[go: up one dir, main page]

JP2012127683A - Method and system for measuring surface temperature - Google Patents

Method and system for measuring surface temperature Download PDF

Info

Publication number
JP2012127683A
JP2012127683A JP2010276941A JP2010276941A JP2012127683A JP 2012127683 A JP2012127683 A JP 2012127683A JP 2010276941 A JP2010276941 A JP 2010276941A JP 2010276941 A JP2010276941 A JP 2010276941A JP 2012127683 A JP2012127683 A JP 2012127683A
Authority
JP
Japan
Prior art keywords
measured
emissivity
temperature
luminance
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010276941A
Other languages
Japanese (ja)
Inventor
Yoshiro Yamada
善郎 山田
Juntaro Ishii
順太郎 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010276941A priority Critical patent/JP2012127683A/en
Priority to EP11849442.6A priority patent/EP2653843A4/en
Priority to PCT/JP2011/078536 priority patent/WO2012081512A1/en
Priority to US13/993,468 priority patent/US9689746B2/en
Publication of JP2012127683A publication Critical patent/JP2012127683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

【課題】本発明は、高価な光学素子を使用したり、複雑な構造の装置を使用することなく、被測定面の放射率分布に影響されずに正しく被測定面の表面温度を測定することができる測定方法及び測定システムを提供することを課題とする。
【解決手段】放射率分布を持つ被測定面と、該被測定面の輝度分布を測定する放射計と、該被測定面に関して該放射計から鏡面反射位置に設置された輝度可変な補助熱源とを用意し、該被測定面の高放射率部と低放射率部の測定輝度が等しくなるように該補助熱源の放射輝度を変化させ、その時の測定輝度から該被測定面の温度を求めることを特徴とする表面温度の測定方法及び測定システム。
【選択図】図1
The present invention correctly measures the surface temperature of a surface to be measured without using an expensive optical element or using an apparatus having a complicated structure without being influenced by the emissivity distribution of the surface to be measured. It is an object of the present invention to provide a measurement method and a measurement system that can perform measurement.
A surface to be measured having an emissivity distribution, a radiometer for measuring a luminance distribution of the surface to be measured, and an auxiliary heat source with variable brightness installed at a specular reflection position from the radiometer with respect to the surface to be measured And changing the radiance of the auxiliary heat source so that the measured luminance of the high emissivity portion and the low emissivity portion of the measured surface are equal, and obtaining the temperature of the measured surface from the measured luminance at that time Surface temperature measuring method and measuring system characterized by the above.
[Selection] Figure 1

Description

本発明は、表面温度の測定方法及び測定システムに関する。   The present invention relates to a surface temperature measuring method and measuring system.

2次元の熱画像装置や一次元走査型の温度計を用いて放射測温法により対象温度を測定しようとする場合、通常、対象の放射率やその分布が未知であり、また、測定条件や表面状態により変化するため、熱画像装置や走査型放射温度計で捉えられる放射輝度から正しい表面温度や温度分布の情報が得られない。
さらに、微細な放射率分布が存在するとき、仮に測定各部位の物質放射率が既知であったとしても、熱画像装置の視野特性の限界から見掛けの放射率はこれとは異なるものになるという課題もある。
When a target temperature is to be measured by a radiation temperature measurement method using a two-dimensional thermal imager or a one-dimensional scanning thermometer, the target emissivity and its distribution are usually unknown, and the measurement conditions and Since it varies depending on the surface state, correct surface temperature and temperature distribution information cannot be obtained from the radiance captured by a thermal imager or a scanning radiation thermometer.
Furthermore, when there is a fine emissivity distribution, even if the material emissivity of each measurement site is known, the apparent emissivity will be different from the limit of the visual field characteristics of the thermal imaging device. There are also challenges.

放射率が未知である対象の温度を放射温度計や熱画像装置により非接触測定する場合、従来次のような方法が行われてきた。
(1)測定対象の放射率分布を知るために、対象をヒータで既知の温度に加熱して輝度分布を測定する方法。
(2)FLAにおける放射率補正技術として、スポット型の放射温度計測において2偏光を捉え、2偏光における対象反射率比を測定し、そこから放射率を補正する方法。(特許文献1参照)
(3)対象に黒体補助放射源からの反射光を重畳させ、対象からの熱放射光と反射光の輝度の和が補助放射源からの熱放射輝度と等しくなるように補助放射源温度を調節し、その時の補助放射源温度を接触型温度計で測定してそこから対象温度を知る方法。(非特許文献1参照)
(4)2つ以上の点を同時に測定可能な赤外放射温度計もしくはサーモグラフィーと、補助熱源として熱赤外線源の前にシャッタを付けるなどした環境放射温度切替え装置を用い、環境温度を変化させる前後の高放射率部と低放射率部の測定輝度から演算により真の対象温度を求める方法。(特許文献2参照)
In the case of non-contact measurement of the temperature of an object whose emissivity is unknown using a radiation thermometer or a thermal imager, the following method has been conventionally performed.
(1) A method of measuring the luminance distribution by heating the object to a known temperature with a heater in order to know the emissivity distribution of the measurement object.
(2) As a technique for correcting emissivity in FLA, a method of capturing two polarized lights in spot-type radiation temperature measurement, measuring a target reflectance ratio in two polarized lights, and correcting the emissivity therefrom. (See Patent Document 1)
(3) The reflected light from the black body auxiliary radiation source is superimposed on the target, and the auxiliary radiation source temperature is set so that the sum of the luminance of the thermal radiation light and the reflected light from the target is equal to the thermal radiation luminance from the auxiliary radiation source. A method of adjusting, measuring the auxiliary radiation source temperature at that time with a contact-type thermometer, and knowing the target temperature from there. (See Non-Patent Document 1)
(4) Before and after changing the ambient temperature using an infrared radiation thermometer or thermography capable of measuring two or more points simultaneously and an ambient radiation temperature switching device such as a shutter in front of the thermal infrared source as an auxiliary heat source To calculate the true target temperature from the measured brightness of the high emissivity part and low emissivity part. (See Patent Document 2)

しかし、これらの従来技術はそれぞれ以下の点で問題がある。
(1)の方法は、対象をヒータで加熱するという追加の工程を必要とするほか、この時の対象温度を知る手段を必要とする。
(2)の方法は、偏光光学素子を必要とするため、低温の放射温度測定で使用する長波長赤外光に適用すると高価であり、また、面分布測定には不向きである。
(3)の方法では、補助放射源が黒体であることを求められるが、面状の良好な黒体を得るのは困難である。黒体でない場合は補正を必要としたが十分な精度が得られない。また、補助放射源と測定対象の両方を測定することが求められ、装置の構造が複雑になる。
(4)の方法では、環境温度をステップ状に切り替えながら測定することを求められ、従って装置が複雑になる。
However, each of these conventional techniques has the following problems.
The method (1) requires an additional step of heating the target with a heater and means for knowing the target temperature at this time.
Since the method (2) requires a polarizing optical element, it is expensive when applied to long-wavelength infrared light used in low-temperature radiation temperature measurement, and is not suitable for surface distribution measurement.
In the method (3), the auxiliary radiation source is required to be a black body, but it is difficult to obtain a good black body with a planar shape. If it is not a black body, correction is required, but sufficient accuracy cannot be obtained. Moreover, it is required to measure both the auxiliary radiation source and the measurement object, and the structure of the apparatus becomes complicated.
In the method (4), it is required to measure while switching the environmental temperature in a stepped manner, and thus the apparatus becomes complicated.

特願2009−202495号Japanese Patent Application No. 2009-202495 特許第3939487号公報Japanese Patent No. 3939487

J.Sci.Instrum.,1963,Vol40,1-4.J. Sci. Instrum., 1963, Vol 40, 1-4.

本発明は、高価な光学素子を使用したり、複雑な構造の装置を使用することなく、被測定面の放射率分布に影響されずに正しく被測定面の表面温度を測定することができる測定方法及び測定システムを提供することを課題とする。   The present invention can measure the surface temperature of the surface to be measured correctly without using an expensive optical element or using an apparatus having a complicated structure without being affected by the emissivity distribution of the surface to be measured. It is an object to provide a method and a measurement system.

本発明は、次のような表面温度の測定方法及び測定システムを提供する。
(1)放射率分布を持つ被測定面と、該被測定面の輝度分布を測定する放射計と、該被測定面に関して該放射計から鏡面反射位置に設置された輝度可変な補助熱源とを用意し、該被測定面の高放射率部と低放射率部の測定輝度が等しくなるように該補助熱源の放射輝度を変化させ、その時の測定輝度から該被測定面の温度を求めることを特徴とする表面温度の測定方法。
(2)放射率分布を持つ被測定面と、該被測定面の輝度分布を測定する放射計と、該被測定面に関して該放射計から鏡面反射位置に設置された輝度可変な補助熱源とを含み、該被測定面の高放射率部と低放射率部の測定輝度が等しくなるように該補助熱源の放射輝度を変化させ、その時の測定輝度から該被測定面の温度を求めることを特徴とする表面温度の測定システム。
(3)上記輝度分布を測定する放射計は、熱画像装置又は1次元走査型放射計であることを特徴とする(2)に記載の表面温度の測定システム。
The present invention provides the following surface temperature measurement method and measurement system.
(1) A surface to be measured having an emissivity distribution, a radiometer for measuring the luminance distribution of the surface to be measured, and an auxiliary heat source with variable brightness installed at a specular reflection position from the radiometer with respect to the surface to be measured Preparing and changing the radiance of the auxiliary heat source so that the measured luminance of the high emissivity portion and the low emissivity portion of the measured surface are equal, and obtaining the temperature of the measured surface from the measured luminance at that time A characteristic method of measuring surface temperature.
(2) A surface to be measured having an emissivity distribution, a radiometer for measuring the luminance distribution of the surface to be measured, and an auxiliary heat source with variable brightness installed at a specular reflection position from the radiometer with respect to the surface to be measured Including changing the radiance of the auxiliary heat source so that the measured luminance of the high emissivity portion and the low emissivity portion of the measured surface are equal, and obtaining the temperature of the measured surface from the measured luminance at that time Surface temperature measurement system.
(3) The surface temperature measurement system according to (2), wherein the radiometer for measuring the luminance distribution is a thermal imager or a one-dimensional scanning radiometer.

本発明によれば、半導体デバイス内やパワーデバイスを利用した回路部品内における発熱部位特定・発熱量測定を目的とした面温度分布測定や、設備診断や建築構造物の欠陥検知を目的とした面温度分布測定において、対象放射率分布に影響されずに正しく面温度分布を測定することが可能になる。
また、熱画像装置の視野特性の限界に迫る微小な放射率パターンを有する電子デバイスなどの測定対象においても視野特性のにじみの影響を受けずに正しく対象温度を測定できる。
According to the present invention, surface temperature distribution measurement for the purpose of heat generation site identification and heat generation measurement in semiconductor devices and circuit components using power devices, surface for the purpose of facility diagnosis and building structure defect detection In the temperature distribution measurement, the surface temperature distribution can be correctly measured without being affected by the target emissivity distribution.
Further, even in a measurement object such as an electronic device having a minute emissivity pattern that approaches the limit of the visual field characteristic of the thermal imaging apparatus, the target temperature can be measured correctly without being affected by blurring of the visual field characteristic.

本発明に係る表面温度の測定システムSurface temperature measurement system according to the present invention 本発明に係る表面温度の非接触測定方法の説明図Explanatory drawing of the non-contact measuring method of surface temperature concerning the present invention パターン消失した画像Image with missing pattern 明暗が反転した画像Image with reversed light and dark 描かれている線に沿った輝度変化パターンLuminance change pattern along the drawn line

(本発明の原理)
測定対象となる面の放射率分布の変化の大きい部分に着目し、輝度分布を熱画像装置で測定すると、放射率分布が輝度分布として捉えられる。このとき、対象の温度はある領域で一様であるか、温度分布は放射率分布と比べ空間的に十分なだらかであるものとする。補助熱源を測定面について熱画像装置と鏡面対象な位置に配置し、面黒体からの熱放射光を測定対象の面に反射させて測定対象からの熱放射に重畳させて熱画像装置で捉える。
(Principle of the present invention)
When the luminance distribution is measured with a thermal image device while paying attention to the portion where the change in the emissivity distribution on the surface to be measured is large, the emissivity distribution is captured as the luminance distribution. At this time, it is assumed that the temperature of the object is uniform in a certain region, or that the temperature distribution is spatially sufficient compared with the emissivity distribution. Auxiliary heat source is placed on the measurement surface at a position that is mirrored with the thermal imaging device, and the thermal radiation from the black body is reflected on the surface of the measurement target and superimposed on the thermal radiation from the measurement target and captured by the thermal imaging device .

このとき、キルヒホッフの法則から、不透明表面では反射率+放射率=1の関係が成り立つため、低放射率部の方が反射率が高い。この状態で補助熱源の温度を変化させると、輝度分布が変化し、補助熱源温度の上昇に伴い高放射率部も低放射率部も輝度が増加するが、その増加の仕方は反射率の高い低放射率部の方が大きく、輝度の差が小さくなる。さらに補助熱源温度を上昇させると、輝度の差はなくなり熱画像装置の捉える画像の放射率分布によるパターンが消失し、さらに熱源温度を上昇させると輝度の分布は逆転し、低放射率部の方が高放射率部よりも輝度が高くなり再び放射率分布パターンが見えてくる。輝度の差がなくなったとき、すなわち画像の放射率分布パターンが消失した時の輝度を捉え、放射率が1の黒体とみなしてプランクの輻射の法則を適用し対象温度を求める。これにより対象放射率分布を知る必要なく真の対象の温度を知ることができる。   At this time, according to Kirchhoff's law, the relationship of reflectance + emissivity = 1 holds on the opaque surface, and therefore the low emissivity part has higher reflectivity. When the temperature of the auxiliary heat source is changed in this state, the luminance distribution changes, and the luminance increases in both the high emissivity part and the low emissivity part as the auxiliary heat source temperature rises. The low emissivity part is larger and the difference in luminance is smaller. When the auxiliary heat source temperature is further increased, the brightness difference disappears, and the pattern of the emissivity distribution of the image captured by the thermal imaging device disappears. However, the brightness becomes higher than that of the high emissivity part, and the emissivity distribution pattern is visible again. When the luminance difference disappears, that is, the luminance when the emissivity distribution pattern of the image disappears, the target temperature is obtained by assuming the emissivity as a black body and applying Planck's radiation law. As a result, the true target temperature can be known without the need to know the target emissivity distribution.

測定原理を以下詳細に説明する。
放射率分布を持つ測定対象の高放射率部の放射率をεHi、低放射率部の放射率をεLoとする。
高放射率部と低放射率部の熱放射輝度SHi、SLoは、下記の式でそれぞれ表わされる。
SHi=εHiL(T)
SLo=εLoL(T)
ここで、L(T)は温度Tの黒体の熱放射輝度である。
次に輝度LHeat-sourceの補助熱源を設置し、対象放射光に補助熱源の放射光を重畳させる。 熱画像装置で捉えられる輝度は下記で与えられる。
SHi=εHiL(T)+ρHiLHeat-source
SLo=εLoL(T)+ρLoLHeat-source
ここで、高放射率部の反射率をρHi、低放射率部の反射率をρLoとする。
The measurement principle will be described in detail below.
Let ε Hi be the emissivity of the high emissivity portion of the measurement object having the emissivity distribution, and ε Lo be the emissivity of the low emissivity portion.
The thermal radiances S Hi and S Lo of the high emissivity part and the low emissivity part are respectively expressed by the following equations.
S Hi = ε Hi L (T)
S Lo = ε Lo L (T)
Here, L (T) is the thermal radiance of a black body at temperature T.
Next, an auxiliary heat source with luminance L Heat-source is installed, and the emitted light of the auxiliary heat source is superimposed on the target emitted light. The brightness captured by the thermal imaging device is given below.
S Hi = ε Hi L (T) + ρ Hi L Heat-source
S Lo = ε Lo L (T) + ρ Lo L Heat-source
Here, the reflectance of the high emissivity part is ρ Hi, and the reflectance of the low emissivity part is ρ Lo .

ここで、補助熱源輝度LHeat-sourceを調節し、高放射率部と低放射率部が等しくなるようにする。
すなわち、SHi=SLoより
εHiL(T)+ρHiLHeat-source=εLoL(T)+ρLoLHeat-source
両辺に−L(T)を足し、キルヒホッフの法則から得られるεHiHi=1、εLoLo=1の関係を用いて変形すると
ρHi(−L(T)+LHeat-source)=ρLo(−L(T)+LHeat-source)
となる。ρHi≠ρLoであるから、この等号が成り立つのはL(T)=LHeat-sourceのときである。
Here, the auxiliary heat source luminance L Heat-source is adjusted so that the high emissivity part and the low emissivity part become equal.
That is, from S Hi = S Lo , ε Hi L (T) + ρ Hi L Heat-source = ε Lo L (T) + ρ Lo L Heat-source
Both sides in the plus -L (T), ε Hi obtained from Kirchhoff's law + ρ Hi = 1, the deformation with ε Lo + ρ Lo = 1 relationship ρ Hi (-L (T) + L Heat- source ) = ρ Lo (−L (T) + L Heat-source )
It becomes. Since ρ Hi ≠ ρ Lo , this equality holds when L (T) = L Heat-source .

このとき、
SHi=SLo=εHiL(T)+ρHiL(T)=εLoL(T)+ρLoL(T)=L(T)
であるため、測定された輝度SHi=SLoは対象と同じ温度Tの黒体からの輻射と等しく、放射率を1として扱って測定輝度SHi=SLoから正しい温度Tが求められる。
着目する対象の放射率分布は、例えば回路基板やデバイス上の金属配線パターンや、デバイスの微細構造分布に起因するパターンであってもよい。また、利用できる放射率分布がない場合には対象表面に塗料や金属膜などを塗布したり貼付したりしてもよい。
At this time,
S Hi = S Lo = ε Hi L (T) + ρ Hi L (T) = ε Lo L (T) + ρ Lo L (T) = L (T)
Therefore, the measured brightness S Hi = S Lo is equal to the radiation from the black body at the same temperature T as the object, and the emissivity is treated as 1, and the correct temperature T is obtained from the measured brightness S Hi = S Lo .
The target emissivity distribution may be, for example, a metal wiring pattern on a circuit board or device, or a pattern resulting from the fine structure distribution of the device. In addition, when there is no emissivity distribution that can be used, a paint or a metal film may be applied to or pasted on the target surface.

(本発明の実施形態)
熱画像装置は測定対象面上に焦点を合わせて2次元熱画像を撮像する。ここで、測定対象はプリント基板、半導体デバイスなどである。補助熱源としては表面を黒化した面黒体装置を使用している。この状態で、対象温度をおよそ一定に保ちながら補助熱源の温度を変化させながら熱画像を測定し、測定対象上の放射率分布に起因する熱画像のパターンが消失する条件を探す。
このときの測定された輝度から対象温度を放射率を1と仮定して求める。補助熱源の放射率が十分に1に近い場合には接触型の温度計などにより補助熱源温度を測定して対象温度を求めてもよい。
(Embodiment of the present invention)
The thermal imaging apparatus focuses on the measurement target surface and captures a two-dimensional thermal image. Here, the measurement object is a printed circuit board, a semiconductor device, or the like. A black body device with a blackened surface is used as an auxiliary heat source. In this state, the thermal image is measured while changing the temperature of the auxiliary heat source while keeping the target temperature approximately constant, and a condition for erasing the pattern of the thermal image due to the emissivity distribution on the measurement target is searched.
The target temperature is determined from the measured brightness at this time, assuming that the emissivity is 1. When the emissivity of the auxiliary heat source is sufficiently close to 1, the target temperature may be obtained by measuring the auxiliary heat source temperature with a contact-type thermometer or the like.

補助熱源の温度を上昇させた時に得られた熱画像の例を図2〜4に示す。
図2では補助熱源温度が対象温度より低く、プリント基板の樹脂材である高放射率部が高輝度に明るく、金属配線のパターンが低放射率部として低輝度に暗く見えている。
図3は補助熱源温度を上昇させて高放射率部と低放射率部の輝度が等しくなったときの熱画像である。パターンが消失しているのが分かる。
図4では補助熱源温度が対象温度より高くなったときの熱画像で、高放射率部が暗く、低放射率部が明るく光っていて、図2の画像と比べ明暗が逆転しているのが分かる。
Examples of thermal images obtained when the temperature of the auxiliary heat source is raised are shown in FIGS.
In FIG. 2, the auxiliary heat source temperature is lower than the target temperature, the high emissivity part, which is a resin material of the printed circuit board, is bright with high brightness, and the pattern of the metal wiring appears dark with low brightness as the low emissivity part.
FIG. 3 is a thermal image when the auxiliary heat source temperature is raised and the luminance of the high emissivity part and the low emissivity part become equal. You can see that the pattern has disappeared.
FIG. 4 is a thermal image when the auxiliary heat source temperature is higher than the target temperature. The high emissivity part is dark and the low emissivity part is brightly shining, and the brightness and darkness are reversed compared to the image of FIG. I understand.

図2に描かれている線に沿った輝度変化パターン(図5中の2参照)を図5に示す。縦軸は輝度温度である。パターンのこの部分には高放射率部が細く低放射率部が太い部分(a,b)と、その逆に高放射率部が太く低放射率部が細い部分(c,d)が含まれている。本来、高放射率部の輝度温度は43℃、低放射率部の輝度温度は35℃程度を示すところ、線が細い部分は高放射率部のcは見掛けの放射率がaより低く(輝度温度が低く)、低放射率部のbは見掛けの放射率がdより高く(輝度温度が高く)出ている。これは熱画像装置の視野特性の不完全さが原因で、画像としてはにじみがはっきり認識されないレベルでも温度測定にとっては有意な輝度にじみが起きていることを示している。この状態で既知の高放射率部の放射率をc部に適用して温度を求めると真の温度より低めの温度が得られ、既知の低放射率部の放射率をb部に適用すれば高めの温度が測定されてしまう。   FIG. 5 shows a luminance change pattern (see 2 in FIG. 5) along the line drawn in FIG. The vertical axis represents the brightness temperature. This part of the pattern includes portions (a, b) where the high emissivity part is thin and the low emissivity part is thick, and conversely, parts (c, d) where the high emissivity part is thick and the low emissivity part is thin. ing. Originally, the brightness temperature of the high emissivity part is 43 ° C., and the brightness temperature of the low emissivity part is about 35 ° C., where the thin line portion is c and the apparent emissivity is lower than a (brightness). The low emissivity part b has an apparent emissivity higher than d (brightness temperature is high). This indicates that due to imperfections in the visual field characteristics of the thermal imager, a significant brightness blur occurs for temperature measurement even at a level where the blur is not clearly recognized as an image. In this state, if the emissivity of the known high emissivity part is applied to part c to obtain the temperature, a temperature lower than the true temperature is obtained, and if the emissivity of the known low emissivity part is applied to part b, A higher temperature is measured.

これに対し、図5中に示す図3に対応した輝度分布パターン(図5中の1参照)は一様であり、場所によらず正しい測定温度49℃を示している。測定対象の放射率が未知な場合だけでなく、このように熱画像装置の視野分解特性の限界を超えた微小放射率分布パターンを持つ対象の温度測定においてもその影響を受けずに正しい温度を測定することが可能であることが分かる。   On the other hand, the luminance distribution pattern (see 1 in FIG. 5) corresponding to FIG. 3 shown in FIG. 5 is uniform, and shows a correct measurement temperature of 49 ° C. regardless of the place. Not only when the emissivity of the object to be measured is unknown, but also when measuring the temperature of an object with a minute emissivity distribution pattern that exceeds the limit of the field resolution characteristics of the thermal imager, the correct temperature is not affected. It can be seen that it can be measured.

ここで、補助熱源としては面黒体装置を用いたが、補助熱源としてはこれに限らず、例えばランプ光源やレーザ光源を備えた積分球、液体温槽表面、平面ヒータなど、光源面が測定対象に対し十分大きく、輝度が一様で可変なものであれば何でもよい。
また、熱画像装置も高温対象を測定するのであれば可視・近赤外光を測定するCCDなどのカメラでもよい。また、2次元画像を用いる代わりにリニアセンサによる測定を用いてもよい。

Here, a Mokukuro device was used as the auxiliary heat source, but the auxiliary heat source is not limited to this. For example, an integrating sphere equipped with a lamp light source or a laser light source, the surface of a liquid hot bath, a flat heater, etc. Anything can be used as long as it is sufficiently large for the target and the luminance is uniform and variable.
The thermal imager may also be a camera such as a CCD that measures visible / near infrared light as long as it measures a high temperature object. Further, instead of using a two-dimensional image, measurement using a linear sensor may be used.

Claims (3)

放射率分布を持つ被測定面と、該被測定面の輝度分布を測定する放射計と、該被測定面に関して該放射計から鏡面反射位置に設置された輝度可変な補助熱源とを用意し、該被測定面の高放射率部と低放射率部の測定輝度が等しくなるように該補助熱源の放射輝度を変化させ、その時の測定輝度から該被測定面の温度を求めることを特徴とする表面温度の測定方法。   A surface to be measured having an emissivity distribution, a radiometer for measuring the luminance distribution of the surface to be measured, and an auxiliary heat source with variable brightness installed at a specular reflection position from the radiometer with respect to the surface to be measured, The radiance of the auxiliary heat source is changed so that the measured luminance of the high emissivity portion and the low emissivity portion of the measured surface are equal, and the temperature of the measured surface is obtained from the measured luminance at that time Method for measuring surface temperature. 放射率分布を持つ被測定面と、該被測定面の輝度分布を測定する放射計と、該被測定面に関して該放射計から鏡面反射位置に設置された輝度可変な補助熱源とを含み、該被測定面の高放射率部と低放射率部の測定輝度が等しくなるように該補助熱源の放射輝度を変化させ、その時の測定輝度から該被測定面の温度を求めることを特徴とする表面温度の測定システム。   A surface to be measured having an emissivity distribution, a radiometer for measuring the luminance distribution of the surface to be measured, and an auxiliary heat source having a variable brightness with respect to the surface to be measured, installed at a specular reflection position from the radiometer, A surface characterized in that the radiance of the auxiliary heat source is changed so that the measured luminance of the high emissivity part and the low emissivity part of the measured surface are equal, and the temperature of the measured surface is obtained from the measured luminance at that time Temperature measurement system. 上記輝度分布を測定する放射計は、熱画像装置又は1次元走査型放射計であることを特徴とする請求項2に記載の表面温度の測定システム。

The surface temperature measurement system according to claim 2, wherein the radiometer for measuring the luminance distribution is a thermal imager or a one-dimensional scanning radiometer.

JP2010276941A 2010-12-13 2010-12-13 Method and system for measuring surface temperature Pending JP2012127683A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010276941A JP2012127683A (en) 2010-12-13 2010-12-13 Method and system for measuring surface temperature
EP11849442.6A EP2653843A4 (en) 2010-12-13 2011-12-09 Method and system for measuring surface temperature
PCT/JP2011/078536 WO2012081512A1 (en) 2010-12-13 2011-12-09 Method and system for measuring surface temperature
US13/993,468 US9689746B2 (en) 2010-12-13 2011-12-09 Method and system of measuring surface temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276941A JP2012127683A (en) 2010-12-13 2010-12-13 Method and system for measuring surface temperature

Publications (1)

Publication Number Publication Date
JP2012127683A true JP2012127683A (en) 2012-07-05

Family

ID=46644914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276941A Pending JP2012127683A (en) 2010-12-13 2010-12-13 Method and system for measuring surface temperature

Country Status (1)

Country Link
JP (1) JP2012127683A (en)

Similar Documents

Publication Publication Date Title
WO2012081512A1 (en) Method and system for measuring surface temperature
Usamentiaga et al. Highly accurate geometric calibration for infrared cameras using inexpensive calibration targets
CA2746191C (en) Device and method for the three-dimensional optical measurement of strongly reflective or transparent objects
Swamidoss et al. Systematic approach for thermal imaging camera calibration for machine vision applications
Krenzinger et al. Accurate outdoor glass thermographic thermometry applied to solar energy devices
Su et al. Scanning long-wave optical test system: a new ground optical surface slope test system
JP6620827B2 (en) Radiation temperature measuring device and radiation temperature measuring method
Yamada et al. Toward reliable industrial radiation thermometry
Thelen et al. A high-resolution optical measurement system for rapid acquisition of radiation flux density maps
KR101322801B1 (en) System and method for setting emissivity of infrared thermal vision camera using reference pattern
Whitenton An introduction for machining researchers to measurement uncertainty sources in thermal images of metal cutting
JP5626679B2 (en) Method and system for measuring surface temperature
JP2012189437A (en) Test chart for far-infrared lens
Herrmann et al. Thermal camera calibration with cooled down chessboard
CN212030747U (en) Detection system of infrared thermal imaging equipment
JP2012127683A (en) Method and system for measuring surface temperature
RU2755093C1 (en) Method for calibration of thermal imaging devices and the device for its implementation
Yamada et al. Emissivity compensation utilizing radiance distribution in thermal images for temperature measurement of electronic devices
Califano et al. Infrared Reflection Removal in Wind Tunnels using Polarization Theory
Schramm et al. Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras
Zauner et al. CCD Cameras as thermal Imaging devices in heat treatment processes
JPWO2017183558A1 (en) Gas observation method
Meriaudeau et al. Non-conventional imaging systems for 3D digitization of transparent objects: Shape from polarization in the IR and shape from visible fluorescence induced UV
Kechiche et al. Shape from polarization in the far IR applied to 3D digitization of transparent objects
Florian et al. Auto focus and image registration techniques for infrared imaging of microelectronic devices