JP2012142499A - 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 - Google Patents
透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 Download PDFInfo
- Publication number
- JP2012142499A JP2012142499A JP2011000777A JP2011000777A JP2012142499A JP 2012142499 A JP2012142499 A JP 2012142499A JP 2011000777 A JP2011000777 A JP 2011000777A JP 2011000777 A JP2011000777 A JP 2011000777A JP 2012142499 A JP2012142499 A JP 2012142499A
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- conductive film
- film
- zinc oxide
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/08—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
- H10F10/172—Photovoltaic cells having only PIN junction potential barriers comprising multiple PIN junctions, e.g. tandem cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/138—Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
- H10F77/251—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers comprising zinc oxide [ZnO]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
- Photovoltaic Devices (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
【課題】、耐水素還元性に優れ、光閉じ込め効果にも優れた透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法を提供する。
【解決手段】透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、酸化インジウム系透明導電膜を保護するための酸化亜鉛系透明導電膜(II)、次いで凹凸性に優れた酸化亜鉛系透明導電膜(III)が順次形成された三層積層構造とする。
【選択図】図5
【解決手段】透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、酸化インジウム系透明導電膜を保護するための酸化亜鉛系透明導電膜(II)、次いで凹凸性に優れた酸化亜鉛系透明導電膜(III)が順次形成された三層積層構造とする。
【選択図】図5
Description
本発明は、高効率のシリコン系薄膜太陽電池を製造する際に有用な、耐水素還元性に優れ、光閉じ込め効果にも優れた透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法に関する。
高い導電性と可視光領域での高い透過率とを有する透明導電膜は、太陽電池や液晶表示素子、その他各種受光素子の電極などに利用されており、その他、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなど各種の防曇用の透明発熱体としても利用されている。
透明導電膜としては、酸化錫(SnO2)系、酸化亜鉛(ZnO)系、酸化インジウム(In2O3)系の薄膜が知られている。酸化錫系には、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が利用されている。酸化亜鉛系には、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)が利用されている。
最も工業的に利用されている透明導電膜は、酸化インジウム系であり、中でも錫をドーパントとして含む酸化インジウムは、ITO(Indium−Tin−Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、これまで幅広く利用されている。
近年、二酸化炭素の増加などによる地球環境問題と化石燃料の価格高騰という問題がクローズアップされ、比較的低コストで製造しうる薄膜太陽電池が注目されている。薄膜太陽電池は、一般に、透光性基板上に順に積層された透明導電膜、1つ以上の半導体薄膜光電変換ユニット、及び裏面電極を含んでいる。シリコン材料は、資源が豊富なことから、薄膜太陽電池の中でもシリコン系薄膜を光電変換ユニット(光吸収層)に用いたシリコン系薄膜太陽電池がいち早く実用化され、ますます活発に研究開発が展開されている。
そして、シリコン系薄膜太陽電池の種類もさらに多様化し、従来の光吸収層にアモルファスシリコンなどの非晶質薄膜を用いた非晶質薄膜太陽電池の他に、アモルファスシリコンに微細な結晶シリコンが混在した微晶質薄膜を用いた微結晶質薄膜太陽電池や結晶シリコンからなる結晶質薄膜を用いた結晶質薄膜太陽電池も開発され、これらを積層したハイブリッド薄膜太陽電池も実用化されている。
このような光電変換ユニット又は薄膜太陽電池は、それに含まれるp型とn型の導電型半導体層が非晶質か結晶質か微結晶にかかわらず、その主要部を占める光電変換層が非晶質のものは、非晶質ユニット又は非晶質薄膜太陽電池と称され、光電変換層が結晶質のものは、結晶質ユニット又は結晶質薄膜太陽電池と称され、光電変換層が微結晶質のものは、微結晶質ユニット又は微結晶質薄膜太陽電池と称されている。
ところで、透明導電膜は、薄膜太陽電池の表面透明電極用として用いられており、透光性基板側から入射された光を有効に光電変換ユニット内に閉じ込めるために、その表面には通常微細な凹凸が多数形成されている。
この透明導電膜の凹凸の度合いを表す指標としてヘイズ率がある。これは特定の光源の光を透明導電膜が付いた透光性基板に入射した際に透過する光のうち、光路が曲げられた散乱成分を全成分で割ったものに相当し、通常可視光を含むC光源を用いて測定される。一般的には凹凸の高低差を大きくするほど、または凹凸の凸部と凸部の間隔が大きくなるほどヘイズ率が高くなり、光電変換ユニット内に入射された光は有効に閉じ込められ、いわゆる光閉じ込め効果が優れている。
薄膜太陽電池が非晶質シリコン、結晶質シリコン、微結晶質シリコンを単層の光吸収層とする薄膜太陽電池であるか、前述のハイブリッド薄膜太陽電池であるかによらず、透明導電膜のヘイズ率を高くして十分な光閉じ込めを行うことができれば、高い短絡電流密度(Jsc)を実現することができ、高い変換効率の薄膜太陽電池を製造することができる。
上記目的から、ヘイズ率の高い透明導電膜として、熱CVD法によって製造される酸化錫を主成分とした金属酸化物材料が知られており、薄膜太陽電池の透明電極として一般に利用されている。
透明導電膜の表面に形成される光電変換ユニットは、一般に高周波プラズマCVD法を用いて製造され、この時に使用される原料ガスとして、SiH4、Si2H6等のシリコン含有ガス、又は、それらのガスとH2を混合したものが用いられる。また、光電変換ユニットにおけるp型又はn型層を形成するためのドーパントガスとしては、B2H6、PH3等が好ましく用いられる。形成条件として、基板温度100℃以上250℃以下(ただし、非晶質p型シリコンカーバイド層3pは180℃以下)、圧力30Pa以上1500Pa以下、高周波パワー密度0.01W/cm2以上0.5W/cm2以下が好ましく用いられる。
このように光電変換ユニットを製造する際、形成温度を高くすると、存在する水素によって金属酸化物の還元を促進することになり、酸化錫を主成分とした透明導電膜の場合は、水素還元による透明性の損失が見られる。このような透明性の劣った透明導電膜を用いれば高い変換効率の薄膜太陽電池を実現することはできない。
同様に、酸化インジウムを主成分とした透明導電膜についても、この水素還元による透明性の損失が発生する。特に酸化インジウム系の透明導電膜を用いた場合は、水素還元により膜が黒色化する程に透明性が損なわれてしまうため、薄膜太陽電池の表面電極として用いることが非常に困難である。
酸化錫を主成分とする透明導電膜の水素による還元を防止する方法として、非特許文献1では、熱CVD法で形成した凹凸の度合いの高い酸化錫からなる透明導電膜の上に、還元耐性の優れた酸化亜鉛膜をスパッタリング法で薄く形成する方法が提案されている。酸化亜鉛は、亜鉛と酸素との結合が強く、耐水素還元性に優れているため、上記構造とすることにより、透明導電膜の透明性を高く保つことができる。
しかしながら、上記構造の透明導電膜を得るためには2種類の手法を組合せて成膜しなければならないため、コスト高となり実用的ではない。また、酸化錫系透明導電膜と酸化亜鉛系透明導電膜の積層膜を全てスパッタリング法で製造する手法については、透明度の高い酸化錫系透明導電膜を、スパッタリング法で製造することができないなどの理由から実現不可能であるとされている。
一方、非特許文献2には、酸化亜鉛を主成分として、表面凹凸を有し、高いヘイズ率の透明導電膜をスパッタリング法で得る方法が提案されている。この方法は、2wt%のAl2O3を添加した酸化亜鉛の焼結体ターゲットを用いて、3Pa以上12Pa以下の高ガス圧にて、基板温度を200℃以上400℃以下としてスパッタリング成膜している。しかし、6inchφのターゲットへDC80Wの電力を投入して成膜しており、ターゲットへの投入電力密度が0.442W/cm2と極めて低い。そのため、成膜速度は14nm/min以上35nm/min以下と極めて遅く工業的には実用性がない。
また、非特許文献3では、酸化亜鉛を主成分として、従来のスパッタリング法で作製される、表面凹凸の小さな透明導電膜を得た後で、膜の表面を酸でエッチングして表面を凹凸化し、ヘイズ率の高い透明導電膜を製造する方法が開示されている。しかし、この方法では、乾式工程で、真空プロセスであるスパッタリング法で膜を製造した後に、大気中で酸エッチングを行って乾燥し、再び乾式工程のCVD法で半導体層を形成しなければならず、工程が複雑となり製造コストが高くなるなどの課題があった。
酸化亜鉛系透明導電膜材料のうち、アルミニウムをドーパントとして含むAZOに関するものでは、酸化亜鉛を主成分として酸化アルミニウムを混合したターゲットを用いて直流マグネトロンスパッタリング法でC軸配向したAZO透明導電膜を製造する方法が提案されている(特許文献1参照)。この場合、高速で成膜を行うためにターゲットに投入する電力密度を高めて直流スパッタリング成膜を行うと、アーキング(異常放電)が多発してしまう。成膜ラインの生産工程においてアーキングが発生すると、膜の欠陥が生じたり、所定の膜厚の膜が得られなくなったりして、高品位の透明導電膜を安定に製造することが不可能になる。
そのため、本出願人は、酸化亜鉛を主成分として酸化ガリウムを混合するとともに、第三元素(Ti、Ge、Al、Mg、In、Sn)の添加により異常放電を低減させたスパッタターゲットを提案した(特許文献2参照)。ここで、ガリウムをドーパントとして含むGZO焼結体は、Ga、Ti、Ge、Al、Mg、In、Snからなる群より選ばれた少なくとも1種類を2重量%以上固溶したZnO相が組織の主な構成相であり、他の構成相には上記少なくとも1種が固溶していないZnO相や、ZnGa2O4(スピネル相)で表される中間化合物相である。このようなAlなどの第三元素を添加したGZOターゲットでは、特許文献1に記載されているような異常放電は低減できるが、完全に消失させることはできなかった。成膜の連続ラインにおいて、一度でも異常放電が生じれば、その成膜時の製品は欠陥品となってしまい製造歩留まりに影響を及ぼす。
本出願人は、この問題点を解決するために、酸化亜鉛を主成分とし、さらに添加元素のアルミニウムとガリウムを含有する酸化物焼結体において、アルミニウムとガリウムの含有量を最適化するとともに、焼成中に生成される結晶相の種類と組成、特にスピネル結晶相の組成を最適に制御することで、スパッタリング装置で連続長時間成膜を行ってもパーティクルが生じにくく、高い直流電力投入下でも異常放電が全く生じないターゲット用酸化物焼結体を提案した(特許文献3参照)。
このような酸化亜鉛系焼結体を用いれば、従来よりも低抵抗で高透過性の高品質な透明導電膜の成膜が可能となる。しかし、近年、より高変換効率の太陽電池が求められており、それに用いることができる高品質な透明導電膜が必要とされている。
K.Sato et al., "Hydrogen Plasma Treatment of ZnO−Coated TCO Films", Proc. of 23th IEEE Photovoltaic Specialists Conference, Louisville, 1993, pp.855−859.
T. Minami, et.al., "Large−Area Milkey Transparent Conducting Al−Doped ZnO Films Prepared by Magnetron Sputtering", Japanese Journal of Applied Physics, [31](1992), pp.L1106−1109.
J. Muller, et.al., Thin Solid Films, 392(2001), p.327.
本発明は、上述のような状況に鑑み、高効率のシリコン系薄膜太陽電池を製造する際に有用な、耐水素還元性に優れ、光閉じ込め効果にも優れた透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法を提供することを目的とする。
本発明者らは、かかる従来技術の問題を解決するために、鋭意研究を重ね、薄膜太陽電池の表面透明電極用となる透明導電膜として種々の透明導電膜材料を検討した結果、酸化インジウム系透明導電膜(I)を下地として、その上にc軸配向性を有する緻密な結晶の酸化亜鉛系透明導電膜(II)を形成することにより、耐水素還元性の低い酸化インジウム系透明導電膜(I)上を全て保護することが可能となり、さらに酸化亜鉛系透明導電膜(II)上に大きな結晶粒で構成された酸化亜鉛系透明導電膜(III)を形成することにより、光閉じ込め効果にも優れた構造となることを見出し、本発明を完成するに至った。
すなわち、本発明に係る透明導電膜積層体の製造方法は、透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を製造することを特徴とする。
また、本発明に係る透明導電膜積層体は、透光性基板上に形成された酸化インジウム系透明導電膜(I)と、上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする。
また、本発明に係る薄膜太陽電池の製造方法は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とを順に形成する薄膜太陽電池の製造方法において、上記透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、上記透光性基板上に表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を形成することを特徴とする。
また、本発明に係る薄膜太陽電池は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成された薄膜太陽電池において、上記透明導電膜積層体は、上記透光性基板上に形成された酸化インジウム系透明導電膜(I)と、上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする。
本発明によれば、酸化インジウム系透明導電膜(I)の上に、六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)、及び膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(III)を積層することで、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下の膜特性が得られ、耐水素還元性に優れ、光閉じ込め効果にも優れた透明導電膜積層体を提供することができる。
また、この透明導電膜積層体は、スパッタリング法のみで製造することができるため、薄膜太陽電池の表面透明電極用として導電性等に優れているだけでなく、従来の熱CVD法による透明導電膜と比較してコスト削減が可能となる。したがって、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため工業的に極めて有用である。
以下、本発明の実施の形態(以下、「本実施の形態」という)について、図面を参照しながら下記順序にて詳細に説明する。
1.透明導電膜積層体
1−1.酸化インジウム系透明導電膜(I)
1−2.酸化亜鉛系透明導電膜(II)
1−3.酸化亜鉛系透明導電膜(III)
1−4.透明導電膜積層体の特性
2.透明導電膜積層体の製造方法
2−1.酸化インジウム系透明導電膜(I)の成膜
2−2.酸化亜鉛系透明導電膜(II)の成膜
2−3.酸化亜鉛系透明導電膜(III)の成膜
3.薄膜太陽電池及びその製造方法
1.透明導電膜積層体
1−1.酸化インジウム系透明導電膜(I)
1−2.酸化亜鉛系透明導電膜(II)
1−3.酸化亜鉛系透明導電膜(III)
1−4.透明導電膜積層体の特性
2.透明導電膜積層体の製造方法
2−1.酸化インジウム系透明導電膜(I)の成膜
2−2.酸化亜鉛系透明導電膜(II)の成膜
2−3.酸化亜鉛系透明導電膜(III)の成膜
3.薄膜太陽電池及びその製造方法
<1.透明導電膜積層体>
本実施の形態に係る透明導電膜積層体は、透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、酸化インジウム系透明導電膜を保護するための酸化亜鉛系透明導電膜(II)、次いで凹凸性に優れた酸化亜鉛系透明導電膜(III)が順次形成された三層積層構造を有する。この積層構造を採用することにより、導電性に優れるが耐水素還元性に劣る酸化インジウム系透明導電膜(I)を保護することができるため、耐水素還元性に優れ、透明導電膜の透明性及び導電性を高く保つことが可能となる。また、このような透明導電膜積層体は、高いヘイズ率を有し、いわゆる光閉じ込め効果が優れており、かつ低抵抗であり、薄膜太陽電池用の表面電極材料として非常に有用である。さらに、本実施の形態に係る透明導電膜積層体は、スパッタリング法のみで製造することができ、高い生産性を有する。
本実施の形態に係る透明導電膜積層体は、透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、酸化インジウム系透明導電膜を保護するための酸化亜鉛系透明導電膜(II)、次いで凹凸性に優れた酸化亜鉛系透明導電膜(III)が順次形成された三層積層構造を有する。この積層構造を採用することにより、導電性に優れるが耐水素還元性に劣る酸化インジウム系透明導電膜(I)を保護することができるため、耐水素還元性に優れ、透明導電膜の透明性及び導電性を高く保つことが可能となる。また、このような透明導電膜積層体は、高いヘイズ率を有し、いわゆる光閉じ込め効果が優れており、かつ低抵抗であり、薄膜太陽電池用の表面電極材料として非常に有用である。さらに、本実施の形態に係る透明導電膜積層体は、スパッタリング法のみで製造することができ、高い生産性を有する。
<1−1.酸化インジウム系透明導電膜(I)>
酸化インジウム系透明導電膜(I)は、酸化インジウムを主成分としてSn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した結晶膜である。酸化インジウムにSn、Ti、W、Mo、Zr、Ce又はGaの添加元素が含まれた結晶膜は、導電性に優れるため有用である。特に、Ti、W、Mo、Zr、Ce又はGaの元素が含まれると、移動度の高い膜が得られる。よって、キャリア濃度を増加させずに低抵抗となるため、可視域〜近赤外域での透過率の高い低抵抗膜が実現できる。
酸化インジウム系透明導電膜(I)は、酸化インジウムを主成分としてSn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した結晶膜である。酸化インジウムにSn、Ti、W、Mo、Zr、Ce又はGaの添加元素が含まれた結晶膜は、導電性に優れるため有用である。特に、Ti、W、Mo、Zr、Ce又はGaの元素が含まれると、移動度の高い膜が得られる。よって、キャリア濃度を増加させずに低抵抗となるため、可視域〜近赤外域での透過率の高い低抵抗膜が実現できる。
酸化インジウムを主成分としてSnを含有する場合は、その含有割合がSn/(In+Sn)原子数比で15原子%以下であることが好ましい。また、Tiを含有する場合は、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であることが好ましい。また、Wを含有する場合は、その含有割合がW/(In+W)原子数比で4.3原子%以下であることが好ましい。また、Zrを含有する場合は、その含有割合がZr/(In+Zr)原子数比で6.5原子%以下であることが好ましい。また、Moを含有する場合は、その含有割合がMo/(In+Mo)原子数比で6.7原子%以下であることが好ましい。また、Ceを含有する場合は、その含有割合がCe/(In+Ce)原子数比で6.5原子%以下であることが好ましい。また、Gaを含有する場合は、その含有割合がGa/(In+Ga)原子数比で6.5原子%以下であることが好ましい。この範囲を超えて多く含有されると、高抵抗となるため有用でない。
このような酸化インジウム系透明導電膜(I)の中でも、本実施の形態では、錫をドーパントとして含むITO膜、チタンをドーパントとして含むITiO膜が好適に用いられる。
また、酸化インジウム系透明導電膜(I)の膜厚は、特に制限されるわけではないが、50nm以上600nm以下であることが好ましく、より好ましくは、300nm以上500nm以下である。
<1−2.酸化亜鉛系透明導電膜(II)>
酸化亜鉛系透明導電膜(II)は、六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下である。c軸傾斜角度が10°を超えると、結晶粒が大きくなり、粒と粒の間に空隙部が生成し、下地の酸化インジウム系透明導電膜(I)が露出してしまう。一方、c軸傾斜角度が10°以下である場合、結晶粒が小さく、粒と粒の間に生成する空隙部により下地の酸化インジウム系透明導電膜(I)が露出するのを防ぐことができる。
酸化亜鉛系透明導電膜(II)は、六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下である。c軸傾斜角度が10°を超えると、結晶粒が大きくなり、粒と粒の間に空隙部が生成し、下地の酸化インジウム系透明導電膜(I)が露出してしまう。一方、c軸傾斜角度が10°以下である場合、結晶粒が小さく、粒と粒の間に生成する空隙部により下地の酸化インジウム系透明導電膜(I)が露出するのを防ぐことができる。
また、酸化亜鉛系透明導電膜(II)の膜厚は、10nm以上200nm以下である。膜厚が10nm未満であると、酸化インジウム系透明導電膜(I)を完全に覆うことが困難となり、膜厚が200nmを超えると、透過性の低下及び生産性の低下を招いてしまう。
また、酸化亜鉛系透明導電膜(II)は、酸化亜鉛を主成分(重量割合で90%以上)としていればどの添加元素を含んでいても良く、全く添加元素が含まれなくてもよい。この酸化亜鉛系透明導電膜(II)は、酸化インジウム系透明導電膜(I)に対する保護がメインの役割であるため、その組成は大きく限定されないが、酸化物膜の導電性に寄与する添加元素として、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことが好ましい。
具体的には、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素が含まれ、アルミニウムの含有量とガリウムの含有量が下記の式(1)で示される範囲内にあることが好ましい。
−[Al]+0.30≦[Ga]≦−1.92×[Al]+6.10 ・・・(1)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
酸化亜鉛系透明導電膜(II)中のアルミニウム及びガリウムの含有量が、図1に示すように式(1)で規定される領域(A)の範囲を超えたり、下回ったりすると、積層膜としての高い導電性を損なうほどに導電性が不十分となる恐れがある。また、同組成である使用ターゲットの導電性も不十分となる為、成膜速度が遅くなり、生産上好ましくない。
<1−3.酸化亜鉛系透明導電膜(III)>
酸化亜鉛系透明導電膜(III)の膜厚は、400nm以上1600nm以下である。膜厚が400nm未満であると、十分な表面粗さ(Ra)及びヘイズ率を得るのが困難となり、膜厚が1600nmを超えると、透過性の低下及び生産性の低下を招いてしまう。より好ましい酸化亜鉛系透明導電膜(III)の膜厚は、700nm以上1400nm以下である。
酸化亜鉛系透明導電膜(III)の膜厚は、400nm以上1600nm以下である。膜厚が400nm未満であると、十分な表面粗さ(Ra)及びヘイズ率を得るのが困難となり、膜厚が1600nmを超えると、透過性の低下及び生産性の低下を招いてしまう。より好ましい酸化亜鉛系透明導電膜(III)の膜厚は、700nm以上1400nm以下である。
また、酸化亜鉛系透明導電膜(III)は、酸化物膜の導電性に寄与する添加元素として、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含む酸化亜鉛を用いると好ましい。
具体的には、国際公開第2010/104111号に開示されているように、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素が含まれ、アルミニウムの含有量とガリウムの含有量が下記の式(2)で示される範囲内にあることが好ましい。
−[Al]+0.30≦[Ga]≦−2.68×[Al]+1.74 ・・・(2)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。)
酸化亜鉛系透明導電膜(III)中のアルミニウム及びガリウムの含有量が、図1に示すように式(2)で規定される領域(B)の範囲より多くなると、その上に形成するシリコン系薄膜にアルミニウムとガリウムが拡散しやすくなり、特性の優れたシリコン系薄膜太陽電池を実現するのが困難となる。また、生産性の面でも、膜中のアルミニウムとガリウムの含有量が式(2)で規定される範囲より多くなると、表面凹凸が大きくてヘイズ率の高い透明導電膜をスパッタリング法で高速に製造すること困難となる。一方、式(2)で規定される範囲よりも少なくなると、導電性が不十分となる。
なお、酸化亜鉛系透明導電膜(II)、(III)には、亜鉛、アルミニウム、ガリウム及び酸素以外に、他の元素(例えば、インジウム、チタン、ゲルマニウム、シリコン、タングステン、モリブデン、イリジウム、ルテニウム、レニウム、セリウム、マグネシウム、珪素、フッ素など)が、本発明の目的を損なわない範囲で含まれていてもかまわない。
また、酸化亜鉛系透明導電膜(II)および(III)は、上記の式(2)で示される範囲内にあることが望ましい。これにより、酸化亜鉛系透明導電膜(II)及び酸化亜鉛系透明導電膜(III)の成膜に同一のスパッタリングターゲットを用いることができ、生産性を向上させることができる。
<1−4.透明導電膜積層体の特性>
本実施の形態に係る透明導電膜積層体(I)〜(III)において、その膜厚は、特に制限されるわけではなく、材料の組成などにもよるが、酸化インジウム系透明導電膜(I)が、50nm以上500nm以下であり、特に100nm以上300nm以下が好ましく、また、酸化亜鉛系透明導電膜(III)が400nm以上1600nm以下であり、特に700nm以上1400nm以下が好ましい。酸化亜鉛系透明導電膜(II)の厚さは、酸化インジウム系透明導電膜(I)の表面を完全に覆うことができる膜圧であることが好ましいが、生産性の低下及び透過率の劣化を招くおそれがあることから、200nm以下が好ましい。以上の膜厚を満足し、本発明の透明導電膜積層体としての総膜厚は、450nm以上2300nm以下、特に800nm以上1700nm以下が好ましい。
本実施の形態に係る透明導電膜積層体(I)〜(III)において、その膜厚は、特に制限されるわけではなく、材料の組成などにもよるが、酸化インジウム系透明導電膜(I)が、50nm以上500nm以下であり、特に100nm以上300nm以下が好ましく、また、酸化亜鉛系透明導電膜(III)が400nm以上1600nm以下であり、特に700nm以上1400nm以下が好ましい。酸化亜鉛系透明導電膜(II)の厚さは、酸化インジウム系透明導電膜(I)の表面を完全に覆うことができる膜圧であることが好ましいが、生産性の低下及び透過率の劣化を招くおそれがあることから、200nm以下が好ましい。以上の膜厚を満足し、本発明の透明導電膜積層体としての総膜厚は、450nm以上2300nm以下、特に800nm以上1700nm以下が好ましい。
また、透明導電膜積層体の表面粗さ(Ra)は、35.0nm以上である。表面粗さ(Ra)が35.0nm未満であると、ヘイズ率の高い酸化亜鉛系透明導電膜(III)が得られず、シリコン系薄膜太陽電池を作製したときに光閉じ込め効果が劣って、高い変換効率を実現できない。十分な光閉じ込め効果を持たせるためには、表面粗さ(Ra)は35.0nm以上でなるべく大きい方が好ましい。
但し、酸化亜鉛系透明導電膜(III)の表面粗さ(Ra)が70nmを超えると、酸化亜鉛系透明導電膜(III)上に形成するシリコン系薄膜の成長に影響を及ぼし、酸化亜鉛系透明導電膜(III)とシリコン系薄膜との界面に隙間が生じて接触性が悪化し、太陽電池特性が悪化するので、好ましくない。
また、透明導電膜積層体の表面抵抗は、25Ω/□以下である。表面抵抗が25Ω/□を超えると、太陽電池の表面電極に利用したときに、表面電極での電力損失が大きくなり、高効率の太陽電池を実現することができない。本実施の形態に係る透明導電膜積層体は、上述のような積層構造であるため、表面抵抗を25Ω/□以下とすることができる。本実施の形態に係る透明導電膜積層体の表面抵抗は、好ましくは20Ω/□以下、より好ましくは13Ω/□以下、さらに好ましくは10Ω/□以下、最も好ましくは8Ω/□以下である。
透明導電膜積層体の表面抵抗は、低いほど表面電極部での電力損失が小さいため、大きなセル面積でも高効率の太陽電池を実現できるので好ましい。逆に表面電極の表面抵抗が高いと、太陽電池のセルが大きい場合、表面電極での電力損失が無視できないレベルに大きくなるため、セル面積を小さくして、抵抗の低い金属配線で多くの小型セルを配線して面積を増加させる必要がある。表面電極が25Ω/□以下であれば、少なくとも5cm□の太陽電池セルを実現できるが、20Ω/□以下であれば少なくとも8cm□の太陽電池セルが実現でき、さらに13Ω/□以下であれば少なくとも15cm□のセルが、10Ω/□以下であれば少なくとも17cm□のセルが、8Ω/□以下であれば少なくとも20cm□のセルが、表面電極での電力損失の影響を考慮することなく実現できる。小さなセル面積の太陽電池は、金属配線によって接続する必要があり、セルの間隔が多くなるなどの要因で、セルを接続して作製した一つのモジュールの単位面積当たり発電量が小さくなるだけでなく、セルの面積当たりの製造コストが増加するなどの問題があるため好ましくない。
また、透明導電膜積層体のヘイズ率は、8%以上であることが好ましく、より好ましくは12%以上、更に好ましくは16%以上であり、最も好ましくは20%以上である。シングル構造の標準的な薄膜シリコン系太陽電池セルにおいて、変換効率10%以上を実現するためには、ヘイズ率12%以上が必要不可欠である。また、同様の評価で、変換効率12%以上を実現するためには、ヘイズ率16%以上の表面電極を用いることが有効である。さらに、同様の評価で、変換効率15%以上を実現するためには、ヘイズ率20%以上の表面電極を用いることが有効である。高効率のタンデム型シリコン系薄膜太陽電池では、ヘイズ率20%以上の表面電極が特に有用となる。本実施の形態に係る透明導電膜積層体は、下地に酸化インジウム系透明導電膜(I)を挿入していることに加え、上述した酸化亜鉛系透明導電膜(II)及び(III)を積層していることにより、高いヘイズ率が実現することができる。
また、本実施の形態に係る透明導電膜積層体は、上述のように酸化亜鉛系透明導電膜(II)が酸化インジウム系透明導電膜を保護するため、耐水素還元性に優れる。具体的には、500℃、水素雰囲気中での加熱処理による透過率の低下を10%以下に抑えることができる。
<2.透明導電膜積層体の製造方法>
本実施の形態に係る透明導電膜積層体の製造方法は、透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜し、酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜するものである。
本実施の形態に係る透明導電膜積層体の製造方法は、透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜し、酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜するものである。
以下、各透明導電膜の成膜方法について詳細に説明する。
<2−1.酸化インジウム系透明導電膜(I)の成膜>
酸化インジウム系透明導電膜(I)の成膜には、Sn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した酸化インジウムを主成分とする酸化物焼結体ターゲットが用いられる。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
酸化インジウム系透明導電膜(I)の成膜には、Sn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した酸化インジウムを主成分とする酸化物焼結体ターゲットが用いられる。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
このような酸化物焼結体ターゲットの中でも、Snを含有し、その含有割合がSn/(In+Sn)原子数比で15原子%以下であるものや、Tiを含有し、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であるものが好適に用いられる。
この酸化インジウム系透明導電膜(I)の形成方法には、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法と、基板を加熱して結晶質膜を形成する第2の方法を用いることができる。
第1の方法では、基板温度100℃以下、スパッタリングガス圧0.1以上1.0Pa未満の条件で、非晶質膜を形成した後に、引き続き、200℃以上600℃以下に加熱処理して、非晶質膜が結晶化され、酸化インジウム系透明導電膜が形成される。また、第2の方法では、基板温度200℃以上600℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、酸化インジウム系透明導電膜が結晶膜として形成される。
本実施の形態においては、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法を用いることが好ましい。これは、第1の方法のほうが、基板を加熱して結晶質膜を形成する第2の方法よりも表面粗さ(Ra)とヘイズ率がより大きな膜が得られるためである。
<2−2.酸化亜鉛系透明導電膜(II)の成膜>
酸化亜鉛系透明導電膜(II)の成膜に用いられる酸化物焼結体ターゲットは、酸化亜鉛を主成分(重量割合で90%以上)としていればどの添加元素を含んでいても良く、全く添加元素が含まれなくてもよい。酸化亜鉛系透明導電膜(II)は、酸化インジウム系透明導電膜(I)に対する保護がメインの役割であるため、その酸化物焼結体ターゲットの組成は大きく限定されないが、酸化物膜の導電性に寄与する添加元素として、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことが好ましい。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
酸化亜鉛系透明導電膜(II)の成膜に用いられる酸化物焼結体ターゲットは、酸化亜鉛を主成分(重量割合で90%以上)としていればどの添加元素を含んでいても良く、全く添加元素が含まれなくてもよい。酸化亜鉛系透明導電膜(II)は、酸化インジウム系透明導電膜(I)に対する保護がメインの役割であるため、その酸化物焼結体ターゲットの組成は大きく限定されないが、酸化物膜の導電性に寄与する添加元素として、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことが好ましい。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含む酸化亜鉛焼結体ターゲットを用いる際には、アルミニウムとガリウムの含有量が上記の式(1)で示される範囲内である酸化物焼結体ターゲットを使用することが好ましい。
酸化物焼結体ターゲット中のアルミニウムとガリウムの含有量が式(1)で規定される範囲内であれば、酸化亜鉛系透明導電膜(II)の導電性は十分なものとなるが、酸化亜鉛系透明導電膜(II)の成膜に用いられる酸化物焼結体ターゲットは、酸化亜鉛系透明導電膜(III)の成膜と同一のものを用いることができる。これにより、酸化亜鉛系透明導電膜(II)の成膜と酸化亜鉛系透明導電膜(III)の成膜とにおける酸化物焼結体ターゲットの交換や、ターゲット組成が異なることによるチャンバ内の汚染を防ぐことができ、また、生産性を向上させることができる。
このアルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含む酸化亜鉛焼結体ターゲットは、原料粉末として、酸化亜鉛粉末に、酸化ガリウム粉末と酸化アルミニウム粉末を添加・混合した後、引き続き、この原料粉末に水系媒体を配合して得られたスラリーを粉砕・混合処理し、次に粉砕・混合物を成形し、その後、成形体を焼成することで製造できる。詳細な製造方法については、前記特許文献3に記載されている。
酸化亜鉛系透明導電膜(II)の成膜も、酸化インジウム系透明導電膜(I)の成膜と同様に、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法と、基板を加熱して結晶質膜を形成する第2の方法を用いることができる。
第1の方法では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が100℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm2以上として、非晶質膜として形成した後、200℃以上600℃以下に加熱処理し、酸化亜鉛系透明導電膜(II)を結晶化する。また、第2の方法では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が200℃以上600℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm2以上として、酸化亜鉛系透明導電膜(II)を成膜する。
本実施の形態では、第1の方法又は第2の方法のいずれの方法も、透明導電膜積層体の特性に大きく影響を及ぼすことはないものの、生産性の観点から、成膜後の加熱処理工程を設ける必要のない第2の方法が好ましい。
本実施の形態では、上記のようにスパッタリングガス圧が0.1Pa以上1.0Pa未満の条件で酸化亜鉛系透明導電膜(II)を形成する。スパッタリングガス圧が0.1Pa未満の場合、結晶膜の形成が困難となる。また、スパッタリングガス圧が1.0Pa以上の場合、六方晶系結晶のc軸傾斜角度が透光性基板面の垂直方向に対して10°以下の酸化亜鉛系透明導電膜(II)を成膜することが困難となる。
また、本実施の形態では、酸化亜鉛系透明導電膜(II)の成膜時に水素ガスを導入してもよい。水素ガスを導入することにより、膜中の余剰な酸素が解離され、導電性及び透過率を向上させることができる。この場合、スパッタリングガス種としてアルゴン(Ar)と水素(H2)の混合ガスを用いて、その混合割合(モル比)がH2/(Ar+H2)≦0.43であることが好ましい。スパッタリングガス種として用いるアルゴン(Ar)と水素(H2)の混合ガスの混合割合(モル比)が、H2/(Ar+H2)>0.43である場合、透明導電膜の基板に対する付着力が低下したり、透明導電膜が粗くなりすぎて導電性が悪化したりし、実用上、太陽電池の電極として利用することが困難となる。また、下地層である酸化インジウム系透明導電膜(I)において水素還元による透明性の損失が発生し、薄膜太陽電池の表面電極として用いることが非常に困難となってしまう。
<2−3.酸化亜鉛系透明導電膜(III)の成膜>
酸化亜鉛系透明導電膜(III)の成膜に用いられる酸化物焼結体ターゲットは、アルミニウムとガリウムの含有量が式(2)で規定される範囲内であれば、上記のような表面凹凸が大きくて、ヘイズ率の高い酸化亜鉛系透明導電膜(III)を、スパッタリング法で高速に製造することができる。
酸化亜鉛系透明導電膜(III)の成膜に用いられる酸化物焼結体ターゲットは、アルミニウムとガリウムの含有量が式(2)で規定される範囲内であれば、上記のような表面凹凸が大きくて、ヘイズ率の高い酸化亜鉛系透明導電膜(III)を、スパッタリング法で高速に製造することができる。
酸化亜鉛系透明導電膜(III)の成膜も、酸化亜鉛系透明導電膜(II)の成膜と同様に、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法と、基板を加熱して結晶質膜を形成する第2の方法を用いることができる。
第1の方法では、スパッタリングガス圧が1.0Pa以上15.0Pa以下において基板温度が100℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm2以上として、非晶質膜として形成した後、200℃以上600℃以下に加熱処理し、酸化亜鉛系透明導電膜(III)を結晶化する。また、第2の方法では、スパッタリングガス圧が1.0Pa以上15.0Pa以下において基板温度が200℃以上600℃以下の条件で、スパッタリングターゲットへの直流投入電力密度を1.66W/cm2以上として、酸化亜鉛系透明導電膜(III)を成膜する。
本実施の形態では、第1の方法又は第2のいずれの方法も、透明導電膜積層体の特性に大きく影響を及ぼすことはないものの、生産性の観点から、成膜後の加熱処理工程を設ける必要のない第2の方法が好ましい。
また、本実施の形態では、スパッタリングガス圧が1.0Pa以上15.0Pa以下の条件で酸化亜鉛系透明導電膜(III)を形成することが好ましい。スパッタリングガス圧が1.0Pa未満の場合、表面凹凸の大きい膜が得られ難く、Ra値が35.0nm以上の膜が得られなくなってしまう。一方、15.0Paを超えると成膜速度が遅くなってしまい好ましくない。例えば、静止対向成膜において、ターゲットへの直流投入電力密度が1.66W/cm2以上の高い電力を投入して40nm/min以上の成膜速度を得るためには、スパッタリングガス圧を15.0Pa以下とする必要がある。
また、本実施の形態では、酸化亜鉛系透明導電膜(III)の成膜時に、酸化亜鉛系透明導電膜(II)の成膜時と同様に水素ガスをH2/(Ar+H2)≦0.43の混合割合(モル比)で導入し、膜中の余剰な酸素を解離し、導電性及び透過率を向上させてもよい。
また、本実施の形態では、酸化亜鉛系透明導電膜(III)の成膜時の基板温度は、酸化亜鉛系透明導電膜(II)の成膜時と同様に200℃以上600℃以下とすることが好ましい。これにより、透明導電膜の結晶性が良くなり、キャリア電子の移動度が増大し、優れた導電性を実現することができる。基板温度が200℃未満であると、膜の粒子の成長が劣るためRa値の大きな膜を得ることができない。また、基板温度が600℃を超えると、加熱に要する電力量が多くなり製造コストが増加するなどの問題が生じるだけでなく、基板としてガラス基板を用いた場合にはその軟化点を超えてしまい、ガラスが劣化してしまうなどの問題も生じるため好ましくない。
上述の透明導電膜の成膜において、スパッタリングターゲットへの投入電力を増大させると、成膜速度が増加し、膜の生産性が向上するが、従来の技術では上記の特性が得られにくくなる。ここでいう高速成膜とは、ターゲットへの投入電力を2.76W/cm2以上に増加させてスパッタリング成膜を行うことをいう。これにより、例えば、静止対向成膜において90nm/min以上の成膜速度が実現でき、表面凹凸が大きくて高ヘイズ率の酸化亜鉛系透明導電膜を得ることができる。また、ターゲット上を基板が通過しながら成膜する通過型成膜(搬送成膜)においても、例えば同様の投入電力密度において成膜した5.1nm・m/min(搬送速度(m/min)で割ると、得られる膜厚(nm)が算出される)の高速搬送成膜においても表面凹凸性が優れて、ヘイズ率の高い酸化亜鉛系透明導電膜を得ることができる。なお、この場合の成膜速度は、本発明の目的を達成できれば特に制限されない。
本実施の形態では、上述した条件で成膜することによって、ターゲットへの投入電力密度を2.760W/cm2以上に増加させた高速成膜を試みても、表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下の表面凹凸性を有する透明導電膜積層体を製造することができる。特に、本実施の形態によれば、上記の表面粗さ(Ra)、表面抵抗が、450nm以上1000nm以下の薄い膜厚でも実現することができ、膜厚が薄くなることにより透過率も向上する。
以上説明したように、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上を添加金属元素として含み、アルミニウムの含有量[Al]とガリウムの含有量[Ga]が特定の範囲内である酸化亜鉛系透明導電膜(III)を形成することによって、スパッタリング法のみで高速成膜が可能であり、かつ表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下で、光閉じ込め効果にも優れる透明導電膜積層体を得ることができる。さらに、この酸化亜鉛系透明導電膜を酸化インジウム系透明導電膜(I)上に成膜する際、低ガス圧条件でのスパッタリングによる層(II)と、高ガス圧条件でのスパッタリングによる層(III)を順次積層することで、低ガス圧層(II)が、耐水素還元性の低い酸化インジウム系透明導電膜(I)上を全て保護することができ、耐水素還元性に優れ、光閉じ込め効果にも優れた構造を得ることができる。
また、透明導電膜積層体は、スパッタリング法のみで製造することができるため、薄膜太陽電池の表面透明電極用として導電性等に優れているだけでなく、従来の熱CVD法による透明導電膜と比較してコスト削減が可能となる。したがって、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため工業的に極めて有用である。
また、この透明導電膜積層体は、特に耐水素還元性に優れ、かつ、高いヘイズ率及び優れた導電性を有しており、波長380nm以上1200nm以下の可視光線から近赤外線までを含む太陽光の光エネルギーを極めて有効に電気エネルギーに変換することができる。従って、高効率太陽電池の表面電極用途として非常に有用である。
<3.薄膜太陽電池及びその製造方法>
本実施の形態に係る薄膜太陽電池は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成されている。
本実施の形態に係る薄膜太陽電池は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成されている。
本実施の形態に係る薄膜太陽電池は、上述した透明導電膜積層体を電極として用いていることを特徴とする光電変換素子である。太陽電池素子の構造は特に限定されず、p型半導体とn型半導体を積層したPN接合型、p型半導体とn型半導体の間に絶縁層(I層)を介在させたPIN接合型等が挙げられる。
薄膜太陽電池は、半導体の種類によって大別され、微結晶シリコン又は/及びアモルファスシリコン等のシリコン系半導体薄膜を光電変換素子として用いたシリコン系太陽電池、CuInSe系やCu(In,Ga)Se系、Ag(In,Ga)Se系、CuInS系、Cu(In,Ga)S系、Ag(In,Ga)S系やこれらの固溶体、GaAs系、CdTe系等で代表される化合物半導体の薄膜を光電変換素子として用いた化合物薄膜系太陽電池、及び、有機色素を用いた色素増感型太陽電池(グレッツェルセル型太陽電池とも呼ばれる)に分類されるが、本実施の形態に係る太陽電池は、何れの場合も含まれ、上述した透明導電膜積層体を電極として用いることで高効率を実現できる。特に、シリコン系太陽電池や化合物薄膜系太陽電池では、太陽光が入射する側(受光部側、表側)の電極には透明導電膜が必要不可欠であり、本実施の形態に係る透明導電膜積層体を用いることで高い変換効率の特性を発揮することができる。
光電変換ユニットにおけるp型やn型の導電型半導体層は、光電変換ユニット内に内部電界を生じさせる役目を果たしている。この内部電界の大きさによって、薄膜太陽電池の重要な特性の1つである開放電圧(Voc)の値が左右される。i型層は、実質的に真性の半導体層であって光電変換ユニットの厚さの大部分を占めている。光電変換作用は、主としてこのi型層内で生じる。そのため、i型層は、通常i型光電変換層又は単に光電変換層と呼ばれる。光電変換層は、真性半導体層に限らず、ドープされた不純物(ドーパント)によって吸収される光の損失が問題にならない範囲で、微量にp型又はn型にドープされた層であってもよい。
図2は、シリコン系非晶質薄膜太陽電池の構造の一例を示す図である。シリコン系薄膜を光電変換ユニット(光吸収層)に用いたシリコン系薄膜太陽電池には、非晶質薄膜太陽電池の他に、微結晶質薄膜太陽電池や結晶質薄膜太陽電池のほか、これらを積層したハイブリッド薄膜太陽電池も実用化されている。なお、前記の通り、光電変換ユニット又は薄膜太陽電池において、その主要部を占める光電変換層が非晶質のものは、非晶質ユニット又は非晶質薄膜太陽電池と称されている。また、光電変換層が結晶質のものは、結晶質ユニット又は結晶質薄膜太陽電池と称されている。さらに、光電変換層が微結晶質のものは、微結晶質ユニット又は結晶質薄膜太陽電池と称されている。
このような薄膜太陽電池の変換効率を向上させる方法として、2以上の光電変換ユニットを積層してタンデム型太陽電池にする方法がある。例えば、この方法においては、薄膜太陽電池の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置する。これにより、入射光の広い波長範囲にわたって光電変換を可能にし、太陽電池全体としての変換効率の向上を図ることができる。このタンデム型太陽電池の中でも、特に非晶質光電変換ユニットと、結晶質或いは微結晶質光電変換ユニットを積層したものはハイブリッド薄膜太陽電池と称される。
図3は、ハイブリッド薄膜太陽電池の構造の一例を示す図である。ハイブリッド薄膜太陽電池において、例えば、i型非晶質シリコンが光電変換し得る光の波長域は長波長側では800nm程度までであるが、i型結晶質或いは微結晶質シリコンは、それより長い約1150nm程度の波長までの光を光電変換することができる。
次に、図2、3を用いて、本実施の形態に係る薄膜太陽電池の構成について、より具体的に説明する。図2、3において、透光性基板1上に、上述した酸化インジウム系透明導電膜(I)である透明導電膜21と、酸化亜鉛系透明導電膜(II)である透明導電膜22と、酸化亜鉛系透明導電膜(III)である透明導電膜23とからなる透明導電膜積層体2が形成されている。
透光性基板1としては、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。透明導電膜積層体2上には、非晶質光電変換ユニット3が形成されている。非晶質光電変換ユニット3は、非晶質p型シリコンカーバイド層31と、ノンドープ非晶質i型シリコン光電変換層32と、n型シリコン系界面層33とから構成されている。非晶質p型シリコンカーバイド層31は、透明導電膜積層体2の還元による透過率低下を防止するため、基板温度180℃以下で形成されている。
図3に示すハイブリッド薄膜太陽電池おいては、非晶質光電変換ユニット3の上に結晶質光電変換ユニット4が形成されている。結晶質光電変換ユニット4は、結晶質p型シリコン層41と、結晶質i型シリコン光電変換層42と、結晶質n型シリコン層43とから構成されている。非晶質光電変換ユニット3及び結晶質光電変換ユニット4(以下、この両方のユニットをまとめて単に「光電変換ユニット」と称する)の形成には、高周波プラズマCVD法が適している。光電変換ユニットの形成条件としては、基板温度100℃以上250℃以下(ただし、非晶質p型シリコンカーバイド層31は、180℃以下)、圧力30Pa以上1500Pa以下、高周波パワー密度0.01W/cm2以上0.5W/cm2以下が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、SiH4、Si2H6等のシリコン含有ガス、又は、それらのガスとH2を混合したものが用いられる。光電変換ユニットにおけるp型又はn型層を形成するためのドーパントガスとしては、B2H6又はPH3等が好ましく用いられる。
図2に示すn型シリコン系界面層33上又は図3に示すn型シリコン系界面層43上には、裏面電極5が形成される。裏面電極5は、透明反射層51と、裏面反射層52とから構成されている。透明反射層51には、ZnO、ITO等の金属酸化物を用いることが好ましい。裏面反射層52には、Ag、Al又はそれらの合金を用いることが好ましい。
裏面電極5の形成においては、スパッタリング、蒸着等の方法が好ましく用いられる。裏面電極5は、通常、0.5μm以上5μm以下、好ましくは1μm以上3μm以下の厚さとされる。裏面電極5の形成後、非晶質p型シリコンカーバイド層31の形成温度以上の雰囲気温度で大気圧近傍下に加熱することにより、太陽電池が完成する。加熱雰囲気に用いられる気体としては、大気、窒素、窒素と酸素の混合物等が好ましく用いられる。また、大気圧近傍とは概ね0.5気圧以上1.5気圧以下の範囲を示す。
以上説明したように、本実施の形態に係る薄膜太陽電池の製造方法によれば、透明導電膜積層体2を電極としたシリコン系薄膜太陽電池を提供することができる。また、本実施の形態に係る薄膜太陽電池の製造方法では、透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、酸化インジウム系透明導電膜を保護するための酸化亜鉛系透明導電膜(II)、次いで凹凸性に優れた酸化亜鉛系透明導電膜(III)が順次形成された三層積層構造を有する透明導電膜積層体とすることにより、より低抵抗の、薄膜太陽電池の表面透明電極用の透明導電膜を得ることができる。さらに、透明導電膜積層体は、従来の熱CVD法による透明導電膜と比べて安価に提供することができる。本実施の形態に係る薄膜太陽電池の製造方法は、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため、工業的に極めて有用である。
なお、図3にはハイブリッド薄膜太陽電池の構造を示しているが、光電変換ユニットは必ずしも2つである必要はなく、非晶質又は結晶質のシングル構造、3層以上の積層型太陽電池構造であってもよい。
以下、本発明に係る三層積層構造の透明導電膜について、実施例を比較例と対比しながら説明する。なお、本発明は、この実施例によって限定されるものではない。
[評価]
(1)膜厚は、以下の手順で測定した。成膜前に基板の一部を予め油性マジックインクを塗布しておき、成膜後にエタノールでマジックをふき取り、膜の無い部分を形成し、膜の有る部分と無い部分の段差を、接触式表面形状測定器(KLA Tencor社製 Alpha−StepIQ)で測定して求めた。
(1)膜厚は、以下の手順で測定した。成膜前に基板の一部を予め油性マジックインクを塗布しておき、成膜後にエタノールでマジックをふき取り、膜の無い部分を形成し、膜の有る部分と無い部分の段差を、接触式表面形状測定器(KLA Tencor社製 Alpha−StepIQ)で測定して求めた。
(2)透明導電膜の作製に用いたターゲットは、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析した。
(3)透明導電性薄膜の抵抗値は、抵抗率計ロレスタEP(ダイアインスツルメンツ社製MCP−T360型)による四探針法で測定した。
(4)透明導電膜積層体の全光線光透過率及び平行線透過率、並びに全光線反射率及び平行光反射率を分光光度計(日立製作所社製、U−4000)で測定した。
(5)膜のヘイズ率は、JIS規格K7136に基づいてヘイズメーター(村上色彩技術研究所社製HM−150)で評価した。また、膜の表面粗さ(Ra)は、原子間力顕微鏡(デジタルインスツルメンツ社製、NS−III、D5000システム)を用いて5μm×5μmの領域を測定した。
(6)透明導電膜積層体の耐水素還元性は、500℃、水素雰囲気中において熱処理を施した前後で、透明導電膜積層体の透過率について変化を調査することにより評価した。なお、ここでの透過率は、波長300〜1200nmにおける平均透過率とした。
(7)酸化亜鉛系透明導電膜(II)の配向性は、X線回折測定(PANalytical社製、X‘Pert Pro MPD)による極点図形の評価を行い、膜の結晶におけるc軸が、基板の垂直方向に対して何度傾斜しているか評価した。
[実施例1] GAZO/GAZO/ITO
以下の手順で、錫を含有する酸化インジウム系透明導電膜(I)の上に特徴の違う二種の酸化亜鉛系透明導電膜(II)、(III)を形成した構造の表面凹凸の大きな透明導電膜積層体をスパッタリング法で作製した。
以下の手順で、錫を含有する酸化インジウム系透明導電膜(I)の上に特徴の違う二種の酸化亜鉛系透明導電膜(II)、(III)を形成した構造の表面凹凸の大きな透明導電膜積層体をスパッタリング法で作製した。
[実施例1:酸化インジウム系透明導電膜(I)の作製]
最初に、表1に示す条件で下地となる酸化インジウム系透明導電膜(I)の成膜を行った。下地の酸化インジウム系透明導電膜の作製に用いたターゲット(住友金属鉱山株式会社製)の組成をICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Sn/(In+Sn)で5.30原子%以下であった。この結果を表2に示す。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。
最初に、表1に示す条件で下地となる酸化インジウム系透明導電膜(I)の成膜を行った。下地の酸化インジウム系透明導電膜の作製に用いたターゲット(住友金属鉱山株式会社製)の組成をICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Sn/(In+Sn)で5.30原子%以下であった。この結果を表2に示す。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。
このスパッタリングターゲットを、直流マグネトロンスパッタリング装置(トッキ社製、SPF503K)の強磁性体ターゲット用カソード(ターゲット表面上から1cm離れた位置での水平磁場強度が、最大で約80kA/m(1kG))に取り付け、該スパッタリングターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。スパッタリングターゲットと基板との距離を50mmとした。
チャンバ内の真空度が、2×10−4Pa以下に達した時点で、6vol.%のO2ガスを混合したArガスをチャンバ内に導入して、ガス圧0.6Paとし、基板を400℃まで加熱してから、直流投入電力300W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=300W÷181cm2=1.660W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚300nmの酸化インジウム系透明導電膜を基板上に形成した。
[実施例1:酸化亜鉛系透明導電膜(II)の作製]
次に、表1に示す条件で酸化インジウム系透明導電膜(I)の上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、酸化亜鉛系透明導電膜(II)を形成した。ターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Al/(Zn+Al)で0.30原子%であり、Ga/(Zn+Ga)で0.30原子%であった。表2に測定結果を示す。何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
次に、表1に示す条件で酸化インジウム系透明導電膜(I)の上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、酸化亜鉛系透明導電膜(II)を形成した。ターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Al/(Zn+Al)で0.30原子%であり、Ga/(Zn+Ga)で0.30原子%であった。表2に測定結果を示す。何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
透明導電膜(II)の成膜は、チャンバ内を真空引きし、その真空度が2×10−4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧0.3Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm2=2.210W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚150nmの酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を得た。
[実施例1:酸化亜鉛系透明導電膜(III)の作製]
最後に、表1に示す条件で酸化亜鉛系透明導電膜(II)上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Al/(Zn+Al)で0.30原子%であり、Ga/(Zn+Ga)で0.30原子%であった(表2)。何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
最後に、表1に示す条件で酸化亜鉛系透明導電膜(II)上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Al/(Zn+Al)で0.30原子%であり、Ga/(Zn+Ga)で0.30原子%であった(表2)。何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
酸化亜鉛系透明導電膜(III)の成膜は、チャンバ内を真空引きし、その真空度が2×10−4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧4.0Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm2=2.210W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚700nmの酸化亜鉛系透明導電膜(III)を形成し、透明導電膜積層体を得た。
得られた透明導電性薄膜積層体の膜厚、及び抵抗値を、前記(1)、(3)の方法で測定した。また、透明導電性薄膜積層体の全光線光透過率及び平行線透過率、並びに全光線反射率及び平行光反射率、膜のヘイズ率及び表面粗さRaを前記(4)、(5)の方法で測定した。また、得られた透明導電膜積層体の耐水素還元性評価として、前記(6)の方法で水素雰囲気中での加熱処理前後で、平均透過率(300nm以上1200nm以下)の測定を実施した。また、酸化亜鉛系透明導電膜(II)の断面については、前記(7)の方法でX線回折測定によるc軸傾斜の評価を行った。
表3に、得られた透明導電膜積層体の特性評価結果を示す。透明導電膜積層体の膜厚は1150nmであった。原子間力顕微鏡で測定した表面粗さRa値は39.1nmと高い値を示し、ヘイズ率も10.3%と高かった。また、表面抵抗は12.0Ω/□であり、高い導電性を示した。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して5°であった。さらに、得られた透明導電膜積層体の透過率は0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
また、図4に透明導電性薄膜膜の表面SEM写真及び図5に透明導電性薄膜膜の断面SEM写真を示す。図4に示す表面SEM写真より、結晶粒の大きい粗い表面が得られていることが分かる。また、図5に示す断面SEM写真より、酸化インジウム系透明導電膜(I)上の酸化亜鉛系透明導電膜(II)は、結晶粒が小さく緻密に形成されていることが分かる。
[実施例2〜5:GAZO/GAZO/ITO]
実施例1に示した酸化インジウム系透明導電膜(I)、酸化亜鉛系透明導電膜(II)及び酸化亜鉛系透明導電膜(III)について、表1、2に示すようにそれぞれの膜厚を変えて、透明導電膜積層体の作製を実施した。その他の成膜条件は、実施例1と同様にして行った。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
実施例1に示した酸化インジウム系透明導電膜(I)、酸化亜鉛系透明導電膜(II)及び酸化亜鉛系透明導電膜(III)について、表1、2に示すようにそれぞれの膜厚を変えて、透明導電膜積層体の作製を実施した。その他の成膜条件は、実施例1と同様にして行った。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表3に、実施例2〜5の透明導電膜積層体の特性評価結果を示す。透明導電膜積層体の膜厚は、それぞれ950nm(実施例2)、2150nm(実施例3)、1100nm(実施例4)、2300nm(実施例5)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ35.5nm(実施例2)、47.1nm(実施例3)、36.0nm(実施例4)、48.5nm(実施例5)と高い値を示し、ヘイズ率も、それぞれ8.5%(実施例2)、13.1%(実施例3)、9.1%(実施例4)、14.2%(実施例5)と高かった。また、表面抵抗は、それぞれ12.6Ω/□(実施例2)、5.3Ω/□(実施例3)、11.0Ω/□(実施例4)、5.1Ω/□(実施例5)であり、高い導電性を示した。
また、実施例2〜5の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対してそれぞれ8°(実施例2)、8°(実施例3)、4°(実施例4)、5°(実施例5)であった。さらに、実施例2〜5の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[実施例6〜9:GAZO/GAZO/ITiO]
実施例2〜5における下地膜に用いた錫含有の酸化インジウム系透明導電膜(I)を、チタン含有の酸化インジウム系透明導電膜(ITiO)に変えて透明導電膜積層体を作製した。この際、下地の酸化インジウム系透明導電膜(I)は、表1に示す条件で作製した。
実施例2〜5における下地膜に用いた錫含有の酸化インジウム系透明導電膜(I)を、チタン含有の酸化インジウム系透明導電膜(ITiO)に変えて透明導電膜積層体を作製した。この際、下地の酸化インジウム系透明導電膜(I)は、表1に示す条件で作製した。
下地の酸化インジウム系透明導電膜(I)の作製に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Ti/(In+Ti)で0.50原子%以下であった。表2に測定結果を示す。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。
成膜は、実施例1で用いた装置で行い、カソードの種類も同じである。ターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。なお、スパッタリングターゲットと基板との距離を50mmとした。チャンバ内の真空度が、2×10−4Pa以下に達した時点で、6vol.%のO2ガスを混合したArガスをチャンバ内に導入して、ガス圧0.6Paとし、基板を400℃まで加熱してから、直流投入電力300W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=300W÷181cm2=1.660W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚50nm及び500の酸化インジウム系透明導電膜を基板上に形成した。
次に、作製した下地膜(I)の上に、表1に示す実施例2〜5と同様の条件にて酸化亜鉛系透明導電膜(II)及び(III)を形成し、透明導電膜積層体を得た。
表3に、実施例6〜9の透明導電膜積層体の特性評価結果を示す。実施例6〜9の透明導電膜(I)〜(III)の組成は、ターゲットの組成とほぼ同じであった。また、実施例6〜9の透明導電膜積層体の膜厚は、それぞれ950nm(実施例6)、2150nm(実施例7)、1100nm(実施例8)、2300nm(実施例9)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ36.3nm(実施例6)、49.0nm(実施例7)、38.1nm(実施例8)、49.6nm(実施例9)と高い値を示し、ヘイズ率も、それぞれ9.0%(実施例6)、14.5%(実施例7)、9.9%(実施例8)、15.0%(実施例9)と高かった。また、表面抵抗は、それぞれ12.1Ω/□(実施例6)、5.3Ω/□(実施例7)、9.8Ω/□(実施例8)、5.0Ω/□(実施例9)であり、高い導電性を示した。
また、実施例6〜9の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対してそれぞれ10°(実施例6)、8°(実施例7)、2°(実施例8)、4°(実施例9)であった。さらに、実施例6〜9の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[実施例10〜13:AZO/AZO/ITO]
実施例2〜5における酸化インジウム系透明導電膜(I)を下地として、その上に表1の条件で酸化亜鉛系透明導電膜(II)及び(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
実施例2〜5における酸化インジウム系透明導電膜(I)を下地として、その上に表1の条件で酸化亜鉛系透明導電膜(II)及び(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[実施例10〜13:酸化亜鉛系透明導電膜(II)の作製]
酸化亜鉛系透明導電膜(II)の成膜に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Al/(Zn+Al)で0.30原子%であった。表2に測定結果を示す。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
酸化亜鉛系透明導電膜(II)の成膜に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Al/(Zn+Al)で0.30原子%であった。表2に測定結果を示す。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
酸化亜鉛系透明導電膜(II)の成膜は、実施例1で用いた装置で行い、カソードの種類も同じである。ターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。スパッタリングターゲットと基板との距離を50mmとした。
次に、チャンバ内を真空引きし、その真空度が、2×10−4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧0.5Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm2=2.210W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタリングを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を得た。
[実施例10〜13:酸化亜鉛系透明導電膜(III)の作製]
最後に、酸化亜鉛系透明導電膜上に、アルミニウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Al/(Zn+Al)で0.30原子%であった(表2)。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)である。
最後に、酸化亜鉛系透明導電膜上に、アルミニウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Al/(Zn+Al)で0.30原子%であった(表2)。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)である。
酸化亜鉛系透明導電膜(III)の成膜は、チャンバ内を真空引きし、その真空度が2×10−4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧4.0Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm2=2.210W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(III)を形成し、透明導電膜積層体を得た。
表3に、実施例10〜13の透明導電膜積層体の特性評価結果を示す。実施例10〜13の透明導電膜積層体の膜厚は、それぞれ950nm(実施例10)、2150nm(実施例11)、1100nm(実施例12)、2300nm(実施例13)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ35.3nm(実施例10)、46.3nm(実施例11)、35.4nm(実施例12)、48.5nm(実施例13)と高い値を示し、ヘイズ率も、それぞれ8.5%(実施例10)、12.8%(実施例11)、8.2%(実施例12)、14.0%(実施例13)と高かった。また、表面抵抗は、それぞれ15.3Ω/□(実施例10)、7.0Ω/□(実施例11)、11.7Ω/□(実施例12)、7.0Ω/□(実施例13)であり、高い導電性を示した。
また、実施例10〜13の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ9°(実施例10)、7°(実施例11)、5°(実施例12)、3°(実施例13)であった。さらに、実施例10〜13の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[実施例14〜17:AZO/AZO/ITiO]
表1、2に示すように、酸化インジウム系透明導電膜(I)として、実施例6〜9における、チタンを含む酸化インジウム系透明導電膜(ITiO)を下地とし、その上に、酸化亜鉛系透明導電膜(II)、(III)として、実施例10〜13における、アルミニウムを含む酸化亜鉛系透明導電膜(AZO)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように、酸化インジウム系透明導電膜(I)として、実施例6〜9における、チタンを含む酸化インジウム系透明導電膜(ITiO)を下地とし、その上に、酸化亜鉛系透明導電膜(II)、(III)として、実施例10〜13における、アルミニウムを含む酸化亜鉛系透明導電膜(AZO)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表3に、実施例14〜17の透明導電膜積層体の特性評価結果を示す。実施例14〜17の透明導電膜積層体の膜厚は、それぞれ950nm(実施例14)、2150nm(実施例15)、1100nm(実施例16)、2300nm(実施例17)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ36.0nm(実施例14)、47.0nm(実施例15)、37.0nm(実施例16)、48.4nm(実施例17)と高い値を示し、ヘイズ率も、それぞれ8.8%(実施例14)、12.7%(実施例15)、9.1%(実施例16)、14.0%(実施例17)と高かった。また、表面抵抗は、それぞれ14.9Ω/□(実施例14)、6.7Ω/□(実施例15)、11.3Ω/□(実施例16)、6.9Ω/□(実施例17)であり、高い導電性を示した。
また、実施例14〜17の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ10°(実施例14)、10°(実施例15)、5°(実施例16)、3°(実施例17)であった。さらに、実施例14〜17の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[実施例18〜21:GZO/GZO/ITO]
表1、2に示すように酸化インジウム系透明導電膜(I)として、実施例2〜5におけるITO膜を下地とし、その上にガリウムを含む酸化亜鉛系透明導電膜(II)、(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化インジウム系透明導電膜(I)として、実施例2〜5におけるITO膜を下地とし、その上にガリウムを含む酸化亜鉛系透明導電膜(II)、(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
[実施例18〜21:酸化亜鉛系透明導電膜(II)の作製]
酸化亜鉛系透明導電膜(II)の成膜に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Ga/(Zn+Ga)で0.87原子%であった。表2に測定結果を示す。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
酸化亜鉛系透明導電膜(II)の成膜に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Ga/(Zn+Ga)で0.87原子%であった。表2に測定結果を示す。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
酸化亜鉛系透明導電膜(II)の成膜は、実施例1で用いた装置で行い、カソードの種類も同じである。ターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。スパッタリングターゲットと基板との距離を50mmとした。
次に、チャンバ内を真空引きし、その真空度が、2×10−4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧0.5Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm2=2.210W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタリングを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を得た。
[実施例18〜21:酸化亜鉛系透明導電膜(III)の作製]
最後に、酸化亜鉛系透明導電膜(II)の上に、ガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Ga/(Zn+Ga)で0.87原子%であった。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
最後に、酸化亜鉛系透明導電膜(II)の上に、ガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(III)を形成した。ターゲットの組成は、酸化亜鉛系透明導電膜(II)と同様、Ga/(Zn+Ga)で0.87原子%であった。何れのターゲットとも純度は99.999%であり、ターゲットの大きさは6インチ(Φ)×5mm(厚さ)であった。
酸化亜鉛系透明導電膜(III)の成膜は、チャンバ内を真空引きし、その真空度が2×10−4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧4.0Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm2=2.210W/cm2)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、表1に示すようにそれぞれの膜厚を変えて、酸化亜鉛系透明導電膜(III)を形成し、透明導電膜積層体を得た。
表3に、実施例18〜21の透明導電膜積層体の特性評価結果を示す。実施例18〜21の透明導電膜積層体の膜厚は、それぞれ950nm(実施例18)、2150nm(実施例19)、1100nm(実施例20)、2300nm(実施例21)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ35.8nm(実施例18)、47.1nm(実施例19)、38.0nm(実施例20)、49.3nm(実施例21)と高い値を示し、ヘイズ率も、それぞれ9.0%(実施例18)、12.9%(実施例19)、10.0%(実施例20)、14.9%(実施例21)と高かった。また、表面抵抗は、それぞれ12.0Ω/□(実施例18)、5.7Ω/□(実施例19)、10.5Ω/□(実施例20)、5.1Ω/□(実施例21)であり、高い導電性を示した。
また、実施例18〜21の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ8°(実施例18)、9°(実施例19)、4°(実施例20)、4°(実施例21)であった。さらに、実施例18〜21の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[実施例22〜25:GZO/GZO/ITiO]
表1、2に示すように酸化インジウム系透明導電膜(I)として、実施例6〜9における、チタンを含むITiO膜を下地として、その上に、酸化亜鉛系透明導電膜(II)、(III)として、実施例18〜21における、ガリウムを含むGZO膜を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化インジウム系透明導電膜(I)として、実施例6〜9における、チタンを含むITiO膜を下地として、その上に、酸化亜鉛系透明導電膜(II)、(III)として、実施例18〜21における、ガリウムを含むGZO膜を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表3に、実施例22〜25の透明導電膜積層体の特性評価結果を示す。実施例22〜25の透明導電膜積層体の膜厚は、それぞれ950nm(実施例22)、2150nm(実施例23)、1100nm(実施例24)、2300nm(実施例25)であった。原子間力顕微鏡で測定した表面粗さRa値は、それぞれ36.9nm(実施例22)、49.1nm(実施例23)、38.5nm(実施例24)、51.0nm(実施例25)と高い値を示し、ヘイズ率も、それぞれ9.5%(実施例22)、14.0%(実施例23)、10.0%(実施例24)、16.2%(実施例25)と高かった。また、表面抵抗は、それぞれ11.4Ω/□(実施例22)、5.2Ω/□(実施例23)、10.2Ω/□(実施例24)、4.9Ω/□(実施例25)であり、高い導電性を示した。
また、実施例22〜25の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ9°(実施例22)、7°(実施例23)、3°(実施例24)、3°(実施例25)であった。さらに、実施例22〜25の透明導電膜積層体の透過率は全て0%であり、水素雰囲気中での加熱処理前後で全く低下が見られなかった。したがって、耐水素還元性に優れ、高いヘイズ率及び低い抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[比較例1:GAZO/ITiO]
表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表3に、得られた透明導電膜積層体の特性評価結果を示す。得られた透明導電膜の膜厚は900nmであり、原子間力顕微鏡で測定した表面粗さRa値は36.0nmと高い値を示し、ヘイズ率も8.5%と高かった。しかし、得られた透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、75.2%から35.7%まで大きく低下した。これは、表面の酸化亜鉛系透明導電膜(III)が非常に粗く、下地層である酸化インジウム系透明導電膜(I)の表面を完全に保護できておらず、酸化インジウム系透明導電膜中の酸素が水素によって解離されたためと考えられる。したがって、酸化亜鉛系透明導電膜(II)で酸化インジウム系透明導電膜(I)を保護していない場合、耐水素還元性が非常に低い透明導電膜積層体しか得られず、有用でないことが確認された。
[比較例2:GAZO/ITiO]
表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例14と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例14と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表3に、得られた透明導電膜積層体の特性評価結果を示す。得られた透明導電膜の膜厚は900nmであり、原子間力顕微鏡で測定した表面粗さRa値は35.0nmと高い値を示し、ヘイズ率も8.2%と高かった。しかし、得られた透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、76.5%から40.3%まで大きく低下した。これは比較例1と同様に、表面の酸化亜鉛系透明導電膜(III)の保護性が不十分であり、酸化インジウム系透明導電膜中の酸素が解離されたためと考えられる。したがって比較例1と同様に、酸化亜鉛系透明導電膜(II)で酸化インジウム系透明導電膜(I)を保護していない場合、耐水素還元性が非常に低く、太陽電池の電極として有用ではないことが確認された。
[比較例3:GAZO/ITiO]
表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例22と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化亜鉛系透明導電膜(II)を挿入せず、酸化インジウム系透明導電膜(I)上に酸化亜鉛系透明導電膜(III)を形成した透明導電膜積層体とした以外は実施例22と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
表3に、得られた透明導電膜積層体の特性評価結果を示す。得られた透明導電膜の膜厚は900nmであり、原子間力顕微鏡で測定した表面粗さRa値は35.5nmと高い値を示し、ヘイズ率も8.8%と高かった。しかし、得られた透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、71.3%から32.1%まで大きく低下した。これは比較例1と同様に、表面の酸化亜鉛系透明導電膜(III)の保護性が不十分であり、酸化インジウム系透明導電膜中の酸素が解離されたためと考えられる。したがって比較例1と同様に、酸化亜鉛系透明導電膜(II)で酸化インジウム系透明導電膜(I)を保護していない場合、耐水素還元性が非常に低く、太陽電池の電極として有用ではないことが確認された。
[比較例4、5:GAZO/GAZO/ITiO]
表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際に用いた、アルミニウムを含む酸化亜鉛焼結体ターゲット組成を前述した式(1)から逸脱した組成に変えた以外は、実施例14と同様にして、透明導電膜積層体を作製した。酸化亜鉛系透明導電膜(III)に用いたターゲットとしては、比較例4では、その組成がAl/(Zn+Al)で0.40原子%、Ga/(Zn+Ga)で1.00原子%であるものを用いた。また、比較例5では、Al/(Zn+Al)で0.10原子%、Ga/(Zn+Ga)で0.10原子%であるものを用いた。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際に用いた、アルミニウムを含む酸化亜鉛焼結体ターゲット組成を前述した式(1)から逸脱した組成に変えた以外は、実施例14と同様にして、透明導電膜積層体を作製した。酸化亜鉛系透明導電膜(III)に用いたターゲットとしては、比較例4では、その組成がAl/(Zn+Al)で0.40原子%、Ga/(Zn+Ga)で1.00原子%であるものを用いた。また、比較例5では、Al/(Zn+Al)で0.10原子%、Ga/(Zn+Ga)で0.10原子%であるものを用いた。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
得られた膜の特性は表3に示すように、比較例1、2の全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかった。また、比較例1、2の酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対してそれぞれ8°(比較例4)、9°(比較例5)であった。
比較例4の膜は、導電性は良好であるものの、実施例14と異なりRa値が低く、ヘイズ率も低い膜であった。よって、光閉じ込め効果が不十分であるため高効率の太陽電池の表面透明電極として利用することはできないことが分かった。また、比較例5の膜は、Ra値とヘイズ率は高いが、表面抵抗が高すぎるため、太陽電池の電極として有用ではない。
[実施例26〜28、比較例6、7:GAZO/GAZO/ITiO]
表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際のガス圧をそれぞれ、0.5Pa(比較例6)、1.0Pa(実施例26)、10.5Pa(実施例27)、15.0Pa(実施例28)、20.0Pa(比較例7)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際のガス圧をそれぞれ、0.5Pa(比較例6)、1.0Pa(実施例26)、10.5Pa(実施例27)、15.0Pa(実施例28)、20.0Pa(比較例7)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
得られた膜の特性は、表3に示すように成膜時のガス圧が増加するに伴い、Ra値とヘイズ率は増加した。比較例6の膜は、ヘイズ率が低くて光閉じ込め効果が弱く、高効率の太陽電池の表面透明電極としては利用できない。比較例7は、作製時の成膜速度が非常に遅くて生産性が悪く、また、得られた膜はヘイズ率が高いが表面抵抗が高いことと、膜の基板への付着力が弱くて剥がれやすくデバイスの電極として利用することができない。
一方、実施例26〜28の透明導電膜積層体は、表面抵抗が低いだけでなく、ヘイズ率も8%以上と十分に高く、膜の付着力も高い。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ8(実施例26)、10°(実施例27)、8°(実施例28)であった。さらに、実施例26〜28の透明導電膜積層体は、全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかったため、高効率の太陽電池の表面透明電極として利用できることが確認された。
[実施例29、30、比較例8、9:GAZO/GAZO/ITiO]
表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際の基板温度をそれぞれ、150℃(比較例8)、200℃(実施例29)、550℃(実施例30)、610℃(比較例9)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化亜鉛系透明導電膜(III)を成膜する際の基板温度をそれぞれ、150℃(比較例8)、200℃(実施例29)、550℃(実施例30)、610℃(比較例9)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
得られた膜の特性は、表3に示すように基板温度が増加するに伴い、Ra値とヘイズ率も増加したが、表面抵抗も増加した。比較例8の膜は、表面抵抗は低くて十分であるが、ヘイズ率が低くて光閉じ込め効果が弱く、高効率の太陽電池の表面透明電極としては利用できない。比較例9は、作製時の成膜速度が非常に遅くて生産性が悪く、また得られた膜もヘイズ率が高いが表面抵抗も高いため、太陽電池の表面透明電極として利用することができない。
一方、実施例29、30の透明導電膜積層体は、表面抵抗が低いだけでなくヘイズ率も8%以上と十分に高い。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ10(実施例29)、9°(実施例30)であった。さらに、実施例29、30の透明導電膜積層体は、全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかったため、高効率の太陽電池の表面透明電極として有用である。
[実施例31〜33、比較例10:GAZO/GAZO/ITiO]
表1、2に示すように実施例6〜9における酸化インジウム系透明導電膜(I)を下地として、その上に、水素(H2)ガスをH2/(Ar+H2)のモル比においてそれぞれ、0.01(実施例31)、0.25(実施例32)、0.43(実施例33)、0.50原子%(比較例10)の割合で導入し、酸化亜鉛系透明導電膜(III)の膜厚を400nmとした以外は実施例6〜9と同様にして酸化亜鉛系透明導電膜(II)、(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように実施例6〜9における酸化インジウム系透明導電膜(I)を下地として、その上に、水素(H2)ガスをH2/(Ar+H2)のモル比においてそれぞれ、0.01(実施例31)、0.25(実施例32)、0.43(実施例33)、0.50原子%(比較例10)の割合で導入し、酸化亜鉛系透明導電膜(III)の膜厚を400nmとした以外は実施例6〜9と同様にして酸化亜鉛系透明導電膜(II)、(III)を形成し、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
得られた膜の特性は表3に示すように、成膜ガスのH2割合が増加するに伴い、Ra値とヘイズ率は増加したが、表面抵抗も増加する傾向にあった。比較例10の膜は、Ra値やヘイズ率こそ高いが、表面抵抗が高すぎるため、太陽電池の電極として利用することができない。また、比較例10の膜は、基板に対する付着力が極めて弱いなどの問題もあった。
一方、実施例31〜33の透明導電膜積層体は、表面抵抗が低いだけでなく、ヘイズ率も8%以上と十分に高く、膜の付着力も高い。また、酸化亜鉛系透明導電膜(II)の六方晶系結晶のc軸傾斜角度は、透光性基板面の垂直方向に対して、それぞれ5(実施例31)、8°(実施例32)、10°(実施例33)であった。さらに、実施例31〜33の透明導電膜積層体は、透過率について水素雰囲気中での加熱処理前後で全く低下が見られなかったため、高効率の太陽電池の表面透明電極として有用である。
[実施例34、比較例11、12:GAZO/GAZO/ITiO]
表1、2に示すように酸化亜鉛系透明導電膜(II)を成膜する際のガス圧をそれぞれ、0.8Pa(実施例34)、1.0Pa(比較例11)、2.0Pa(比較例12)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
表1、2に示すように酸化亜鉛系透明導電膜(II)を成膜する際のガス圧をそれぞれ、0.8Pa(実施例34)、1.0Pa(比較例11)、2.0Pa(比較例12)とした以外は、実施例6と同様にして、透明導電膜積層体を作製した。作製した透明導電膜積層体及び酸化亜鉛系透明導電膜(II)の特性評価は、実施例1と同様の項目及び方法で実施した。
得られた膜の特性は、表3に示すように、全ての膜で水素雰囲気中での加熱処理前後で透過率の変化が0%であり、全く低下が見られなかったものの、成膜時のガス圧が高くなるほどRa値が増加した。また、実施例34で得た透明導電膜積層体の透過率は、水素雰囲気中での加熱処理を施すことにより、74.3%から66.7%へ7.6%の若干の低下が見られた。
一方、比較例11で得られた透明導電膜積層体の透過率は、73.9%から61.5%へ10%以上の低下が見られた。また、比較例12で得られた透明導電膜積層体の透過率は、73.0%から48.5%と非常に大きな低下が見られた。これらは、比較例11および12で形成した表面の酸化亜鉛系透明導電膜(II)が緻密性に欠ける粗い膜となっているため、下地層である酸化インジウム系透明導電膜(I)の表面を完全に保護できておらず、酸化インジウム系透明導電膜中の酸素が水素によって解離された為と考えられる。したがって、比較例11、12のような高スパッタリングガス圧条件で酸化亜鉛系透明導電膜(II)を得る場合、耐水素還元性が非常に低い透明導電膜積層体しか得られず、有用でないことが確認された。
[実施例35、36:GAZO/GAZO/ITiO]
表1、2に示すように、それぞれ酸化インジウム系透明導電膜(I)を形成する際(実施例35)、または酸化亜鉛系透明導電膜(II)を形成する際(実施例36)に、基板を加熱せず室温にて非晶質膜を形成した後に、350℃加熱処理を施した以外は、実施例6と同様にして、透明導電膜積層体を作製した。得られた膜の特性評価は、実施例1と同様に実施した。
表1、2に示すように、それぞれ酸化インジウム系透明導電膜(I)を形成する際(実施例35)、または酸化亜鉛系透明導電膜(II)を形成する際(実施例36)に、基板を加熱せず室温にて非晶質膜を形成した後に、350℃加熱処理を施した以外は、実施例6と同様にして、透明導電膜積層体を作製した。得られた膜の特性評価は、実施例1と同様に実施した。
表3に示すように、実施例35の透明導電膜積層体は、酸化インジウム系透明導電膜(I)について基板加熱成膜を行った実施例6の膜と比較して、ヘイズ率が増加した。さらに、実施例35、36の透明導電膜積層体の透過率は、ともに水素雰囲気中での加熱処理前後で変化が0%であり、耐水素還元性に優れ、高いヘイズ率および低い抵抗値を有する透明導電膜積層体を高速に得られることが確認された。
[実施例37:GAZO/GAZO/ITiO]
表1、2に示すように、酸化亜鉛系透明導電膜(II)の組成を変更した以外は、実施例6と同様にして、透明導電膜積層体を作製した。得られた膜の特性評価は、実施例1と同様に実施した。
表1、2に示すように、酸化亜鉛系透明導電膜(II)の組成を変更した以外は、実施例6と同様にして、透明導電膜積層体を作製した。得られた膜の特性評価は、実施例1と同様に実施した。
表3に示すように、実施例37の透明導電膜積層体は、実施例6の膜と比較して、抵抗値が低下した。さらに、実施例37の透明導電膜積層体の透過率は、水素雰囲気中での加熱処理前後で変化が0%であり、耐水素還元性に優れ、高いヘイズ率および低い抵抗値を有する透明導電膜積層体を高速に得られることが確認された。
1 透光性基板、 2 透明導電膜積層体、 3 非晶質光電変換ユニット、 4 結晶質光電変換ユニット、 5 裏面電極、 21 酸化インジウム系透明導電膜(I)、 22 酸化亜鉛系透明導電膜(II)、 23 酸化亜鉛系透明導電膜(III)
Claims (20)
- 透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、
上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、
表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を製造する透明導電膜積層体の製造方法。 - 上記酸化亜鉛系透明導電膜(II)を形成するためのスパッタリングターゲットが、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことを特徴とする請求項1に記載の透明導電膜積層体の製造方法。
- 上記酸化亜鉛系透明導電膜(II)及び上記酸化亜鉛系透明導電膜(III)を形成するためのスパッタリングターゲットが、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含み、その含有量が下記式(1)で示される範囲内であることを特徴とする請求項1に記載の透明導電膜積層体の製造方法。
−[Al]+0.30≦[Ga]≦−2.68×[Al]+1.74 ・・・(1)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。) - 上記第1の成膜工程では、スパッタリングガス圧を0.1Pa以上1.0Pa未満とし、
上記第2の成膜工程では、スパッタリングガス圧を1.0Pa以上15.0Pa以下とすることを特徴とする請求項1〜3のいずれか1項に記載の透明導電膜積層体の製造方法。 - 上記第1の成膜工程及び上記第2の成膜工程において、スパッタリングガス種として、アルゴンと水素の混合ガスの混合割合をH2/(Ar+H2)≦0.43とすることを特徴とする請求項1〜4のいずれか1項に記載の透明導電膜積層体の製造方法。
- 上記第1の成膜工程では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が100℃以下の条件で、前記スパッタリングターゲットへの直流投入電力密度を1.66W/cm2以上として、非晶質膜として形成した後、200℃以上600℃以下に加熱処理し、上記酸化亜鉛系透明導電膜(II)を結晶化することを特徴とする請求項1〜3のいずれか1項に記載の透明導電膜積層体の製造方法。
- 上記第1の成膜工程では、スパッタリングガス圧が0.1Pa以上1.0Pa未満において基板温度が200℃以上600℃以下の条件で、前記スパッタリングターゲットへの直流投入電力密度を1.66W/cm2以上として、上記酸化亜鉛系透明導電膜(II)を成膜することを特徴とする請求項1〜3のいずれか1項に記載の透明導電膜の製造方法。
- 上記第2の成膜工程では、スパッタリングガス圧が1.0Pa以上15.0Pa以下、基板温度が200℃以上600℃以下の条件で、前記スパッタリングターゲットへの直流投入電力密度を1.66W/cm2以上として、高速で成膜することを特徴とする請求項6又は7に記載の透明導電膜の製造方法。
- 上記酸化インジウム系透明導電膜(I)が、基板温度100℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、非晶質膜として形成された後、200℃以上600℃以下に加熱処理されて、上記透光性基板上に結晶化されることを特徴とする請求項1に記載の透明導電膜積層体の製造方法。
- 上記酸化インジウム系透明導電膜(I)が、基板温度200℃以上600℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、上記透光性基板上に結晶膜として形成されることを特徴とする請求項1に記載の透明導電膜積層体の製造方法。
- 透光性基板上に形成された酸化インジウム系透明導電膜(I)と、
上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、
酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、
表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする透明導電膜積層体。 - 上記酸化亜鉛系透明導電膜(II)が、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含むことを特徴とする請求項11に記載の透明導電膜積層体。
- 上記酸化亜鉛系透明導電膜(II)及び上記酸化亜鉛系透明導電膜(III)が、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を含み、その含有量が下記式(1)で示される範囲内であることを特徴とする請求項11に記載の透明導電膜積層体。
−[Al]+0.30≦[Ga]≦−2.68×[Al]+1.74 ・・・(1)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。) - 500℃、水素雰囲気中での加熱処理による透過率低下が10%以下であることを特徴とする請求項11〜13のいずれか1項に記載の透明導電膜積層体。
- ヘイズ率が8%以上であることを特徴とする請求項11〜13のいずれか1項に記載の透明導電膜積層体。
- 酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、Sn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した結晶膜であることを特徴とする請求項11〜13のいずれか1項に記載の透明導電膜積層体。
- 酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、かつSnを含有し、その含有割合がSn/(In+Sn)原子数比で15原子%以下であることを特徴とする請求項11〜13のいずれか1項に記載の透明導電膜積層体。
- 酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、かつTiを含有し、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であることを特徴とする請求項11〜13のいずれか1項に記載の透明導電膜積層体。
- 透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とを順に形成する薄膜太陽電池の製造方法において、
上記透光性基板上に形成された酸化インジウム系透明導電膜(I)上に、スパッタリング法により六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)を成膜する第1の成膜工程と、
上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)を成膜する第2の成膜工程とを有し、
上記透光性基板上に表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下である透明導電膜積層体を形成することを特徴とする薄膜太陽電池の製造方法。 - 透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成された薄膜太陽電池において、
上記透明導電膜積層体は、
上記透光性基板上に形成された酸化インジウム系透明導電膜(I)と、
上記酸化インジウム系透明導電膜(I)上に形成された六方晶系結晶のc軸傾斜角度が上記透光性基板面の垂直方向に対して10°以下、膜厚が10nm以上200nm以下である酸化亜鉛系透明導電膜(II)と、
上記酸化亜鉛系透明導電膜(II)上に形成された膜厚が400nm以上1600nm以下である酸化亜鉛系透明導電膜(III)とを備え、
表面粗さ(Ra)が35.0nm以上、表面抵抗が25Ω/□以下であることを特徴とする薄膜太陽電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011000777A JP2012142499A (ja) | 2011-01-05 | 2011-01-05 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
TW101100300A TW201243869A (en) | 2011-01-05 | 2012-01-04 | Transparent conductive film laminate and method for manufacturing the same, and thin film solar cell and method for manufacturing the same |
PCT/JP2012/050124 WO2012093702A1 (ja) | 2011-01-05 | 2012-01-05 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011000777A JP2012142499A (ja) | 2011-01-05 | 2011-01-05 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012142499A true JP2012142499A (ja) | 2012-07-26 |
Family
ID=46457552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011000777A Withdrawn JP2012142499A (ja) | 2011-01-05 | 2011-01-05 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012142499A (ja) |
TW (1) | TW201243869A (ja) |
WO (1) | WO2012093702A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012160661A (ja) * | 2011-02-02 | 2012-08-23 | Ulvac Japan Ltd | 透明導電膜付き基板、太陽電池及びそれらの製造方法 |
WO2014073329A1 (ja) * | 2012-11-07 | 2014-05-15 | 住友金属鉱山株式会社 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
WO2014073328A1 (ja) * | 2012-11-07 | 2014-05-15 | 住友金属鉱山株式会社 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
JP2014110405A (ja) * | 2012-12-04 | 2014-06-12 | Sumitomo Metal Mining Co Ltd | 表面電極付透明導電ガラス基板及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5397794B1 (ja) | 2013-06-04 | 2014-01-22 | Roca株式会社 | 酸化物結晶薄膜の製造方法 |
CN108878058B (zh) * | 2018-06-25 | 2019-11-22 | 湖北雄华科技有限公司 | 用于调光玻璃的三层结构透明导电薄膜及其制备方法 |
CN113022384B (zh) * | 2021-05-26 | 2021-08-24 | 北京理工大学 | 一种基于凸优化的燃料电池汽车能量管理方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022189A (ja) * | 1998-01-23 | 2000-01-21 | Canon Inc | 酸化亜鉛層付基板、酸化亜鉛層の形成方法、光起電力素子及びその製造方法 |
JP3801342B2 (ja) * | 1998-02-12 | 2006-07-26 | シャープ株式会社 | 太陽電池用基板、その製造方法及び半導体素子 |
JP5093503B2 (ja) * | 2008-07-28 | 2012-12-12 | 住友金属鉱山株式会社 | 薄膜太陽電池及び薄膜太陽電池用表面電極 |
JP2010238894A (ja) * | 2009-03-31 | 2010-10-21 | Mitsubishi Materials Corp | (Zn,In,Al)O系透明電極層を構成層とする太陽電池および前記(Zn,In,Al)O系透明電極層の形成に用いられるZnO−In2O3−Al系スパッタリングターゲット |
-
2011
- 2011-01-05 JP JP2011000777A patent/JP2012142499A/ja not_active Withdrawn
-
2012
- 2012-01-04 TW TW101100300A patent/TW201243869A/zh unknown
- 2012-01-05 WO PCT/JP2012/050124 patent/WO2012093702A1/ja active Application Filing
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012160661A (ja) * | 2011-02-02 | 2012-08-23 | Ulvac Japan Ltd | 透明導電膜付き基板、太陽電池及びそれらの製造方法 |
WO2014073329A1 (ja) * | 2012-11-07 | 2014-05-15 | 住友金属鉱山株式会社 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
WO2014073328A1 (ja) * | 2012-11-07 | 2014-05-15 | 住友金属鉱山株式会社 | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
JP2014095099A (ja) * | 2012-11-07 | 2014-05-22 | Sumitomo Metal Mining Co Ltd | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
JP2014095098A (ja) * | 2012-11-07 | 2014-05-22 | Sumitomo Metal Mining Co Ltd | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
JP2014110405A (ja) * | 2012-12-04 | 2014-06-12 | Sumitomo Metal Mining Co Ltd | 表面電極付透明導電ガラス基板及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
WO2014087741A1 (ja) * | 2012-12-04 | 2014-06-12 | 住友金属鉱山株式会社 | 表面電極付透明導電ガラス基板及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2012093702A1 (ja) | 2012-07-12 |
TW201243869A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5252066B2 (ja) | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 | |
JP5621764B2 (ja) | 透明導電膜と透明導電膜積層体及びその製造方法、並びにシリコン系薄膜太陽電池 | |
JP5445395B2 (ja) | 透明導電膜の製造方法、及び薄膜太陽電池の製造方法 | |
JP2014095099A (ja) | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 | |
WO2012093702A1 (ja) | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 | |
JP5533448B2 (ja) | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 | |
WO2014073328A1 (ja) | 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140401 |