[go: up one dir, main page]

JP2012131002A - Steel blasting material - Google Patents

Steel blasting material Download PDF

Info

Publication number
JP2012131002A
JP2012131002A JP2010286792A JP2010286792A JP2012131002A JP 2012131002 A JP2012131002 A JP 2012131002A JP 2010286792 A JP2010286792 A JP 2010286792A JP 2010286792 A JP2010286792 A JP 2010286792A JP 2012131002 A JP2012131002 A JP 2012131002A
Authority
JP
Japan
Prior art keywords
mass
range shown
blasting
composition range
projection material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010286792A
Other languages
Japanese (ja)
Other versions
JP5777201B2 (en
Inventor
Masayuki Ishikawa
政行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2010286792A priority Critical patent/JP5777201B2/en
Priority to CN201110219373.4A priority patent/CN102534397B/en
Publication of JP2012131002A publication Critical patent/JP2012131002A/en
Application granted granted Critical
Publication of JP5777201B2 publication Critical patent/JP5777201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in conventional blasting materials for blasting treatment having a chemical composition comprising 0.6 to 1.4 mass% C, 0.3 to 1.6 mass% Si, 0.3 to 1.3 mass% Mn, ≤0.05 mass% P, ≤0.05 mass% S, and the balance of Fe and inevitable impurities, wherein a finished blasted surface is uneven or the blasting material is rapidly consumed because large variations are present in a metal structure or hardness or the like of individual blasting materials.SOLUTION: A steel blasting material includes a chemical composition comprising: 0.7 to 1.2 mass% C, 0.4 to 1.5 mass% Si, 0.35 to 1.2 mass% Mn, ≤0.05 mass% P, ≤0.05 mass% S, and the balance of Fe and inevitable impurities.

Description

本発明は品質(硬さ、密度、金属組織)のバラツキが小さく研掃能力が安定したスチール系投射材に関するものである。 The present invention relates to a steel-based projection material with small variations in quality (hardness, density, and metal structure) and stable polishing ability.

スチール系投射材は約1%Cからなる鋳鋼を用いて、一般に広く製造され、鋳物の砂落しをはじめとして、主に鉄系金属素材のバリ取り、付着物除去、酸化膜除去など幅広い用途に使用されている。
こうした用途に用いられる投射材としては、他に硬鋼線材を切断したカットワイヤやステンレス鋼線を切断して製造されるステンレスカットワイヤ、ステンレス鋳鋼を水などによってアトマイズして製造されるステンレスショットなどがあるが、スチールショットは最も低コストで製造可能な投射材であり、最も普及している。
しかし、例えばカットワイヤは線材という均一な素材を切断して製造されるため成分、硬さ、金属組織などのバラツキが小さいという特徴を有するが、スチールショットの場合は溶解した高温の溶湯を水などの冷却媒体によって粒子に破砕して製造するため、個々の粒子(ショット)の冷却履歴にバラツキが生じると共に、焼入れ、焼き戻しといった熱処理工程においても同様のバラツキが発生する問題があった。このため、カットワイヤと比較してブラスト処理した面の仕上りにムラが生じたり、ショットの消耗が早いという問題があった。
Steel-based projectiles are generally manufactured using cast steel consisting of about 1% C, and are widely used in applications such as deburring of iron-based metal materials, removal of deposits, and removal of oxide films, including casting sand removal. in use.
Other projection materials used for such applications include cut wires cut from hard steel wires, stainless cut wires manufactured by cutting stainless steel wires, stainless shots manufactured by atomizing stainless cast steel with water, etc. However, steel shot is the most widely used blasting material that can be manufactured at the lowest cost.
However, for example, a cut wire is manufactured by cutting a uniform material such as a wire, so it has the feature that there is little variation in components, hardness, metal structure, etc. Since the particles are manufactured by being crushed into particles by the cooling medium, there is a problem in that the cooling history of individual particles (shots) varies, and the same variation occurs in the heat treatment process such as quenching and tempering. For this reason, there are problems in that the finish of the blasted surface is uneven as compared with the cut wire, and the shot is consumed quickly.

従来としては、質量%で、C:0.6〜1.4%、Si:0.3〜1.6%、Mn:0.3〜1.3%、P:0.05%以下、S:0.05%以下を含有し、残部はFeおよび不可避不純物からなる化学組成を有するブラスト処理用投射材が用いられていた。これだけ広い成分のバラツキがあっても、鋳物の砂落しや鋼板の酸化物除去といった処理目的に対しては十分機能を果たしたが、個々のショットの金属組織、硬さなどバラツキが大きいため、ブラスト面の仕上りにムラが生じたり、投射材の消耗が早いという問題があった。 Conventionally, in mass%, C: 0.6 to 1.4%, Si: 0.3 to 1.6%, Mn: 0.3 to 1.3%, P: 0.05% or less, S: 0.05% or less, the balance being Fe and inevitable impurities A blasting projection material having a chemical composition consisting of: Even with such a wide variation in components, it performed well for processing purposes such as removing sand from castings and removing oxides from steel sheets, but due to the large variations in the metal structure and hardness of individual shots, blasting There are problems that the surface finish is uneven and that the projection material is consumed quickly.

本発明は微量成分(不純物)の含有量を含む化学成分を適正化することによって、品質(硬さ、密度、金属組織)のバラツキが小さく研掃能力が安定した投射材を提供することを目的とする。 It is an object of the present invention to provide a projection material having a small variability in quality (hardness, density, metal structure) and a stable polishing ability by optimizing chemical components including the content of trace components (impurities). And

本発明は、上記の目的を達成するために成されたものである。
本発明のブラスト処理用投射材は、質量%で、C:0.7〜1.2%、Si:0.4〜1.5%、Mn:0.35〜1.2%、P:0.05%以下、S:0.05%以下を含有し、残部はFeおよび不可避不純物からなる化学組成を有することを特徴とする。
The present invention has been made to achieve the above object.
The blasting projection material of the present invention contains, in mass%, C: 0.7 to 1.2%, Si: 0.4 to 1.5%, Mn: 0.35 to 1.2%, P: 0.05% or less, S: 0.05% or less, The balance is characterized by having a chemical composition comprising Fe and inevitable impurities.

また、本発明のブラスト処理用投射材は、質量%で、Al:0.04〜0.12%を含有する事が好ましい。さらに、質量%で、Cr:0.1〜1.2%を含有する事が好ましい。加えて、質量%で、B:0.001〜0.05%を含有する事が好ましい。 The blasting projection material of the present invention preferably contains Al: 0.04 to 0.12% by mass. Furthermore, it is preferable to contain Cr: 0.1-1.2% by mass%. In addition, it is preferable to contain B: 0.001 to 0.05% by mass.

さらに、本発明のブラスト処理用投射材は、質量%で、C:0.85〜1.15%、Si:0.6〜1.0%、Mn:0.6〜1.0%、P:0.03%以下、S:0.03%以下を含有することができる。
また、本発明のブラスト処理用投射材は、質量%で、Al:0.04〜0.12%を含有する事が好ましい。さらに、質量%で、Cr:0.1〜1.2%を含有する事が好ましい。加えて、質量%で、B:0.001〜0.05%を含有する事が好ましい。
Furthermore, the blast treatment projection material of the present invention contains, in mass%, C: 0.85-1.15%, Si: 0.6-1.0%, Mn: 0.6-1.0%, P: 0.03% or less, and S: 0.03% or less. can do.
The blasting projection material of the present invention preferably contains Al: 0.04 to 0.12% by mass. Furthermore, it is preferable to contain Cr: 0.1-1.2% by mass%. In addition, it is preferable to contain B: 0.001 to 0.05% by mass.

さらに、質量%で、MoとWとを合計で0.1〜0.5%含有できる、あるいは質量%で、VとNbとTiとを合計で0.05〜0.5%含有する事も可能である。 Furthermore, it is possible to contain Mo and W in a total of 0.1 to 0.5% by mass, or 0.05 to 0.5% in total of V, Nb, and Ti in mass%.

上記説明から明らかのように本発明は、質量%で、C:0.7〜1.2%、Si:0.4〜1.5%、Mn:0.35〜1.2%、P:0.05%以下、S:0.05%以下を含有し、残部はFeおよび不可避不純物からなる化学組成を有することにより、各元素の組成範囲をより狭くすることにより、品質バラツキの低減が可能となった。   As apparent from the above description, the present invention contains, in mass%, C: 0.7 to 1.2%, Si: 0.4 to 1.5%, Mn: 0.35 to 1.2%, P: 0.05% or less, and S: 0.05% or less. Further, the balance has a chemical composition composed of Fe and inevitable impurities, so that the variation in quality can be reduced by narrowing the composition range of each element.

また、質量%で、Al:0.04〜0.12%を含有することにより、形状を改善し、内部欠陥(空孔)を低減することができる。さらに、質量%で、Cr:0.1〜1.2%を含有することにより焼入れ性を改善することができる。また、質量%で、B:0.001〜0.05%を含有することによりさらに焼入れ性を向上することができる。 Moreover, by containing Al: 0.04-0.12% by mass%, a shape can be improved and an internal defect (vacancy) can be reduced. Furthermore, hardenability can be improved by containing Cr: 0.1-1.2% by mass%. Moreover, hardenability can further be improved by containing B: 0.001-0.05% by mass%.

また質量%で、C:0.85〜1.15%、Si:0.6〜1.0%、Mn:0.6〜1.0%、P:0.03%以下、S:0.03%以下を含有することにより、機械的強度の低下を防止できる。   Moreover, by containing C: 0.85-1.15%, Si: 0.6-1.0%, Mn: 0.6-1.0%, P: 0.03% or less, and S: 0.03% or less in mass%, it prevents deterioration of mechanical strength. it can.

また、質量%で、Al:0.04〜0.12%を含有することにより、形状を改善し、内部欠陥(空孔)を低減することができる。さらに、質量%で、Cr:0.1〜1.2%を含有することにより焼入れ性を改善することができる。また、質量%で、B:0.001〜0.05%を含有することによりさらに焼入れ性を向上することができる。 Moreover, by containing Al: 0.04-0.12% by mass%, a shape can be improved and an internal defect (vacancy) can be reduced. Furthermore, hardenability can be improved by containing Cr: 0.1-1.2% by mass%. Moreover, hardenability can further be improved by containing B: 0.001-0.05% by mass%.

さらに、質量%で、MoとWとを合計で0.1〜0.5%含有することで、焼き入れ性が向上し、焼き戻し硬さを向上する効果がある。0.1%未満では効果なく、0.5%を超えるとコストメリットがなく、靭性も低下してしまう。   Furthermore, by containing Mo and W in a total of 0.1 to 0.5% by mass, the hardenability is improved and the tempering hardness is improved. If it is less than 0.1%, there is no effect, and if it exceeds 0.5%, there is no cost merit and the toughness also decreases.

また、質量%で、VとNbとTiとを合計で0.05〜0.5%含有することで、結晶粒を微細化して靭性を改善する効果がある。O.O5%未満では効果がなく、0.5%を超えると炭化物が増加するため、靭性が低下してしまう。
Further, by containing 0.05 to 0.5% in total by mass of V, Nb and Ti, there is an effect of refining crystal grains and improving toughness. O. If it is less than 5%, there is no effect, and if it exceeds 0.5%, carbides increase, and the toughness is reduced.

以下に、本発明の効果を確認するために行った、試験例(実施例・比較例)について説明する。
<試験例1>
Hereinafter, test examples (Examples / Comparative Examples) performed for confirming the effects of the present invention will be described.
<Test Example 1>

本試験例ではC、Si、Mn、P、S、Al、Cr、Bの影響を調査するため、スチールスクラップ、Fe-Si、Fe-Mn、Fe-Cr、Fe-B、純アルミニウム、加炭材等を原材料として所望の成分になるように原料配合を調整し、鉄換算溶解量100kgの実験用高周波溶解炉を使用して溶解した。溶解温度は1640〜1680℃として、水アトマイズ法によってスチールショットを製作した。得られたショットを乾燥し850℃に加熱して1時間保持した後、水焼入れを行い、さらに、ショットの硬さがHv440〜460となるように焼戻しした。熱処理を実施したショットを篩い分けしてφ1mm(1.18mmの篩を通過し、1.00mmの篩に残ったもの)のサイズを取り出し、品質等を評価した。その結果を表1に示す。   In this test example, steel scrap, Fe-Si, Fe-Mn, Fe-Cr, Fe-B, pure aluminum, carburized to investigate the effects of C, Si, Mn, P, S, Al, Cr, B The raw material composition was adjusted so that the raw material was a desired component and melted using an experimental high-frequency melting furnace having an iron equivalent melting amount of 100 kg. The melting temperature was 1640-1680 ° C., and steel shots were produced by the water atomization method. The obtained shot was dried and heated to 850 ° C. and held for 1 hour, followed by water quenching, and further tempered so that the shot had a hardness of Hv 440 to 460. The shots subjected to the heat treatment were sieved and the size of φ1 mm (the one that passed through the 1.18 mm sieve and remained on the 1.00 mm sieve) was taken out and evaluated for quality and the like. The results are shown in Table 1.

空孔率、非球状粒子率、硬さについては、JIS-Z0311に定められた方法により測定した。
空孔率については、ショット粒子を樹脂中に埋め込んで研磨し、拡大鏡によって粒子断面を観察した時に、その断面積に対して空孔が占める面積が10%以上のショット粒子の割合を求めた。観察したショット粒子の数は100とした。
非球状粒子率については、ショット粒子をガラス平板に広げて拡大鏡によって観察した時に、ショット粒子の長径が短径の2倍以上の粒子の割合を求めた。観察したショット粒子の数は100とした。
硬さについては、ショット粒子を樹脂中に埋め込んで研磨し、粒子断面のビッカース硬さを測定した。試験荷重は9.8N、荷重負荷時間は12秒とし、有効な20個の測定値の平均値を求めた。
The porosity, non-spherical particle ratio, and hardness were measured by the methods defined in JIS-Z0311.
For porosity, when shot particles were embedded in a resin and polished, and the particle cross section was observed with a magnifying glass, the ratio of shot particles in which the area occupied by the voids was 10% or more of the cross sectional area was determined. . The number of shot particles observed was 100.
Regarding the non-spherical particle ratio, when the shot particles were spread on a glass flat plate and observed with a magnifying glass, the ratio of the particles having a major axis of the shot particle twice or more the minor axis was obtained. The number of shot particles observed was 100.
Regarding the hardness, shot particles were embedded in a resin and polished, and the Vickers hardness of the particle cross section was measured. The test load was 9.8 N, the load time was 12 seconds, and the average value of 20 effective measured values was obtained.

ショットの寿命に関しては、SAE(Society of Automotive Engineers,Inc.)J-445に定められた衝撃破砕試験を行った。即ち、上記φ1mmのショット100gを試験装置に投入し、60m/sの速度で耐摩耗鋳鉄製のターゲットに繰り返し衝突させ、一定衝突回数毎に破砕したショットを篩別除去すると共に残留ショットの重量を測定し、残留ショットが最初の30%以下となるまで試験を行った。この試験により得た衝突回数と残留ショット重量割合の関係を示す曲線を積分して求められる数値を寿命値とした。表1に示す寿命比とは、一般的な組成である実施例3の寿命値を100とした場合の比率で表しており、寿命比の値が大きいほど耐久性が良好であることを示している。
化学組成については、発光分光分析法によって、試作したショットそのものの分析を行った。
Regarding the shot life, an impact crushing test specified in SAE (Society of Automotive Engineers, Inc.) J-445 was conducted. That is, 100 g of the above φ1 mm shot is put into a test apparatus, repeatedly collided with a wear-resistant cast iron target at a speed of 60 m / s, and the crushed shot is removed by sieving at every fixed number of collisions and the weight of the remaining shot is increased. Measurements were made until the residual shot was below the initial 30%. The value obtained by integrating the curve showing the relationship between the number of collisions and the residual shot weight ratio obtained by this test was defined as the life value. The life ratio shown in Table 1 is a ratio when the life value of Example 3, which is a general composition, is set to 100. The larger the life ratio value, the better the durability. Yes.
Regarding the chemical composition, the shots themselves were analyzed by emission spectroscopy.

実施例1〜3は、請求項1の化学組成に関して、P、Sを0.04〜0.05%となるように調整し、特にC、Si、Mnの影響を調査したもので、実施例1はC、Si、Mnが下限に近い組成、実施例2はC、Si、Mnが上限に近い組成、実施例3は最も一般的な組成である。実施例1〜3の試料は空孔率、非球状粒子率、寿命比について、いずれも大きな差は無かった。   Examples 1 to 3 were prepared by adjusting P and S to be 0.04 to 0.05% with respect to the chemical composition of claim 1, and particularly investigating the effects of C, Si, and Mn. Si and Mn are close to the lower limit, Example 2 is a composition where C, Si, and Mn are close to the upper limit, and Example 3 is the most common composition. The samples of Examples 1 to 3 were not significantly different in terms of porosity, non-spherical particle ratio, and life ratio.

これに対して、C、Si、Mnが請求項1の組成の下限に満たない比較例1では、空孔率、非球状粒子率が増加し、寿命比が大きく低下した。これは、C、Si、Mnが低いために、溶解時の脱酸効果が不十分で空孔等の欠陥が増加したためである。また、C、Si、Mnが請求項1の組成の上限を超える比較例2では、特に寿命比が大きく低下した。これは、C量が多いため、水アトマイズ時に炭化物(Fe3C)が形成されやすく、焼入れ時の加熱で分解できなかった炭化物が残留した粒子が混在しているためである。 On the other hand, in Comparative Example 1 in which C, Si, and Mn did not satisfy the lower limit of the composition of claim 1, the porosity and non-spherical particle ratio increased, and the life ratio was greatly reduced. This is because C, Si, and Mn are low, so that the deoxidation effect at the time of dissolution is insufficient, and defects such as vacancies increase. Further, in Comparative Example 2 in which C, Si, and Mn exceed the upper limit of the composition of claim 1, the life ratio is particularly greatly reduced. This is because, since the amount of C is large, carbide (Fe 3 C) is easily formed during water atomization, and particles in which carbide that could not be decomposed by heating during quenching are mixed.

実施例4はAlの影響を調査したもので、請求項2に示す組成範囲内のAlを含む場合は、空孔率、非球状粒子率が顕著に低下し、寿命比も若干向上した。これは、Alによる脱酸効果によるものと考えられる。   In Example 4, the influence of Al was investigated. When Al contained in the composition range shown in claim 2 was included, the porosity and non-spherical particle ratio were significantly reduced, and the life ratio was slightly improved. This is considered to be due to the deoxidation effect by Al.

これに対して、Alが請求項2に示す組成範囲の上限を超えた比較例3では、空孔率は低いものの非球状粒子率が増加し、寿命比も低下した。これは、Alが過剰な場合には溶湯表面に形成される酸化物が増加し、表面張力を阻害して形状を悪化させた結果と考えられる。   On the other hand, in Comparative Example 3 in which Al exceeded the upper limit of the composition range shown in claim 2, the non-spherical particle ratio increased and the life ratio also decreased although the porosity was low. This is considered to be a result of the oxide being formed on the surface of the molten metal when Al is excessive, which deteriorates the shape by inhibiting the surface tension.

実施例5はCrの影響を調査したもので、Alを請求項2に示す組成範囲内で含有し、さらに請求項3に示す組成範囲内のCrを含有する場合において、空孔率、非球状粒子率が顕著に低下し、寿命比も若干向上し良好な結果が得られた。   Example 5 is an investigation of the effect of Cr, and when Al is contained within the composition range shown in claim 2 and further containing Cr within the composition range shown in claim 3, the porosity, non-spherical The particle ratio was significantly reduced, the life ratio was slightly improved, and good results were obtained.

これに対して、Crが請求項3に示す組成範囲の上限を超えた比較例4では、実施例5と比較して非球状粒子率が増加し、寿命比が低下した。Crが過剰な場合にはAlの場合と同様に溶湯表面に形成される酸化物が増加して形状が悪化すると共に、Crの炭化物が形成されやすくなって靭性を低下させるものと推定される。   On the other hand, in Comparative Example 4 in which Cr exceeded the upper limit of the composition range shown in claim 3, the non-spherical particle ratio increased and the life ratio decreased in comparison with Example 5. When Cr is excessive, it is presumed that, as in the case of Al, oxides formed on the surface of the molten metal are increased and the shape is deteriorated, and Cr carbides are easily formed to reduce toughness.

実施例6はBの影響を調査したもので、Alを請求項2に示す組成範囲内で含有し、かつCrを請求項3に示す組成範囲内で含有し、さらに請求項4に示す組成範囲内のBを含有する場合において、空孔率、非球状粒子率が最も低くなり、寿命比は最も高く最も良好な結果が得られた。   Example 6 is an investigation of the effect of B, Al is contained within the composition range shown in claim 2, and Cr is contained within the composition range shown in claim 3, and further the composition range shown in claim 4. In the case of containing B, the porosity and non-spherical particle ratio were the lowest, the life ratio was the highest, and the best results were obtained.

これに対して、Bが請求項4に示す組成範囲の上限を超えた比較例5においても、実施例6に近い結果となったが、コストを考慮すると請求項4に示す組成範囲で十分効果を得ることが可能である。   On the other hand, in Comparative Example 5 where B exceeded the upper limit of the composition range shown in claim 4, the result was close to Example 6, but considering the cost, the composition range shown in claim 4 was sufficiently effective. It is possible to obtain

Figure 2012131002

<試験例2>
Figure 2012131002

<Test Example 2>

本試験例ではC、Si、Mn、P、SおよびMo、W、V、Nb、Tiの影響を調査した。
試料の作製方法、評価方法は試験例1と同様である。結果を表2に示す。
なお、試験例1において、各元素が空孔率と非球状粒子率に及ぼす影響を確認できたため、本試験例では寿命比の結果だけを示す。
In this test example, the effects of C, Si, Mn, P, S and Mo, W, V, Nb, and Ti were investigated.
The sample preparation method and evaluation method are the same as in Test Example 1. The results are shown in Table 2.
In Test Example 1, the influence of each element on the porosity and non-spherical particle ratio could be confirmed, so in this test example, only the result of the life ratio is shown.

実施例7〜8は、請求項5の化学組成に関して、P、Sを0.03%以下となるように調整したうえで、C、Si、Mnの影響を調査したもので、実施例7はC、Si、Mnが下限に近い組成、実施例8はC、Si、Mnが上限に近い組成である。実施例7〜8の試料の寿命比はいずれも100を超え、鋼にとって有害な元素であるP、Sを減少すると共にC、Si、Mnをさらに好ましい範囲とした効果が認められた。   In Examples 7-8, with regard to the chemical composition of claim 5, after adjusting P, S to be 0.03% or less, the effects of C, Si, Mn were investigated, Example 7 was C, Si and Mn are compositions close to the lower limit, and Example 8 is a composition where C, Si, and Mn are close to the upper limits. The life ratios of the samples of Examples 7 to 8 all exceeded 100, and the effects of reducing P and S, which are harmful elements for steel, and making C, Si and Mn more preferable ranges were observed.

実施例9は、請求項5の化学組成におけるAlの影響を調査したもので、表1の実施例4よりも寿命比が向上している。これは、P、Sを低く調整した影響と推定される。
一方、請求項6に示すAlの組成範囲を超えた比較例6では、表1の比較例3の場合と同様に寿命比が低下した。
In Example 9, the influence of Al on the chemical composition of claim 5 was investigated, and the life ratio was improved as compared with Example 4 in Table 1. This is estimated to be an effect of adjusting P and S low.
On the other hand, in Comparative Example 6 exceeding the Al composition range shown in Claim 6, the life ratio was lowered as in Comparative Example 3 in Table 1.

実施例10はCrの影響を調査したもので、Alを請求項6に示す組成範囲内で含有し、さらに請求項7に示す組成範囲内のCrを含有する場合において、寿命比が若干向上し良好な結果が得られた。   Example 10 is an investigation of the effect of Cr, and when Al is contained within the composition range shown in claim 6 and further containing Cr within the composition range shown in claim 7, the life ratio is slightly improved. Good results were obtained.

これに対して、Crが請求項7に示す組成範囲の上限を超えた比較例7では、実施例10と比較して寿命比が低下した。Crが過剰な場合にはAlの場合と同様に溶湯表面に形成される酸化物が増加して形状が悪化すると共に、Crの炭化物が形成されやすくなって靭性を低下させるものと推定される。   On the other hand, in Comparative Example 7 in which Cr exceeded the upper limit of the composition range shown in Claim 7, the life ratio was lowered as compared with Example 10. When Cr is excessive, it is presumed that, as in the case of Al, oxides formed on the surface of the molten metal are increased and the shape is deteriorated, and Cr carbides are easily formed to reduce toughness.

実施例11はBの影響を調査したもので、Alを請求項6に示す組成範囲内で含有し、かつCrを請求項7に示す組成範囲内で含有し、さらに請求項8に示す組成範囲内のBを含有する場合において、寿命比が向上し最も良好な結果が得られた。   Example 11 is an investigation of the effect of B, Al is contained in the composition range shown in claim 6, and Cr is contained in the composition range shown in claim 7, and further the composition range shown in claim 8. In the case of containing B, the life ratio was improved and the best result was obtained.

これに対して、Bが請求項8に示す組成範囲の上限を超えた比較例8においても、実施例11に近い結果となったが、コストを考慮すると請求項8に示す組成範囲で十分効果を得ることが可能である。   On the other hand, in Comparative Example 8 where B exceeded the upper limit of the composition range shown in claim 8, the result was close to Example 11, but considering the cost, the composition range shown in claim 8 is sufficiently effective. It is possible to obtain

実施例12はMo、Wの影響を調査したもので、Alを請求項6に示す組成範囲内で含有し、かつCrを請求項7に示す組成範囲内で含有し、さらにBを請求項8に示す組成範囲内で含有する場合において、請求項9に示す組成範囲内のMoおよびWを含む場合は、実施例11よりも寿命比がさらに向上し最も良好な結果が得られた。   Example 12 is an investigation of the effects of Mo and W, Al is contained within the composition range shown in claim 6, and Cr is contained within the composition range shown in claim 7, and B is further claimed. In the case where it is contained within the composition range shown in FIG. 9, when Mo and W are contained within the composition range shown in claim 9, the life ratio is further improved as compared with Example 11, and the best results are obtained.

これに対して、MoとWの合計が請求項9に示す組成範囲の上限を超えた比較例9においても、実施例12と比較して寿命比が多少低下する程度であったが、コストを考慮すると請求項9に示す組成範囲で十分効果を得ることが可能である。   On the other hand, in Comparative Example 9 in which the sum of Mo and W exceeded the upper limit of the composition range shown in Claim 9, the life ratio was somewhat reduced compared to Example 12, but the cost was reduced. In consideration, it is possible to obtain a sufficient effect within the composition range shown in claim 9.

実施例13はV、Nb、Tiの影響を調査したもので、Alを請求項6に示す組成範囲内で含有し、かつCrを請求項7に示す組成範囲内で含有し、さらにBを請求項8に示す組成範囲内で含有する場合において、請求項10に示す組成範囲のV、Nb、Tiを含む場合は、最も高い寿命比が得られ最も良好な結果が得られた。適切な量のV、Nb、Tiを含むことにより、金属組織が微細化し靭性が向上したと推定される。   Example 13 is an investigation of the effects of V, Nb, and Ti.Al is contained within the composition range shown in claim 6, and Cr is contained within the composition range shown in claim 7, and B is further charged. In the case where it is contained within the composition range shown in Item 8, when it contains V, Nb, and Ti in the composition range shown in Claim 10, the highest life ratio was obtained and the best result was obtained. It is presumed that the inclusion of an appropriate amount of V, Nb, and Ti improved the microstructure of the metal and improved toughness.

これに対して、V、Nb、Ti の合計量が請求項10に示す組成範囲の上限を超えた比較例10では、実施例13と比較して寿命比が大幅に低下した。V、Nb、Ti が過剰な場合には、これらの元素が粗大な炭化物を形成し、寿命比を低下させることが確認された。   In contrast, in Comparative Example 10 in which the total amount of V, Nb, and Ti exceeded the upper limit of the composition range shown in Claim 10, the life ratio was significantly reduced as compared with Example 13. It was confirmed that when V, Nb, and Ti are excessive, these elements form coarse carbides and reduce the life ratio.

Figure 2012131002
Figure 2012131002

Claims (10)

質量%で、C:0.7〜1.2%、Si:0.4〜1.5%、Mn:0.35〜1.2%、P:0.05%以下、S:0.05%以下を含有し、残部はFeおよび不可避不純物からなる化学組成を有することを特徴とするブラスト処理用投射材。 Chemical composition comprising, by mass%, C: 0.7 to 1.2%, Si: 0.4 to 1.5%, Mn: 0.35 to 1.2%, P: 0.05% or less, S: 0.05% or less, the balance being Fe and inevitable impurities A blasting projection material characterized by comprising: 質量%で、Al:0.04〜0.12%を含有する請求項1に記載のブラスト処理用投射材。 The blasting treatment projection material according to claim 1, which contains Al: 0.04 to 0.12% by mass%. 質量%で、Cr:0.1〜1.2%を含有する請求項2に記載のブラスト処理用投射材。 3. The blasting projection material according to claim 2, comprising Cr: 0.1 to 1.2% by mass%. 質量%で、B:0.001〜0.05%を含有する請求項3に記載のブラスト処理用投射材。 4. The blast treatment projection material according to claim 3, which contains B: 0.001 to 0.05% by mass%. 質量%で、C:0.85〜1.15%、Si:0.6〜1.0%、Mn:0.6〜1.0%、P:0.03%以下、S:0.03%以下をし、残部はFeおよび不可避不純物からなる化学組成を有することを特徴とするブラスト処理用投射材。 In mass%, C: 0.85-1.15%, Si: 0.6-1.0%, Mn: 0.6-1.0%, P: 0.03% or less, S: 0.03% or less, with the balance being a chemical composition consisting of Fe and inevitable impurities. A blasting projection material, comprising: 質量%で、Al:0.04〜0.12%を含有する請求項5に記載のブラスト処理用投射材。 6. The blast treatment projection material according to claim 5, which contains Al: 0.04 to 0.12% by mass%. 質量%で、Cr:0.1〜1.2%を含有する請求項6に記載のブラスト処理用投射材。 The blasting treatment projection material according to claim 6, wherein the blast treatment projection material contains Cr: 0.1 to 1.2% by mass%. 質量%で、B:0.001〜0.05%を含有する請求項7に記載のブラスト処理用投射材。 The blasting treatment projection material according to claim 7, wherein B: 0.001 to 0.05% by mass. 質量%で、MoとWとを合計で0.1〜0.5%含有する請求項1〜8に記載のブラスト処理用投射材。 The blasting treatment projection material according to claim 1, wherein the blast treatment projection material contains Mo and W in a total of 0.1 to 0.5% by mass. 質量%で、VとNbとTiとを合計で0.05〜0.5%含有する請求項1〜9に記載のブラスト処理用投射材。

The blasting treatment projection material according to claim 1, comprising 0.05 to 0.5% of V, Nb, and Ti in total by mass%.

JP2010286792A 2010-12-23 2010-12-23 Steel projection material Active JP5777201B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010286792A JP5777201B2 (en) 2010-12-23 2010-12-23 Steel projection material
CN201110219373.4A CN102534397B (en) 2010-12-23 2011-07-28 steel projection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286792A JP5777201B2 (en) 2010-12-23 2010-12-23 Steel projection material

Publications (2)

Publication Number Publication Date
JP2012131002A true JP2012131002A (en) 2012-07-12
JP5777201B2 JP5777201B2 (en) 2015-09-09

Family

ID=46342411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286792A Active JP5777201B2 (en) 2010-12-23 2010-12-23 Steel projection material

Country Status (2)

Country Link
JP (1) JP5777201B2 (en)
CN (1) CN102534397B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014563A (en) * 2012-12-27 2013-04-03 杨继会 Multi-element micro-alloy strengthening steel shot/sand and preparation process thereof
JP2017512142A (en) * 2014-02-14 2017-05-18 ザ・ナノスティール・カンパニー・インコーポレーテッド Shot material and shot peening method
WO2020174676A1 (en) * 2019-02-28 2020-09-03 新東工業株式会社 Method for producing shot, and shot
CN116555661A (en) * 2023-03-13 2023-08-08 江苏通略金属制品有限公司 High-chromium alloy reinforced cast steel shot and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731238B2 (en) 2016-01-26 2020-08-04 Sintokogio, Ltd. Cast steel projection material
CN112708853B (en) * 2020-12-22 2023-01-31 安徽工业大学 Machining method for improving performance of AlCrN coating cutter through microparticle shot blasting post-treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228448A (en) * 1989-02-28 1990-09-11 Daido Steel Co Ltd High strength and high toughness steel shot
JPH03253544A (en) * 1990-03-01 1991-11-12 Daido Steel Co Ltd High-hardness wire steel for shot grains
JPH111706A (en) * 1997-06-11 1999-01-06 Akihisa Inoue Impact resistant ferrous alloy spherical grain
JP2004148414A (en) * 2002-10-28 2004-05-27 Seiko Epson Corp Abrasive material and method and apparatus for producing abrasive material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1827823A (en) * 2006-04-13 2006-09-06 李宁 High-carbon alloy steel wearable steel ball and production method thereof
CN101492793B (en) * 2009-02-21 2011-06-15 丁起 Medium-lower alloy abrasion resistant steel
CN101899624A (en) * 2010-08-06 2010-12-01 常熟市龙特耐磨球有限公司 High-carbon low-alloy large size wearable forged mining steel ball and manufacture method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228448A (en) * 1989-02-28 1990-09-11 Daido Steel Co Ltd High strength and high toughness steel shot
JPH03253544A (en) * 1990-03-01 1991-11-12 Daido Steel Co Ltd High-hardness wire steel for shot grains
JPH111706A (en) * 1997-06-11 1999-01-06 Akihisa Inoue Impact resistant ferrous alloy spherical grain
JP2004148414A (en) * 2002-10-28 2004-05-27 Seiko Epson Corp Abrasive material and method and apparatus for producing abrasive material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014563A (en) * 2012-12-27 2013-04-03 杨继会 Multi-element micro-alloy strengthening steel shot/sand and preparation process thereof
JP2017512142A (en) * 2014-02-14 2017-05-18 ザ・ナノスティール・カンパニー・インコーポレーテッド Shot material and shot peening method
JP2020040200A (en) * 2014-02-14 2020-03-19 ザ・ナノスティール・カンパニー・インコーポレーテッド Shot material and shot peening method
WO2020174676A1 (en) * 2019-02-28 2020-09-03 新東工業株式会社 Method for producing shot, and shot
JPWO2020174676A1 (en) * 2019-02-28 2021-11-04 新東工業株式会社 Shot manufacturing method, shot
CN116555661A (en) * 2023-03-13 2023-08-08 江苏通略金属制品有限公司 High-chromium alloy reinforced cast steel shot and manufacturing method thereof

Also Published As

Publication number Publication date
CN102534397A (en) 2012-07-04
CN102534397B (en) 2017-03-01
JP5777201B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5777201B2 (en) Steel projection material
JP5725416B2 (en) Low carbon cast steel shot
EP2722406B1 (en) Steel for molding die having excellent thermal conductivity, mirror polishing properties and toughness
KR20170026220A (en) Steel for mold and mold
EP3015561B1 (en) Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
CA2730174A1 (en) Continuous cast slab and producing method therefor
JP6191118B2 (en) Mold steel with excellent thermal conductivity, mirror polishability and toughness
WO2017130476A1 (en) Cast steel projection material
JP4849473B2 (en) Abrasion resistant high Cr cast iron and method for producing the same
US20200199702A1 (en) Wear-resistant steel sheet having excellent toughness and production method
JP5766476B2 (en) Powder for shot peening projection material and shot peening method thereof
JPH02228448A (en) High strength and high toughness steel shot
JP7649308B2 (en) Stainless steel blasting abrasives
JP7392330B2 (en) Mold steel and molds
JP6193040B2 (en) Projection material for shot peening with high hardness and long life
JP7205535B2 (en) Shot used for blasting
JPH07278737A (en) Preharden steel for plastic molding and its production
JP6312120B2 (en) Powdered high speed tool steel and manufacturing method thereof
JP2002317203A (en) Martensitic stainless steel particles
JP2019505662A (en) Wastegate parts containing new alloys
JP2024150339A (en) Metal powder for projection
JP2000282171A (en) Steel for machine structure excellent in parting property of chip and mechanical property
JP2016069661A (en) Steel for mold and mold
AU2006200708A1 (en) Coil plate production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140918

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150703

R150 Certificate of patent or registration of utility model

Ref document number: 5777201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250