JP2012127514A - Refrigerator-freezer - Google Patents
Refrigerator-freezer Download PDFInfo
- Publication number
- JP2012127514A JP2012127514A JP2010276488A JP2010276488A JP2012127514A JP 2012127514 A JP2012127514 A JP 2012127514A JP 2010276488 A JP2010276488 A JP 2010276488A JP 2010276488 A JP2010276488 A JP 2010276488A JP 2012127514 A JP2012127514 A JP 2012127514A
- Authority
- JP
- Japan
- Prior art keywords
- freezer
- refrigerator
- defrosting
- time
- freezer compartment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Defrosting Systems (AREA)
Abstract
Description
本発明は、2元冷凍サイクルを搭載した冷凍冷蔵庫及びその運転方法に関する。 The present invention relates to a refrigerator-freezer equipped with a two-way refrigeration cycle and an operation method thereof.
2元冷凍サイクルを用いた冷凍冷蔵庫は、主に大型の業務用で採用されていたが、近年、家庭用にも採用されるようになった。その背景として圧縮機を2個使用することで、2個の圧縮機をそれぞれ冷蔵室、冷凍室にそれぞれ独立した系統とし、冷蔵室と冷凍室を独立の室とすることができ、従来、冷蔵室内に流入する外気に含まれる水分、または冷蔵室に貯蔵されていた食品、野菜等の水分が冷凍室に入ることが無くなり、これによる着霜が少なくなった。 Refrigeration refrigerators that use a two-way refrigeration cycle have been mainly used for large-sized businesses, but in recent years, they have also been adopted for home use. By using two compressors as the background, the two compressors can be made into independent systems for the refrigerator compartment and the freezer compartment, respectively, and the refrigerator compartment and the freezer compartment can be made independent. Moisture contained in the outside air flowing into the room, or water of foods, vegetables, etc. stored in the refrigeration room no longer enters the freezing room, resulting in less frost formation.
一方、冷凍室の蒸発器に着霜した霜の除霜には、蒸発器の下側にヒータを配置して、ヒータの熱により、蒸発器に付着した霜の除霜を行う方法がある。この除霜には、2種類の方法があり、蒸発器の温度検知手段に基づいた不定時除霜と所定の運転積算時間に基づいた定時除霜との二つの除霜方法がある。 On the other hand, in order to defrost frost that has formed on the evaporator in the freezer compartment, there is a method in which a heater is disposed below the evaporator and the frost attached to the evaporator is defrosted by the heat of the heater. There are two types of defrosting methods, and there are two defrosting methods: indefinite time defrosting based on the temperature detecting means of the evaporator, and scheduled defrosting based on a predetermined accumulated operation time.
たとえば、特開平10‐89834号公報(特許文献1)には、冷凍室用エバポレータの除霜を、不定時除霜で行うことが記載されている。具体的には、除霜間隔期間中における外気温度及び扉開閉数をカウントし、除霜間隔期間が終了後に平均外気温度、扉開閉数及び扉の隙間から侵入した水分量から予想着霜量を算出する。また、除霜時間から実着霜量Pを算出する。この実着霜量Pと予想着霜量Mから除霜間隔期間の延長もしくは短縮を行うことが記載されている。 For example, Japanese Patent Laid-Open No. 10-89834 (Patent Document 1) describes that defrosting of an evaporator for a freezer compartment is performed by indefinite time defrosting. Specifically, the outside air temperature and the number of doors open / closed during the defrosting interval are counted, and the expected frost amount is calculated from the average outside air temperature, the number of doors open / closed, and the amount of moisture that has entered through the door gap after the end of the defrosting interval. calculate. Further, the actual frost amount P is calculated from the defrosting time. It is described that the defrosting interval period is extended or shortened from the actual frost amount P and the expected frost amount M.
また、特開2002−62026号公報(特許文献2)には、圧縮機の所定の運転積算時間ごとに除霜運転モードを実行する定時除霜で除霜を行うことが記載されている。 Japanese Patent Laying-Open No. 2002-62026 (Patent Document 2) describes that defrosting is performed by scheduled defrosting in which the defrosting operation mode is executed every predetermined operation integration time of the compressor.
しかしながら、これまでの2元冷凍サイクルは、前記二つの除霜方法を効率的に組み合わせたものではなかった。 However, the conventional two-way refrigeration cycle is not an efficient combination of the two defrosting methods.
前記特許文献1に開示された除霜方法は、除霜間隔期間が終了後に平均外気温度、扉開閉数及び扉の隙間から侵入した水分量から予想着霜量を算出する。また、除霜時間から実着霜量Pを算出する。この実着霜量Pと予想着霜量Mから除霜間隔期間の延長もしくは短縮を行う。しかしながら、除霜制御中の着霜量の予測計算においては、庫内に侵入する水分量の予測計算の基準が特定条件に限定されているため、着霜量が正確に計算されず、そのため適当な頻度で除霜が行われない可能性がある。 In the defrosting method disclosed in Patent Document 1, the expected frost amount is calculated from the average outside air temperature, the number of doors opened and closed, and the amount of moisture that has entered through the door gap after the end of the defrosting interval. Further, the actual frost amount P is calculated from the defrosting time. The defrosting interval period is extended or shortened from the actual frost amount P and the expected frost amount M. However, in the prediction calculation of the frost amount during the defrost control, the standard for the prediction calculation of the moisture amount entering the cabinet is limited to specific conditions, so the frost amount is not accurately calculated and is therefore appropriate. There is a possibility that defrosting will not be performed frequently.
また、前記特許文献2に開示された除霜方法は、圧縮機の所定の運転積算時間ごとに除霜運転モードを実行するので、実着霜の量の有無にかかわらず除霜するので、電気代が嵩む、もしくは一時的に着霜量が急増した場合に、除霜が不十分に陥る欠点がある。 Moreover, since the defrost method disclosed by the said patent document 2 performs a defrost operation mode for every predetermined | prescribed operation integration time of a compressor, since it defrosts regardless of the presence or absence of the amount of actual frost formation, There is a drawback that the defrosting is insufficient when the cost increases or the amount of frost formation increases rapidly.
本発明は、上記課題に鑑みてなされたものであり、定時除霜と不定時除霜を組み合わせて行うこととにより、頻繁な除霜を回避でき、かつ不要な除霜を抑えることを目的とする。 This invention is made | formed in view of the said subject, and it aims at suppressing frequent defrost and suppressing unnecessary defrost by performing it by combining fixed time defrost and indefinite time defrost. To do.
前記課題を解決するため本発明に係わる冷凍冷蔵庫は、貯蔵物を冷蔵保存する冷蔵室と、貯蔵物を冷凍保存する冷凍室と、第1冷媒が流通する第1冷凍サイクルを運転する第1圧縮機と、第1冷凍サイクルの低温部に配されて前記冷蔵室を冷却する第1蒸発器と、
第2冷媒が流通する第2冷凍サイクルを運転する第2圧縮機と、第2冷凍サイクルの低温部に配されて前記冷凍室を冷却する第2蒸発器と、制御部と、冷凍冷蔵庫の周囲温度、前記冷凍室の庫内温度、前記冷凍冷蔵庫の周囲湿度および冷凍室扉の開閉を検知する複数の検知手段とを備えた前記冷凍冷蔵庫において、前記制御部は、複数の前記検知手段に基づく不定時除霜と、前記冷凍冷蔵庫の運転積算時間に基づいた定時除霜との二つの除霜方法の組み合わせにより前記第2蒸発器の除霜を開始することを特徴としている。
In order to solve the above-mentioned problems, a refrigerator-freezer according to the present invention includes a refrigerating room for storing stored items in a refrigerator, a freezing chamber for storing stored items in a frozen state, and a first compression that operates a first refrigeration cycle through which a first refrigerant flows. A first evaporator that is disposed in a low temperature part of the first refrigeration cycle and cools the refrigerator compartment;
A second compressor that operates a second refrigeration cycle through which the second refrigerant flows, a second evaporator that is disposed in a low temperature part of the second refrigeration cycle and cools the freezer compartment, a control unit, and a surrounding of the refrigerator / freezer In the refrigerator / freezer comprising a temperature, a temperature in the freezer compartment, an ambient humidity of the refrigerator / freezer, and a plurality of detecting means for detecting opening / closing of the freezer compartment door, the control unit is based on the plurality of detecting means. The defrosting of the second evaporator is started by a combination of two defrosting methods of unfixed time defrosting and fixed time defrosting based on the accumulated operation time of the refrigerator-freezer.
本発明によれば、温度検知手段による温度値に基づいた不定時除霜と運転積算時間に基づいた定時除霜との二つの除霜方法を用いることにより、効率的に除霜を行うことが可能である。 According to the present invention, the defrosting can be efficiently performed by using two defrosting methods of the indefinite time defrosting based on the temperature value by the temperature detecting means and the timed defrosting based on the operation cumulative time. Is possible.
以下、本発明をその実施の形態に基づいて説明する。 Hereinafter, the present invention will be described based on the embodiments.
図1は、本発明の実施形態の冷凍冷蔵庫の側面断面図及び制御構成図である。冷凍冷蔵庫1の本体部は断熱箱体3を有している。断熱箱体3の上部には貯蔵物を冷蔵保存する冷蔵室2が配される。冷蔵室2の前面は回動式の冷蔵室扉2aにより開閉される。
冷蔵室2の下方には断熱壁7を介して、貯蔵物を冷凍保存する冷凍室4が配される。冷凍室4の前面は引き出し式の冷凍室扉4aにより開閉される。
FIG. 1 is a side sectional view and a control configuration diagram of a refrigerator-freezer according to an embodiment of the present invention. The main body of the refrigerator-freezer 1 has a heat insulating box 3. In the upper part of the heat insulating box 3, a refrigerator compartment 2 for storing stored items in a refrigerator is arranged. The front surface of the refrigerator compartment 2 is opened and closed by a rotating refrigerator compartment door 2a.
Below the refrigerating room 2, a freezing room 4 for freezing and storing stored items is disposed via a heat insulating wall 7. The front surface of the freezer compartment 4 is opened and closed by a drawer-type freezer compartment door 4a.
断熱壁7は断熱箱体3の周壁(上壁、底壁、側壁及び背壁)と同等レベルの断熱性能を持たせている。これにより、冷蔵室2と冷凍室4との間の熱交換が抑制される。 The heat insulating wall 7 has a heat insulating performance equivalent to that of the peripheral wall (upper wall, bottom wall, side wall, and back wall) of the heat insulating box 3. Thereby, heat exchange between the refrigerator compartment 2 and the freezer compartment 4 is suppressed.
冷凍室4の下部後方には第1圧縮機11と第2圧縮機21が配される機械室5が設けられる。第1圧縮機11、第2圧縮機21によって詳細を後述する第1冷凍サイクル10、第2冷凍サイクル20(図2参照)がそれぞれ運転される。 A machine room 5 in which the first compressor 11 and the second compressor 21 are arranged is provided at the lower rear of the freezer compartment 4. A first refrigeration cycle 10 and a second refrigeration cycle 20 (see FIG. 2), which will be described in detail later, are operated by the first compressor 11 and the second compressor 21, respectively.
冷蔵室2の背面には第1圧縮機11に接続される第1蒸発器14が配され、第1蒸発器14の上方には冷蔵室送風機15が配される。冷凍室4の背面には第2圧縮機21に接続される第2蒸発器24が配され、第2蒸発器24の上方には冷凍室送風機25が配される。 A first evaporator 14 connected to the first compressor 11 is disposed on the back surface of the refrigerator compartment 2, and a refrigerator refrigerator 15 is disposed above the first evaporator 14. A second evaporator 24 connected to the second compressor 21 is disposed on the back surface of the freezer compartment 4, and a freezer compartment blower 25 is disposed above the second evaporator 24.
第1蒸発器14と熱交換して冷却された冷気は冷蔵室送風機15により冷蔵室2に吐出される。該冷気は冷蔵室2内を流通し、第1蒸発器14に戻る。これにより、冷蔵室2が冷却される。第2蒸発器24と熱交換して冷却された冷気は、冷凍室送風機25により冷凍室4に吐出される。冷凍室4に吐出された冷気は冷凍室4内を流通し、第2蒸発器24に戻る。これにより、冷凍室4が冷却される。 Cold air cooled by exchanging heat with the first evaporator 14 is discharged to the refrigerator compartment 2 by the refrigerator refrigerator 15. The cold air flows through the refrigerator compartment 2 and returns to the first evaporator 14. Thereby, the refrigerator compartment 2 is cooled. The cold air cooled by exchanging heat with the second evaporator 24 is discharged into the freezer compartment 4 by the freezer blower 25. The cold air discharged into the freezer compartment 4 flows through the freezer compartment 4 and returns to the second evaporator 24. Thereby, the freezer compartment 4 is cooled.
また、第2蒸発器24の底面の直下に、ガラス管ヒータを用いた除霜ヒータ8を備えている。第2蒸発器24に着霜した場合に、除霜ヒータ8で第2蒸発器24を下から温めることで、除霜を行う。 In addition, a defrost heater 8 using a glass tube heater is provided immediately below the bottom surface of the second evaporator 24. When the second evaporator 24 is frosted, the defrosting is performed by warming the second evaporator 24 from below with the defrost heater 8.
冷凍冷蔵庫1には電装回路からなる電装組品(不図示)が、機械室5内に配置されている。電装組品に制御部6が設けられている。 In the refrigerator-freezer 1, an electrical component assembly (not shown) including an electrical circuit is disposed in the machine room 5. A control unit 6 is provided in the electrical component assembly.
冷凍冷蔵庫1の制御部6は、冷凍冷蔵庫1近傍の周囲温度の温度検知手段T1、第2蒸発器の温度検知手段T2、第1圧縮機の制御手段E1、第2圧縮機の制御手段E2と冷蔵室送風機15の冷蔵室送風機制御手段F1、冷凍室送風機25の冷凍室送風機制御手段F2、冷凍室扉開閉検知手段G1、周囲湿度検知手段H1から構成されている。制御部6は、前記の複数の検知手段からの検知信号から、冷凍冷蔵庫1の運転制御を行っている。 The control unit 6 of the refrigerator 1 includes an ambient temperature detection means T1, a second evaporator temperature detection means T2, a first compressor control means E1, and a second compressor control means E2. The refrigerating room blower control means F1 of the refrigerating room blower 15, the freezing room blower control means F2 of the freezing room blower 25, the freezing room door open / close detection means G1, and the ambient humidity detection means H1 are configured. The control unit 6 controls the operation of the refrigerator-freezer 1 from the detection signals from the plurality of detection means.
周囲温度検知手段T1、第2蒸発器温度検知手段T2と冷凍室温度検知手段T3については、サーミスタ等の温度センサ等で温度を測定し、制御部に入力している。圧縮機制御手段E1については、インバータ制御を行い、圧縮機積算運転時間計算手段E2については、圧縮機積算運転時間により制御を行っている。冷蔵室送風機制御手段F1と冷凍室送風機制御手段F2は、送風機への通電を変化させて送風機の回転数の制御を行っている。冷凍室扉開閉検知手段G1は、冷凍室扉4aに接する断熱箱体3に設けられた扉スイッチ等で冷凍室扉4aの開閉を検知し、その検知信号を制御部で、冷凍室扉4aの開閉回数にカウントしている。周囲湿度検知手段H1については、湿度センサ等で湿度を測定し、制御部に入力している。湿度センサは、断熱箱体3の上面後方で湿度センサホルダーに固定され、湿度センサホルダーは断熱箱体3の上面に締結具で固定されている。周囲温度検知手段T1は、断熱箱体3の上面後方で、サーミスタホルダーにサーミスタが固定され、サーミスタホルダーは断熱箱体3の上面に締結具で固定されている。第2蒸発器温度検知手段T2については、サーミスタを用い、サーミスタホルダーにサーミスタを固定し、更にサーミスタホルダーは、第2蒸発器24のアルミフィンに固定されている。冷凍室温度検知手段T3については、サーミスタを用い、サーミスタホルダーにサーミスタを固定し、更にサーミスタホルダーは冷凍室4の内面に固定されている。 Regarding the ambient temperature detection means T1, the second evaporator temperature detection means T2, and the freezer compartment temperature detection means T3, the temperature is measured by a temperature sensor such as a thermistor and is input to the control unit. The compressor control means E1 performs inverter control, and the compressor integrated operation time calculation means E2 performs control based on the compressor integrated operation time. The refrigerator compartment blower control means F1 and the freezer compartment blower control means F2 change the energization to the blower to control the rotational speed of the blower. The freezer compartment door open / close detection means G1 detects the open / close state of the freezer compartment door 4a by a door switch or the like provided in the heat insulating box 3 in contact with the freezer compartment door 4a, and the detection signal of the freezer compartment door 4a is detected by the control unit. Counts the number of opening and closing. As for the ambient humidity detecting means H1, the humidity is measured by a humidity sensor or the like and input to the control unit. The humidity sensor is fixed to the humidity sensor holder behind the upper surface of the heat insulating box 3, and the humidity sensor holder is fixed to the upper surface of the heat insulating box 3 with a fastener. In the ambient temperature detection means T1, the thermistor is fixed to the thermistor holder behind the upper surface of the heat insulating box 3, and the thermistor holder is fixed to the upper surface of the heat insulating box 3 with a fastener. As for the second evaporator temperature detecting means T2, a thermistor is used, the thermistor is fixed to the thermistor holder, and the thermistor holder is fixed to the aluminum fin of the second evaporator 24. As for the freezer compartment temperature detection means T3, a thermistor is used, the thermistor is fixed to the thermistor holder, and the thermistor holder is fixed to the inner surface of the freezer compartment 4.
図2は、本発明の実施形態の冷凍冷蔵庫の2元冷凍サイクルの全体構成図である。冷凍冷蔵庫1の冷凍サイクル30は、第1冷凍サイクル(別名として、高温冷凍サイクルを用いる)10と第2冷凍サイクル(別名として、低温冷凍サイクルを用いる)20が中間熱交換器31により連結されたカスケード式の二元冷凍サイクルになっている。図2において高温冷凍サイクル10の冷媒の流れを実線の矢印(P方向)で示し、低温冷凍サイクル20を破線の矢印(Q方向)で示している。一方は、第1圧縮機11、第1凝縮器12、第1膨張装置13、第1蒸発器14と中間熱交換器31の第1熱交換部31aとで、高温冷凍サイクル10を構成する。他方は、第2圧縮機21、第2凝縮器22、第2膨張装置23、第2蒸発器24と中間熱交換器31の第2熱交換部31bとで、低温冷凍サイクル20を構成する。第1熱交換部31aと第2熱交換部31bとは、隣接して形成され、互いに境界壁を介して熱交換可能に形成され、冷凍冷蔵庫1の断熱箱体3の断熱材9に埋め込まれている。 FIG. 2 is an overall configuration diagram of a two-way refrigeration cycle of the refrigerator-freezer according to the embodiment of the present invention. A refrigeration cycle 30 of the refrigerator 1 includes a first refrigeration cycle (also using a high-temperature refrigeration cycle) 10 and a second refrigeration cycle (also using a low-temperature refrigeration cycle) 20 connected by an intermediate heat exchanger 31. It is a cascaded dual refrigeration cycle. In FIG. 2, the flow of the refrigerant in the high temperature refrigeration cycle 10 is indicated by a solid line arrow (P direction), and the low temperature refrigeration cycle 20 is indicated by a broken line arrow (Q direction). One of the first compressor 11, the first condenser 12, the first expansion device 13, the first evaporator 14, and the first heat exchange unit 31 a of the intermediate heat exchanger 31 constitutes the high-temperature refrigeration cycle 10. The other, the second compressor 21, the second condenser 22, the second expansion device 23, the second evaporator 24, and the second heat exchange part 31 b of the intermediate heat exchanger 31 constitute the low temperature refrigeration cycle 20. The first heat exchange part 31a and the second heat exchange part 31b are formed adjacent to each other, are formed so as to be able to exchange heat with each other through a boundary wall, and are embedded in the heat insulating material 9 of the heat insulating box 3 of the refrigerator-freezer 1. ing.
中間熱交換器31は、断熱箱体3(図1参照)の背壁に埋設された内管と外管とを有する二重管から成り、上下方向に延びて下端で屈曲するU字管に形成される。二重管の内管を第1冷媒が流通して第1熱交換部31aを形成し、外管を第2冷媒が流通して第2熱交換部31bを形成する。第1熱交換部31aは図示していないが、冷媒流入口及び冷媒流出口が上端に形成される。第2熱交換部31bも図示していないが、同様に冷媒流入口及び冷媒流出口が上端に形成され、第1熱交換部31aと冷媒の流通方向が逆方向になっている。 The intermediate heat exchanger 31 is composed of a double pipe having an inner pipe and an outer pipe embedded in the back wall of the heat insulating box 3 (see FIG. 1), and is a U-shaped pipe that extends in the vertical direction and bends at the lower end. It is formed. The first refrigerant flows through the inner pipe of the double pipe to form the first heat exchange part 31a, and the second refrigerant flows through the outer pipe to form the second heat exchange part 31b. Although the 1st heat exchange part 31a is not shown in figure, a refrigerant | coolant inflow port and a refrigerant | coolant outflow port are formed in an upper end. Although the 2nd heat exchange part 31b is not illustrated, similarly, a refrigerant inflow mouth and a refrigerant outflow mouth are formed in the upper end, and the distribution direction of the 1st heat exchange part 31a and a refrigerant is the reverse direction.
なお、高温冷凍サイクル10の第1凝縮器12と低温冷凍サイクル20の第2凝縮器22は、図1では図示していないが、冷蔵庫の周囲の空気中へ放熱できるように、冷凍冷蔵庫1の断熱箱体3の背面や側面を覆う金属板である外箱板32(図1参照)などに固定して取り付けられている。 Note that the first condenser 12 of the high-temperature refrigeration cycle 10 and the second condenser 22 of the low-temperature refrigeration cycle 20 are not shown in FIG. It is fixedly attached to an outer box plate 32 (see FIG. 1), which is a metal plate that covers the back and side surfaces of the heat insulating box 3.
本実施形態において、第1冷媒、第2冷媒にイソブタン等の同じ冷媒を用いている。
図1と図2において、第1圧縮機11を圧縮機制御手段E1で運転すると、高温冷凍サイクル10の冷媒が、第1圧縮機11で圧縮された後、第1凝縮器12に流入し、ここで周囲空気に熱を奪われて凝縮する。第1凝縮器12で液化した冷媒が、キャピラリチューブから成る第1膨張装置13へ導かれ、第1膨張装置13で減圧、膨張し、乾き度が低い低温の湿り蒸気となる。低温の湿り蒸気となった冷媒が、冷凍冷蔵庫1の冷蔵室2に設置した第1蒸発器14に流入し、ここで、冷蔵室送風機制御手段F1に制御されている冷蔵室送風機15により循環されている冷蔵室2の冷気から熱を奪って蒸発し、より乾き度の高い湿り蒸気となる。更に、この湿り蒸気状態の冷媒が、中間熱交換器31の第1熱交換部31a側に導かれ、中間熱交換器31で第2熱交換部31bの冷媒から凝縮熱などを奪いながら蒸発する。次に、蒸発した冷媒ガスは、第1圧縮機11に戻る。
In the present embodiment, the same refrigerant such as isobutane is used for the first refrigerant and the second refrigerant.
1 and 2, when the first compressor 11 is operated by the compressor control means E1, the refrigerant of the high-temperature refrigeration cycle 10 is compressed by the first compressor 11, and then flows into the first condenser 12. Here, the surrounding air is deprived of heat and condensed. The refrigerant liquefied by the first condenser 12 is guided to the first expansion device 13 composed of a capillary tube, and is decompressed and expanded by the first expansion device 13 to become low-temperature wet steam having a low dryness. The refrigerant which has become low-temperature wet steam flows into the first evaporator 14 installed in the refrigerator compartment 2 of the refrigerator 1 and is circulated by the refrigerator compartment fan 15 controlled by the refrigerator compartment fan control means F1. It takes heat from the cold air in the refrigerator compartment 2 and evaporates, resulting in wet steam with a higher dryness. Further, the wet vapor state refrigerant is led to the first heat exchanging portion 31a side of the intermediate heat exchanger 31, and evaporates while taking heat of condensation from the refrigerant of the second heat exchanging portion 31b by the intermediate heat exchanger 31. . Next, the evaporated refrigerant gas returns to the first compressor 11.
このように、第1圧縮機11の駆動で第1蒸発器14と中間熱交換器31の第1熱交換部31aは、作動し、冷凍冷蔵庫1の冷蔵室2を冷却すると同時に、中間熱交換器31の第2熱交換部31bからの熱を吸収する。 As described above, the first evaporator 11 and the first heat exchanging portion 31a of the intermediate heat exchanger 31 are operated by driving the first compressor 11 to cool the refrigerator compartment 2 of the refrigerator 1 and at the same time, the intermediate heat exchange. The heat from the second heat exchange part 31b of the vessel 31 is absorbed.
一方、第1圧縮機11の運転中に、第2圧縮機21を圧縮機制御手段E1で運転すると、低温冷凍サイクル20の冷媒が第2圧縮機21で圧縮された後、まず、第2凝縮器22に流入し、ここで周囲空気に放熱して温度が下がる。第2凝縮器22で放熱した冷媒が、中間熱交換器31の第2熱交換部31b側に導かれ、中間熱交換器31で、凝縮熱などを奪われ、凝縮する。凝縮した液体状態の冷媒が、キャピラリチューブから成る第2膨張装置23に導かれ、第2膨張装置23で減圧、膨張し、低温の湿り蒸気となる。低温の湿り蒸気となった冷媒が、冷凍冷蔵庫1の冷凍室4に設置した第2蒸発器24に流入し、ここで冷凍室送風機制御手段F2に制御されている冷凍室送風機25により循環されている冷凍室4の冷気から熱を奪って蒸発する。第2蒸発器24から流出した冷媒ガスが、第2圧縮機21に戻る。 On the other hand, when the second compressor 21 is operated by the compressor control means E1 during the operation of the first compressor 11, the refrigerant of the low temperature refrigeration cycle 20 is compressed by the second compressor 21, and then the second condensation is first performed. Flows into the vessel 22 where it dissipates heat to the surrounding air and the temperature drops. The refrigerant radiated by the second condenser 22 is guided to the second heat exchanging portion 31b side of the intermediate heat exchanger 31, and the intermediate heat exchanger 31 is deprived of condensation heat and condensed. The condensed refrigerant in the liquid state is guided to the second expansion device 23 composed of a capillary tube, and decompressed and expanded by the second expansion device 23 to become low-temperature wet steam. The refrigerant that has become low-temperature wet steam flows into the second evaporator 24 installed in the freezer compartment 4 of the refrigerator 1 and is circulated by the freezer compartment fan 25 controlled by the freezer compartment fan control means F2. It takes heat from the cold air in the freezer compartment 4 and evaporates. The refrigerant gas flowing out from the second evaporator 24 returns to the second compressor 21.
上記構成の冷凍冷蔵庫1において、冷蔵室2及び冷凍室4の冷却時には第1圧縮機11、第2圧縮機21の駆動によって冷媒管を第1冷媒、第2冷媒が流通する。第1圧縮機11、第2圧縮機21はそれぞれ、第1冷媒、第2冷媒を圧縮して高温高圧にし、第1膨張装置13、第2膨張装置23はそれぞれ第1冷媒、第2冷媒を減圧、膨張して低温低圧にする。 In the refrigerator-freezer 1 having the above-described configuration, when the refrigerator compartment 2 and the freezer compartment 4 are cooled, the first refrigerant and the second refrigerant flow through the refrigerant pipe by driving the first compressor 11 and the second compressor 21. The first compressor 11 and the second compressor 21 compress the first refrigerant and the second refrigerant, respectively, to high temperature and high pressure, and the first expansion device 13 and the second expansion device 23 respectively store the first refrigerant and the second refrigerant. Depressurize and expand to low temperature and low pressure.
従って、第1冷媒、第2冷媒がそれぞれ、第1圧縮機11、第2圧縮機21を流出して第1膨張装置13、第2膨張装置23に流入するまでの間は第1冷凍サイクル10、第2冷凍サイクル20の高温部となる。第1冷媒、第2冷媒がそれぞれ、第1膨張装置13、第2膨張装置23を流出して第1圧縮機11、第2圧縮機21に流入するまでの間は第1冷凍サイクル10、第2冷凍サイクル20の低温部となる。 Accordingly, the first refrigeration cycle 10 until the first refrigerant and the second refrigerant flow out of the first compressor 11 and the second compressor 21 and flow into the first expansion device 13 and the second expansion device 23, respectively. It becomes the high temperature part of the second refrigeration cycle 20. Until the first refrigerant and the second refrigerant flow out of the first expansion device 13 and the second expansion device 23 and flow into the first compressor 11 and the second compressor 21, respectively, 2 It becomes a low temperature part of the refrigeration cycle 20.
冷凍冷蔵庫1は、運転開始後、第2蒸発器24の温度が安定運転時の設定冷凍温度(例えば、−20℃)まで下がり続ける。従って、冷凍室4の室内空気の水分の一部が霜となって第2蒸発器24に付着する。運転時間が長くなるにつれて、着霜が一定量以上になると、第2蒸発器24の熱交換効率が悪くなるので、除霜が必要となる。 The refrigerator-freezer 1 keeps the temperature of the 2nd evaporator 24 falling to the setting freezing temperature (for example, -20 degreeC) at the time of a stable operation after an operation start. Therefore, a part of the moisture in the room air in the freezer compartment 4 becomes frost and adheres to the second evaporator 24. As the operation time becomes longer, if the frost formation exceeds a certain amount, the heat exchange efficiency of the second evaporator 24 becomes worse, so defrosting is necessary.
図3は、本発明の実施形態の冷凍冷蔵庫の定時除霜と不定時除霜のタイミングチャートである。本発明の除霜制御は、第1の除霜制御方法である定時除霜と第2の除霜制御方法である不定時除霜との組み合わせである。 FIG. 3 is a timing chart of scheduled defrosting and indefinite defrosting of the refrigerator-freezer according to the embodiment of the present invention. The defrost control according to the present invention is a combination of the scheduled defrost that is the first defrost control method and the indefinite time defrost that is the second defrost control method.
冷凍冷蔵庫1の運転開始後あるいは直前の除霜(定時除霜又は不定時除霜のいずれか)より運転積算時間が第一の所定積算時間Aになると、除霜ヒータ8を通電させて、定時除霜を開始する(X点で開始)。 When the operation integration time reaches the first predetermined integration time A from the start of the operation of the refrigerator 1 or immediately before the defrosting (either defrosting at fixed time or defrosting at irregular time), the defrosting heater 8 is energized, and the fixed time is reached. Start defrosting (start at point X).
第一の所定積算時間Aが経過する前に、冷凍冷蔵庫の運転開始後、あるいは前回除霜からの予測着霜量が所定量Wに達した場合、第2の除霜方法による除霜を開始する(Y点で開始)。次に、前回除霜からの予測着霜量が所定量W未満で、且つ運転積算時間が第一の所定積算時間Aを経過した場合に、除霜ヒータ8を通電させて、定時除霜を開始する(Z点で開始)。除霜開始から除霜終了までの時間は、第2蒸発器温度検知手段T2で検知した第2蒸発器24の温度が所定の温度になった時点で終了する。なお、定時除霜、不定時除霜とも、除霜の終了直後を圧縮機積算運転時間のカウントをゼロ秒にリセットし、ゼロ秒からカウントを開始する。 Before the first predetermined accumulated time A elapses, the defrosting by the second defrosting method is started after the operation of the refrigerator-freezer or when the predicted frosting amount from the previous defrosting reaches the predetermined amount W. (Start at point Y). Next, when the predicted frost formation amount from the previous defrosting is less than the predetermined amount W and the operation integration time has passed the first predetermined integration time A, the defrost heater 8 is energized to perform the regular defrosting. Start (start at point Z). The time from the start of defrosting to the end of defrosting ends when the temperature of the second evaporator 24 detected by the second evaporator temperature detecting means T2 reaches a predetermined temperature. In addition, for both the regular defrosting and the irregular defrosting, the count of the compressor integrated operation time is reset to zero seconds immediately after the completion of the defrosting, and the counting is started from zero seconds.
図4は、本発明の他の実施形態の冷凍冷蔵庫の定時除霜と不定時除霜のタイミングチャートである。図4は、図3に第二の所定積算時間Bが追加になっている以外は、図3と同様であるので、重複する説明は省略する。 FIG. 4 is a timing chart of scheduled defrosting and indefinite defrosting of a refrigerator-freezer according to another embodiment of the present invention. FIG. 4 is the same as FIG. 3 except that the second predetermined integration time B is added to FIG.
本発明によれば、不定時除霜の開始判断に第二の所定積算時間Bを設定し、かつ第一の所定積算時間Aを第二の所定積算時間Bより長く設定している。前回の除霜より冷凍冷蔵庫の運転積算時間が第二の所定積算時間Bより長くないと不定時除霜を行わない。第二の所定積算時間Bは、前回の除霜で、冷凍室4の室温が上がっているので、すぐに不定時除霜をすると更に冷凍室4の室温があがるので、これを防止し、除霜前の冷凍室4の室温に戻すか、または近づけるための時間である。例えば、第二の所定積算時間Bは、最短の除霜間隔(直前の除霜後のカウント開始から不定時除霜の開始まで)の時間の半分以下に設定してもよい。一例としては、図3でのX点で開始した除霜完了後のカウント開始から不定時除霜開始(Y点)までの時間の半分以下に設定してもよい。 According to the present invention, the second predetermined integrated time B is set for the start determination of indefinite time defrosting, and the first predetermined integrated time A is set longer than the second predetermined integrated time B. If the accumulated operation time of the refrigerator / freezer is not longer than the second predetermined accumulated time B from the previous defrosting, the indefinite time defrosting is not performed. Since the room temperature of the freezer compartment 4 has risen in the second predetermined accumulated time B in the previous defrosting, the room temperature of the freezer compartment 4 will rise further if the defrosting is performed at an indefinite time. This is the time for returning to or approaching the room temperature of the freezing room 4 before frost. For example, the second predetermined integrated time B may be set to be equal to or less than half the time of the shortest defrosting interval (from the count start immediately before defrosting to the start of indefinite time defrosting). As an example, you may set to less than half of the time from the count start after the defrost completion which started at the X point in FIG. 3 to the indefinite time defrost start (Y point).
次に、定時除霜と不定時除霜について、具体的に説明する。 Next, the fixed-time defrosting and the indefinite-time defrost will be specifically described.
定時除霜は、冷凍冷蔵庫1の運転開始後、あるいは前回除霜より圧縮機積算運転時間が第一の所定積算時間Aになると、第1の除霜方法である定時除霜を開始する。除霜は、第2蒸発器温度検知手段T2で検知した第2蒸発器24の温度が所定の温度になった時点で終了する。 The fixed-time defrosting starts the fixed-time defrosting that is the first defrosting method after the operation of the refrigerator-freezer 1 or when the compressor integrated operation time reaches the first predetermined integrated time A from the previous defrosting. The defrosting is completed when the temperature of the second evaporator 24 detected by the second evaporator temperature detecting means T2 reaches a predetermined temperature.
不定時除霜は、冷凍冷蔵庫の運転開始後、あるいは前回除霜から第一の所定積算時間Aが経過する前に、予測着霜量が所定量W以上となった場合、第2の除霜方法である不定時除霜を開始する。不定時除霜は、定時除霜と同様に、第2蒸発器温度検知手段T2で検知した第2蒸発器24の温度が所定の温度になった時点で終了する。なお、所定量Wは、第2蒸発器24の性能等に応じてあらかじめ決めた値である。 Indefinite time defrosting is the second defrosting when the predicted amount of frost formation is greater than or equal to the predetermined amount W after the start of the operation of the refrigerator-freezer or before the first predetermined integration time A has elapsed from the previous defrosting. Indefinite time defrosting is started. The indefinite time defrosting is terminated when the temperature of the second evaporator 24 detected by the second evaporator temperature detecting means T2 reaches a predetermined temperature, similarly to the timed defrosting. The predetermined amount W is a value determined in advance according to the performance of the second evaporator 24 and the like.
ここで、予測着霜量の計算について、具体的に説明する。
冷凍室扉4aの開閉回数と、冷凍室扉4aの庫内に流入する空気の絶対湿度と、冷凍室4の庫内容量と、前記冷凍室扉4aの開閉一回あたりに庫内の空気と庫外の空気が入れ替わる割合とから、冷凍室4の庫内の空気と庫外の空気が入れ替わり、庫外の空気の中に含まれていた水分が冷凍室4の庫内温度まで冷却された際に、凝縮する水分を算出することにより行う。まず、絶対湿度をXo、空気密度をρ、冷凍室4の庫内容量をV、さらに、1回の開閉で外気と庫内空気が入れ替わる割合をPとする。このとき、1回の開閉で庫内に侵入する水分量Qは、
Q=Xo×ρ×V×P
の計算となる。
Here, the calculation of the predicted frost amount will be specifically described.
The number of times of opening and closing the freezer compartment door 4a, the absolute humidity of the air flowing into the freezer compartment door 4a, the freezer compartment capacity, and the air in the compartment per opening and closing of the freezer compartment door 4a From the rate at which the outside air is switched, the air inside the freezer compartment 4 and the outside air are exchanged, and the moisture contained in the outside air is cooled to the inside temperature of the freezer compartment 4. In doing so, it calculates by calculating the moisture to condense. First, let Xo be the absolute humidity, ρ be the air density, V be the internal volume of the freezer compartment 4, and P be the rate at which the outside air and the internal air are interchanged by one opening and closing. At this time, the amount of moisture Q entering the cabinet by one opening and closing is
Q = Xo × ρ × V × P
It becomes the calculation of.
一例として、外気温度29.5℃、外気相対湿度85%、冷凍室4の庫内容量Vは、148L、冷凍室4の庫内温度−18℃、1回の開閉で外気と冷凍室4の庫内空気が入れ替わる割合Pが100%の場合は、P=1として計算する。温度29.5℃、相対湿度85%の空気の絶対湿度Xoは22.5g/kgで、空気密度ρは、0.001203kg/Lであることから、この含まれる水分量qoは、
qo=22.5×0.001203=0.0270675(g/L)
の計算となる。
As an example, the outside air temperature is 29.5 ° C., the outside air relative humidity is 85%, the freezer compartment capacity V is 148 L, the freezer compartment temperature is −18 ° C., and the open air and freezer compartment 4 are opened and closed once. When the ratio P at which the internal air is exchanged is 100%, P = 1 is calculated. The absolute humidity Xo of air having a temperature of 29.5 ° C. and a relative humidity of 85% is 22.5 g / kg, and the air density ρ is 0.001203 kg / L.
qo = 22.5 × 0.001203 = 0.0270675 (g / L)
It becomes the calculation of.
冷凍室4の庫内容量が148L、1回の開閉で外気と冷凍室4の庫内空気は全て入れ替わるとするとP=1で、1回の開閉で庫内に入る水分量Qoは
Qo=qo×V×P=0.0270675×148×1=4.00599(g)
の計算となる。
If the internal volume of the freezer compartment 4 is 148L and the outside air and the internal air of the freezer compartment 4 are all exchanged by one opening and closing, P = 1, and the amount of moisture Qo entering the inside by one opening and closing is Qo = qo * V * P = 0.0270675 * 148 * 1 = 4.000599 (g)
It becomes the calculation of.
次に、庫内温度における飽和水蒸気量をqi、飽和水分量をQiとすると、庫内温度が元の温度まで下がったときに凝縮する水分量Qは、
Q=(Xo×ρ‐qi)×V×P=Qo−qi×V×P=Qo−Qi
の式となる。
Next, when the saturated water vapor amount at the internal temperature is qi and the saturated water amount is Qi, the water amount Q condensed when the internal temperature is lowered to the original temperature is:
Q = (Xo × ρ−qi) × V × P = Qo−qi × V × P = Qo−Qi
It becomes the following formula.
一例として、冷凍室4の庫内温度−18℃における飽和水蒸気量qiは0.00180g/Lなので148Lの庫内空気に含めることができる水分量Qiは0.00180×148=0.2664gとなる。
したがい、水分が結露となり、最終的に蒸発器へ着霜する水分量をQ1とすると、
Q1=Qo−Qi=4.00599−0.2664=3.73959(g)
の計算となる。
As an example, since the saturated water vapor amount qi at the freezer compartment 4 temperature of −18 ° C. is 0.00180 g / L, the amount of water Qi that can be included in 148 L of indoor air is 0.00180 × 148 = 0.2664 g. .
Therefore, if moisture is condensed and the amount of moisture finally frosted on the evaporator is Q1,
Q1 = Qo-Qi = 4.000599-0.2664 = 3.73959 (g)
It becomes the calculation of.
更に、この約3.7gに加えて、冷凍室扉4aを開放している間に冷凍室4の庫内壁面へ直接結露する水分量をQ2とすると、Q2はQ1と同量の約3.7gであるとすれば、1回の冷凍室扉4aの開閉における着霜量をQtとすると、
Qt=Q1+Q2=3.7+3.7=7.4(g)
の着霜量となる。
Furthermore, in addition to this 3.7 g, if the amount of moisture that directly condenses on the inner wall surface of the freezer compartment 4 while the freezer compartment door 4a is open is Q2, Q2 is about 3. If it is 7g, if the amount of frost formation in opening and closing of the freezer compartment door 4a once is Qt,
Qt = Q1 + Q2 = 3.7 + 3.7 = 7.4 (g)
The amount of frost formation.
1日当たり約30回の冷凍室扉4aの開閉が行われ、2日間の圧縮機積算運転時間が第一の所定時間Aに達しなかった場合は、
Qt=7.4×30×2=444(g)
の着霜量が生じることになる。
When the freezer door 4a is opened and closed about 30 times per day, and the compressor integrated operation time for 2 days does not reach the first predetermined time A,
Qt = 7.4 × 30 × 2 = 444 (g)
The amount of frost formation will occur.
この数値は、冷凍室4の冷却性能を大幅に低下させる着霜量であるとする。着霜が成長し、熱交換性能に影響を及ぼす着霜量になった場合、不定時除霜が必要となる。そこで一例として、不定時除霜が必要な着霜量の予測所定量Wを実験でのデータ等から350gに設定した場合について説明する。なお、着霜量から、一例として定時除霜での第一の所定積算時間Aを3.0日とする。 This numerical value is assumed to be the amount of frost formation that significantly reduces the cooling performance of the freezer compartment 4. When frost formation grows and the amount of frost formation that affects the heat exchange performance is reached, defrosting at indefinite times is required. Therefore, as an example, a case will be described in which the predicted predetermined amount W of the amount of frost that needs defrosting at irregular times is set to 350 g from experimental data and the like. In addition, from the amount of frost formation, the 1st predetermined integration time A by fixed-time defrosting shall be 3.0 days as an example.
上述の不定時除霜までの時間Nは、
N=350÷(Qt÷2)=350÷(444÷2)=約1.58(日)
の計算となる。
The time N until the above-mentioned indefinite time defrosting is
N = 350 ÷ (Qt ÷ 2) = 350 ÷ (444 ÷ 2) = about 1.58 (days)
It becomes the calculation of.
不定時除霜が、前回の除霜から約1.58日後に行われることになる。定時除霜での第一の所定積算時間Aである3.0日の約半分の時間である。上述では、定時除霜の3.0日まで着霜が進んだ場合、冷凍室4の冷却性能を大幅に低下することになる。予測所定量Wの350g以上になった時点で、不定時除霜を行うことで、冷却性能が著しく低下することなく、冷凍室4の温度冷却性能を効率的に維持することが可能である。また、一例として、第二の所定積算時間Bを0.6日にすることで、前回の除霜から少なくとも0.6日を過ぎてから不定時除霜を開始することになり、除霜による冷凍室4の庫内温度の大幅な上昇を防止することが可能となる。 The indefinite time defrosting is performed about 1.58 days after the previous defrosting. It is about half the time of 3.0 days, which is the first predetermined accumulated time A in the regular defrosting. In the above description, when the frosting progresses until 3.0 days of the scheduled defrosting, the cooling performance of the freezer compartment 4 is significantly reduced. By performing definite time defrosting when the predicted predetermined amount W reaches 350 g or more, it is possible to efficiently maintain the temperature cooling performance of the freezer compartment 4 without significantly reducing the cooling performance. Moreover, as an example, by setting the second predetermined accumulated time B to 0.6 days, defrosting at an indefinite time will be started after at least 0.6 days have passed since the previous defrosting. It is possible to prevent a significant increase in the temperature inside the freezer compartment 4.
冷凍室扉4aを開放している間に冷凍室4の庫内壁面へ直接結露した水分は、時間経過により、凝縮する水分は、主に第2蒸発器24に霜として付着するので、この値を扉開閉1回あたりの着霜量として扉開閉ごとに積算すれば、冷凍冷蔵庫1の運転開始後、あるいは前回除霜からの予測着霜量が得られる。なお、1回の開閉で外気と冷凍室4の庫内空気が入れ替わる割合Pは冷凍室4の冷凍室扉4aの開放時間に依存する。 The moisture condensed directly to the inner wall surface of the freezer compartment 4 while the freezer compartment door 4a is opened is condensed as the frost mainly adheres to the second evaporator 24 as time passes. Is integrated for each door opening / closing as the amount of frost formation per door opening / closing, the predicted frosting amount after the start of operation of the refrigerator-freezer 1 or from the previous defrosting can be obtained. Note that the rate P at which the outside air and the inside air of the freezer compartment 4 are switched by one opening and closing depends on the opening time of the freezer compartment door 4 a of the freezer compartment 4.
さらに、冷凍室扉4aを開放している間に冷凍室4の庫内壁面へ直接結露する水分も、そのほとんどは最終的に第2蒸発器24に霜として付着するので、予測着霜量の一部として含めている。冷凍室扉4aの開閉1回あたりに庫内壁面へ直接結露する水分は、庫内の表面積と、外気温度と外気湿度および冷凍室扉4aの開放時間から算出される。ここで計算された結露水分量に上述の計算式による凝縮した水分量を加えたものが冷凍室扉4aの開閉1回あたりの着霜量であり、この値を冷凍室扉4aの開閉ごとに積算することにより、冷凍冷蔵庫1の運転開始後、あるいは前回除霜から次回除霜までの予測着霜量を算出する。 Furthermore, most of the moisture that is directly condensed on the inner wall surface of the freezer compartment 4 while the freezer compartment door 4a is open is finally attached to the second evaporator 24 as frost. It is included as a part. The moisture that directly condenses on the inner wall surface per opening and closing of the freezer compartment door 4a is calculated from the surface area inside the warehouse, the outside air temperature and the outside air humidity, and the opening time of the freezer compartment door 4a. The amount of dew condensation calculated here plus the amount of condensed water according to the above formula is the amount of frost formation per opening and closing of the freezer compartment door 4a, and this value is calculated for each opening and closing of the freezer compartment door 4a. By integrating, the predicted amount of frost formation after the start of operation of the refrigerator-freezer 1 or from the previous defrost to the next defrost is calculated.
上述したように、圧縮機積算運転時間による除霜方法を、第1の除霜方法とし、予測着霜量による除霜方法を、第2の除霜方法であるので、第1の除霜方法と第2の除霜方法を組み合わせることは、冷蔵室2と冷凍室4でそれぞれ独立した冷気回路を持つ冷凍冷蔵庫1における第2蒸発器24の着霜量の減少に対応した適当な頻度での除霜制御が実現可能である。主に用いる圧縮機積算運転時間に基づく第1の除霜方法は、従来の冷蔵室2と冷凍室4とで単一の冷気回路を持つ冷凍冷蔵庫における除霜の頻度よりも回数を減らすことができ、除霜に用いる消費電力量を低減でき、省エネが可能である。さらに、予測着霜量に基づく第2の除霜方法を用いることにより、蒸発器への着霜が著しく増加するような状況にも適切に除霜を行うことができ、冷却効率を低下させずに、冷凍室4の庫内の冷却運転を行うことが可能となる。このように、第1の除霜方法と第2の除霜方法による除霜を組み合わせることで、より省エネ性能に優れ、冷却効率を高く維持することが可能な冷凍冷蔵庫を提供することができる。 As described above, the defrosting method based on the compressor accumulated operation time is the first defrosting method, and the defrosting method based on the predicted frost amount is the second defrosting method. Is combined with the second defrosting method at an appropriate frequency corresponding to the decrease in the amount of frost formation of the second evaporator 24 in the refrigerator 1 having the independent cold air circuit in the refrigerator compartment 2 and the freezer compartment 4. Defrost control can be realized. The first defrosting method based on the compressor integrated operation time mainly used can reduce the number of times compared to the frequency of defrosting in a refrigerator-freezer having a single cold circuit in the conventional refrigerator compartment 2 and freezer compartment 4. It is possible to reduce the power consumption used for defrosting and to save energy. Furthermore, by using the second defrosting method based on the predicted frost formation amount, it is possible to appropriately defrost even in a situation where frost formation on the evaporator is remarkably increased, and without reducing the cooling efficiency. In addition, the cooling operation in the freezer compartment 4 can be performed. Thus, by combining the defrosting by the 1st defrosting method and the 2nd defrosting method, it is excellent in energy-saving performance and can provide the refrigerator-freezer which can maintain high cooling efficiency.
着霜量の予測は、冷凍室扉4aの開閉回数と、庫内に流入する空気の絶対湿度と、庫内容量と、前記冷凍室扉4aの開閉一回あたりに冷凍室4の庫内の空気と庫外の空気が入れ替わる割合等の複数の条件の組み合わせから導きだすことにより、実使用に近い着霜量の予測値を算出することが可能である。 The prediction of the amount of frost formation is based on the number of times the freezer compartment door 4a is opened and closed, the absolute humidity of the air flowing into the compartment, the compartment volume, and the inside of the freezer compartment 4a per opening and closing of the freezer compartment door 4a. By deriving from a combination of a plurality of conditions such as the rate at which the air and the outside air are switched, it is possible to calculate a predicted value of the amount of frost formation that is close to actual use.
また、本発明は、冷凍室扉4aの開放時間を算出する計算手段を備えた冷凍冷蔵庫1であって、前記冷凍室扉4aの開閉一回あたりに冷凍室4庫内の空気と庫外の空気が入れ替わる割合を、冷凍室扉4aの開閉一回あたりの開放時間から算出してもよい。冷凍室4の扉開閉が行われるたびに冷凍室扉4aの開放時間を検出し、開放時間が短い時は空気の入れ替わる割合を小さく、開放時間が長い時は空気の入れ替わる割合を大きくすることで、冷凍室4庫内に侵入する水分量をより正確に算出でき、予測着霜量の精度を上げることができる。 Moreover, this invention is the refrigerator-freezer 1 provided with the calculation means which calculates the opening time of the freezer compartment door 4a, Comprising: The air in the freezer compartment 4 warehouse and the outside of the refrigerator outside the freezer compartment door 4a are opened and closed once. The rate at which the air is replaced may be calculated from the opening time per opening and closing of the freezer compartment door 4a. By detecting the opening time of the freezer compartment door 4a every time the freezer compartment 4 is opened and closed, the rate of air exchange is reduced when the opening time is short, and the rate of air exchange is increased when the opening time is long. The amount of moisture entering the freezer compartment 4 can be calculated more accurately, and the accuracy of the predicted frost amount can be increased.
また、本発明は、冷凍室扉4aの開放時間を算出する計算手段を備えた冷凍冷蔵庫1であって、第二の除霜方法における予測着霜量の算出において、冷凍室扉4aの開放時間から冷凍室扉4aの開放中に冷凍室4内面に結露する水分量を算出し、前記水分量と、冷凍室扉4aの開閉回数と、庫内に流入する空気の絶対湿度と、冷凍室4の庫内容量と、冷凍室扉4aの開閉一回あたりに冷凍室4庫内の空気と庫外の空気が入れ替わる割合とから着霜量を予測することが可能である。 Moreover, this invention is the refrigerator-freezer 1 provided with the calculation means which calculates the opening time of the freezer compartment door 4a, Comprising: In calculation of the estimated amount of frost formation in a 2nd defrost method, the opening time of the freezer compartment door 4a To calculate the amount of moisture condensed on the inner surface of the freezer compartment 4 when the freezer door 4a is opened, the amount of moisture, the number of times the freezer door 4a is opened and closed, the absolute humidity of the air flowing into the refrigerator, and the freezer compartment 4 It is possible to predict the amount of frost formation from the internal capacity of the storage room and the rate at which the air inside the freezer compartment 4 and the air outside the compartment are exchanged per opening and closing of the freezer compartment door 4a.
扉開閉により冷凍室4の庫内に外気が侵入すると、外気に含まれていた水分が庫内で冷やされ、庫内の壁面等に結露が発生する。この結露はやがて庫内で最も低温部となる蒸発器に霜として付着するため、この結露する水分量を着霜量の予測計算に組み込むことにより、より測着霜量の精度を上げることが可能である。 When the outside air enters the inside of the freezer compartment 4 by opening and closing the door, the moisture contained in the outside air is cooled in the inside of the compartment, and dew condensation occurs on the wall surface inside the compartment. Since this condensation will eventually adhere as frost to the evaporator, which is the coldest part in the cabinet, it is possible to improve the accuracy of the measurement frost amount by incorporating this moisture content into the prediction calculation of the frost amount. It is.
また、本発明は、前記第二の除霜方法が、前回の除霜終了時点からの予測着霜量が所定量Wになると、冷凍室4の冷却を停止して除霜手段を動作させて前記第2蒸発器の除霜を行うので、前記第2蒸発器への着霜量が著しく増加する状況にも対応して、適当な頻度で除霜を行うことが可能である。 Further, according to the present invention, the second defrosting method stops the cooling of the freezer compartment 4 and operates the defrosting means when the predicted frost formation amount from the previous defrosting end time reaches the predetermined amount W. Since defrosting of the second evaporator is performed, it is possible to perform defrosting at an appropriate frequency in response to a situation in which the amount of frost formation on the second evaporator is remarkably increased.
また、本発明は、第一の除霜方法、第二の除霜方法どちらの方法で除霜を行ったかに関わらず、一旦除霜が完了すると、前記圧縮機積算運転時間をリセットし、ゼロ秒からカウントを開始することで、異常な頻度での除霜を回避することができる。 Further, the present invention resets the compressor integrated operation time once the defrosting is completed, regardless of which of the first defrosting method and the second defrosting method is used, By starting counting from seconds, defrosting at an abnormal frequency can be avoided.
また、図1に示すように、第2蒸発器24の第1の除霜方法または第2の除霜方法による除霜の際に、第1圧縮機11も停止し、冷蔵室2に配置した冷蔵室送風機15で冷蔵室2の空気を循環させ、空気が第1蒸発器14を通過することで第1蒸発器14に付着した霜を除去する。冷蔵室2を循環する空気が第1蒸発器14の霜を融かして水分を吸収する。 In addition, as shown in FIG. 1, the first compressor 11 is also stopped and disposed in the refrigerator compartment 2 when the second evaporator 24 is defrosted by the first defrosting method or the second defrosting method. The air in the refrigerator compartment 2 is circulated by the refrigerator refrigerator 15, and the frost adhering to the first evaporator 14 is removed by the air passing through the first evaporator 14. The air circulating through the refrigerator compartment 2 melts the frost of the first evaporator 14 and absorbs moisture.
このように、第2蒸発器24の除霜時に第1蒸発器14の除霜も行うことで、除霜中の冷蔵室2内の温度変動を抑制することができる。冷蔵室2の除霜を冷蔵室2内の送風手段にて行うことにより、消費電力量を抑制できると、同時に第1蒸発器14に霜として付着していた水分を冷蔵室2庫内へ循環させることで、冷蔵室2への加湿効果が期待できる。 Thus, the temperature fluctuation in the refrigerator compartment 2 during the defrosting can be suppressed by also performing the defrosting of the first evaporator 14 when the second evaporator 24 is defrosted. When power consumption can be suppressed by performing defrosting of the refrigerator compartment 2 using the air blowing means in the refrigerator compartment 2, the moisture adhering to the first evaporator 14 as frost is circulated into the refrigerator compartment 2 at the same time. By doing so, the humidification effect to the refrigerator compartment 2 can be expected.
一方、第二の所定積算時間Bは、前回の除霜で、冷凍室4の室温が上がっているので、すぐに不定時除霜をすると更に冷凍室4の室温があがるので、これを防止し、除霜前の冷凍室4の室温に戻すか、または近づけることができ、冷凍室4の庫内の温度上昇による食品の品質劣化を防止することができる。 On the other hand, in the second predetermined accumulated time B, since the room temperature of the freezer compartment 4 has been raised by the previous defrosting, the room temperature of the freezer compartment 4 is further increased if the defrosting is performed at an indefinite time. The room temperature of the freezer compartment 4 before defrosting can be returned to or approached, and the quality deterioration of the food due to the temperature rise in the freezer compartment 4 can be prevented.
さらに、第1蒸発器14の除霜が、主に第1圧縮機11の停止中に冷蔵室2に配置した冷蔵室送風機15の送風による冷蔵室2の空気循環で行ってもよい。 Further, the defrosting of the first evaporator 14 may be performed mainly by air circulation in the refrigerating chamber 2 by the ventilation of the refrigerating chamber blower 15 disposed in the refrigerating chamber 2 while the first compressor 11 is stopped.
また、第2蒸発器24の除霜時に、同時に第1蒸発器14の除霜も行うことで、冷蔵室2を循環する空気が第1蒸発器14の霜を溶かして水分を吸収するので冷蔵室2への加湿効果がある。 Further, when the second evaporator 24 is defrosted, the first evaporator 14 is also defrosted at the same time, so that the air circulating in the refrigerator compartment 2 melts the frost of the first evaporator 14 and absorbs moisture, thereby refrigeration. There is a humidifying effect on the chamber 2.
さらに、高温冷凍サイクル10、低温冷凍サイクル20の一方だけを運転した場合、中間熱交換器31の効率が落ちるが、両サイクルとも止めることで中間熱交換器31を使用せず、次に除霜終了後の冷凍サイクルの運転時に、両サイクルとも使用することで冷凍冷蔵庫1を高効率に運転させることができる。 Further, when only one of the high-temperature refrigeration cycle 10 and the low-temperature refrigeration cycle 20 is operated, the efficiency of the intermediate heat exchanger 31 is reduced, but the intermediate heat exchanger 31 is not used by stopping both cycles, and then defrosting is performed. The refrigerator-freezer 1 can be operated with high efficiency by using both cycles during the operation of the refrigeration cycle after completion.
さらに、定時除霜の場合の第一の所定積算時間Aは、不定時除霜を設けていない定時除霜だけの場合と比較して積算時間を長く設定することができるので、消費電力を少なくすることが可能となる。 Furthermore, since the first predetermined integrated time A in the case of scheduled defrosting can be set longer than in the case of only the fixed time defrost without providing indefinite time defrosting, power consumption is reduced. It becomes possible to do.
さらに、不定時除霜開始までの運転積算時間を第二の所定積算時間Bよりも長く設定することで、前回の除霜で冷凍室4の庫内温度が上昇している状態から、庫内温度を下げることができる。 Furthermore, by setting the operation integration time until the start of defrosting at indefinite time longer than the second predetermined integration time B, from the state in which the temperature in the freezer compartment 4 has increased due to the previous defrosting, The temperature can be lowered.
なお、本実施形態において、第1冷媒、第2冷媒にイソブタン等の同じ冷媒を用いて説明しているが、異なる冷媒を用いてもよい。この時、第1冷媒の沸点を第2冷媒の沸点よりも高くするとよい。これにより、低温冷凍サイクル20に用いる第2冷媒が、第1冷媒よりも蒸気密度が高くなり、低温冷凍サイクル20の性能をより向上することが可能となる。 In the present embodiment, the same refrigerant such as isobutane is used for the first refrigerant and the second refrigerant, but different refrigerants may be used. At this time, the boiling point of the first refrigerant may be higher than the boiling point of the second refrigerant. Thereby, the 2nd refrigerant | coolant used for the low-temperature refrigerating cycle 20 becomes higher in vapor density than a 1st refrigerant | coolant, and it becomes possible to improve the performance of the low-temperature refrigerating cycle 20 more.
一例として、第1冷媒としてイソブタン(沸点−12℃)を用い、第2冷媒としてプロパン(沸点−40.09℃)又は二酸化炭素(沸点−78.5℃)を用いることで、容易に実現することができる。これらの冷媒はいずれも自然界に大量に存在する物質を利用する自然冷媒である。従って、自然冷媒を用いる冷凍サイクルの冷却効率を高めることにより、冷凍冷蔵庫1の環境負荷のさらなる低減を実現することができる。 As an example, it is easily realized by using isobutane (boiling point −12 ° C.) as the first refrigerant and propane (boiling point −40.09 ° C.) or carbon dioxide (boiling point −78.5 ° C.) as the second refrigerant. be able to. All of these refrigerants are natural refrigerants that use substances that exist in large quantities in nature. Therefore, the environmental load of the refrigerator-freezer 1 can be further reduced by increasing the cooling efficiency of the refrigeration cycle using the natural refrigerant.
なお、実施例では、冷凍室4と冷蔵室2について説明したが、冷凍室4と、冷蔵室2とは別に設けた野菜室等との組合せや、冷凍室4と、冷蔵室2の代わりに野菜室等との組合せとしてもよい。 In addition, although the Example demonstrated the freezer compartment 4 and the refrigerator compartment 2, instead of the freezer compartment 4 and the combination with the vegetable compartment etc. which were provided separately from the refrigerator compartment 2, the freezer compartment 4 and the refrigerator compartment 2 It may be combined with a vegetable room or the like.
さらに、室内温度の異なる第1冷却室、第2冷却室にそれぞれ第1蒸発器14、第2蒸発器24を配置して第1圧縮機11、第2圧縮機21により第1冷凍サイクル(高温冷凍サイクル)10、第2冷凍サイクル(低温冷凍サイクル)20を運転する冷却庫であれば、どのようなものにも同様に適用が可能である。 Further, the first evaporator 14 and the second evaporator 24 are disposed in the first cooling chamber and the second cooling chamber, respectively, having different indoor temperatures, and the first refrigeration cycle (high temperature) is performed by the first compressor 11 and the second compressor 21. As long as it is a refrigerator that operates the refrigeration cycle (10) and the second refrigeration cycle (low temperature refrigeration cycle) 20, the present invention can be similarly applied to anything.
なお、除霜ヒータ8に用いたガラス管ヒータや温度検知手段に用いたサーミスタについては、一例であって、他のものを適宜用いてもよい。 In addition, about the glass tube heater used for the defrost heater 8, and the thermistor used for the temperature detection means, it is an example and you may use another thing suitably.
なお、冷凍室扉開閉検知手段G1は、冷凍室扉4aに接する断熱箱体3に設けられた扉スイッチ等で冷凍室扉4aの開閉を検知し、その検知信号を制御部で、冷凍室扉4aの開閉回数にカウントしていたが、別個、または一体にして冷凍室扉開閉回数カウンタを設け、その信号を制御部にいれてもよい。 The freezer compartment door open / close detecting means G1 detects the open / close state of the freezer compartment door 4a with a door switch or the like provided in the heat insulating box 3 in contact with the freezer compartment door 4a, and the control unit sends the detection signal to the freezer compartment door. Although the number of times of opening / closing 4a is counted, a freezer compartment door opening / closing number counter may be provided separately or integrally, and the signal may be input to the control unit.
以上において示した実施の形態おいては、本発明による冷凍冷蔵庫及びその運転方法を最小限に必要とした場合を例示して説明を行なったが、本発明は、除霜の必要な冷却装置であれば適用が可能である。 In the embodiment shown above, the case where the refrigerator-freezer and the operation method thereof according to the present invention are required at least has been described as an example, but the present invention is a cooling device that requires defrosting. Applicable if possible.
以上で説明した実施形態は、あくまで本発明を実施するに当たっての一例であり、本発明はそれらに限定されるものではない。上述した実施形態に開示された技術的手段に、周知慣用技術を適宜組み合わせて得られる態様についても、本発明の技術的範囲に含まれる。 Embodiment described above is an example in implementing this invention to the last, and this invention is not limited to them. Aspects obtained by appropriately combining known technical techniques with the technical means disclosed in the above-described embodiments are also included in the technical scope of the present invention.
本発明によると、冷蔵室及び冷凍室を備えた冷凍冷蔵庫に利用することができる。 According to this invention, it can utilize for the refrigerator-freezer provided with the refrigerator compartment and the freezer compartment.
1 冷凍冷蔵庫
2 冷蔵室
3 断熱箱体
4 冷凍室
4a 冷凍室扉
5 機械室
6 制御部
8 除霜ヒータ
9 断熱材
10 第1冷凍サイクル(高温冷凍サイクル)
11 第1圧縮機
12 第1凝縮器
13 第1膨張装置
14 第1蒸発器
15 冷蔵室送風機
20 第2冷凍サイクル(低温冷凍サイクル)
21 第2圧縮機
22 第2凝縮器
23 第2膨張装置
24 第2蒸発器
25 冷凍室送風機
30 冷凍サイクル
31 中間熱交換器
32 外箱板
A 第一の所定積算時間
B 第二の所定積算時間
E1 圧縮機制御手段
E2 圧縮機積算運転時間計算手段
F1 冷蔵室送風機制御手段
F2 冷凍室送風機制御手段
G1 冷凍室扉開閉検知手段
H1 周囲湿度検知手段
T1 周囲温度検知手段
T2 第2蒸発器温度検知手段
T3 冷凍室温度検知手段
DESCRIPTION OF SYMBOLS 1 Refrigeration refrigerator 2 Refrigeration room 3 Heat insulation box 4 Freezing room 4a Freezing room door 5 Machine room 6 Control part 8 Defrost heater 9 Heat insulating material 10 1st freezing cycle (high temperature freezing cycle)
11 1st compressor 12 1st condenser 13 1st expansion device 14 1st evaporator 15 refrigerator compartment fan 20 2nd freezing cycle (low temperature freezing cycle)
21 2nd compressor 22 2nd condenser 23 2nd expansion device 24 2nd evaporator 25 Freezer compartment fan 30 Refrigerating cycle 31 Intermediate heat exchanger 32 Outer box board A First predetermined integration time B Second predetermined integration time E1 Compressor control means E2 Compressor integrated operation time calculation means F1 Refrigeration room blower control means F2 Freezer room blower control means G1 Freezer compartment door open / close detection means H1 Ambient humidity detection means T1 Ambient temperature detection means T2 Second evaporator temperature detection means T3 Freezer temperature detection means
Claims (5)
貯蔵物を冷凍保存する冷凍室と、
第1冷媒が流通する第1冷凍サイクルを運転する第1圧縮機と、
第1冷凍サイクルの低温部に配されて前記冷蔵室を冷却する第1蒸発器と、
第2冷媒が流通する第2冷凍サイクルを運転する第2圧縮機と、
第2冷凍サイクルの低温部に配されて前記冷凍室を冷却する第2蒸発器と、
制御部と、
冷凍冷蔵庫の周囲温度、前記冷凍室の庫内温度、前記冷凍冷蔵庫の周囲湿度および冷凍室扉の開閉を検知する複数の検知手段と、
を備えた前記冷凍冷蔵庫において、
前記制御部は、
複数の前記検知手段に基づく不定時除霜と、前記冷凍冷蔵庫の運転積算時間に基づいた定時除霜との二つの除霜方法の組み合わせにより前記第2蒸発器の除霜を開始することを特徴とする冷凍冷蔵庫。 A refrigerator room for storing stored items in a refrigerator;
A freezer room for freezing and storing stored items;
A first compressor that operates a first refrigeration cycle through which the first refrigerant flows;
A first evaporator disposed in a low temperature part of the first refrigeration cycle for cooling the refrigerator compartment;
A second compressor that operates a second refrigeration cycle through which the second refrigerant flows;
A second evaporator disposed in the low temperature part of the second refrigeration cycle for cooling the freezer compartment;
A control unit;
A plurality of detection means for detecting the ambient temperature of the refrigerator-freezer, the temperature inside the freezer compartment, the ambient humidity of the refrigerator-freezer and the opening / closing of the freezer compartment door;
In the refrigerator-freezer comprising:
The controller is
The defrosting of the second evaporator is started by a combination of two defrosting methods, an indefinite time defrosting based on the plurality of detection means and a timed defrosting based on the accumulated operation time of the refrigerator-freezer. A refrigerator-freezer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010276488A JP2012127514A (en) | 2010-12-13 | 2010-12-13 | Refrigerator-freezer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010276488A JP2012127514A (en) | 2010-12-13 | 2010-12-13 | Refrigerator-freezer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012127514A true JP2012127514A (en) | 2012-07-05 |
Family
ID=46644764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010276488A Pending JP2012127514A (en) | 2010-12-13 | 2010-12-13 | Refrigerator-freezer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012127514A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102954666A (en) * | 2012-11-21 | 2013-03-06 | 广东奥马电器股份有限公司 | Defrosting control method for refrigerator |
CN104482716A (en) * | 2014-12-31 | 2015-04-01 | 合肥美的电冰箱有限公司 | Defrosting control method for refrigerator and refrigerator |
CN104930814A (en) * | 2015-07-06 | 2015-09-23 | 合肥美的电冰箱有限公司 | Defrosting control method and device for refrigerator |
CN107044716A (en) * | 2017-04-21 | 2017-08-15 | 广东美的暖通设备有限公司 | Air-conditioner defrosting control method, air-conditioning and computer-readable recording medium |
CN108072214A (en) * | 2017-10-30 | 2018-05-25 | 青岛海尔空调器有限总公司 | Air-conditioning device and its control method |
CN108072188A (en) * | 2017-10-30 | 2018-05-25 | 青岛海尔空调器有限总公司 | Air-conditioning device and its control method |
CN109442854A (en) * | 2018-10-17 | 2019-03-08 | 湖北美的电冰箱有限公司 | Defrosting control method and device |
WO2021218344A1 (en) * | 2020-05-22 | 2021-11-04 | 青岛海尔电冰箱有限公司 | Refrigerator |
WO2021218343A1 (en) * | 2020-05-22 | 2021-11-04 | 青岛海尔电冰箱有限公司 | Refrigerator and control method therefor |
CN113915886A (en) * | 2021-04-14 | 2022-01-11 | 海信(山东)冰箱有限公司 | Refrigerator and refrigerator defrosting control method |
JP2023528838A (en) * | 2020-06-05 | 2023-07-06 | 青島海尓電冰箱有限公司 | Refrigerator defrosting control method |
-
2010
- 2010-12-13 JP JP2010276488A patent/JP2012127514A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102954666A (en) * | 2012-11-21 | 2013-03-06 | 广东奥马电器股份有限公司 | Defrosting control method for refrigerator |
CN102954666B (en) * | 2012-11-21 | 2015-11-04 | 广东奥马电器股份有限公司 | Defrosting control method for refrigerator |
CN104482716A (en) * | 2014-12-31 | 2015-04-01 | 合肥美的电冰箱有限公司 | Defrosting control method for refrigerator and refrigerator |
CN104930814A (en) * | 2015-07-06 | 2015-09-23 | 合肥美的电冰箱有限公司 | Defrosting control method and device for refrigerator |
CN107044716A (en) * | 2017-04-21 | 2017-08-15 | 广东美的暖通设备有限公司 | Air-conditioner defrosting control method, air-conditioning and computer-readable recording medium |
CN107044716B (en) * | 2017-04-21 | 2019-10-01 | 广东美的暖通设备有限公司 | Air-conditioner defrosting control method, air-conditioning and computer readable storage medium |
CN108072188A (en) * | 2017-10-30 | 2018-05-25 | 青岛海尔空调器有限总公司 | Air-conditioning device and its control method |
CN108072214A (en) * | 2017-10-30 | 2018-05-25 | 青岛海尔空调器有限总公司 | Air-conditioning device and its control method |
CN109442854A (en) * | 2018-10-17 | 2019-03-08 | 湖北美的电冰箱有限公司 | Defrosting control method and device |
CN109442854B (en) * | 2018-10-17 | 2020-10-09 | 湖北美的电冰箱有限公司 | Defrosting control method and device |
WO2021218344A1 (en) * | 2020-05-22 | 2021-11-04 | 青岛海尔电冰箱有限公司 | Refrigerator |
WO2021218343A1 (en) * | 2020-05-22 | 2021-11-04 | 青岛海尔电冰箱有限公司 | Refrigerator and control method therefor |
JP2023528838A (en) * | 2020-06-05 | 2023-07-06 | 青島海尓電冰箱有限公司 | Refrigerator defrosting control method |
JP7516568B2 (en) | 2020-06-05 | 2024-07-16 | 青島海尓電冰箱有限公司 | Method for controlling defrosting of a refrigerator |
CN113915886A (en) * | 2021-04-14 | 2022-01-11 | 海信(山东)冰箱有限公司 | Refrigerator and refrigerator defrosting control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012127514A (en) | Refrigerator-freezer | |
CN106766577B (en) | Frosting degree detection method and device for air-cooled refrigerator | |
CN202393126U (en) | Refrigerator | |
US11668512B2 (en) | Refrigerator and method for controlling the same | |
JP4954484B2 (en) | Cooling storage | |
CN103608630B (en) | Refrigerating plant | |
JP2013228130A (en) | Freezer | |
CN109923357B (en) | Refrigerator and control method thereof | |
US11549740B2 (en) | Refrigerator and controlling method for the same | |
CN106568270A (en) | Refrigerator | |
US20190120533A1 (en) | Control method for refrigerator | |
JP4364098B2 (en) | refrigerator | |
CN102650488B (en) | Refrigerator and control method thereof | |
US9976791B2 (en) | Refrigerator and method of controlling the same | |
JP6109520B2 (en) | refrigerator | |
JP5957761B2 (en) | Cooling storage | |
JP2012087952A (en) | Refrigerator freezer | |
JP2016044875A (en) | refrigerator | |
JP2007292427A (en) | Refrigerator | |
WO2005038364A1 (en) | Cooling storage chamber and cooling equipment | |
JP2005337677A (en) | Refrigerator | |
JP2005016777A (en) | Refrigerator | |
JP4568062B2 (en) | refrigerator | |
JP2016050753A (en) | Refrigeration cycle device and refrigerator | |
RU2579803C2 (en) | Single-circuit refrigerating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20130131 |