[go: up one dir, main page]

JP2012121845A - Method for producing sulfide by deoxygenation of sulfoxide - Google Patents

Method for producing sulfide by deoxygenation of sulfoxide Download PDF

Info

Publication number
JP2012121845A
JP2012121845A JP2010274227A JP2010274227A JP2012121845A JP 2012121845 A JP2012121845 A JP 2012121845A JP 2010274227 A JP2010274227 A JP 2010274227A JP 2010274227 A JP2010274227 A JP 2010274227A JP 2012121845 A JP2012121845 A JP 2012121845A
Authority
JP
Japan
Prior art keywords
sulfoxide
group
sulfide
gold
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010274227A
Other languages
Japanese (ja)
Inventor
Kiyoomi Kaneda
清臣 金田
Hirokazu Matsuda
洋和 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2010274227A priority Critical patent/JP2012121845A/en
Publication of JP2012121845A publication Critical patent/JP2012121845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for deoxygenating a sulfoxide compound under a mild condition, and producing a corresponding sulfide compound with a high yield and selectivity.SOLUTION: The method for producing sulfide is characterized in that sulfoxide is deoxygenated and the corresponding sulfide is obtained in the presence of a surface-immobilized gold catalyst with gold nano-particles fixed on a surface of a carrier and a silane compound. Hydroxyapatite can be suitably used as a carrier. Dimethylphenylsilane, 1,1,3,3-tetramethyldisiloxane etc. can be used as the silane compound.

Description

本発明は、温和な条件下でスルホキシドを脱酸素して対応するスルフィドを高収率で得ることができるスルフィドの製造方法に関する。スルフィドは、有機化学品、医薬、農薬等の精密化学品などの原料として有用である。   The present invention relates to a method for producing a sulfide capable of deoxygenating a sulfoxide under mild conditions to obtain a corresponding sulfide in a high yield. Sulfide is useful as a raw material for fine chemicals such as organic chemicals, pharmaceuticals, and agricultural chemicals.

スルホキシドのスルフィドへの脱酸素反応は、有機合成の分野や生化学の分野で非常に重要な反応である。しかしながら、従来の方法は、触媒活性が低く、TON(ターンオーバー数)やTOF(単位時間当たりのTON)が低かったり、適用範囲が狭い等の欠点があり、工業的に十分満足できる方法とは言えなかった(非特許文献1〜3)。   Deoxygenation of sulfoxide to sulfide is a very important reaction in the field of organic synthesis and biochemistry. However, the conventional methods have such drawbacks as low catalytic activity, low TON (turnover number) and TOF (TON per unit time), and narrow application range, and are industrially satisfactory methods. It could not be said (Non-Patent Documents 1 to 3).

Dalton Trans., 1727-1733(2008)Dalton Trans., 1727-1733 (2008) Tetrahedron Lett., 48, 9176-9179(2007)Tetrahedron Lett., 48, 9176-9179 (2007) J. Mol. Catal. A., 103, 87-94(1995)J. Mol. Catal. A., 103, 87-94 (1995)

本発明の目的は、スルホキシド化合物を温和な条件下で脱酸素して対応するスルフィド化合物を高い収率及び選択率で製造できる方法を提供することにある。
本発明の他の目的は、スルホキシド化合物を触媒の存在下で脱酸素し、工業的に効率よくスルフィド化合物を製造できる方法を提供することにある。
本発明のさらに他の目的は、広範囲のスルホキシド化合物から脱酸素により対応するスルフィド化合物を収率よく得ることのできる汎用性の高い製造方法を提供することにある。
An object of the present invention is to provide a method capable of producing a corresponding sulfide compound with high yield and selectivity by deoxygenating a sulfoxide compound under mild conditions.
Another object of the present invention is to provide a method capable of industrially efficiently producing a sulfide compound by deoxygenating a sulfoxide compound in the presence of a catalyst.
Still another object of the present invention is to provide a highly versatile production method capable of obtaining a corresponding sulfide compound in a high yield from a wide range of sulfoxide compounds by deoxygenation.

本発明者らは、前記目的を達成するため鋭意検討した結果、担体表面に金ナノ粒子を固定化して得られる表面金固定化触媒の存在下、還元剤としてシラン化合物を用いてスルホキシド化合物を脱酸素すると、温和な条件下、高い収率、選択率及びTON(ターンオーバー数)で、対応するスルフィド化合物が得られることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors desorbed a sulfoxide compound using a silane compound as a reducing agent in the presence of a surface gold immobilization catalyst obtained by immobilizing gold nanoparticles on the surface of a support. It has been found that when oxygen is used, the corresponding sulfide compound can be obtained with a high yield, selectivity and TON (turnover number) under mild conditions.

すなわち、本発明は、担体表面に金ナノ粒子を固定化した表面金固定化触媒及びシラン化合物の存在下、スルホキシドを脱酸素して対応するスルフィドを得ることを特徴とするスルフィドの製造方法を提供する。   That is, the present invention provides a method for producing a sulfide, characterized by desulfurizing a sulfoxide in the presence of a surface gold immobilization catalyst in which gold nanoparticles are immobilized on a support surface and a silane compound to obtain a corresponding sulfide. To do.

前記担体としては、ハイドロキシアパタイトが好ましい。   As the carrier, hydroxyapatite is preferable.

本発明によれば、スルホキシド化合物から、高い収率、選択率で、対応するスルフィド化合物を製造することができる。また、固体触媒を用いるため取り扱いやすく、使用した触媒は容易に回収できるとともに、反応に使用しても触媒活性、選択性が低下しないため、繰り返し使用が可能である。しかも、触媒のTON(ターンオーバー数)が著しく大きいので、スルフィド化合物を安価に且つ工業的に効率よく製造できる。また、本発明の製造方法は基質適応性が広く、種々のスルフィド化合物に適用でき、汎用性に優れる。   According to the present invention, a corresponding sulfide compound can be produced from a sulfoxide compound with high yield and selectivity. In addition, since a solid catalyst is used, it is easy to handle, and the used catalyst can be easily recovered. Even if it is used in the reaction, the catalytic activity and selectivity are not lowered, so that it can be used repeatedly. Moreover, since the TON (turnover number) of the catalyst is remarkably large, the sulfide compound can be produced inexpensively and industrially efficiently. In addition, the production method of the present invention has wide substrate adaptability, can be applied to various sulfide compounds, and is excellent in versatility.

[表面金固定化触媒]
本発明で用いる表面金固定化触媒は、担体表面に金ナノ粒子を固定化して得られる。前記担体としては、特に限定されず、例えば、ハイドロキシアパタイト(HAP)、チタニア(TiO2)、アルミナ(Al23)、マグネシア(MgO)、シリカ(SiO2)、セリア(CeO2)、活性炭(C)等を挙げることができる。本発明においては、なかでも、担体として、ハイドロキシアパタイト(HAP)、チタニア(TiO2)、アルミナ(Al23)などが好ましく、特に、目的化合物を極めて高い収率及び選択率で得られる点で、ハイドロキシアパタイト(HAP)が好ましい。従って、本発明における表面金固定化触媒としては、ハイドロキシアパタイト表面に金ナノ粒子が固定されたハイドロキシアパタイト固定化金ナノ粒子触媒(以下、「AuHAP」と称する場合がある)が好ましい。
[Surface gold immobilization catalyst]
The surface gold-immobilized catalyst used in the present invention is obtained by immobilizing gold nanoparticles on the surface of a carrier. The carrier is not particularly limited, and for example, hydroxyapatite (HAP), titania (TiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ), ceria (CeO 2 ), activated carbon. (C) etc. can be mentioned. In the present invention, among them, hydroxyapatite (HAP), titania (TiO 2 ), alumina (Al 2 O 3 ) and the like are preferable as the carrier, and in particular, the target compound can be obtained with extremely high yield and selectivity. Hydroxyapatite (HAP) is preferable. Therefore, the surface gold-immobilized catalyst in the present invention is preferably a hydroxyapatite-immobilized gold nanoparticle catalyst (hereinafter sometimes referred to as “AuHAP”) in which gold nanoparticles are immobilized on the hydroxyapatite surface.

上記ハイドロキシアパタイトは、例えば、下記式(1)
Ca10-Z(HPO4Z(PO46-Z(OH)2-Z・nH2O (1)
(式中、Zは0≦Z≦1を満たす数である。nは0〜2.5の数である)
で表される化合物である。
The hydroxyapatite is, for example, the following formula (1)
Ca 10-Z (HPO 4 ) Z (PO 4 ) 6-Z (OH) 2-Z · nH 2 O (1)
(Wherein, Z is a number satisfying 0 ≦ Z ≦ 1, n is a number from 0 to 2.5)
It is a compound represented by these.

ハイドロキシアパタイトは、例えば、湿式合成法により調製することができる。前記湿式合成法は、具体的には、カルシウム溶液とリン酸溶液を10:6の割合のモル濃度比でpHを7.4以上の所定値に維持したバッファー液中に長時間にわたり順次滴下することにより、上記バッファー液中にハイドロキシアパタイトを析出させ、析出したハイドロキシアパタイトを捕集する方法である。   Hydroxyapatite can be prepared, for example, by a wet synthesis method. Specifically, in the wet synthesis method, a calcium solution and a phosphoric acid solution are successively dropped over a long period of time into a buffer solution in which the pH is maintained at a predetermined value of 7.4 or more at a molar concentration ratio of 10: 6. Thus, hydroxyapatite is precipitated in the buffer solution, and the precipitated hydroxyapatite is collected.

本発明において好適に使用できるハイドロキシアパタイトの例としては、例えば、和光純薬工業株式会社製、商品名「リン酸三カルシウム」が挙げられる。   Examples of hydroxyapatite that can be suitably used in the present invention include, for example, trade name “tricalcium phosphate” manufactured by Wako Pure Chemical Industries, Ltd.

担体の表面に金ナノ粒子を固定化する方法としては、特に制限されることがなく、例えば、塩化金(AuCl3)、塩化金酸(HAuCl4)等の金化合物とハイドロキシアパタイト等の担体とを溶媒中で混合し、撹拌することによりハイドロキシアパタイト等の担体表面に金イオンを固定化した後、該金イオンを適宜な方法により還元することにより行う方法等を挙げることができる。 The method for immobilizing the gold nanoparticles on the surface of the carrier is not particularly limited. For example, a gold compound such as gold chloride (AuCl 3 ) or chloroauric acid (HAuCl 4 ) and a carrier such as hydroxyapatite And the like. After the gold ions are immobilized on the surface of a carrier such as hydroxyapatite by mixing in a solvent, the gold ions are reduced by an appropriate method.

前記溶媒としては、使用する金化合物を溶解することができればよく、例えば、水、アセトン、アルコール類等を挙げることができる。金ナノ粒子の固定化処理を行う際の金化合物の溶液中における濃度としては、特に制限されることがなく、例えば、0.1〜100mMの範囲から適宜選択することができる。撹拌時の温度は、例えば、20〜80℃の範囲から選択することができるが、通常室温(25℃)で行われる。撹拌時間は撹拌時の温度によっても異なるが、例えば、25℃で撹拌する場合、6〜24時間程度、好ましくは、8〜12時間程度である。撹拌終了後は、必要に応じて水や有機溶媒等で洗浄し、真空乾燥等により乾燥してもよい。   The solvent only needs to dissolve the gold compound to be used, and examples thereof include water, acetone, and alcohols. The concentration of the gold compound in the solution for fixing the gold nanoparticles is not particularly limited, and can be appropriately selected from a range of 0.1 to 100 mM, for example. Although the temperature at the time of stirring can be selected from the range of 20-80 degreeC, for example, it is normally performed at room temperature (25 degreeC). Although stirring time changes also with the temperature at the time of stirring, when stirring at 25 degreeC, for example, it is about 6 to 24 hours, Preferably, it is about 8 to 12 hours. After completion of the stirring, it may be washed with water or an organic solvent as necessary, and dried by vacuum drying or the like.

前記還元に用いる還元剤としては、例えば、水素化ホウ素ナトリウム(NaBH4)、水素化ホウ素リチウム(LiBH4)、水素化ホウ素カリウム(KBH4)等の水素化ホウ素錯化合物、ヒドラジン、水素(H2)、ジメチルフェニルシラン等のシラン化合物、ヒドロキシ化合物等を挙げることができる。ヒドロキシ化合物としては、例えば、第1級アルコール、第2級アルコール等のアルコール化合物を挙げることができる。また、ヒドロキシ化合物は、複数のヒドロキシル基を有していてもよく、1価アルコール、2価アルコール、多価アルコール等の何れであってもよい。 Examples of the reducing agent used for the reduction include borohydride complex compounds such as sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), hydrazine, hydrogen (H 2 ), silane compounds such as dimethylphenylsilane, hydroxy compounds and the like. Examples of the hydroxy compound include alcohol compounds such as a primary alcohol and a secondary alcohol. The hydroxy compound may have a plurality of hydroxyl groups, and may be any of monohydric alcohol, dihydric alcohol, polyhydric alcohol and the like.

本発明におけるハイドロキシアパタイト等の担体表面に金ナノ粒子の固定化処理を施す際に使用する還元剤としては、なかでも、水素化ホウ素ナトリウム(NaBH4)、水素化ホウ素リチウム(LiBH4)、水素化ホウ素カリウム(KBH4)等の水素化ホウ素錯化合物が好ましく、特に、水素化ホウ素カリウム(KBH4)が好ましい。水素化ホウ素カリウム(KBH4)で還元することにより得られる表面金固定化触媒は、固定化した金属粒子の平均粒径がより小さくなる傾向があり、それにより、比表面積を増大することができ、触媒活性を著しく向上させることができる。 Examples of the reducing agent used for immobilizing gold nanoparticles on the surface of a carrier such as hydroxyapatite in the present invention include sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), and hydrogen. preferably borohydride complex compounds such as potassium borohydride (KBH 4), in particular, potassium borohydride (KBH 4) is preferable. The surface gold-immobilized catalyst obtained by reduction with potassium borohydride (KBH 4 ) tends to have a smaller average particle size of the immobilized metal particles, thereby increasing the specific surface area. The catalytic activity can be remarkably improved.

表面金固定化触媒中の金ナノ粒子含有率としては、例えば、ハイドロキシアパタイト等の担体1gに対して0.01〜3mmol、好ましくは0.02〜0.5mmol、特に好ましくは0.03〜0.1mmolである。表面金固定化触媒中の金ナノ粒子含有率が上記範囲を上回ると、触媒作用が低下する傾向がある。   The gold nanoparticle content in the surface gold-immobilized catalyst is, for example, 0.01 to 3 mmol, preferably 0.02 to 0.5 mmol, particularly preferably 0.03 to 0, per 1 g of a carrier such as hydroxyapatite. .1 mmol. When the gold nanoparticle content in the surface gold-immobilized catalyst exceeds the above range, the catalytic action tends to decrease.

[シラン化合物]
本発明において、還元剤として用いられるシラン化合物としては、分子中に少なくとも1個のSi−H結合を有しているシラン化合物であれば特に限定されず、例えば、芳香族シラン化合物、脂肪族シラン化合物、ポリシロキサンなどが挙げられる。
[Silane compound]
In the present invention, the silane compound used as the reducing agent is not particularly limited as long as it is a silane compound having at least one Si-H bond in the molecule. For example, an aromatic silane compound, an aliphatic silane Examples thereof include compounds and polysiloxanes.

前記芳香族シラン化合物としては、例えば、ジメチルフェニルシラン、ジメチル−p−クロロフェニルシラン、ジメチル−p−メトキシフェニルシラン、メチルジフェニルシラン、ジエチルフェニルシラン、エチルジフェニルシラン、ジフェニルシラン、1,4−ビス(ジメチルシリル)ベンゼンなどが挙げられる。   Examples of the aromatic silane compound include dimethylphenylsilane, dimethyl-p-chlorophenylsilane, dimethyl-p-methoxyphenylsilane, methyldiphenylsilane, diethylphenylsilane, ethyldiphenylsilane, diphenylsilane, 1,4-bis ( And dimethylsilyl) benzene.

脂肪族シラン化合物としては、例えば、t−ブチルジメチルシラン、トリ(n−ブチル)シラン、トリ(イソプロピル)シラン、トリエチルシラン、ジメチルオクタデカノイルシランなどが挙げられる。   Examples of the aliphatic silane compound include t-butyldimethylsilane, tri (n-butyl) silane, tri (isopropyl) silane, triethylsilane, dimethyloctadecanoylsilane, and the like.

ポリシロキサンとしては、例えば、1,1,3,3,−テトラメチルジシロキサン、1,1,3,3,−テトラエチルジシロキサン、1,1,3,3,−テトラフェニルジシロキサン、ヘキサメチルトリシロキサン、オクタメチルテトラシロキサン、デカメチルペンタシロキサンなどのポリアルキル及び/又はアリールヒドロシロキサン(ポリメチルヒドロシロキサン、ポリエチルヒドロシロキサン、ポリフェニルヒドロシロキサン、ポリメチルフェニルヒドロシロキサン等)などが挙げられる。   Examples of the polysiloxane include 1,1,3,3, -tetramethyldisiloxane, 1,1,3,3-tetraethyldisiloxane, 1,1,3,3-tetraphenyldisiloxane, hexamethyl And polyalkyl and / or aryl hydrosiloxanes such as trisiloxane, octamethyltetrasiloxane, decamethylpentasiloxane, etc. (polymethylhydrosiloxane, polyethylhydrosiloxane, polyphenylhydrosiloxane, polymethylphenylhydrosiloxane, etc.).

[スルホキシド]
本発明の製造方法において、基質(原料成分)として用いられるスルホキシドとしては、例えば、下記式(2)

Figure 2012121845
(式中、R1、R2は、同一又は異なって、置換基を有していてもよい炭化水素基、又は置換基を有していてもよく且つ複素環を構成する炭素原子が式中に示される硫黄原子に結合している複素環式基を示す。R1、R2は互いに結合して、式中に示される硫黄原子とともに環を形成していてもよい)
で表される化合物が挙げられる。 [Sulphoxide]
In the production method of the present invention, as the sulfoxide used as a substrate (raw material component), for example,
Figure 2012121845
(In the formula, R 1 and R 2 are the same or different, and a hydrocarbon group which may have a substituent, or a carbon atom which may have a substituent and constitutes a heterocyclic ring is And R 1 and R 2 may be bonded to each other to form a ring together with the sulfur atom shown in the formula)
The compound represented by these is mentioned.

前記R1、R2における炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらの基が2以上結合した基が含まれる。 Examples of the hydrocarbon group in R 1 and R 2 include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these groups are bonded.

脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s−ブチル、t−ブチル、ペンチル、ヘキシル、デシル、ドデシル基などの炭素数1〜20(好ましくは1〜10)程度のアルキル基;ビニル、アリル、1−ブテニル基などの炭素数2〜20(好ましくは2〜10)程度のアルケニル基;エチニル、プロピニル基などの炭素数2〜20(好ましくは2〜10)程度のアルキニル基などが挙げられる。   Examples of the aliphatic hydrocarbon group include 1 to 20 carbon atoms (preferably 1 to 1) such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, decyl, and dodecyl groups. An alkyl group of about 10); an alkenyl group of about 2 to 20 carbon atoms (preferably 2 to 10) such as vinyl, allyl and 1-butenyl groups; and 2 to 20 carbon atoms such as ethynyl and propynyl groups (preferably 2 to 2). 10) about an alkynyl group.

脂環式炭化水素基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロオクチル基などの3〜20員(好ましくは3〜15員、さらに好ましくは5〜8員)程度のシクロアルキル基;シクロペンテニル、シクロへキセニル基などの3〜20員(好ましくは3〜15員、さらに好ましくは5〜8員)程度のシクロアルケニル基;パーヒドロナフタレン−1−イル基、ノルボルニル、アダマンチル、テトラシクロ[4.4.0.12,5.17,10]ドデカン−3−イル基などの橋かけ環式炭化水素基などが挙げられる。 Examples of the alicyclic hydrocarbon group include a cycloalkyl group having about 3 to 20 members (preferably 3 to 15 members, more preferably 5 to 8 members) such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl groups. A cycloalkenyl group of about 3 to 20 members (preferably 3 to 15 members, more preferably 5 to 8 members) such as cyclopentenyl and cyclohexenyl groups; a perhydronaphthalen-1-yl group, norbornyl, adamantyl, tetracyclo; [4.4.0.1 2,5 . 1 7,10 ] bridged cyclic hydrocarbon groups such as dodecan-3-yl groups.

芳香族炭化水素基としては、例えば、フェニル、ナフチル基等の炭素数6〜14(好ましくは6〜10)程度の芳香族炭化水素基などが挙げられる。   Examples of the aromatic hydrocarbon group include aromatic hydrocarbon groups having about 6 to 14 (preferably 6 to 10) carbon atoms such as phenyl and naphthyl groups.

脂肪族炭化水素基と脂環式炭化水素基とが結合した炭化水素基には、例えば、シクロペンチルメチル、シクロヘキシルメチル、2−シクロヘキシルエチル基等のシクロアルキル−アルキル基(例えば、C3-12シクロアルキル−C1-4アルキル基等)等が含まれる。 Examples of the hydrocarbon group in which the aliphatic hydrocarbon group and the alicyclic hydrocarbon group are bonded include cycloalkyl-alkyl groups such as cyclopentylmethyl, cyclohexylmethyl, and 2-cyclohexylethyl groups (for example, C 3-12 cyclohexane). Alkyl-C 1-4 alkyl group and the like).

脂肪族炭化水素基と芳香族炭化水素基とが結合した炭化水素基には、アラルキル基(例えば、C7-18アラルキル基など)、アルキル置換アリール基(例えば、1〜4個程度のC1-4アルキル基が置換したフェニル基又はナフチル基など)、アリール置換C2-10アルケニル基(例えば、2−フェニルビニル基)などが含まれる。 The hydrocarbon group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded includes an aralkyl group (for example, a C 7-18 aralkyl group) and an alkyl-substituted aryl group (for example, about 1 to 4 C 1 -4 alkyl group-substituted phenyl group or naphthyl group), aryl-substituted C 2-10 alkenyl group (for example, 2-phenylvinyl group) and the like.

前記炭化水素基は、種々の置換基、例えば、例えば、ハロゲン原子、オキソ基、ヒドロキシル基、置換オキシ基(例えば、アルコキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基など)、カルボキシル基、置換オキシカルボニル基(アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基など)、シアノ基、ニトロ基、アシル基、置換又は無置換アミノ基(炭化水素基置換アミノ基、アシル基置換アミノ基、無置換アミノ基等)、スルホ基、複素環式基などを有していてもよい。前記ヒドロキシル基やカルボキシル基は有機合成の分野で慣用の保護基で保護されていてもよい。また、脂環式炭化水素基や芳香族炭化水素基の環には芳香族性又は非芳香属性の複素環が縮合していてもよい。   The hydrocarbon group may have various substituents such as halogen atoms, oxo groups, hydroxyl groups, substituted oxy groups (eg, alkoxy groups, aryloxy groups, aralkyloxy groups, acyloxy groups, etc.), carboxyl groups, substituted Oxycarbonyl group (alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, etc.), cyano group, nitro group, acyl group, substituted or unsubstituted amino group (hydrocarbon group substituted amino group, acyl group substituted amino group, none A substituted amino group, etc.), a sulfo group, a heterocyclic group and the like. The hydroxyl group and carboxyl group may be protected with a protective group commonly used in the field of organic synthesis. In addition, an aromatic or non-aromatic heterocycle may be condensed with the ring of the alicyclic hydrocarbon group or aromatic hydrocarbon group.

前記R1、R2における複素環式基を構成する複素環には、芳香族性複素環及び非芳香族性複素環が含まれる。このような複素環としては、例えば、ヘテロ原子として酸素原子を含む複素環(例えば、フラン、テトラヒドロフラン、オキサゾール、イソオキサゾール、γ−ブチロラクトン環などの5員環、4−オキソ−4H−ピラン、テトラヒドロピラン、モルホリン環などの6員環、ベンゾフラン、イソベンゾフラン、4−オキソ−4H−クロメン、クロマン、イソクロマン環などの縮合環、3−オキサトリシクロ[4.3.1.14,8]ウンデカン−2−オン環、3−オキサトリシクロ[4.2.1.04,8]ノナン−2−オン環などの橋かけ環)、ヘテロ原子としてイオウ原子を含む複素環(例えば、チオフェン、チアゾール、イソチアゾール、チアジアゾール環などの5員環、4−オキソ−4H−チオピラン環などの6員環、ベンゾチオフェン環などの縮合環など)、ヘテロ原子として窒素原子を含む複素環(例えば、ピロール、ピロリジン、ピラゾール、イミダゾール、トリアゾール環などの5員環、ピリジン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン環などの6員環、インドール、インドリン、キノリン、アクリジン、ナフチリジン、キナゾリン、プリン環などの縮合環など)などが挙げられる。上記複素環式基には、前記炭化水素基が有していてもよい置換基のほか、アルキル基(例えば、メチル、エチル基などのC1-4アルキル基など)、シクロアルキル基、アリール基(例えば、フェニル、ナフチル基など)などの置換基を有していてもよい。 The heterocyclic ring constituting the heterocyclic group in R 1 and R 2 includes an aromatic heterocyclic ring and a non-aromatic heterocyclic ring. Examples of such a heterocyclic ring include a heterocyclic ring containing an oxygen atom as a hetero atom (for example, 5-membered ring such as furan, tetrahydrofuran, oxazole, isoxazole, and γ-butyrolactone ring, 4-oxo-4H-pyran, tetrahydro 6-membered ring such as pyran, morpholine ring, condensed ring such as benzofuran, isobenzofuran, 4-oxo-4H-chromene, chroman, isochroman ring, 3-oxatricyclo [4.3.1.1 4,8 ] undecane 2-one ring, a bridged ring such as 3-oxatricyclo [4.2.1.0 4,8 ] nonan-2-one ring), a heterocycle containing a sulfur atom as a hetero atom (for example, thiophene, 5-membered ring such as thiazole, isothiazole, thiadiazole ring, 6-membered ring such as 4-oxo-4H-thiopyran ring, benzothiophene ring Any condensed ring), heterocycles containing nitrogen atoms as heteroatoms (eg, 5-membered rings such as pyrrole, pyrrolidine, pyrazole, imidazole, and triazole rings, 6-membered rings such as pyridine, pyridazine, pyrimidine, pyrazine, piperidine, and piperazine rings) Ring, indole, indoline, quinoline, acridine, naphthyridine, quinazoline, a condensed ring such as a purine ring, etc.). In addition to the substituents that the hydrocarbon group may have, the heterocyclic group includes an alkyl group (eg, a C 1-4 alkyl group such as a methyl or ethyl group), a cycloalkyl group, an aryl group It may have a substituent such as (for example, phenyl, naphthyl group).

前記R1、R2は互いに結合して、式中に示される硫黄原子とともに環を形成していてもよい。このような環として、チイラン環、チエタン環、チオラン環、チアン環、チエパン環、チオカン環などの3〜15員(特に、5〜8員)の含硫黄非芳香族性複素環が挙げられる。 R 1 and R 2 may be bonded to each other to form a ring together with the sulfur atom shown in the formula. Examples of such a ring include 3- to 15-membered (particularly 5 to 8-membered) sulfur-containing non-aromatic heterocycles such as thiirane ring, thietane ring, thiolane ring, thiane ring, thiepan ring, and thiocan ring.

本発明において、基質として用いられるスルホキシドの代表的な例として、例えば、ジメチルスルホキシド、エチルメチルスルホキシド、メチルプロピルスルホキシド、ジプロピルスルホキシド、ジブチルスルホキシド、ジフェニルスルホキシド、メチルフェニルスルホキシド、エチルフェニルスルホキシド、フェニルビニルスルホキシド、ジベンジルスルホキシド、メトキシカルボニルメチル−フェニル−スルホキシド、シアノメチル−フェニル−スルホキシド、(2−プロピニル)−フェニル−スルホキシド、(4−アセチルフェニル)−メチル−スルホキシドなどが挙げられる。   In the present invention, representative examples of the sulfoxide used as a substrate include, for example, dimethyl sulfoxide, ethyl methyl sulfoxide, methyl propyl sulfoxide, dipropyl sulfoxide, dibutyl sulfoxide, diphenyl sulfoxide, methyl phenyl sulfoxide, ethyl phenyl sulfoxide, phenyl vinyl sulfoxide. , Dibenzyl sulfoxide, methoxycarbonylmethyl-phenyl-sulfoxide, cyanomethyl-phenyl-sulfoxide, (2-propynyl) -phenyl-sulfoxide, (4-acetylphenyl) -methyl-sulfoxide, and the like.

[スルフィドの製造]
本発明では、担体表面に金ナノ粒子を固定化した表面金固定化触媒及びシラン化合物の存在下、スルホキシドを脱酸素して対応するスルフィドを生成させる。スルホキシドとして前記式(2)で表される化合物を使用した場合には、下記式(3)

Figure 2012121845
(式中、R1、R2は前記に同じ)
で表される対応するスルフィドが得られる。 [Production of sulfide]
In the present invention, sulfoxide is deoxygenated in the presence of a surface gold immobilization catalyst in which gold nanoparticles are immobilized on the support surface and a silane compound, to produce a corresponding sulfide. When the compound represented by the formula (2) is used as the sulfoxide, the following formula (3)
Figure 2012121845
(Wherein R 1 and R 2 are the same as above)
The corresponding sulfide represented by

表面金固定化触媒の使用量としては、例えば、基質であるスルホキシドに対して、金(Au)として、0.0001〜50モル%程度であり、なかでも0.01〜20モル%程度、特に0.1〜5モル%程度が好ましい。   The amount of the surface gold immobilization catalyst used is, for example, about 0.0001 to 50 mol%, particularly about 0.01 to 20 mol% as gold (Au) with respect to the sulfoxide as a substrate, About 0.1-5 mol% is preferable.

シラン化合物の量は、基質であるスルホキシド1モルに対して、例えば、0.8〜50モル、好ましくは0.9〜20モル、さらに好ましくは1〜10モルである。シラン化合物の使用量が少なすぎると、目的化合物の収率が低下しやすくなり、逆に、シラン化合物の使用量が多すぎる場合は経済的に不利となる。   The amount of the silane compound is, for example, 0.8 to 50 mol, preferably 0.9 to 20 mol, and more preferably 1 to 10 mol with respect to 1 mol of sulfoxide as a substrate. If the amount of the silane compound used is too small, the yield of the target compound tends to decrease. Conversely, if the amount of the silane compound used is too large, it is economically disadvantageous.

上記反応は、液相で行われることが好ましく、使用する溶媒としては、例えば、トリフルオロトルエン、フルオロベンゼン、フルオロヘキサン等のフッ素系溶媒;芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン、クロロベンゼン、ニトロベンゼン等)や脂肪族炭化水素(例えば、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン等)等の炭化水素;1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジエチルエーテル、ジメチルエーテル等のエーテル類;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル;これらの混合物等を挙げることができる。これらのなかでも、溶媒としては炭化水素が好ましく、特にトルエン等の芳香族炭化水素が好ましい。また、溶媒の使用量としては、例えば、基質の濃度が2〜10重量%程度となる範囲内で使用することが好ましい。   The above reaction is preferably carried out in a liquid phase. Examples of the solvent used include fluorine solvents such as trifluorotoluene, fluorobenzene, and fluorohexane; aromatic hydrocarbons (for example, benzene, toluene, xylene, chlorobenzene). , Nitrobenzene, etc.) and aliphatic hydrocarbons (eg, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, etc.); 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, tetrahydrofuran And ethers such as tetrahydropyran, diethyl ether and dimethyl ether; esters such as ethyl acetate, propyl acetate and butyl acetate; and mixtures thereof. Of these, hydrocarbons are preferable as the solvent, and aromatic hydrocarbons such as toluene are particularly preferable. Moreover, as a usage-amount of a solvent, it is preferable to use in the range from which the density | concentration of a substrate will be about 2 to 10 weight%, for example.

上記反応は、回分式、半回分式、連続式等の慣用の方法により行うことができる。   The above reaction can be carried out by a conventional method such as batch, semi-batch or continuous.

本発明の製造方法によれば、温和な条件でも、円滑に反応を進行させることができる。反応温度としては、基質の種類や目的生成物の種類等に応じて適宜調整することができ、例えば、−20℃〜200℃、好ましくは0〜150℃程度、特に好ましくは0〜100℃程度である。反応時間は、反応温度等に応じて適宜調整することができ、例えば5分〜120時間程度、好ましくは10分〜90時間程度である。   According to the production method of the present invention, the reaction can proceed smoothly even under mild conditions. The reaction temperature can be appropriately adjusted according to the type of substrate, the type of target product, and the like, and is, for example, -20 to 200 ° C, preferably about 0 to 150 ° C, particularly preferably about 0 to 100 ° C. It is. The reaction time can be appropriately adjusted according to the reaction temperature and the like, and is, for example, about 5 minutes to 120 hours, preferably about 10 minutes to 90 hours.

反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。   After completion of the reaction, the reaction product can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.

本発明の製造方法によれば、スルホキシドの脱酸素反応を温和な条件下で行うことができる。また、表面金固定化触媒が高いTON(ターンオーバー数)を示すため、少ない触媒量で効率よく対応するスルフィドを製造できる。また、活性のみならず反応選択性も高く、しかも広範囲のスルホキシドに適用できる。   According to the production method of the present invention, the deoxygenation reaction of sulfoxide can be carried out under mild conditions. Further, since the surface gold-immobilized catalyst exhibits a high TON (turnover number), the corresponding sulfide can be produced efficiently with a small amount of catalyst. Further, not only the activity but also the reaction selectivity is high, and it can be applied to a wide range of sulfoxides.

また、反応に使用した表面金固定化触媒は担体に担持されているため、担持された金ナノ粒子が反応溶液中に溶出しにくく、劣化しにくい。また、表面金固定化触媒は、反応液から濾過、遠心分離等の物理的な分離手法により容易に回収することができる。回収された表面金固定化触媒はそのままで、又は洗浄、乾燥処理を施した後、再使用できる。洗浄処理は、適宜な溶媒(例えば、水、トルエン等の有機溶媒)により数回(例えば2〜3回)洗浄する方法により行うことができる。   In addition, since the surface gold-immobilized catalyst used in the reaction is supported on a carrier, the supported gold nanoparticles are not easily eluted into the reaction solution and are not easily deteriorated. The surface gold-immobilized catalyst can be easily recovered from the reaction solution by physical separation techniques such as filtration and centrifugation. The recovered surface gold-immobilized catalyst can be reused as it is or after washing and drying. The washing treatment can be performed by a method of washing several times (for example, 2 to 3 times) with an appropriate solvent (for example, an organic solvent such as water or toluene).

回収された表面金固定化触媒は、未使用の表面金固定化触媒とほぼ同等の触媒能を示す。このように、本発明によれば、製造コストの多くの割合を占める表面金固定化触媒を回収し、繰り返し利用することができるため、製造コストを著しく低減できる。   The recovered surface gold-immobilized catalyst exhibits almost the same catalytic ability as an unused surface gold-immobilized catalyst. Thus, according to the present invention, the surface gold-immobilized catalyst that occupies a large proportion of the manufacturing cost can be recovered and repeatedly used, so that the manufacturing cost can be significantly reduced.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

製造例1
50mLのナス型フラスコ中に塩化金酸(HAuCl4)0.1mmolとイオン交換水 50mLを加え、その溶液にハイドロキシアパタイト(HAP;リン酸三カルシウム、和光純薬工業株式会社製)1.0gを加え、室温で2分間撹拌した後、アンモニア(5mmol)を加え、更に12時間撹拌した。その後、吸引濾過し、脱イオン水(1L)で洗浄し、真空乾燥させてAu(III)HAP(Au:3価)(Au:0.083mmol/g)を得た。
50mLのナス型フラスコ中でKBH4(0.9mmol)に水(50mL)を加えて溶解し、そこに得られたAu(III)HAP 0.9gを加え、アルゴン雰囲気下、室温で1時間撹拌した。
撹拌後、吸引濾過し、脱イオン水1Lで洗浄し、24時間真空乾燥させて赤紫色の粉末のAuHAP(Au:0価)(担体1gに対するAuの担持量:0.083mmol/g)を得た。得られた粉末の平均粒子径は3.0nm(標準偏差σ=0.9nm)であった。
Production Example 1
In a 50 mL eggplant-shaped flask, 0.1 mmol of chloroauric acid (HAuCl 4 ) and 50 mL of ion exchange water are added, and 1.0 g of hydroxyapatite (HAP; tricalcium phosphate, manufactured by Wako Pure Chemical Industries, Ltd.) is added to the solution. After adding and stirring at room temperature for 2 minutes, ammonia (5 mmol) was added and further stirred for 12 hours. Thereafter, the mixture was filtered with suction, washed with deionized water (1 L), and vacuum-dried to obtain Au (III) HAP (Au: trivalent) (Au: 0.083 mmol / g).
In a 50 mL eggplant-shaped flask, water (50 mL) was added and dissolved in KBH 4 (0.9 mmol), and 0.9 g of the obtained Au (III) HAP was added thereto, followed by stirring at room temperature for 1 hour in an argon atmosphere. did.
After stirring, it is filtered by suction, washed with 1 L of deionized water, and vacuum-dried for 24 hours to obtain AuHAP (Au: 0 valent) as a reddish purple powder (Amount of Au supported on 1 g of carrier: 0.083 mmol / g) It was. The average particle size of the obtained powder was 3.0 nm (standard deviation σ = 0.9 nm).

製造例2
ハイドロキシアパタイトに代えてアルミナ(Al23)を使用した以外は製造例1と同様にして、アルミナ表面に金ナノ粒子が固定化された触媒(Au/Al23)を得た。
Production Example 2
A catalyst (Au / Al 2 O 3 ) having gold nanoparticles immobilized on the alumina surface was obtained in the same manner as in Production Example 1 except that alumina (Al 2 O 3 ) was used instead of hydroxyapatite.

製造例3
ハイドロキシアパタイトに代えてチタニア(TiO2)を使用した以外は製造例1と同様にして、チタニア表面に金ナノ粒子が固定化された触媒(Au/TiO2)を得た。
Production Example 3
A catalyst (Au / TiO 2 ) having gold nanoparticles immobilized on the titania surface was obtained in the same manner as in Production Example 1 except that titania (TiO 2 ) was used instead of hydroxyapatite.

製造例4
ハイドロキシアパタイトに代えてマグネシア(MgO)を使用した以外は製造例1と同様にして、マグネシア表面に金ナノ粒子が固定化された触媒(Au/MgO)を得た。
Production Example 4
A catalyst (Au / MgO) having gold nanoparticles immobilized on the surface of magnesia was obtained in the same manner as in Production Example 1 except that magnesia (MgO) was used instead of hydroxyapatite.

製造例5
ハイドロキシアパタイトに代えてシリカ(SiO2)を使用した以外は製造例1と同様にして、シリカ表面に金ナノ粒子が固定化された触媒(Au/SiO2)を得た。
Production Example 5
A catalyst (Au / SiO 2 ) having gold nanoparticles immobilized on the silica surface was obtained in the same manner as in Production Example 1 except that silica (SiO 2 ) was used instead of hydroxyapatite.

実施例1
ガラス製耐圧反応管に、製造例1で得られたAuHAP 0.10g(Au:0.0083mmol;ジフェニルスルホキシドに対して1.6mol%)、1,4−ジオキサン 3mL、ジフェニルスルホキシド 0.5mmol、ジメチルフェニルシラン 1mmolを加え、アルゴン雰囲気下(1atm(=0.10MPa))、30℃で1時間撹拌してジフェニルスルフィドを得た(収率99%以上、選択率99%以上)。なお、収率、選択率は液体クロマトグラフィー(内標法)により求めた。
Example 1
In a pressure-resistant reaction tube made of glass, 0.10 g of AuHAP obtained in Production Example 1 (Au: 0.0083 mmol; 1.6 mol% with respect to diphenyl sulfoxide), 3 mL of 1,4-dioxane, 0.5 mmol of diphenyl sulfoxide, dimethyl 1 mmol of phenylsilane was added, and the mixture was stirred at 30 ° C. for 1 hour under an argon atmosphere (1 atm (= 0.10 MPa)) to obtain diphenyl sulfide (yield 99% or more, selectivity 99% or more). The yield and selectivity were determined by liquid chromatography (internal standard method).

実施例2
製造例1で得られたAuHAPに代えて、実施例1の反応終了後、反応液を濾過して触媒を分離し、1,4−ジオキサン10mLで3回洗浄した後、室温(25℃)で減圧乾燥して得られたAuHAPを使用した以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率99%以上、選択率99%以上)。
Example 2
Instead of AuHAP obtained in Production Example 1, after completion of the reaction of Example 1, the reaction solution was filtered to separate the catalyst, washed with 10 mL of 1,4-dioxane three times, and then at room temperature (25 ° C.). Diphenyl sulfide was obtained in the same manner as in Example 1 except that AuHAP obtained by drying under reduced pressure was used (yield 99% or more, selectivity 99% or more).

実施例3
製造例1で得られたAuHAPに代えて、実施例2の反応終了後、反応液を濾過して触媒を分離し、1,4−ジオキサン10mLで3回洗浄した後、室温(25℃)で減圧乾燥して得られたAuHAPを使用した以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率99%、選択率99%以上)。
Example 3
Instead of AuHAP obtained in Production Example 1, after completion of the reaction of Example 2, the reaction solution was filtered to separate the catalyst, washed with 10 mL of 1,4-dioxane three times, and then at room temperature (25 ° C.). Diphenyl sulfide was obtained in the same manner as in Example 1 except that AuHAP obtained by drying under reduced pressure was used (yield 99%, selectivity 99% or more).

実施例4
ガラス製耐圧反応管に、製造例1で得られたAuHAP 0.01g(Au:0.8μmol)、1,4−ジオキサン 20mL、ジフェニルスルホキシド 10mmol、ジメチルフェニルシラン 20mmolを加え、アルゴン雰囲気下(1atm(=0.10MPa))、130℃で48時間撹拌してジフェニルスルフィドを得た(収率94%、選択率99%以上)。収率、選択率は液体クロマトグラフィー(内標法)により求めた。なお、単離収率は93%であった。TON及びTOFは、それぞれ、10000及び200hr-1であった。これらの値は、従来の触媒と比較して3オーダー高い値である。
Example 4
To a glass pressure-resistant reaction tube, 0.01 g of AuHAP obtained in Production Example 1 (Au: 0.8 μmol), 20 mL of 1,4-dioxane, 10 mmol of diphenyl sulfoxide, and 20 mmol of dimethylphenylsilane were added, and an argon atmosphere (1 atm ( = 0.10 MPa)), and stirring at 130 ° C. for 48 hours gave diphenyl sulfide (yield 94%, selectivity 99% or more). Yield and selectivity were determined by liquid chromatography (internal standard method). The isolated yield was 93%. TON and TOF were 10000 and 200 hr −1 , respectively. These values are three orders of magnitude higher than conventional catalysts.

実施例5〜12
基質(スルホキシド)を、下記表1に記載の基質に変更した以外は実施例1と同様にして、対応するスルフィドを得た。なお、実施例9、11では、反応温度を60℃とした。実施例1〜12の結果を表1に示す。表中、収率の欄の括弧内の数字は単離収率である。
Examples 5-12
The corresponding sulfide was obtained in the same manner as in Example 1 except that the substrate (sulfoxide) was changed to the substrate shown in Table 1 below. In Examples 9 and 11, the reaction temperature was 60 ° C. The results of Examples 1-12 are shown in Table 1. In the table, the number in parentheses in the yield column is the isolated yield.

Figure 2012121845
Figure 2012121845

実施例13
基質であるジフェニルスルホキシドを0.25mmol用いるとともに、ジメチルフェニルシランの代わりにポリメチルヒドロシロキサン(PMHS)を0.5mL使用した以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率98%、選択率99%以上)。
Example 13
Diphenyl sulfide was obtained in the same manner as in Example 1 except that 0.25 mmol of diphenyl sulfoxide as a substrate was used and 0.5 mL of polymethylhydrosiloxane (PMHS) was used instead of dimethylphenylsilane. %, Selectivity 99% or more).

実施例14
ジメチルフェニルシランの代わりにメチルジフェニルシランを1mmol使用した以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率52%、選択率99%以上)。
Example 14
Diphenyl sulfide was obtained in the same manner as in Example 1 except that 1 mmol of methyldiphenylsilane was used instead of dimethylphenylsilane (yield 52%, selectivity 99% or more).

実施例15
1,4−ジオキサンの代わりにテトラヒドロフランを3mL用いた以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率98%、選択率99%以上)。
Example 15
Diphenyl sulfide was obtained in the same manner as in Example 1 except that 3 mL of tetrahydrofuran was used instead of 1,4-dioxane (yield 98%, selectivity 99% or more).

実施例16
1,4−ジオキサンの代わりにトルエンを3mL用いた以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率94%、選択率99%以上)。
Example 16
Diphenyl sulfide was obtained in the same manner as in Example 1 except that 3 mL of toluene was used instead of 1,4-dioxane (yield 94%, selectivity 99% or more).

実施例17
1,4−ジオキサンの代わりに酢酸エチルを3mL用いた以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率89%、選択率99%以上)。
Example 17
Diphenyl sulfide was obtained in the same manner as in Example 1 except that 3 mL of ethyl acetate was used instead of 1,4-dioxane (yield 89%, selectivity 99% or more).

実施例18
製造例1で得られたAuHAPの代わりに製造例2で得られたAu/Al23(Au:ジフェニルスルホキシドに対して1.6mol%)を用いた以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率94%、選択率99%以上)。
Example 18
Except for using Au / Al 2 O 3 obtained in Production Example 2 instead of AuHAP obtained in Production Example 1 (Au: 1.6 mol% with respect to diphenyl sulfoxide), the same as in Example 1, Diphenyl sulfide was obtained (yield 94%, selectivity 99% or more).

実施例19
製造例1で得られたAuHAPの代わりに製造例3で得られたAu/TiO2(Au:ジフェニルスルホキシドに対して1.6mol%)を用いた以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率89%、選択率99%以上)。
Example 19
In the same manner as in Example 1 except that Au / TiO 2 (Au: 1.6 mol% with respect to diphenyl sulfoxide) obtained in Production Example 3 was used instead of AuHAP obtained in Production Example 1, diphenyl sulfide was used. (Yield 89%, selectivity 99% or more).

実施例20
製造例1で得られたAuHAPの代わりに製造例4で得られたAu/MgO(Au:ジフェニルスルホキシドに対して1.6mol%)を用いた以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率76%、選択率99%以上)。
Example 20
Diphenyl sulfide was prepared in the same manner as in Example 1 except that Au / MgO obtained in Production Example 4 (Au: 1.6 mol% with respect to diphenyl sulfoxide) was used instead of AuHAP obtained in Production Example 1. Obtained (yield 76%, selectivity 99% or more).

実施例21
製造例1で得られたAuHAPの代わりに製造例5で得られたAu/SiO2(Au:ジフェニルスルホキシドに対して1.6mol%)を用いた以外は実施例1と同様にして、ジフェニルスルフィドを得た(収率64%、選択率99%以上)。
Example 21
In the same manner as in Example 1, except that Au / SiO 2 (Au: 1.6 mol% with respect to diphenyl sulfoxide) obtained in Production Example 5 was used instead of AuHAP obtained in Production Example 1, diphenyl sulfide was used. (Yield 64%, selectivity 99% or more).

比較例1
製造例1で得られたAuHAPの代わりにハイドロキシアパタイト(HAP)を用いた以外は実施例1と同様の操作を行ったところ、ジフェニルスルフィドは得られなかった。
Comparative Example 1
Diphenyl sulfide was not obtained when the same operation as in Example 1 was performed except that hydroxyapatite (HAP) was used instead of AuHAP obtained in Production Example 1.

比較例2
触媒を用いなかったこと以外は実施例1と同様の操作を行ったところ、ジフェニルスルフィドは得られなかった。
Comparative Example 2
Diphenyl sulfide was not obtained when the same operation as in Example 1 was performed except that the catalyst was not used.

Claims (2)

担体表面に金ナノ粒子を固定化した表面金固定化触媒及びシラン化合物の存在下、スルホキシドを脱酸素して対応するスルフィドを得ることを特徴とするスルフィドの製造方法。   A method for producing a sulfide, comprising desulfurizing a sulfoxide in the presence of a surface gold immobilization catalyst having gold nanoparticles immobilized on a carrier surface and a silane compound to obtain a corresponding sulfide. 担体としてハイドロキシアパタイトを用いる請求項1記載のスルフィドの製造方法。   The sulfide production method according to claim 1, wherein hydroxyapatite is used as a carrier.
JP2010274227A 2010-12-09 2010-12-09 Method for producing sulfide by deoxygenation of sulfoxide Pending JP2012121845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274227A JP2012121845A (en) 2010-12-09 2010-12-09 Method for producing sulfide by deoxygenation of sulfoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274227A JP2012121845A (en) 2010-12-09 2010-12-09 Method for producing sulfide by deoxygenation of sulfoxide

Publications (1)

Publication Number Publication Date
JP2012121845A true JP2012121845A (en) 2012-06-28

Family

ID=46503695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274227A Pending JP2012121845A (en) 2010-12-09 2010-12-09 Method for producing sulfide by deoxygenation of sulfoxide

Country Status (1)

Country Link
JP (1) JP2012121845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785057A (en) * 2014-01-20 2014-05-14 河南师范大学 Functional nano hydroxyapatite and preparation method thereof
JP2015211932A (en) * 2014-05-01 2015-11-26 国立大学法人大阪大学 Catalyst for deoxygenation of sulfoxide, and method for producing sulfide using the deoxygenation catalyst
CN113880738A (en) * 2021-08-23 2022-01-04 温州医科大学 Method for synthesizing thioether compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785057A (en) * 2014-01-20 2014-05-14 河南师范大学 Functional nano hydroxyapatite and preparation method thereof
CN103785057B (en) * 2014-01-20 2015-07-01 河南师范大学 Functional nano hydroxyapatite and preparation method thereof
JP2015211932A (en) * 2014-05-01 2015-11-26 国立大学法人大阪大学 Catalyst for deoxygenation of sulfoxide, and method for producing sulfide using the deoxygenation catalyst
CN113880738A (en) * 2021-08-23 2022-01-04 温州医科大学 Method for synthesizing thioether compound

Similar Documents

Publication Publication Date Title
Della Sala Studies on the true catalyst in the phosphate-promoted desymmetrization of meso-aziridines with silylated nucleophiles
Wu et al. Sulfonic acid functionalized nano γ-Al2O3 catalyzed per-O-acetylated of carbohydrates
JP2012121843A (en) Method for producing amine by deoxidation of amide
JP2012121845A (en) Method for producing sulfide by deoxygenation of sulfoxide
WO2001032306A1 (en) Palladium catalyst and process for producing ether
JP2018171587A (en) Catalyst and process for producing 1,3-butadiene from ethanol
JP5577226B2 (en) Process for producing alkenes by deoxygenation of epoxy compounds
CN113735894B (en) 2, 3-dienol compound containing axial chirality and central chirality simultaneously, and preparation method and application thereof
WO2013005621A1 (en) Palladium complex and method for producing same, method for producing vinyl ether compound, and method for collecting palladium complex
WO2009110217A1 (en) Hydroxyapatite with silver supported on the surface thereof
JP5215003B2 (en) Oxidation reaction of silane using hydroxyapatite with surface silver immobilized
EP1237885B1 (en) Method for preparing dl-alpha-tocopherol with a high yield and high purity
EP1151987B1 (en) Optically active fluorinated binaphthol derivative
JP6356921B2 (en) Method for forming a catalyst for an olefin epoxidation reaction
JP5764771B2 (en) Azadirs-Alder reaction catalyst and method for producing tetrahydropyridine compound using the same
EP2522648B1 (en) Process for producing difluorocyclopropane compound
CN106905358B (en) Preparation of vitamin D3Process for preparing analogue intermediates
CN112430228B (en) A kind of chiral 2,3-dihydrobenzo[b]thiophene 1,1-dioxide, derivative and preparation method
JP2005511700A (en) Production method of polysulfide monoorganooxysilane
CN115322100A (en) Delta, epsilon-alkenyl ketone compound and preparation method and application thereof
WO2013108543A1 (en) Method for producing olefin
WO2021177219A1 (en) Oxide-supported cobalt catalyst capable of accelerating reductive amination
Okamoto Reactions of Allenes. IV. New Palladium Complexes Having a Bridged Allene Trimer Ligand
CN111217847A (en) A kind of thiosilane ligand, its preparation method and application in aryl boronation catalytic reaction
JP2010208968A (en) Method for producing lactone by using catalyst with gold-immobilized surface