section is evacuated to reduce the vacuum, heat can be uniformly distributed under vacuum to sinter the fine particles. Further, by performing heating in advance of vacuum processing, the temperature fluctuation range is reduced, and the reproducibility of processing can be improved.
上述した実施例3と同様に、本実施例4の図8では、大気圧での加熱処理過程(ステップV4も含む)の途中でステップV4で真空化過程を行って、真空にした状態で加熱処理を引き続き行っている。そして、その後でステップV6でのプラズマ処理過程でのプラズマ処理を行っている。 As in the third embodiment, in FIG. 8 of the fourth embodiment, the vacuum process is performed in step V4 in the middle of the heating process (including step V4) at atmospheric pressure, and heating is performed in a vacuum state. Processing continues. After that, plasma processing is performed in the plasma processing process in step V6.
本実施例4に係る加熱処理装置は、上述した実施例2と同様に、内部にワークWを収容して、ワークWに対して加熱処理を行うチャンバー1を備え、その加熱処理の後でワークWに対してプラズマ処理をプラズマ処理部(本実施例4では同じチャンバー1)が行っている。上述の構成を備えた本実施例4に係る加熱処理装置によれば、ステップV6でのプラズマ処理過程を備えた本実施例4に係る加熱処理方法を好適に実施することができる。 Similar to the second embodiment described above, the heat treatment apparatus according to the fourth embodiment includes the chamber 1 that accommodates the work W therein and performs the heat treatment on the work W, and the work after the heat treatment is provided. Plasma processing is performed on W by the plasma processing unit (the same chamber 1 in the fourth embodiment). According to the heat treatment apparatus according to the fourth embodiment having the above-described configuration, the heat treatment method according to the fourth embodiment including the plasma treatment process in Step V6 can be suitably performed.
上述した実施例2と同様に、本実施例4では、加熱処理部はプラズマ処理部をチャンバー1として兼用し、好ましくは、チャンバー1の加熱処理部の内部に加熱処理後のワークWを収容した状態でプラズマ処理を行っている。加熱処理部がプラズマ処理部を兼用することで、同じ加熱処理部(すなわちチャンバー1)にて加熱処理に引き続いてプラズマ処理を行うことができ、効率良く加熱処理およびプラズマ処理を行うことで、装置を簡易化することができる。 Similar to the second embodiment described above, in the fourth embodiment, the heat processing unit also serves as the plasma processing unit as the chamber 1, and preferably the work W after the heat processing is accommodated in the heat processing unit of the chamber 1. Plasma treatment is performed in the state. Since the heat treatment unit also serves as the plasma treatment unit, the same heat treatment unit (that is, the chamber 1) can perform the plasma treatment subsequent to the heat treatment, and the heat treatment and the plasma treatment can be performed efficiently. Can be simplified.
上述した実施例3と同様に、本実施例4では、ワークWを載置する載置台(本実施例4ではステージ14)をチャンバー1の内部に配置し、対象となるワークWに対して処理をそれぞれ行った後で次のワークWをステージ14に載置することを繰り返すことで枚葉処理を行っている。 Similar to the third embodiment described above, in the fourth embodiment, a mounting table (the stage 14 in the fourth embodiment) on which the work W is mounted is disposed inside the chamber 1 and the target work W is processed. After each of the above, the single wafer processing is performed by repeatedly placing the next workpiece W on the stage 14.
[実験結果]
ここで、被処理物として、ガラス基板を用いた場合の抵抗値の変化および体積抵抗率の変化を実験で確認している。実験結果について、図9および図10を参照して説明する。図9は、被処理物としてガラス基板を用いた場合の真空時間に対する抵抗値変化のグラフ(真空時間別抵抗値特性)であり、図10は、被処理物としてガラス基板を用いた場合の真空時間に対する体積抵抗率変化のグラフ(真空時間別体積抵抗率特性)である。
[Experimental result]
Here, a change in resistance value and a change in volume resistivity when a glass substrate is used as the object to be processed are confirmed by experiments. An experimental result is demonstrated with reference to FIG. 9 and FIG. FIG. 9 is a graph of resistance value change with respect to vacuum time when a glass substrate is used as an object to be processed (resistance value characteristic by vacuum time), and FIG. 10 is a vacuum when a glass substrate is used as an object to be processed. It is a graph (volume resistivity characteristic according to vacuum time) of volume resistivity change with respect to time.
図9および図10に示すように、実施例2、4のようにプラズマ処理を行わずに、実施例3のようにプレヒートを行った後に真空引きを行ったとき(図9、図10では「プレヒート+真空のみ」で表記)であり、170℃でヒータを作動させて加熱する。ヒータを作動させて(図9、図10では「ヒータON」で表記)から約8分後に真空引きを開始する。 As shown in FIG. 9 and FIG. 10, when plasma evacuation was performed after preheating as in Example 3 without performing plasma treatment as in Examples 2 and 4 (in FIG. 9 and FIG. 10, “ Preheat + vacuum only ”), heating at 170 ° C. by heating the heater. Evacuation is started about 8 minutes after the heater is activated (indicated as “heater ON” in FIGS. 9 and 10).
真空引き開始まで、図9、図10に示すように、抵抗値、体積抵抗率ともに増えるが、真空引きを開始すると、抵抗値、体積抵抗率ともに減ることが確認されている。さらに約38分後には、図9に示すように抵抗値は214.7[Ω]まで減り、図10に示すように体積抵抗率は5.58[mΩ・cm]まで減ることが確認されている。 Until the start of evacuation, both the resistance value and the volume resistivity increase as shown in FIGS. 9 and 10. However, it is confirmed that both the resistance value and the volume resistivity decrease when evacuation is started. Further, after about 38 minutes, it was confirmed that the resistance value decreased to 214.7 [Ω] as shown in FIG. 9, and the volume resistivity decreased to 5.58 [mΩ · cm] as shown in FIG. Yes.
このことから、従来の加熱処理では、ガラス基板では220℃で60分での焼結条件で行われていたが、プレヒートを行った後に真空引きを行ったときには170℃で35分前後の焼結条件でも、抵抗値、体積抵抗率をともに減らすことができ、真空時間も含めて加熱時間を低減させて、低温にして焼結させることができる。 Therefore, in the conventional heat treatment, the glass substrate was sintered at 220 ° C. for 60 minutes, but when pre-heating and vacuuming was performed, the sintering was performed at 170 ° C. for about 35 minutes. Even under the conditions, both the resistance value and the volume resistivity can be reduced, and the heating time including the vacuum time can be reduced and the sintering can be performed at a low temperature.
また、実施例2,4のようにプラズマ処理を組み合わせた場合には、従来のプラズマ処理のみを行った場合と比較すると、上述したようにプラズマ照射時間が短くなって、プラズマ処理時間が短くて済むという効果をも奏する。また、プラズマ処理でマグネトロンを用いた場合には、プラズマ処理時間を短くすることでマグネトロンの寿命が長くなるという効果をも奏する。 Further, when the plasma processing is combined as in the second and fourth embodiments, as compared with the case where only the conventional plasma processing is performed, the plasma irradiation time is shortened as described above, and the plasma processing time is shortened. It also has the effect of being finished. In addition, when a magnetron is used in plasma processing, there is an effect that the life of the magnetron is extended by shortening the plasma processing time.
また、課題でも述べたように、従来のプラズマ処理のみではプラズマを均一にすることは難しく、プラズマの熱エネルギでの加熱は不安定となってしまうが、各実施例では、ヒータ(ランプヒータや電気ヒータ)を被処理物(ワーク)の近くにまで配置することができ、均一に加熱することができるという効果をも奏する。 Further, as described in the problem, it is difficult to make the plasma uniform only by the conventional plasma treatment, and the heating with the heat energy of the plasma becomes unstable. In each embodiment, a heater (lamp heater or The electric heater) can be disposed as close as possible to the object to be processed (work), and there is also an effect that it can be heated uniformly.
また、ガラス基板などのように温度が高くても構わない場合には、実施例2、4のようなプラズマ処理を組み合わせずに、実施例1、3のように真空およびヒータのみで実現することができるので、大量に処理することが可能で低コストに抑えることができるという効果をも奏する。また、大面積の被処理物の場合には、従来のプラズマ処理のみで実現可能であるが、各実施例の場合には、大面積・小面積に関わらず両方とも処理が実現可能であるという効果をも奏する。 Also, when the temperature may be high, such as a glass substrate, it is realized only by a vacuum and a heater as in Examples 1 and 3 without combining plasma processing as in Examples 2 and 4. Therefore, it is possible to perform a large amount of processing and reduce the cost. In addition, in the case of an object to be processed having a large area, it can be realized only by the conventional plasma processing, but in the case of each embodiment, both of the processing can be realized regardless of the large area and the small area. There is also an effect.
本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。 The present invention is not limited to the above embodiment, and can be modified as follows.
(1)上述した各実施例では、被処理物(ワーク)として、銀の微粒子が塗布されたPET(ポリエチレンテレフタレート)を例に採って説明したが、ガラス基板などに例示されるように、被処理物については特に限定されない。 (1) In each of the above-described embodiments, PET (polyethylene terephthalate) coated with silver fine particles is taken as an example of the object to be processed (work). However, as illustrated in a glass substrate or the like, The processed product is not particularly limited.
(2)上述した実施例2、4では、真空処理過程の後でプラズマ処理過程を行ったが、真空処理を行わずに、プレヒートでの加熱処理過程、および加熱処理過程の後でのプラズマプラズマ処理過程のみを行ってもよい。 (2) In the above-described Examples 2 and 4, the plasma treatment process was performed after the vacuum treatment process, but the plasma treatment after the heat treatment process in the preheating and the heat treatment process was performed without performing the vacuum treatment. Only the process may be performed.
(3)上述した実施例3、4では、大気圧での加熱処理過程の途中で真空化過程を行って、真空にした状態で加熱処理を引き続き行ったが、大気圧での加熱処理過程で被処理物(ワーク)に対して加熱を停止した後に、上述の真空化過程を行ってもよい。大気圧での加熱処理過程で被処理物(ワーク)に対して加熱を停止した後に、真空化過程を行う場合においても、加熱処理部の内部での余熱により被処理物(ワーク)に対しては真空下で加熱処理が実質的に行われる。 (3) In Examples 3 and 4 described above, the evacuation process was performed in the middle of the heat treatment process at atmospheric pressure, and the heat treatment was continued in a vacuum state. However, in the heat treatment process at atmospheric pressure, You may perform the above-mentioned vacuuming process, after stopping heating with respect to a to-be-processed object (work). Even when the vacuuming process is performed after heating is stopped for the workpiece (work) in the heat treatment process at atmospheric pressure, the residual heat inside the heat treatment section causes the workpiece (work) to be processed. The heat treatment is substantially performed under vacuum.
(4)上述した実施例2、4では、加熱処理部はプラズマ処理部をチャンバー1として兼用したが、加熱処理部とプラズマ処理部とをそれぞれ別のチャンバーで構成して、各チャンバーで各々の処理を行ってもよい。 (4) In the above-described Examples 2 and 4, the heat treatment unit also used the plasma treatment unit as the chamber 1, but the heat treatment unit and the plasma treatment unit are configured as separate chambers, Processing may be performed.
1 … チャンバー
4 … ローラ
14 … ステージ
W … ワーク(被処理物)
DESCRIPTION OF SYMBOLS 1 ... Chamber 4 ... Roller 14 ... Stage W ... Workpiece (to-be-processed object)
Claims (11)
加熱処理部の内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理過程と、
前記被処理物を収容した状態で前記加熱処理部の内部を真空で前記被処理物を処理する真空処理過程と
を備えることを特徴とする加熱処理方法。 A heat treatment method for performing heat treatment on an object to be coated with metal fine particles, and sintering the fine particles,
A heat treatment process in which the object to be treated is accommodated in a heat treatment unit, and the heat treatment is performed on the object to be treated;
And a vacuum processing step of processing the object to be processed in a vacuum inside the heat processing unit in a state in which the object to be processed is accommodated.
加熱処理部の内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理過程と、
その加熱処理過程の後で前記被処理物に対してプラズマ処理を行うプラズマ処理過程と
を備えることを特徴とする加熱処理方法。 A heat treatment method for performing heat treatment on an object to be coated with metal fine particles, and sintering the fine particles,
A heat treatment process in which the object to be treated is accommodated in a heat treatment unit, and the heat treatment is performed on the object to be treated;
And a plasma treatment process for performing plasma treatment on the workpiece after the heat treatment process.
前記被処理物を収容した状態で前記加熱処理部の内部を真空で前記被処理物を処理する真空処理過程を備え、
その真空処理過程の後で前記プラズマ処理過程での前記プラズマ処理を行うことを特徴とする加熱処理方法。 In the heat processing method of Claim 2,
A vacuum processing step of processing the processing object in a vacuum inside the heat treatment unit in a state in which the processing object is accommodated;
A heat treatment method comprising performing the plasma treatment in the plasma treatment process after the vacuum treatment process.
前記加熱処理過程と前記真空処理過程とを並行に行うことで、前記真空で前記被処理物に対して前記加熱処理を行うことを特徴とする加熱処理方法。 In the heat processing method of Claim 1 or Claim 3,
A heat treatment method, wherein the heat treatment is performed on the object to be processed in the vacuum by performing the heat treatment process and the vacuum treatment process in parallel.
前記加熱処理過程は、大気圧で前記被処理物に対して前記加熱処理を行い、
前記真空処理過程は、前記大気圧での前記加熱処理過程の後で前記被処理物を収容した状態で前記加熱処理部の内部を減圧して前記真空にする真空化過程であることを特徴とする加熱処理方法。 In the heat processing method of Claim 1 or Claim 3,
In the heat treatment process, the heat treatment is performed on the workpiece at atmospheric pressure,
The vacuum treatment process is a evacuation process in which the inside of the heat treatment unit is depressurized and vacuumed in a state in which the workpiece is accommodated after the heat treatment process at the atmospheric pressure. Heat treatment method.
水素単体を用いて前記プラズマ処理を行うことを特徴とする加熱処理方法。 In the heat processing method of Claim 2 or Claim 3,
A heat treatment method, wherein the plasma treatment is performed using hydrogen alone.
ヘリウム単体を用いて前記プラズマ処理を行うことを特徴とする加熱処理方法。 In the heat processing method of Claim 2 or Claim 3,
A heat treatment method, wherein the plasma treatment is performed using helium alone.
ヘリウムと水素との混合ガスを用いて前記プラズマ処理を行うことを特徴とする加熱処理方法。 In the heat processing method of Claim 2 or Claim 3,
A heat treatment method, wherein the plasma treatment is performed using a mixed gas of helium and hydrogen.
内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理部を備え、
前記被処理物を収容した状態で前記加熱処理部の内部を真空で前記被処理物を処理することを特徴とする加熱処理装置。 A heat treatment apparatus for performing heat treatment on an object to be coated with metal fine particles and sintering the fine particles,
A heat treatment unit that houses the object to be processed and performs the heat treatment on the object to be processed,
A heat treatment apparatus, wherein the object to be processed is processed in a vacuum inside the heat treatment unit in a state where the object to be processed is accommodated.
内部に前記被処理物を収容して、前記被処理物に対して前記加熱処理を行う加熱処理部と、
その加熱処理の後で前記被処理物に対してプラズマ処理を行うプラズマ処理部と
を備えることを特徴とする加熱処理装置。 A heat treatment apparatus for performing heat treatment on an object to be coated with metal fine particles and sintering the fine particles,
A heat treatment unit for accommodating the object to be processed therein and performing the heat treatment on the object to be processed;
A heat treatment apparatus comprising: a plasma treatment unit that performs a plasma treatment on the workpiece after the heat treatment.
前記被処理物を送り込む送り込み手段を備え、
その送り込み手段によって前記被処理物が送り込まれながら、処理をそれぞれ行う
ことを特徴とする加熱処理装置。 In the heat processing apparatus of Claim 9 or Claim 10,
A feeding means for feeding the object to be processed;
A heat treatment apparatus, wherein the processing is performed while the workpiece is being fed by the feeding means.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011180440A JP2012142551A (en) | 2010-12-16 | 2011-08-22 | Heat treatment method and apparatus |
KR1020110100613A KR101550952B1 (en) | 2010-12-16 | 2011-10-04 | Heat treatment method and apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010280763 | 2010-12-16 | ||
JP2010280763 | 2010-12-16 | ||
JP2011180440A JP2012142551A (en) | 2010-12-16 | 2011-08-22 | Heat treatment method and apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013037310A Division JP5483647B2 (en) | 2010-12-16 | 2013-02-27 | Heat treatment method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012142551A true JP2012142551A (en) | 2012-07-26 |
Family
ID=46678485
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011180440A Pending JP2012142551A (en) | 2010-12-16 | 2011-08-22 | Heat treatment method and apparatus |
JP2013037310A Expired - Fee Related JP5483647B2 (en) | 2010-12-16 | 2013-02-27 | Heat treatment method and apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013037310A Expired - Fee Related JP5483647B2 (en) | 2010-12-16 | 2013-02-27 | Heat treatment method and apparatus |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP2012142551A (en) |
KR (1) | KR101550952B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014091517A1 (en) * | 2012-12-10 | 2014-06-19 | 株式会社ニッシン | Joining method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130116782A (en) | 2012-04-16 | 2013-10-24 | 한국전자통신연구원 | Scalable layer description for scalable coded video bitstream |
JPWO2015114761A1 (en) * | 2014-01-29 | 2017-03-23 | 株式会社ニッシン | Joining method and joining apparatus used therefor |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10308120A (en) * | 1997-05-02 | 1998-11-17 | Ulvac Japan Ltd | Baking method for metal paste |
JPH1140397A (en) * | 1997-05-22 | 1999-02-12 | Canon Inc | Microwave feeder having annular waveguide and plasma processing device provided with the microwave feeder and processing method |
JP2006054212A (en) * | 2004-08-09 | 2006-02-23 | Matsushita Electric Ind Co Ltd | Substrate, electronic component assembly, and method of manufacturing electronic component assembly |
JP2006328479A (en) * | 2005-05-26 | 2006-12-07 | Sumitomo Metal Mining Co Ltd | Winding type compound vacuum surface treatment apparatus, and film surface treatment method |
JP2008059991A (en) * | 2006-09-01 | 2008-03-13 | Canon Inc | Plasma processing apparatus and plasma processing method |
JP2009054997A (en) * | 2007-07-27 | 2009-03-12 | Semiconductor Energy Lab Co Ltd | Method for manufacturing photoelectric conversion device |
JP2009091604A (en) * | 2007-10-04 | 2009-04-30 | Kansai Paint Co Ltd | Method of manufacturing transparent conductive film |
JP2009238666A (en) * | 2008-03-28 | 2009-10-15 | The Inctec Inc | Conductive coat manufacturing method and copper circuit wiring provided using the same |
JP2009283547A (en) * | 2008-05-20 | 2009-12-03 | Dainippon Printing Co Ltd | Forming method and forming apparatus for conductive pattern, and conductive substrate |
JP2010183053A (en) * | 2009-02-03 | 2010-08-19 | Samsung Electro-Mechanics Co Ltd | Method of forming metal wiring and metal wiring formed using the same |
JP2010219075A (en) * | 2009-03-12 | 2010-09-30 | Dainippon Printing Co Ltd | Printed wiring board and method of manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009278045A (en) * | 2008-05-19 | 2009-11-26 | Sony Corp | Workpiece and method for producing the same |
JP5387034B2 (en) * | 2009-02-20 | 2014-01-15 | 大日本印刷株式会社 | Conductive substrate |
JP5332759B2 (en) | 2009-03-12 | 2013-11-06 | 大日本印刷株式会社 | Method for manufacturing conductive substrate and conductive substrate |
JP2011047003A (en) | 2009-08-27 | 2011-03-10 | Toray Ind Inc | Method for producing copper film |
-
2011
- 2011-08-22 JP JP2011180440A patent/JP2012142551A/en active Pending
- 2011-10-04 KR KR1020110100613A patent/KR101550952B1/en not_active Expired - Fee Related
-
2013
- 2013-02-27 JP JP2013037310A patent/JP5483647B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10308120A (en) * | 1997-05-02 | 1998-11-17 | Ulvac Japan Ltd | Baking method for metal paste |
JPH1140397A (en) * | 1997-05-22 | 1999-02-12 | Canon Inc | Microwave feeder having annular waveguide and plasma processing device provided with the microwave feeder and processing method |
JP2006054212A (en) * | 2004-08-09 | 2006-02-23 | Matsushita Electric Ind Co Ltd | Substrate, electronic component assembly, and method of manufacturing electronic component assembly |
JP2006328479A (en) * | 2005-05-26 | 2006-12-07 | Sumitomo Metal Mining Co Ltd | Winding type compound vacuum surface treatment apparatus, and film surface treatment method |
JP2008059991A (en) * | 2006-09-01 | 2008-03-13 | Canon Inc | Plasma processing apparatus and plasma processing method |
JP2009054997A (en) * | 2007-07-27 | 2009-03-12 | Semiconductor Energy Lab Co Ltd | Method for manufacturing photoelectric conversion device |
JP2009091604A (en) * | 2007-10-04 | 2009-04-30 | Kansai Paint Co Ltd | Method of manufacturing transparent conductive film |
JP2009238666A (en) * | 2008-03-28 | 2009-10-15 | The Inctec Inc | Conductive coat manufacturing method and copper circuit wiring provided using the same |
JP2009283547A (en) * | 2008-05-20 | 2009-12-03 | Dainippon Printing Co Ltd | Forming method and forming apparatus for conductive pattern, and conductive substrate |
JP2010183053A (en) * | 2009-02-03 | 2010-08-19 | Samsung Electro-Mechanics Co Ltd | Method of forming metal wiring and metal wiring formed using the same |
JP2010219075A (en) * | 2009-03-12 | 2010-09-30 | Dainippon Printing Co Ltd | Printed wiring board and method of manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014091517A1 (en) * | 2012-12-10 | 2014-06-19 | 株式会社ニッシン | Joining method |
Also Published As
Publication number | Publication date |
---|---|
KR101550952B1 (en) | 2015-09-07 |
JP2013128144A (en) | 2013-06-27 |
KR20120067925A (en) | 2012-06-26 |
JP5483647B2 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6645304B2 (en) | Susceptors for semiconductor-producing apparatuses | |
TWI478224B (en) | Substrate processing apparatus and method of manufacturing semiconductor device | |
EP2276328A1 (en) | Microwave plasma processing device | |
JP5483647B2 (en) | Heat treatment method and apparatus | |
CN107924833B (en) | Substrate processing method and substrate processing apparatus | |
JP2008091409A5 (en) | ||
JP5415853B2 (en) | Surface treatment method | |
KR101333629B1 (en) | Manufacturing method of ceramic heater for aln semiconductor having low leakagecurrent and improved power efficiency and ceramic heater for aln semiconductor having low leakagecurrent and improved power efficiency manufactured by the same | |
JP5944530B2 (en) | Joining method and joining apparatus used therefor | |
JP5253779B2 (en) | Annealing method and annealing apparatus | |
WO2020183911A1 (en) | Graphite production method and production device | |
JP2013171843A (en) | Substrate processing device, and method of manufacturing semiconductor device | |
KR20180065424A (en) | Graphene Fabricating Method | |
JP6124255B2 (en) | Reflow device | |
JP6087425B2 (en) | Joining method | |
KR20090088608A (en) | Substrate manufacturing method | |
KR20210079055A (en) | Microwave heating apparatus and manufacturing method of aluminum nitride using the same | |
JP6450932B2 (en) | Plasma processing apparatus and method | |
WO2014091517A1 (en) | Joining method | |
JPWO2013146118A1 (en) | Substrate processing apparatus and semiconductor device manufacturing method | |
JP3721399B2 (en) | Method for producing zinc oxide ultraviolet emitter | |
KR100578122B1 (en) | Ashing Method of Semiconductor Substrate | |
JP2003068669A (en) | Method and device for heat treatment to semiconductor wafer | |
JP2003234397A (en) | Holding apparatus for body to be treated | |
RU2175817C1 (en) | Facility for chemical heat treatment of metal articles in non-self-maintained discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130507 |