JP2012121274A - Flame-retardant treatment method for wood material, and woody fire-preventive material - Google Patents
Flame-retardant treatment method for wood material, and woody fire-preventive material Download PDFInfo
- Publication number
- JP2012121274A JP2012121274A JP2010275225A JP2010275225A JP2012121274A JP 2012121274 A JP2012121274 A JP 2012121274A JP 2010275225 A JP2010275225 A JP 2010275225A JP 2010275225 A JP2010275225 A JP 2010275225A JP 2012121274 A JP2012121274 A JP 2012121274A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium
- ammonium
- aqueous solution
- wood
- phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 150
- 239000002023 wood Substances 0.000 title claims abstract description 116
- 239000003063 flame retardant Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 78
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 73
- 239000007864 aqueous solution Substances 0.000 claims abstract description 78
- 239000000126 substance Substances 0.000 claims abstract description 70
- 238000002347 injection Methods 0.000 claims abstract description 54
- 239000007924 injection Substances 0.000 claims abstract description 54
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 42
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000011777 magnesium Substances 0.000 claims abstract description 34
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 34
- 239000000243 solution Substances 0.000 claims abstract description 22
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 19
- 229920000642 polymer Polymers 0.000 claims abstract description 17
- 238000001035 drying Methods 0.000 claims abstract description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 11
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 6
- 239000010452 phosphate Substances 0.000 claims abstract description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 72
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 37
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 claims description 36
- 229910052567 struvite Inorganic materials 0.000 claims description 36
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 230000002378 acidificating effect Effects 0.000 claims description 17
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 15
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 15
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 11
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 11
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 11
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 11
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical group [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 10
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 10
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 10
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- -1 Ammonium ions Chemical class 0.000 claims description 8
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 8
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 8
- 239000002699 waste material Substances 0.000 claims description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 5
- 239000002351 wastewater Substances 0.000 claims description 5
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 4
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 4
- MHJAJDCZWVHCPF-UHFFFAOYSA-L dimagnesium phosphate Chemical compound [Mg+2].OP([O-])([O-])=O MHJAJDCZWVHCPF-UHFFFAOYSA-L 0.000 claims description 4
- 229910000395 dimagnesium phosphate Inorganic materials 0.000 claims description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 4
- 239000000347 magnesium hydroxide Substances 0.000 claims description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 4
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 3
- PMJNEQWWZRSFCE-UHFFFAOYSA-N 3-ethoxy-3-oxo-2-(thiophen-2-ylmethyl)propanoic acid Chemical compound CCOC(=O)C(C(O)=O)CC1=CC=CS1 PMJNEQWWZRSFCE-UHFFFAOYSA-N 0.000 claims description 3
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 3
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 3
- MPCRDALPQLDDFX-UHFFFAOYSA-L Magnesium perchlorate Chemical compound [Mg+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O MPCRDALPQLDDFX-UHFFFAOYSA-L 0.000 claims description 3
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 3
- 239000001099 ammonium carbonate Substances 0.000 claims description 3
- 235000019270 ammonium chloride Nutrition 0.000 claims description 3
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 3
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical compound [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 claims description 3
- 238000004079 fireproofing Methods 0.000 claims description 3
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 claims description 3
- 229910001623 magnesium bromide Inorganic materials 0.000 claims description 3
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 3
- 239000001095 magnesium carbonate Substances 0.000 claims description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 3
- QENHCSSJTJWZAL-UHFFFAOYSA-N magnesium sulfide Chemical compound [Mg+2].[S-2] QENHCSSJTJWZAL-UHFFFAOYSA-N 0.000 claims description 3
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 claims description 2
- 229940107816 ammonium iodide Drugs 0.000 claims description 2
- CRGGPIWCSGOBDN-UHFFFAOYSA-N magnesium;dioxido(dioxo)chromium Chemical compound [Mg+2].[O-][Cr]([O-])(=O)=O CRGGPIWCSGOBDN-UHFFFAOYSA-N 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 239000002253 acid Substances 0.000 abstract description 5
- 239000002198 insoluble material Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 3
- 238000006253 efflorescence Methods 0.000 abstract 1
- 206010037844 rash Diseases 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 93
- 235000011007 phosphoric acid Nutrition 0.000 description 33
- 240000008042 Zea mays Species 0.000 description 28
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 28
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 28
- 235000005822 corn Nutrition 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 25
- 239000003814 drug Substances 0.000 description 15
- 229940079593 drug Drugs 0.000 description 15
- 239000011148 porous material Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 150000001768 cations Chemical class 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000002386 leaching Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 241000218645 Cedrus Species 0.000 description 3
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 3
- 235000010338 boric acid Nutrition 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 244000290594 Ficus sycomorus Species 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 238000009388 chemical precipitation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 240000001973 Ficus microcarpa Species 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000008577 Pinus radiata Nutrition 0.000 description 1
- 241000218621 Pinus radiata Species 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 125000005619 boric acid group Chemical class 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- CEDDGDWODCGBFQ-UHFFFAOYSA-N carbamimidoylazanium;hydron;phosphate Chemical compound NC(N)=N.OP(O)(O)=O CEDDGDWODCGBFQ-UHFFFAOYSA-N 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 235000014786 phosphorus Nutrition 0.000 description 1
- 239000011120 plywood Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Landscapes
- Chemical And Physical Treatments For Wood And The Like (AREA)
Abstract
Description
本発明は、木質材料の難燃化処理方法及び木質防火材に関し、特に木材の表面白華現象を抑制した木質材料の難燃化処理方法及び木質防火材に関する。 TECHNICAL FIELD The present invention relates to a flame retardant treatment method for wood materials and a wood fire retardant material, and more particularly to a flame retardant treatment method for wood materials and a wood fire retardant material which suppress the surface whiteness phenomenon of wood.
内装材などの建築材として使用される木材は、防火対策のため、難燃性、準不燃性、不燃性を示す防火材料であることが望まれている。そのため、木材を燃えにくくする難燃化処理技術の開発が行われている。 Wood used as a building material such as an interior material is desired to be a fireproof material exhibiting flame retardancy, quasi-incombustibility, and incombustibility for fire prevention. Therefore, the development of flame retardant treatment technology that makes wood difficult to burn is being carried out.
建築基準法等の改正により性能規定化が行われ、性能基準を満たせば、木質材料でも防火材料として認定されるようになっている。木質材料の防火性能の評価方法の一つとして、コーンカロリーメータを用いた発熱性試験がある。この評価方法における不燃材料の発熱性試験基準を満たすためには、同装置の20分間、照射強度50kW/m2での加熱試験において以下の3つの基準を満たす必要がある。
1.総発熱量が8MJ/m2以下であること。
2.防火上有害な裏面まで貫通する亀裂および穴が生じないこと。
3.最高発熱速度が10秒以上継続して200kW/m2を超えないこと。
この3つの基準を10分間に対して満たせば準不燃材料、5分間に対して満たせば難燃材料の発熱性基準クリアとなる。防火材料としての認定には、この他、マウスによるガス有害性試験の評価基準を満たす必要がある。
Performance regulations have been established by amending the Building Standards Law, etc., and wood materials are certified as fireproof materials if they meet the performance standards. One of the methods for evaluating the fireproof performance of a wood material is a heat generation test using a cone calorimeter. In order to satisfy the exothermic test standard of the non-combustible material in this evaluation method, it is necessary to satisfy the following three standards in the heating test for 20 minutes with the irradiation intensity of 50 kW / m 2 .
1. The total calorific value is 8 MJ / m 2 or less.
2. There should be no cracks or holes penetrating to the back side, which is harmful for fire prevention.
3. The maximum heat generation rate should not exceed 200 kW / m 2 for 10 seconds or more.
If these three criteria are satisfied for 10 minutes, the exothermic property of the flame retardant material is cleared if the quasi-incombustible material is satisfied for 5 minutes. In addition to this, it is necessary for the certification as a fire protection material to satisfy the evaluation criteria of the gas hazard test by mice.
木材の難燃性を向上させる処理技術としては、リン酸系、ホウ酸系、窒素系などの不燃薬剤を木材の内部に、加圧注入法や温冷浴法を用いて注入する技術が一般的に用いられている。その他の改質法として、不溶性不燃性無機物との複合、機能性樹脂との複合、化学的結合による化学修飾などの方法が用いられている。 As a processing technology to improve the flame retardancy of wood, a technology that injects non-flammable chemicals such as phosphoric acid, boric acid, and nitrogen into the wood using a pressure injection method or a hot / cold bath method is common. Has been used. As other reforming methods, methods such as a composite with an insoluble noncombustible inorganic material, a composite with a functional resin, and a chemical modification by chemical bonding are used.
上記の不溶性不燃性無機物との複合においては、例えば、互いに反応することにより不溶性化合物を生じさせるカチオンおよびアニオンを別々に含ませた2種の水溶液を、順に原料木材に含浸させ、不溶性化合物の生成、定着を行い、木材を改質することが知られている(例えば特許文献1、2参照)。 In the composite with the above insoluble and non-combustible inorganic material, for example, two kinds of aqueous solutions separately containing a cation and an anion that react with each other to form an insoluble compound are impregnated into the raw material wood in order to produce an insoluble compound. It is known to fix and modify wood (see, for example, Patent Documents 1 and 2).
また難燃物質が潮解性のある物質であると、高温多湿条件下に置かれた場合、難燃物質が表面析出し表面悪化することがあるため、この析出を抑制する技術の開発が行われている。例えば、難燃剤を含浸せしめた後、木材表面に基材と硬化剤から成る二液混合型の難燃性ポリウレタン樹脂塗料を塗布し、難燃剤の溶脱を抑制する技術などが知られている(例えば特許文献3参照)。また、木材表層部に不溶性物質を発生させ、その上をエポキシ樹脂などの合成樹脂で塗装する技術が開示されている(例えば特許文献4参照)。 In addition, if the flame retardant is a deliquescent material, the flame retardant may be deposited on the surface and deteriorated when placed under high temperature and humidity conditions. ing. For example, after impregnating a flame retardant, a technique of applying a two-component flame retardant polyurethane resin paint composed of a base material and a curing agent to a wood surface to suppress leaching of the flame retardant is known ( For example, see Patent Document 3). In addition, a technique is disclosed in which an insoluble material is generated on the surface layer of wood, and the top is coated with a synthetic resin such as an epoxy resin (see, for example, Patent Document 4).
しかし、特許文献1及び2に記載の木材の改質方法では、木材外でカチオン含有化合物とアニオン含有化合物の反応が起きるため、浸漬槽内の水溶液に不溶性化合物が生成し、両水溶性の組成が変化する問題点や木材外での反応によって薬剤が浪費される問題がある。また、特許文献2においては、不燃性無機化合物が木材の絶乾重量に対して40%以上なければ難燃性を維持できないとしている。このためには薬剤を大量注入する必要があり、コスト高と共に処理後の木材が重くなるといった問題がある。また、特許文献3及び4に記載の方法では塗装膜の下で表面白華現象が起こる可能性がある。
However, in the method for modifying wood described in
本発明の目的は、難燃性を有すると共に木材の表面白華現象を抑制した木質材料を低コストで製造することができる木質材料の難燃化処理方法及び難燃性を有すると共に木材の表面白華現象を抑制した木質防火材を提供することである。 An object of the present invention is to provide a wood material flame-retarding method and a wood surface which can produce a wood material having flame retardancy and suppressing the surface whiteness phenomenon of wood at low cost. It is to provide a wooden fireproof material that suppresses the white flower phenomenon.
本発明は、難燃剤を含有し、さらにリン酸、マグネシウム、アンモニウム成分が結合・析出せずイオン状態で溶液中に存在する酸性の水溶液を木質材料に注入する注入工程と、前記注入工程後、前記木質材料をアルカリ性の水溶液と接触させ、前記木質材料の表面及び/又は内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質を生成させる生成工程と、を含むことを特徴とする木質材料の難燃化処理方法である。 The present invention includes a flame retardant, and an injection step of injecting an acidic aqueous solution present in the solution in an ionic state without binding and precipitation of phosphoric acid, magnesium and ammonium components into the wood material, and after the injection step, A step of bringing the wood material into contact with an alkaline aqueous solution, and generating a poorly soluble substance mainly composed of magnesium ammonium phosphate on the surface and / or inside of the wood material. This is a flame retardant treatment method.
本発明において、前記アルカリ性の水溶液は、アルカリ溶解性の高分子剤を含有し、前記生成工程において、前記木質材料の表面及び/又は内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質を生成させると共に前記高分子剤の不溶化物を生成させることが好ましい。 In the present invention, the alkaline aqueous solution contains an alkali-soluble polymer agent, and generates a poorly soluble substance mainly composed of magnesium ammonium phosphate on the surface and / or inside of the wooden material in the generation step. It is preferable to form an insolubilized product of the polymer agent.
また本発明において、さらに前記注入工程と前記生成工程との間に、木質材料の表面を乾燥させる乾燥工程を含むことが好ましい。 Moreover, in this invention, it is preferable to include the drying process which dries the surface of a wooden material further between the said injection | pouring process and the said production | generation process.
また本発明において、前記難燃剤が、水溶性のリン酸塩であることが好ましい。 In the present invention, the flame retardant is preferably a water-soluble phosphate.
また本発明において、前記注入工程で使用する水溶液に含まれるアンモニウムイオンとして、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、硝酸アンモニウム、塩化アンモニウム、炭酸水素アンモニウム、フッ化アンモニウム、ヨウ化アンモニウム、臭化アンモニウム、クロム酸アンモニウムのうち1種又は2種以上の混合物を水に溶解して得られるアンモニウムイオンを使用することができる。 In the present invention, ammonium ions contained in the aqueous solution used in the injection step include ammonium dihydrogen phosphate, hydrogen diammonium phosphate, triammonium phosphate, ammonium nitrate, ammonium chloride, ammonium hydrogen carbonate, ammonium fluoride, iodine An ammonium ion obtained by dissolving one or a mixture of two or more of ammonium bromide, ammonium bromide, and ammonium chromate in water can be used.
また本発明において、前記注入工程で使用する水溶液に含まれるマグネシウムイオンとして、水酸化マグネシウム、硫酸マグネシウム、塩化マグネシウム、臭化マグネシウム、炭酸マグネシウム、リン酸水素マグネシウム、過塩素酸マグネシウム、硫化マグネシウム、クロム酸マグネシウムのうち1種又は2種以上の混合物を水に溶解して得られるマグネシウムイオンを使用することができる。 In the present invention, magnesium ions contained in the aqueous solution used in the injection step include magnesium hydroxide, magnesium sulfate, magnesium chloride, magnesium bromide, magnesium carbonate, magnesium hydrogen phosphate, magnesium perchlorate, magnesium sulfide, chromium. Magnesium ions obtained by dissolving one kind or a mixture of two or more kinds of magnesium acid in water can be used.
また本発明において、前記アルカリ溶解性の高分子剤が、カルボキシメチルセルロースナトリウム及び/又はポリアクリル酸ナトリウムであることが好ましい。 In the present invention, the alkali-soluble polymer agent is preferably sodium carboxymethyl cellulose and / or sodium polyacrylate.
また本発明において、前記難燃剤を含有し、さらにリン酸、マグネシウム、アンモニウム成分が結合・析出せずイオン状態で溶液中に存在する酸性の水溶液が、リン酸、マグネシウム、アンモニウム成分を含む水溶性の難燃剤を水に溶解させた水溶液であることが好ましい。 Further, in the present invention, an acidic aqueous solution containing the flame retardant and further containing phosphoric acid, magnesium, and ammonium components in an ionic state without binding and precipitation of the phosphoric acid, magnesium, and ammonium components is a water-soluble solution containing phosphoric acid, magnesium, and ammonium components. An aqueous solution in which the flame retardant is dissolved in water is preferable.
また本発明において、前記注入工程で使用する水溶液に含まれるリン酸イオン、マグネシウムイオン、アンモニウムイオンが、排水又は廃液に含まれるリン酸イオン、マグネシウムイオン、アンモニウムイオンをリン酸マグネシウムアンモニウムを主成分とする難溶性物質として回収し、さらに該リン酸マグネシウムアンモニウムを主成分とする難溶性物質を酸性下でイオン化させたものであることが好ましい。 Moreover, in this invention, the phosphate ion, magnesium ion, and ammonium ion contained in the aqueous solution used at the said injection | pouring process are phosphoric acid ion, magnesium ion, and ammonium ion contained in waste water or a waste liquid, and magnesium ammonium phosphate is a main component. It is preferable that the material is recovered as a poorly soluble substance and further ionized under acidic conditions with the poorly soluble substance mainly composed of magnesium ammonium phosphate.
また本発明は、難燃剤とリン酸マグネシウムアンモニウムを主成分とする難溶性物質とを含むことを特徴とする木質防火材である。 Moreover, this invention is a wooden fireproofing material characterized by including a flame retardant and the hardly soluble substance which has a magnesium ammonium phosphate as a main component.
本発明の木質材料の難燃化処理方法を使用することで、難燃性を有すると共に木材の表面白華現象を抑制した木質材料を低コストで製造することができる。また難燃性を有すると共に木材の表面白華現象を抑制した木質防火材を得ることができる。 By using the method for flame-retarding a wood material of the present invention, it is possible to produce a wood material having flame retardancy and suppressing the surface whiteness phenomenon of wood at low cost. Moreover, it is possible to obtain a wood fireproofing material having flame retardancy and suppressing the surface whiteness phenomenon of wood.
リン酸系の薬剤は一般的に水に溶けやすく潮解性を示すことが知られている。このような潮解性のある難燃剤を木質材料の内部に注入した場合、注入木材を高温多湿条件下に置くと難燃剤が大気中の水分を吸収し、木材の表面に溶け出す溶脱などの表面悪化現象が起こる。それを解決するために本発明の木質材料の難燃化処理方法では、リン酸マグネシウムアンモニウムが難水溶性の物質であり、リン酸マグネシウムアンモニウムは、リン酸イオン、マグネシウムイオン、アンモニウムイオンを含む酸性の水溶液をアルカリ性に変化させることで析出させることができることを利用する。大略的には、難燃剤を木質材料に注入し、木質材料の表面をリン酸マグネシウムアンモニウムを主成分とする難溶性物質で覆い、及び/又は木質材料の内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質を生成させ難燃剤の溶脱を抑制する。以下、本発明の木質材料の難燃化処理方法を詳細に説明する。 It is known that phosphate drugs are generally soluble in water and exhibit deliquescence. When such a deliquescent flame retardant is injected into the interior of a wood material, the surface of the leaching etc. where the flame retardant absorbs moisture in the atmosphere and the molten wood dissolves on the surface of the wood when the injected wood is placed under high temperature and humidity conditions. Deterioration occurs. In order to solve this problem, in the flame retardant treatment method for woody material of the present invention, magnesium ammonium phosphate is a poorly water-soluble substance, and magnesium ammonium phosphate is an acid containing phosphate ions, magnesium ions, and ammonium ions. It is utilized that it can be precipitated by changing the aqueous solution of this to alkaline. In general, a flame retardant is injected into a wood material, the surface of the wood material is covered with a poorly soluble substance mainly composed of magnesium ammonium phosphate, and / or the interior of the wood material is composed mainly of magnesium ammonium phosphate. This produces a hardly soluble material that suppresses leaching of the flame retardant. Hereinafter, the flame retardant treatment method for a woody material of the present invention will be described in detail.
本発明の木質材料の難燃化処理方法は、難燃剤を含有し、さらにリン酸、マグネシウム、アンモニウム成分が結合・析出せずイオン状態で溶液中に存在する酸性の水溶液を木質材料に注入する注入工程と、注入工程後、木質材料をアルカリ性の水溶液と接触させ、木質材料の表面及び/又は内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質を生成させる生成工程と、を含む。 The flame-retardant treatment method for a wood material according to the present invention includes a flame retardant, and further injects into the wood material an acidic aqueous solution that is present in the solution in an ionic state without binding and precipitation of phosphoric acid, magnesium, and ammonium components. An injection process and the production | generation process which makes a wooden material contact with alkaline aqueous solution after an injection | pouring process, and produces | generates the hardly soluble substance which has a magnesium ammonium phosphate as a main component on the surface and / or inside of a wooden material are included.
本発明の木質材料の難燃化処理方法を適用可能な木質材料は、特に限定されず広く木質材料に適用することができる。例えば天然木、加工木材、集成材、合板、LVLなど、木の種類も松、杉、檜、ブナ、ラジアタパインなどが例示される。 The wood material to which the flame retardant treatment method for wood material of the present invention can be applied is not particularly limited and can be widely applied to wood materials. For example, natural wood, processed wood, laminated timber, plywood, LVL, and the like are exemplified by pine, cedar, firewood, beech, radiata pine, and the like.
注入工程では、難燃剤を含有し、さらにリン酸、マグネシウム、アンモニウム成分が結合・析出せずイオン状態で溶液中に存在する酸性の水溶液を使用する。ここで難燃剤を含有し、さらにリン酸、マグネシウム、アンモニウム成分が結合・析出せずイオン状態で溶液中に存在する酸性の水溶液とは、難燃剤とリン酸、マグネシウム、アンモニウム成分とが別々の物質である場合はもちろん、リン酸、マグネシウム、アンモニウム成分を含む難燃剤が完全に溶解し、イオン状態のリン酸、マグネシウム、アンモニウム成分となっている場合も含む。 In the injection step, an acidic aqueous solution containing a flame retardant and further present in the solution in an ionic state without binding and precipitation of phosphoric acid, magnesium and ammonium components is used. Here, a flame retardant is contained, and an acidic aqueous solution in which the phosphoric acid, magnesium and ammonium components are not bound and precipitated in an ionic state in the solution is different from the flame retardant and phosphoric acid, magnesium and ammonium components. Of course, it includes the case where the flame retardant containing phosphoric acid, magnesium and ammonium components is completely dissolved to form an ionic phosphoric acid, magnesium and ammonium component.
ここで使用可能な難燃剤は、特定の難燃剤に限定されるものではなく、公知の水溶性の難燃剤を使用することができる。このような難燃剤としては、リン酸二水素アンモニウム、リン酸水素二アンモニウムなどのリン酸系、ホウ酸、ホウ砂、ホウ酸亜鉛などのホウ酸系、メラミン、アンモニウムなどの窒素系の難燃剤が例示される。但し、水に溶解させたときアルカリ性を示す難燃剤は好ましくない。 The flame retardant usable here is not limited to a specific flame retardant, and a known water-soluble flame retardant can be used. Examples of such flame retardants include phosphoric acids such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acids such as boric acid, borax, and zinc borate, and nitrogen-based flame retardants such as melamine and ammonium. Is exemplified. However, flame retardants that exhibit alkalinity when dissolved in water are not preferred.
注入工程では、難燃剤を含む水溶液を使用するが、このとき同時に次工程である生成工程において生成するリン酸マグネシウムアンモニウムを主成分とする難溶性物質の成分であるリン酸、マグネシウム、アンモニウム成分をイオン状態で含む水溶液を使用する。このリン酸、マグネシウム、アンモニウム成分は、酸性下ではイオン状態で安定的に存在し得るが、アルカリ性になるとリン酸マグネシウムアンモニウムとなり析出する。リン酸マグネシウムアンモニウムを主成分とする難溶性物質の生成は、難燃剤を木質材料に注入した後に生成させる必要があるため、注入工程では、水溶液を酸性状態とする必要がある。 In the injection step, an aqueous solution containing a flame retardant is used. At the same time, phosphoric acid, magnesium, and ammonium components, which are components of a hardly soluble substance mainly composed of magnesium ammonium phosphate, generated in the next generation step, are used. Use aqueous solution containing in ionic state. The phosphoric acid, magnesium, and ammonium components can exist stably in an ionic state under acidic conditions, but when alkaline, they become magnesium ammonium phosphate and precipitate. Since the production | generation of the hardly soluble substance which has magnesium ammonium phosphate as a main component needs to produce | generate after inject | pouring a flame retardant into a wooden material, it is necessary to make aqueous solution an acidic state in an injection | pouring process.
注入工程で使用する水溶液は、上記のように難燃剤のほかに、リン酸、マグネシウム、アンモニウム成分がイオン状態で存在していることが必要であることから、難燃剤に水溶性のリン酸系の難燃剤を使用すれば、別途、リン酸成分を添加する必要がなく効率的である。もちろん難燃剤がリン酸、マグネシウム、アンモニウム成分を全て含み、リン酸、マグネシウム、アンモニウム成分が難燃剤から与えられてもよい。後述の実施例で示すリン酸二水素アンモニウム、硫酸マグネシウムを含む水溶液は、酸性であり、この場合、リン酸二水素アンモニウム、硫酸マグネシウムが難燃剤として機能すると共に、リン酸、マグネシウム、アンモニウム成分を提供する。このような場合も、別途、リン酸、マグネシウム、アンモニウム成分を添加する必要がなく効率的である。 Since the aqueous solution used in the injection process needs to contain phosphoric acid, magnesium, and ammonium components in an ionic state in addition to the flame retardant as described above, a water-soluble phosphoric acid system is required for the flame retardant. If this flame retardant is used, there is no need to separately add a phosphoric acid component, which is efficient. Of course, the flame retardant may contain all of phosphoric acid, magnesium and ammonium components, and the phosphoric acid, magnesium and ammonium components may be provided from the flame retardant. The aqueous solution containing ammonium dihydrogen phosphate and magnesium sulfate shown in the examples described later is acidic. In this case, ammonium dihydrogen phosphate and magnesium sulfate function as a flame retardant, and phosphoric acid, magnesium and ammonium components are added. provide. Even in such a case, it is not necessary to separately add phosphoric acid, magnesium and ammonium components, which is efficient.
リン酸イオンは、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、リン酸水素マグネシウム、リン酸グアニジンのうち1種又は2種以上の混合物を水に溶解させることで得ることができる。 Phosphate ions are phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, phosphorus It can be obtained by dissolving one or a mixture of two or more of triammonium acid, magnesium hydrogen phosphate, and guanidine phosphate in water.
アンモニウムイオンは、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、硝酸アンモニウム、塩化アンモニウム、炭酸水素アンモニウム、フッ化アンモニウム、ヨウ化アンモニウム、臭化アンモニウム、クロム酸アンモニウムのうち1種又は2種以上の混合物を水に溶解させることで得ることができる。 The ammonium ion is one kind of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, ammonium nitrate, ammonium chloride, ammonium hydrogen carbonate, ammonium fluoride, ammonium iodide, ammonium bromide, ammonium chromate or It can be obtained by dissolving two or more mixtures in water.
マグネシウムイオンは、水酸化マグネシウム、硫酸マグネシウム、塩化マグネシウム、臭化マグネシウム、炭酸マグネシウム、リン酸水素マグネシウム、過塩素酸マグネシウム、硫化マグネシウム、クロム酸マグネシウムのうち1種又は2種以上の混合物を水に溶解させることで得ることができる。 Magnesium ion is one or a mixture of two or more of magnesium hydroxide, magnesium sulfate, magnesium chloride, magnesium bromide, magnesium carbonate, magnesium hydrogen phosphate, magnesium perchlorate, magnesium sulfide, and magnesium chromate in water. It can be obtained by dissolving.
さらにイオンの状態のリン酸、マグネシウム、アンモニウム成分は、次の要領で得ることもできる。排水又は廃液にリン酸、マグネシウム、アンモニウム成分がイオン状態で含まれているときは、これをアルカリにするとリン酸マグネシウムアンモニウムを主成分とする難溶性物質が析出する。この排水又は廃液をろ過し、リン酸マグネシウムアンモニウムを主成分とする難溶性物質を回収し、この難溶性物質を酸性水溶液に投入すると、難溶性物質は溶解し、リン酸、マグネシウム、アンモニウム成分がイオン状態となる。このようにpHの変化を利用することで、排水又は廃液から純度の高いイオン状態のリン酸、マグネシウム、アンモニウム成分を回収することができる。この方法は、コストメリットを含め、排水又は廃液の処理の負荷が低減する好ましい方法と言える。 Furthermore, the phosphoric acid, magnesium, and ammonium components in an ionic state can be obtained in the following manner. When phosphoric acid, magnesium, and ammonium components are contained in the effluent or waste liquid in an ionic state, a hardly soluble substance containing magnesium ammonium phosphate as a main component is precipitated when this is alkalinized. This waste water or waste liquid is filtered to recover a hardly soluble substance mainly composed of magnesium ammonium phosphate. When this hardly soluble substance is put into an acidic aqueous solution, the hardly soluble substance is dissolved, and the phosphoric acid, magnesium and ammonium components are dissolved. It becomes an ionic state. In this way, by utilizing the change in pH, phosphoric acid, magnesium, and ammonium components with high purity can be recovered from waste water or waste liquid. This method can be said to be a preferable method that reduces the load of wastewater or waste liquid treatment, including cost merit.
木質材料への水溶液の注入方法は、特定の方法に限定されるものではなく、公知の方法を使用することができる。具体的には、水溶液中に木質材料を浸漬させる方法、水溶液を塗布する方法、加圧注入法、減圧注入法、温冷浴法などを使用することができる。中でも短時間内にまた注入量を多くすることができる加圧注入法を好適に用いることができる。 The method of injecting the aqueous solution into the wood material is not limited to a specific method, and a known method can be used. Specifically, a method of immersing a wooden material in an aqueous solution, a method of applying an aqueous solution, a pressure injection method, a reduced pressure injection method, a hot / cold bath method, or the like can be used. In particular, a pressure injection method that can increase the injection amount within a short time can be suitably used.
注入工程で注入する水溶液又は難燃剤の量は、使用する難燃剤の種類、難燃化処理した木質材料の用途に応じて、適宜決定すればよい。薬剤注入量の一例を示せば、後述の実施例に記載するように木質材料1m3当たり100〜160kg程度である。水溶液の薬剤濃度は、粘度が高くなりすぎないようにするため、10wt%から70wt%であることが好ましい。なお、準不燃材料とする場合は、薬剤注入量は、木質材料1m3当たり100〜160kg程度であるが、不燃材料を目標とする場合には、薬剤注入量は、木質材料1m3当たり190kg程度以上の注入量が必要になる。 What is necessary is just to determine suitably the quantity of the aqueous solution or flame retardant inject | poured at an injection | pouring process according to the kind of flame retardant to be used, and the use of the wood material which carried out the flame retardant treatment. One example of a drug infusion volume is woody material 1 m 3 per 100~160kg about as described in the Examples below. The chemical concentration of the aqueous solution is preferably 10 wt% to 70 wt% so that the viscosity does not become too high. When the semi-incombustible material is used, the drug injection amount is about 100 to 160 kg per 1 m 3 of the wood material. However, when the non-combustible material is targeted, the drug injection amount is about 190 kg per 1 m 3 of the wood material. The above injection amount is required.
生成工程は、注入工程後に行う工程であり、薬剤注入後の木質材料をアルカリ性の水溶液と接触させ、木質材料の表面及び/又は内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質を生成させる。注入工程後の木質材料には、難燃剤のほかイオン状態のリン酸、マグネシウム、アンモニウム成分が存在する。このような木質材料をアルカリ性の水溶液と接触させると、注入工程で注入された木質材料の表面あるいは木質材料の内部の水溶液は、アルカリ性の水溶液と接触し、酸性からアルカリ性に変化する。これに伴いイオン状態のリン酸、マグネシウム、アンモニウム成分が反応し、木質材料の表面及び/又は木質材料の内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質が析出する。なお、リン酸イオン、マグネシウムイオン、アンモニウムイオンの割合、アルカリ性溶液の強弱により、リン酸マグネシウム、水酸化マグネシウムを含む難溶性物質となる。 The generation step is a step performed after the injection step, and the wooden material after the chemical injection is brought into contact with an alkaline aqueous solution to generate a hardly soluble substance mainly composed of magnesium ammonium phosphate on the surface and / or inside of the wooden material. . In addition to the flame retardant, the woody material after the injection step contains ionic phosphoric acid, magnesium and ammonium components. When such a wooden material is brought into contact with an alkaline aqueous solution, the surface of the wooden material injected in the injection step or the aqueous solution inside the wooden material comes into contact with the alkaline aqueous solution and changes from acidic to alkaline. Along with this, phosphoric acid, magnesium and ammonium components in an ionic state react, and a hardly soluble substance containing magnesium ammonium phosphate as a main component is deposited on the surface of the wooden material and / or inside the wooden material. In addition, it becomes a hardly soluble substance containing magnesium phosphate and magnesium hydroxide by the ratio of phosphate ion, magnesium ion, ammonium ion and the strength of the alkaline solution.
リン酸マグネシウムアンモニウムは、難水溶性であるので、水に接触しても容易には溶解せず、木質材料の表面をリン酸マグネシウムアンモニウムを主成分とする難溶性物質で覆い、及び/又は木質材料の細孔をリン酸マグネシウムアンモニウムを主成分とする難溶性物質で塞ぐことで、細孔内の難燃剤が水と接触する機会が減少し、溶脱が抑制される。難溶性物質は、木質材料に注入された難燃剤の溶脱を抑制するために生成させるものであるから、木質材料の内部に生成させる難溶性物質は、木質材料の細孔部入口近傍を塞げばよく、必ずしも細孔奥深くまで難溶性物質を生成させなくてもよい。また難燃剤がリン酸、マグネシウム、アンモニウム成分を全て含み、リン酸、マグネシウム、アンモニウム成分が難燃剤から与えられる場合であっても、必ずしもリン酸、マグネシウム、アンモニウム成分の全てをリン酸マグネシウムアンモニウムを主成分とする難溶性物質にする必要はなく、木質材料の表面を覆い及び/又は木質材料の細孔を塞ぎ、細孔内に残っている難燃剤の溶脱を抑制することができればよい。 Magnesium ammonium phosphate is sparingly water-soluble, so it does not dissolve easily even when it comes into contact with water, and the surface of the woody material is covered with a sparingly soluble substance mainly composed of magnesium ammonium phosphate and / or woody. By closing the pores of the material with a poorly soluble substance mainly composed of magnesium ammonium phosphate, the opportunity for the flame retardant in the pores to come into contact with water is reduced, and leaching is suppressed. Since the hardly soluble substance is generated to suppress the leaching of the flame retardant injected into the wooden material, the hardly soluble substance generated inside the wooden material can be blocked by closing the vicinity of the pore entrance of the wooden material. Well, it is not always necessary to generate a hardly soluble substance deep in the pores. Even if the flame retardant contains all phosphoric acid, magnesium, and ammonium components, and phosphoric acid, magnesium, and ammonium components are provided from the flame retardant, it is not necessary to add all of the phosphoric acid, magnesium, and ammonium components to magnesium ammonium phosphate. It is not necessary to use a hardly soluble substance as a main component, as long as it covers the surface of the wood material and / or closes the pores of the wood material and suppresses the leaching of the flame retardant remaining in the pores.
ここで使用するアルカリ性の水溶液は、特に限定されるものではなく、公知のアルカリ水溶液、例えば水酸化ナトリウム水溶液を使用することができる。アルカリ性水溶液は、pHで8〜13程度とすればよい。 The alkaline aqueous solution used here is not particularly limited, and a known alkaline aqueous solution such as a sodium hydroxide aqueous solution can be used. The alkaline aqueous solution may be about 8 to 13 in pH.
生成工程での木質材料とアルカリ性の水溶液との接触も特定の方法に限定されるものではなく、例えば、薬剤注入後の木質材料をアルカリ性の水溶液中に浸漬させればよい。木質材料をアルカリ性の水溶液中に浸漬させると、水溶液中にリン酸マグネシウムアンモニウムを主成分とする難溶性物質が析出する場合もあるが、この場合には、ろ過などにより難溶性物質を回収し、これを酸性水溶液に投入すればイオン状態に戻るので、この方法を利用することで薬剤の浪費を防ぐことができる。 The contact between the woody material and the alkaline aqueous solution in the production step is not limited to a specific method. For example, the woody material after the injection of the drug may be immersed in the alkaline aqueous solution. When the wood material is immersed in an alkaline aqueous solution, a poorly soluble substance mainly composed of magnesium ammonium phosphate may be precipitated in the aqueous solution. In this case, the hardly soluble substance is recovered by filtration or the like, If this is put into an acidic aqueous solution, it returns to an ionic state, so that waste of chemicals can be prevented by using this method.
本発明の木質材料の難燃化処理方法は、木質材料に難燃剤を注入後、木質材料の表面を難溶性物質で覆い及び/又は木質材料の細孔を難溶性物質で塞ぐ方法であり、例えば特開平3−112602号公報に記載の技術などと類似する方法と言える。しかしながら従来の方法とは作用効果の点で非常に大きな相違がある。本発明の木質材料の難燃化処理方法では、難溶性物質の生成に必要な成分は、注入工程で全て注入され、生成工程では、水溶液のpHを変化させるに過ぎない。このため難溶性物質の生成に必要な成分組成が一定であり、安定的に難溶性物質を生成させることができる。これに対し、アニオン又はカチオンを含む溶液を予め木質材料に注入した後に、木質材料をカチオン又はアニオンを含む溶液と接触させる方法では、アニオンを含む溶液とカチオンを含む溶液との接触状態により、アニオンとカチオンとの割合が異なり、安定的に難溶性物質を生成させることができない。不安定な難溶性物質の生成では、木質材料の表面及び/又は木質材料の内部に難溶性物質が存在しない部分が生じ易くなり、結果、木質材料に注入された難燃剤の溶脱抑制が不十分となり、表面白華現象が生じ易くなる。 The flame retardant treatment method of the wood material of the present invention is a method of covering the surface of the wood material with a hardly soluble substance and / or closing the pores of the wood material with the hardly soluble substance after injecting the flame retardant into the wood material. For example, it can be said that the method is similar to the technique described in JP-A-3-112602. However, this method is very different from the conventional method in terms of operational effects. In the flame retardant treatment method for woody materials of the present invention, all components necessary for the production of the hardly soluble substance are injected in the injection step, and the pH of the aqueous solution is merely changed in the generation step. For this reason, the component composition required for the production | generation of a hardly soluble substance is constant, and a hardly soluble substance can be produced | generated stably. On the other hand, in a method in which a solution containing an anion or a cation is injected into a wood material in advance and then the wood material is brought into contact with a solution containing a cation or an anion, the anion contains a solution depending on the contact state between the solution containing an anion and the solution containing a cation. The ratio of cation to cation is different, and a hardly soluble substance cannot be stably generated. In the generation of unstable hardly soluble substances, the surface of the wood material and / or the inside of the wood material is likely to have a portion where the hardly soluble substance does not exist, and as a result, the leaching suppression of the flame retardant injected into the wood material is insufficient. Thus, the surface whiteness phenomenon tends to occur.
本発明の木質材料の難燃化処理方法は、注入工程と生成工程とを備え、これにより難燃性を有しさらに表面白華現象を抑制した木質材料を得ることができるが、注入工程と生成工程との間にさらに木質材料を乾燥させる乾燥工程を入れることが好ましい。生成工程で生成させるリン酸マグネシウムアンモニウムを主成分とする難溶性物質は、木質材料からの離脱を考えれば、木質材料の細孔入口部、さらにはより内部に生成させることが好ましい。木質材料の細孔入口部、さらにはより内部に難溶性物質を形成させることで、アンカー効果により木質材料への接着力の向上が期待できる。注入工程後の木質材料を乾燥させることで、生成工程においてアルカリ性の水溶液が木質材料の細孔内に入り込み、木質材料の細孔入口部、さらにはより内部での難溶性物質の生成の増加が期待できる。また、木質材料の細孔入口部、さらにはより内部に難溶性物質を形成させることで、生成工程での水溶液中への難溶性物質の析出が減少し、コスト面からも好ましい。 The wood material flame retardant treatment method of the present invention comprises an injection step and a production step, whereby a wood material having flame retardancy and further suppressing surface whiteness can be obtained. It is preferable to further include a drying step for drying the wood material between the generation steps. The poorly soluble substance mainly composed of magnesium ammonium phosphate produced in the production step is preferably produced in the pore entrance portion of the wood material, and further in the interior, considering separation from the wood material. By forming a poorly soluble substance in the pore entrance portion of the wood material, and further inside, an improvement in adhesion to the wood material can be expected due to the anchor effect. By drying the wood material after the injection process, an alkaline aqueous solution enters the pores of the wood material in the production process, increasing the production of poorly soluble substances in the pore entrance portion of the wood material, and further inside. I can expect. In addition, by forming a hardly soluble substance in the pore entrance portion of the wood material, and further inside, the precipitation of the hardly soluble substance in the aqueous solution in the production step is reduced, which is preferable from the viewpoint of cost.
乾燥工程は、上記のように木質材料の細孔入口部、さらにはより内部に難溶性物質を生成させるためのものであり、木質材料の表面を注入した薬剤析出が起こらない限度で乾燥させることが好ましい。乾燥方法は、特に限定されないが自然乾燥でよい。 As described above, the drying process is for generating a poorly soluble substance in the pore entrance portion of the wood material, and further inside, and drying the surface of the wood material to the limit where the injected drug does not occur. Is preferred. The drying method is not particularly limited, but may be natural drying.
上記のように注入工程と生成工程、さらに注入工程と生成工程との間に乾燥工程を入れることで、難燃性を有しさらに表面白華現象を抑制した木質材料を得ることができるが、長期間にわたり表面白華現象を抑制するには、リン酸マグネシウムアンモニウムを主成分とする難溶性物質の離脱をより確実に抑制することが望ましい。これを実現する方法として、リン酸マグネシウムアンモニウムを主成分とする難溶性物質を析出させると同時に木質材料の表面及び/又は木質材料の内部を高分子剤の不溶化物で被覆する。木質材料内部の前記不溶化物による被覆は、細孔入口近傍であってもよい。 As described above, by placing a drying step between the injection step and the generation step, and further between the injection step and the generation step, it is possible to obtain a wood material having flame retardancy and further suppressing the surface whiteness phenomenon, In order to suppress the surface whiteness phenomenon over a long period of time, it is desirable to more surely suppress the separation of the hardly soluble substance mainly composed of magnesium ammonium phosphate. As a method for realizing this, a hardly soluble substance mainly composed of magnesium ammonium phosphate is deposited, and at the same time, the surface of the wood material and / or the inside of the wood material is coated with an insolubilized material of a polymer agent. The coating with the insolubilized material inside the wood material may be in the vicinity of the pore entrance.
ここではpHの変化に伴い不溶化する高分子剤を用いる。具体的には生成工程で使用するアルカリ性の水溶液に、アルカリ性水溶液中で溶解する高分子剤を添加した水溶液を使用する。このような水溶液を注入工程後の木質材料と接触させると、木質材料の表面及び/又は木質材料の内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質が生成すると共に高分子剤が木質材料に注入された酸性水溶液と接触し、pHの変化により不溶化し析出する。 Here, a polymer agent that becomes insoluble with changes in pH is used. Specifically, an aqueous solution in which a polymer agent that dissolves in an alkaline aqueous solution is added to the alkaline aqueous solution used in the production step is used. When such an aqueous solution is brought into contact with the wood material after the pouring step, a poorly soluble substance mainly composed of magnesium ammonium phosphate is formed on the surface of the wood material and / or inside the wood material, and the polymer agent is made of the wood material. It comes into contact with the acidic aqueous solution injected into the solution and becomes insoluble and precipitates due to a change in pH.
アルカリ性水溶液中で溶解し、酸性状態でゲル化析出する高分子剤としては、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムが例示される。ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムは、酸との混練によりゲル化することが知られている。また、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムは、水溶液中で多価金属イオンと結合して不溶性のゲルに変化する。よってこのような高分子剤を使用すれば、生成工程で容易にゲル化析出し、木質材料の表面を被覆することができる。 Examples of the polymer agent that dissolves in an alkaline aqueous solution and gels and precipitates in an acidic state include sodium polyacrylate and sodium carboxymethylcellulose. It is known that sodium polyacrylate and sodium carboxymethylcellulose are gelated by kneading with an acid. In addition, sodium polyacrylate and sodium carboxymethylcellulose are combined with polyvalent metal ions in an aqueous solution to be converted into an insoluble gel. Therefore, if such a polymer agent is used, it can be easily gelled and precipitated in the production process, and the surface of the wood material can be covered.
木質材料表面等の不溶化物による被覆は、リン酸マグネシウムアンモニウムを主成分とする難溶性物質の離脱を抑制するために行うものであるから、他の被覆方法も考えられるが、以下の点から上記方法が好ましい。上記方法は、生成工程においてリン酸マグネシウムアンモニウムを主成分とする難溶性物質の生成と一緒に不溶化物を生成させ、木質材料の表面及び/又は木質材料の内部を高分子剤の不溶化物で被覆するので、不溶化物で被覆するための操作を別途行う必要がなく、簡単にまた安価に行うことができる。またリン酸マグネシウムアンモニウムを主成分とする難溶性物質の生成と高分子剤の不溶化物による被覆とを同時に行うので、リン酸マグネシウムアンモニウムを主成分とする難溶性物質と高分子剤の不溶化物とが一体化され、難溶性物質の離脱を確実に抑制することができる。この場合においても、木質材料の細孔入口部、さらにはより内部に不溶化物を形成させるため、また、生成工程での水溶液中への難溶性物質の析出を減少させるため、乾燥工程を実施し、その後に生成工程を行うことが好ましい。 The coating with the insolubilized material such as the surface of the wood material is performed in order to suppress the separation of the hardly soluble substance mainly composed of magnesium ammonium phosphate, and other coating methods can be considered. The method is preferred. In the above method, an insolubilized material is generated together with a hardly soluble substance mainly composed of magnesium ammonium phosphate in the generating step, and the surface of the wooden material and / or the inside of the wooden material is coated with the insolubilized material of the polymer agent. Therefore, it is not necessary to separately perform an operation for coating with the insolubilized material, and it can be performed easily and inexpensively. In addition, since the generation of the hardly soluble substance mainly composed of magnesium ammonium phosphate and the coating with the insolubilized substance of the polymer agent are simultaneously performed, the hardly soluble substance mainly composed of magnesium ammonium phosphate and the insolubilized substance of the polymer agent Are integrated, and the separation of the hardly soluble substance can be reliably suppressed. Even in this case, the drying step is performed in order to form insolubilized material in the pore entrance portion of the wood material, and further in the interior, and to reduce the precipitation of the hardly soluble substance in the aqueous solution in the production step. Then, it is preferable to perform the generation step thereafter.
ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムは、入手も容易で比較的安価な薬剤であり、木質材料の表面及び/又は木質材料の内部を被覆する高分子剤として好ましい。またポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムは、吸湿性を有するので空気中の水分を吸収する。この結果、難燃剤の水分との接触をより確実に防止することができる。なお、高多湿条件下で使用するような場合であって、べたつきが気になる場合は、さらに木質材料の表面に公知の塗料を塗布すればよい。 Sodium polyacrylate and sodium carboxymethylcellulose are easily available and relatively inexpensive drugs, and are preferable as a polymer agent for coating the surface of the wood material and / or the inside of the wood material. Moreover, since sodium polyacrylate and sodium carboxymethylcellulose have hygroscopicity, they absorb moisture in the air. As a result, contact of the flame retardant with moisture can be more reliably prevented. In addition, when it is a case where it uses under high-humidity conditions and worries about stickiness, what is necessary is just to apply | coat a well-known coating material on the surface of a wooden material.
以上のように本発明の木質材料の難燃化処理方法を用いることで、薬剤の表面析出を抑えた難燃化処理が可能となる。このようにして製造した難燃化木質材料は、一般的に使用されているリン酸系薬剤を注入した木質材料と同等の難燃性を有する。また、リン酸マグネシウムアンモニウムを主成分とする難溶性物質を木質材料の内部で発生させ、さらに一つの工程で高分子剤の不溶化物による表面被覆も同時に行うことが可能なため、長期間にわたり木質材料の表面が悪化しない木質防火材料を低コストで製造することができる。さらに疎水性塗料の塗布を重ねて行い、耐水性や耐傷性を向上させることも可能である。薬剤注入処理を行った木材に表面塗装を行うと表面膜下に薬剤析出が起こる場合があることが知られているが、本発明の木質材料の難燃化処理方法を用いた場合、後述の実施例で示すように表面塗装膜下の薬剤析出はほとんど発生しなかった。 As described above, the use of the flame retardant treatment method for a woody material according to the present invention enables the flame retardant treatment with suppressed surface deposition of the drug. The flame-retardant wood material produced in this way has a flame retardance equivalent to that of a wood material into which a commonly used phosphoric acid chemical is injected. In addition, it is possible to generate a poorly soluble substance mainly composed of magnesium ammonium phosphate in the wood material, and to simultaneously cover the surface with the insolubilized polymer agent in one step, so that the wood A wood fireproof material that does not deteriorate the surface of the material can be manufactured at low cost. Further, it is possible to improve the water resistance and scratch resistance by repeatedly applying a hydrophobic paint. It is known that chemical precipitation may occur under the surface film when surface coating is applied to wood that has been subjected to chemical injection treatment, but when using the method for flame-retardant treatment of woody material of the present invention, As shown in the Examples, almost no chemical precipitation occurred under the surface coating film.
次に本発明についての実施例を説明するが、本発明は実施例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to the examples.
実施例1
リン酸二水素アンモニウムを180g/L、硫酸マグネシウムを20g/L溶かした水溶液を調製した。この水溶液を、減圧加圧注入機を用いて気乾状態のスギ板(11cm×32cm×18mm)に注入した。スギ板は、4本用意し、同時に以下の処理を行った。長い板材での実験を行った場合の注入量に近づけるため、繊維方向の側面には疎水性のシリコン樹脂によるコーティングを施した。注入は減圧5分、加圧15〜60分、減圧5分の順で、減圧は−660mmHg、加圧は約10kgf/cm2(ともにゲージ圧)で行った(注入工程)。溶液注入量は約500〜820kg/m3であった。薬剤注入後、3日間室温で木材表面を乾燥させた(乾燥工程)。乾燥後、水酸化ナトリウムを溶かしpHを約12に調製し、カルボキシメチルセルロースナトリウムを7.0g/L溶かした水溶液に5分間、浸漬させ木材表面層に難水溶性物質含有ゲルを発生させた(生成工程)。
評価方法:その後、約1ヶ月室内で乾燥させ、10cm×10cm×18mmの試験片に切断し、コーンカロリーメータ(発熱性)試験を行った。コーンカロリーメータ試験はISO5660−1に準拠して行った。表面白華現象の評価は、目視により行った。
Example 1
An aqueous solution in which 180 g / L of ammonium dihydrogen phosphate and 20 g / L of magnesium sulfate were dissolved was prepared. This aqueous solution was poured into an air-dried cedar board (11 cm × 32 cm × 18 mm) using a vacuum pressurizer. Four cedar boards were prepared and the following treatment was performed simultaneously. In order to approach the injection amount when an experiment was conducted with a long plate material, the side surface in the fiber direction was coated with a hydrophobic silicone resin. The injection was performed in the order of reduced pressure for 5 minutes, increased pressure for 15 to 60 minutes, and reduced pressure for 5 minutes. The reduced pressure was -660 mmHg and the pressure was about 10 kgf / cm 2 (both gauge pressures) (injection step). The solution injection amount was about 500 to 820 kg / m 3 . After the drug injection, the wood surface was dried at room temperature for 3 days (drying process). After drying, sodium hydroxide was dissolved to adjust the pH to about 12 and immersed in an aqueous solution in which 7.0 g / L of sodium carboxymethylcellulose was dissolved for 5 minutes to generate a hardly water-soluble substance-containing gel on the wood surface layer (generation) Process).
Evaluation method: Thereafter, the sample was dried in a room for about one month, cut into 10 cm × 10 cm × 18 mm test pieces, and subjected to a cone calorimeter (exothermic property) test. The cone calorimeter test was performed in accordance with ISO5660-1. The surface whiteness phenomenon was evaluated visually.
比較例1
実施例1と同様の方法で水溶液の注入及び乾燥を行った。しかしアルカリ性水溶液との接触は行わなかった。評価は、実施例1と同様の方法で行った。
Comparative Example 1
The aqueous solution was injected and dried in the same manner as in Example 1. However, contact with an alkaline aqueous solution was not performed. Evaluation was performed in the same manner as in Example 1.
比較例2
実施例1と同様の方法で、リン酸二水素アンモニウム200g/L溶かした水溶液を注入し、その後、乾燥させた。アルカリ性水溶液との接触は行わなかった。評価は、実施例1と同様の方法で行った。
Comparative Example 2
In the same manner as in Example 1, an aqueous solution in which 200 g / L of ammonium dihydrogen phosphate was dissolved was injected and then dried. No contact with the alkaline aqueous solution was performed. Evaluation was performed in the same manner as in Example 1.
図1から図14に各試験体のコーンカロリーメータ試験の結果を示した。また評価結果を表1及び図15に示した。図15に示す総発熱量は10分間の総発熱量である。物質(薬剤)注入量は溶液注入量と溶液の重量濃度を掛け合わせて求めた。 The result of the cone calorimeter test of each test body is shown in FIGS. The evaluation results are shown in Table 1 and FIG. The total calorific value shown in FIG. 15 is the total calorific value for 10 minutes. The substance (drug) injection amount was determined by multiplying the solution injection amount and the weight concentration of the solution.
難燃性の結果(実施例1、比較例1、2)
実施例1及び比較例1、2とも総発熱量は、薬剤注入量に逆比例した。リン酸二水素アンモニウム:硫酸マグネシウム=9:1(20wt%)水溶液を注入した後、pHを約12に調製し、カルボキシメチルセルロースナトリウムを7.0g/L溶かした水溶液に5分浸漬させた木材(実施例1)の場合、薬剤注入量が120kg/m3で加熱時間10分での総発熱量が約5MJ/m2であった。実施例1及び比較例1、2の総発熱量を比較すると、実施例1の総発熱量の方が僅かに高かったが、同程度の難燃性と言える。リン酸二水素アンモニウムの約1割を硫酸マグネシウムに代替し、カルボキシメチルセルロースナトリウム水溶液に5分浸漬させても総発熱量の大幅な増加はなかった。
表面白華現象の結果(実施例1、比較例1、2)
実施例1の試験体では表面白華現象がほとんど見られなかった。一方、比較例1及び2の試験体は全ての試験体で表面白華現象が見られた。
Flame retardant results (Example 1, Comparative Examples 1 and 2)
In both Example 1 and Comparative Examples 1 and 2, the total calorific value was inversely proportional to the drug injection amount. After injecting an aqueous solution of ammonium dihydrogen phosphate: magnesium sulfate = 9: 1 (20 wt%), the pH was adjusted to about 12, and wood immersed in 7.0 g / L aqueous solution of sodium carboxymethyl cellulose for 5 minutes ( In the case of Example 1), the total calorific value at a heating time of 10 minutes was about 5 MJ / m 2 at a drug injection amount of 120 kg / m 3 . Comparing the total calorific value of Example 1 and Comparative Examples 1 and 2, the total calorific value of Example 1 was slightly higher, but it can be said that the flame retardancy is comparable. Even when about 10% of ammonium dihydrogen phosphate was replaced with magnesium sulfate and immersed in an aqueous sodium carboxymethyl cellulose solution for 5 minutes, the total calorific value did not increase significantly.
Results of surface whiteness phenomenon (Example 1, Comparative Examples 1 and 2)
In the test body of Example 1, almost no surface whiteness phenomenon was observed. On the other hand, the test samples of Comparative Examples 1 and 2 showed a surface whiteness phenomenon in all the test samples.
実施例2
注入工程の水溶液にリン酸二水素アンモニウム:硫酸マグネシウム=5:5(20wt%)水溶液を使用した以外、実施例1と同様の方法で試験体を製作した。
Example 2
A test specimen was produced in the same manner as in Example 1 except that an aqueous solution of ammonium dihydrogen phosphate: magnesium sulfate = 5: 5 (20 wt%) was used as the aqueous solution in the injection step.
実施例3、4
生成工程の浸漬時間を2時間(実施例3)、24時間(実施例4)とした以外、実施例2と同様の方法で試験体を製作した。
Examples 3 and 4
A test specimen was manufactured in the same manner as in Example 2, except that the dipping time in the generating step was 2 hours (Example 3) and 24 hours (Example 4).
比較例3
注入工程の水溶液にリン酸二水素アンモニウム:硫酸マグネシウム=5:5(20wt%)水溶液を使用した以外、比較例1と同様の方法で試験体を製作した。
Comparative Example 3
A test specimen was manufactured in the same manner as in Comparative Example 1 except that an aqueous solution of ammonium dihydrogen phosphate: magnesium sulfate = 5: 5 (20 wt%) was used as the aqueous solution in the injection step.
図16から図32に各試験体のコーンカロリーメータ試験の結果を示した。また評価結果を表2及び図33に示した。図33に示す総発熱量は10分間の総発熱量である。物質(薬剤)注入量は溶液注入量と溶液の重量濃度を掛け合わせて求めた。 The result of the corn calorimeter test of each test body is shown in FIGS. The evaluation results are shown in Table 2 and FIG. The total calorific value shown in FIG. 33 is the total calorific value for 10 minutes. The substance (drug) injection amount was determined by multiplying the solution injection amount and the weight concentration of the solution.
難燃性の結果(実施例2、3、4、比較例3)
実施例2〜4及び比較例3の試験体の総発熱量は比較例2の試験体の総発熱量に比較し、明らかな総発熱量の増加が見られた。また生成工程の浸漬時間を長くするほど、コーンカロリーメータ試験では総発熱量の増加が見られた。生成工程の浸漬時間を5分とした試験体(実施例2)と生成工程を行わなかった試験体(比較例3)とで、総発熱量に大きな差は見られなかった。ここでは、リン酸二水素アンモニウムを硫酸マグネシウムで代替する方法で検討を行ったが、リン酸二水素アンモニウム水溶液に硫酸マグネシウムを加えたと考えると発熱性試験の結果から、同量のリン酸二水素アンモニウム水溶液に比べ、若干の難燃性の増加が見られる。
表面白華現象の結果(実施例2、3、4、比較例3)
実施例2〜4の試験体の表面に白華は全く見られず、実施例1の試験体以上に表面白華が抑制された。一方、比較例3の試験体は全ての試験体で表面白華が見られた。
Flame retardant results (Examples 2, 3, 4, Comparative Example 3)
Compared with the total calorific value of the specimens of Examples 2 to 4 and Comparative Example 3, the total calorific value of the specimens of Comparative Example 2 was clearly increased. Further, as the immersion time in the production process was increased, the total calorific value was increased in the cone calorimeter test. There was no significant difference in the total calorific value between the test body (Example 2) in which the dipping time of the generation process was 5 minutes and the test body (Comparative Example 3) where the generation process was not performed. Here, we examined the method by replacing ammonium dihydrogen phosphate with magnesium sulfate, but considering that magnesium sulfate was added to the ammonium dihydrogen phosphate aqueous solution, the same amount of dihydrogen phosphate was found from the results of the exothermic test. There is a slight increase in flame retardancy compared to the aqueous ammonium solution.
Results of surface whiteness phenomenon (Examples 2, 3, 4, Comparative Example 3)
No white flower was observed on the surface of the test specimens of Examples 2 to 4, and the surface white flower was suppressed more than the test specimen of Example 1. On the other hand, in the test body of Comparative Example 3, surface whiteness was observed in all the test bodies.
生成工程で使用する水溶液に、pHを約12に調製した水溶液を使用し、それ以外は実施例1と同様の要領で試験体を製作した。このときの溶液注入量は約650kg/m3であった(実施例5)。同様に、生成工程で使用する水溶液に、pHを約12に調製しポリアクリル酸ナトリウムを250g/L溶かした水溶液を使用し試験体を製作した(実施例6)。実施例1と同様の方法で製作した試験体、実施例5及び実施例6で製作した試験体を約2ヶ月室内で乾燥させ、表面の白華現象の観察を行った。比較のため比較例1及び比較例2と同様の方法で製作した試験体についても約2ヶ月室内で乾燥させ、表面の白華現象の観察を行った。 A test body was prepared in the same manner as in Example 1 except that an aqueous solution adjusted to a pH of about 12 was used as the aqueous solution used in the production step. The amount of solution injected at this time was about 650 kg / m 3 (Example 5). Similarly, the test body was manufactured using the aqueous solution which adjusted pH to about 12 and dissolved sodium polyacrylate 250g / L in the aqueous solution used at a production | generation process (Example 6). The specimen manufactured by the same method as in Example 1 and the specimens manufactured in Example 5 and Example 6 were dried in a room for about two months, and the surface whiteness phenomenon was observed. For comparison, test specimens manufactured by the same method as in Comparative Example 1 and Comparative Example 2 were also dried in a room for about two months, and the surface whiteness phenomenon was observed.
実施例1、実施例5及び実施例6の試験体には、表面白華現象が見られなかった。一方、比較例1及び比較例2と同様の方法で製作した試験体には表面白華現象が見られた。 In the specimens of Example 1, Example 5 and Example 6, no surface whiteness phenomenon was observed. On the other hand, the surface whiteness phenomenon was observed in the specimens manufactured by the same method as in Comparative Example 1 and Comparative Example 2.
実施例1、実施例5及び実施例6と同様の方法で製作した試験体、比較例1及び比較例2と同様の方法で製作した試験体を室内で約1ヶ月乾燥させ表面白華現象用試験体を得た。その後、恒温恒湿機を用いた乾湿繰り返し試験を行い表面白華現象の観察を行った。恒温恒湿機を用いた乾湿繰り返し試験は、40℃−90%RHの「湿条件」と40℃−35%RHの「乾条件」をそれぞれ24時間とするサイクルにより5サイクル行った。 Test specimens produced in the same manner as in Example 1, Example 5 and Example 6, and specimens produced in the same manner as in Comparative Example 1 and Comparative Example 2 were dried indoors for about 1 month for surface whiteness phenomenon. A specimen was obtained. Thereafter, repeated wet and dry tests using a thermo-hygrostat were performed to observe the surface whiteness phenomenon. The dry / wet repetition test using a thermo-hygrostat was performed for 5 cycles with a cycle of “wet condition” of 40 ° C.-90% RH and “dry condition” of 40 ° C.-35% RH for 24 hours.
実験の結果、実施例1及び実施例6と同様の方法で製作した試験体は、表面にべたつきが生じたが、表面白華現象はほとんど見られなかった。実施例5の方法で作成した試験体でも表面白華現象はほとんど見られなかった。一方、比較例1及び比較例2と同様の方法で得た試験体には表面白華現象が見られた。 As a result of the experiment, the specimens manufactured by the same method as in Example 1 and Example 6 had stickiness on the surface, but almost no surface whiteness phenomenon was observed. Even in the specimen prepared by the method of Example 5, almost no surface whiteness phenomenon was observed. On the other hand, the surface whiteness phenomenon was seen in the test bodies obtained by the same method as in Comparative Example 1 and Comparative Example 2.
実施例1及び実施例6と同様の要領で製作した試験体を室内で約1ヶ月乾燥させ、油性のウレタンニスを表面塗装した。塗装後2ヶ月室内に放置したが、表面塗装膜下に薬剤析出は見られなかった。その後、恒温恒湿機を用いた乾湿繰り返し試験を行い、表面白華現象の観察を行った。恒温恒湿機を用いた乾湿繰り返し試験は、40℃−90%RHの「湿条件」と40℃−35%RHの「乾条件」をそれぞれ24時間とするサイクルにより5サイクル行った。試験後、表面の観察を行ったが、塗装膜下の薬剤析出は確認できなかった。 Test specimens produced in the same manner as in Example 1 and Example 6 were dried in a room for about 1 month, and oil-based urethane varnish was coated on the surface. Although it was left in the room for 2 months after coating, no chemical deposition was observed under the surface coating film. After that, repeated wet and dry tests using a thermo-hygrostat were performed to observe the surface whiteness phenomenon. The dry / wet repetition test using a thermo-hygrostat was performed for 5 cycles with a cycle of “wet condition” of 40 ° C.-90% RH and “dry condition” of 40 ° C.-35% RH for 24 hours. After the test, the surface was observed, but no chemical deposition under the coating film could be confirmed.
Claims (10)
前記注入工程後、前記木質材料をアルカリ性の水溶液と接触させ、前記木質材料の表面及び/又は内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質を生成させる生成工程と、
を含むことを特徴とする木質材料の難燃化処理方法。 An injection process that injects into the wood material an acidic aqueous solution that contains a flame retardant, and in which the phosphoric acid, magnesium, and ammonium components are not bound and precipitated and exist in the solution in an ionic state;
After the injecting step, the wooden material is brought into contact with an alkaline aqueous solution, and a generating step of generating a hardly soluble substance mainly composed of magnesium ammonium phosphate on the surface and / or inside of the wooden material;
A flame retardant treatment method for a wood material, comprising:
前記生成工程において、前記木質材料の表面及び/又は内部にリン酸マグネシウムアンモニウムを主成分とする難溶性物質を生成させると共に前記高分子剤の不溶化物を生成させることを特徴とする請求項1に記載の木質材料の難燃化処理方法。 The alkaline aqueous solution contains an alkali-soluble polymer agent,
The said production | generation process WHEREIN: The insoluble matter of the said polymeric agent is produced | generated while producing | generating the sparingly soluble substance which has a magnesium ammonium phosphate as a main component on the surface and / or inside of the said wood material. A method for flame-retarding wood materials as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010275225A JP5729718B2 (en) | 2010-12-10 | 2010-12-10 | Flame-retardant treatment method for wood materials and wood fireproof materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010275225A JP5729718B2 (en) | 2010-12-10 | 2010-12-10 | Flame-retardant treatment method for wood materials and wood fireproof materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012121274A true JP2012121274A (en) | 2012-06-28 |
JP5729718B2 JP5729718B2 (en) | 2015-06-03 |
Family
ID=46503267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010275225A Active JP5729718B2 (en) | 2010-12-10 | 2010-12-10 | Flame-retardant treatment method for wood materials and wood fireproof materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5729718B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018103452A (en) * | 2016-12-26 | 2018-07-05 | 株式会社 江間忠ホールディングス | Insolubilization method of non-inflammable agent contained in non-inflammable wood |
CN108972779A (en) * | 2018-08-10 | 2018-12-11 | 安徽信达家居有限公司 | A kind of aspen furniture working process preservative |
JP2020026038A (en) * | 2018-08-09 | 2020-02-20 | 株式会社ノダ | Method for manufacturing fire-resistant woody fiber board |
US20210187782A1 (en) * | 2017-10-18 | 2021-06-24 | ETH Zürich | Improved flame retardancy of wood and other cellulose-based materials by in-situ mineralization |
WO2024241979A1 (en) * | 2023-05-23 | 2024-11-28 | ヤマトプロテック株式会社 | Fireproof member and fireproof coating material including same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54123181A (en) * | 1978-03-18 | 1979-09-25 | Otsuka Chem Co Ltd | Flame retarder having effect of preventing whitening, method of giving flame-retardant and flame retardant fiberboard or laminate |
JPS61246003A (en) * | 1985-04-24 | 1986-11-01 | 松下電工株式会社 | Manufacture of improved wood |
JPH03112602A (en) * | 1989-09-26 | 1991-05-14 | Matsushita Electric Works Ltd | Woody floor material |
JPH0431001A (en) * | 1990-05-28 | 1992-02-03 | Matsushita Electric Works Ltd | Manufacture of modified wood |
JPH0482709A (en) * | 1990-07-25 | 1992-03-16 | Matsushita Electric Works Ltd | Production of modified wood |
JP2000078933A (en) * | 1998-09-03 | 2000-03-21 | Taki Chem Co Ltd | Materials for woody plant mulch |
JP2004002072A (en) * | 2002-05-30 | 2004-01-08 | Jfe Engineering Kk | Method and apparatus for producing fertilizer raw material |
JP2007136992A (en) * | 2005-11-22 | 2007-06-07 | Asano Kankyo Sogo Kenkyusho:Kk | Method for preventing chemical agent impregnated in wood from being eluted and elution prevented wood |
-
2010
- 2010-12-10 JP JP2010275225A patent/JP5729718B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54123181A (en) * | 1978-03-18 | 1979-09-25 | Otsuka Chem Co Ltd | Flame retarder having effect of preventing whitening, method of giving flame-retardant and flame retardant fiberboard or laminate |
JPS61246003A (en) * | 1985-04-24 | 1986-11-01 | 松下電工株式会社 | Manufacture of improved wood |
JPH03112602A (en) * | 1989-09-26 | 1991-05-14 | Matsushita Electric Works Ltd | Woody floor material |
JPH0431001A (en) * | 1990-05-28 | 1992-02-03 | Matsushita Electric Works Ltd | Manufacture of modified wood |
JPH0482709A (en) * | 1990-07-25 | 1992-03-16 | Matsushita Electric Works Ltd | Production of modified wood |
JP2000078933A (en) * | 1998-09-03 | 2000-03-21 | Taki Chem Co Ltd | Materials for woody plant mulch |
JP2004002072A (en) * | 2002-05-30 | 2004-01-08 | Jfe Engineering Kk | Method and apparatus for producing fertilizer raw material |
JP2007136992A (en) * | 2005-11-22 | 2007-06-07 | Asano Kankyo Sogo Kenkyusho:Kk | Method for preventing chemical agent impregnated in wood from being eluted and elution prevented wood |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018103452A (en) * | 2016-12-26 | 2018-07-05 | 株式会社 江間忠ホールディングス | Insolubilization method of non-inflammable agent contained in non-inflammable wood |
US20210187782A1 (en) * | 2017-10-18 | 2021-06-24 | ETH Zürich | Improved flame retardancy of wood and other cellulose-based materials by in-situ mineralization |
JP2020026038A (en) * | 2018-08-09 | 2020-02-20 | 株式会社ノダ | Method for manufacturing fire-resistant woody fiber board |
JP7149762B2 (en) | 2018-08-09 | 2022-10-07 | 株式会社ノダ | Method for producing flame-retardant wood fiber board |
CN108972779A (en) * | 2018-08-10 | 2018-12-11 | 安徽信达家居有限公司 | A kind of aspen furniture working process preservative |
WO2024241979A1 (en) * | 2023-05-23 | 2024-11-28 | ヤマトプロテック株式会社 | Fireproof member and fireproof coating material including same |
Also Published As
Publication number | Publication date |
---|---|
JP5729718B2 (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107880708B (en) | Waterproof durable fireproof wood and preparation method thereof | |
JP5729718B2 (en) | Flame-retardant treatment method for wood materials and wood fireproof materials | |
CN104227820A (en) | Preparation method for fireproof oriented strand board | |
JP2020509951A (en) | Composition and method for producing the same | |
CA2628648C (en) | Flame-retardant wood-base materials | |
EP3424657B1 (en) | A fire resistant plywood panel and a method for improving fire resistance of a plywood panel | |
CN1253532C (en) | Aqueous fire retardant | |
JP2018103452A (en) | Insolubilization method of non-inflammable agent contained in non-inflammable wood | |
WO2020053483A1 (en) | Method of treating wood materials | |
CN112621947A (en) | Plywood and preparation method thereof | |
EP3288732A1 (en) | Improving fire retardant properties of wood | |
JPWO2005073343A1 (en) | Incombustible agent, method for producing the same, and incombustible method | |
JP2019520467A (en) | Process for producing fireproof impregnated material for construction, fireproof impregnated material and use thereof | |
JP2018188552A (en) | Non-flammable liquid composition and method for producing non-flammable wood using the same | |
JP2010047694A (en) | Aqueous flame retardant | |
CN104858954A (en) | Loss-resistant flame retardant anticorrosive wood production method | |
JP7228823B2 (en) | Composition for flame retardant treatment of wood material | |
JP2005288956A5 (en) | ||
EP1817394A1 (en) | Fire retardant compositions and methods of use | |
JP2018505795A (en) | Refractory wood and method for manufacturing the same | |
CN103978530A (en) | Environment-friendly fire retardant liquid for corrosion prevention and flame retardance of timber, preparation method thereof and environment-friendly anticorrosive flame retardant timber | |
CN114051546A (en) | Composite for surface protection | |
WO2014101979A2 (en) | Wood preservation method using sodium silicate and sodium bicarbonate | |
FI61320B (en) | RELEASE FOER IMPREGNERING AV CELLULOSAHALTIGT MATERIAL FOER ATT FOERBAETTRA DESS BRANDSAEKERHET OCH SAETT ATT FRAMSTAELLA DENSAMMA | |
JPH0245103A (en) | Wood modification treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150311 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150401 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5729718 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |