[go: up one dir, main page]

JP2012117456A - Oil feeder for engine - Google Patents

Oil feeder for engine Download PDF

Info

Publication number
JP2012117456A
JP2012117456A JP2010268066A JP2010268066A JP2012117456A JP 2012117456 A JP2012117456 A JP 2012117456A JP 2010268066 A JP2010268066 A JP 2010268066A JP 2010268066 A JP2010268066 A JP 2010268066A JP 2012117456 A JP2012117456 A JP 2012117456A
Authority
JP
Japan
Prior art keywords
oil
passage
bearing
engine
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010268066A
Other languages
Japanese (ja)
Other versions
JP5724332B2 (en
Inventor
Hirokazu Matsuura
弘和 松浦
Kenta Honda
絢大 本田
Shigeru Wada
和田  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2010268066A priority Critical patent/JP5724332B2/en
Publication of JP2012117456A publication Critical patent/JP2012117456A/en
Application granted granted Critical
Publication of JP5724332B2 publication Critical patent/JP5724332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oil feeder for an engine improving fuel economy of the engine by reducing the driving load of an oil pump and suppressing side flow of lubricating oil.SOLUTION: The oil feeder 1 for the engine E capable of feeding lubricating oil to five bearing parts 21, 22 and crank pin parts of a crankshaft 10 from the oil pump 6 through a main oil passage 7 includes oil passages inside crankshaft 14 with one end communicating with the bearing parts and the other end communicating with each crankpin part, a pin part oil feeding passage 30 branched from the main oil passage 7 and communicating with the bearing part 21 through a flow control valve for crankpin part 51, and a bearing part oil feeding passage 40 branched from the main oil passage 7 and communicating with plural bearing parts 22 respectively through a flow control valve for bearing part 52. Because the pin part oil feeding passage 30 feeding oil to respective crankpin parts and the bearing part oil feeding passage 40 feeding oil to four bearing parts 22 are formed independently, oil feed control suitable to lubrication requirements of respective crankpin parts and the four bearing parts 22 can be conducted according to the engine condition.

Description

本発明は、クランク軸の軸受部やクランクピン部等の摺動部に潤滑油を給油するエンジンの給油装置に関し、特に軸受部給油路とピン部給油路を独立して設けたエンジンの給油装置に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine oil supply device that supplies lubricating oil to sliding portions such as a crankshaft bearing portion and a crankpin portion, and more particularly to an engine oil supply device in which a bearing oil supply passage and a pin oil supply passage are provided independently. About.

従来、エンジンの給油装置は、エンジン駆動による機械式オイルポンプを備え、このオイルポンプからの潤滑油をクランク軸の軸受部からクランクピン部等の各摺動部に供給している。一方、クランクピン部の給油に関して、クランク軸内部にクランク軸端部と気筒配列方向に延びる軸内主油路と、この軸内主油路から各クランクピン部へ分岐する複数の軸内分岐油路を設け、クランク軸端部位置において軸内主油路とエンジンのメインギャラリとをスイーベル給油機構により接続した端部給油方式が知られている。   2. Description of the Related Art Conventionally, an engine oil supply apparatus includes a mechanical oil pump driven by an engine, and supplies lubricating oil from the oil pump from a bearing portion of a crankshaft to each sliding portion such as a crankpin portion. On the other hand, with respect to the oil supply of the crankpin portion, the crankshaft end portion and the main shaft oil passage extending in the cylinder arrangement direction inside the crankshaft, and a plurality of in-shaft branch oil branches from the main shaft oil passage to each crankpin portion. There is known an end oil supply system in which a passage is provided and an in-shaft main oil passage and an engine main gallery are connected by a swivel oil supply mechanism at a crankshaft end position.

エンジン始動時のようなエンジン低温時には、潤滑油温度が低く潤滑油が高粘性になり、各摺動部の摩擦抵抗が高くなるため、エンジンの燃費が低下するという問題があった。   When the engine temperature is low, such as when the engine is started, the lubricating oil temperature is low and the lubricating oil becomes highly viscous, and the frictional resistance of each sliding portion increases.

特許文献1に記載されたエンジンの給油制御装置は、オイルポンプからクランク軸の各軸受部に至る第1給油径路と、シリンダヘッドの所定の給油箇所に至る第2給油径路と、第1給油径路上に配置された油圧制御弁と、油圧制御弁を制御してクランク軸の各軸受部に供給される潤滑油量を制御する油圧制御手段を備え、この油圧制御手段が、エンジン負荷が低いときはエンジン負荷が高いときに比べて油圧を低くする、又は潤滑油温度が低いときは潤滑油温度が高いときに比べて油圧を低くするように油圧制御弁を制御している。これにより、潤滑油の流量を軸受特性数を境界摩擦領域に入らない範囲になるよう制御している。   An engine oil supply control device described in Patent Document 1 includes a first oil supply path from an oil pump to each bearing portion of a crankshaft, a second oil supply path to a predetermined oil supply location of a cylinder head, and a first oil supply diameter. A hydraulic control valve arranged on the road, and a hydraulic control means for controlling the hydraulic control valve to control the amount of lubricating oil supplied to each bearing portion of the crankshaft, and when the engine load is low Controls the hydraulic control valve so that the hydraulic pressure is lower than when the engine load is high, or the hydraulic pressure is lower when the lubricating oil temperature is low than when the lubricating oil temperature is high. As a result, the flow rate of the lubricating oil is controlled so that the number of bearing characteristics does not enter the boundary friction region.

特許文献1のエンジンの給油制御装置では、オイルポンプとクランク軸の各軸受部を複数の第1給油径路により並列状に接続し、各軸受部への給油を独立して行う独立給油方式を採用しているため、各軸受部へ供給する潤滑油量を精度よく制御でき、その結果、各軸受部の潤滑油膜の厚さを所定の限界厚さ近傍に維持している。これにより、各軸受部から溢れて流れ去る潤滑油(サイドフロー)を抑制し、潤滑油に作用する剪断応力により発生した熱量を軸受部に滞留する潤滑油に維持することができる。   The engine oil supply control device of Patent Document 1 employs an independent oil supply method in which each bearing portion of the oil pump and the crankshaft is connected in parallel by a plurality of first oil supply passages, and oil supply to each bearing portion is performed independently. Therefore, the amount of lubricating oil supplied to each bearing portion can be accurately controlled, and as a result, the thickness of the lubricating oil film of each bearing portion is maintained in the vicinity of a predetermined limit thickness. Thereby, it is possible to suppress the lubricating oil (side flow) that overflows and flows away from each bearing portion, and to maintain the heat generated by the shear stress acting on the lubricating oil in the lubricating oil staying in the bearing portion.

特開2009−264241号公報JP 2009-264241 A

特許文献1のエンジンの給油制御装置は、各軸受部の潤滑油膜の厚さを所定の限界厚さ近傍に維持するため、昇温した潤滑油のサイドフローを抑制し、軸受部に滞留している潤滑油の受熱量を増し、クランク軸の摩擦抵抗を低減することができる。しかし、特許文献1のようにクランク軸の軸受部のみを給油対象とした独立給油方式であれば、潤滑油膜の厚さを所定の限界厚さに制御することが可能であるものの、軸受部には軸受部の潤滑に必要な潤滑油量よりも過剰な潤滑油量を供給しなければならない。   In the engine oil supply control device of Patent Document 1, in order to maintain the thickness of the lubricating oil film of each bearing portion in the vicinity of a predetermined limit thickness, the side flow of the heated lubricating oil is suppressed, and the lubricating oil stays in the bearing portion. The amount of heat received by the lubricating oil can be increased, and the frictional resistance of the crankshaft can be reduced. However, in the case of an independent oil supply system in which only the bearing portion of the crankshaft is lubricated as in Patent Document 1, the thickness of the lubricating oil film can be controlled to a predetermined limit thickness, but the bearing portion Must supply an excessive amount of lubricating oil than is necessary for lubricating the bearing.

即ち、クランク軸の摺動部には、複数の軸受部の他にコネクティングロッドを軸受けする複数のクランクピン部が存在し、通常、軸受部へ供給された潤滑油をクランクピン部と軸受部とを連通した油路(軸内分岐油路)を用いてクランクピン部へ供給する給油形態が採用されている。つまり、前記のような給油形態では、潤滑油の進行方向に対してクランクピン部が軸受部の下流側に位置するため、クランクピン部へ供給する潤滑油量は潤滑油の通路抵抗を考慮して設定する必要が有り、クランクピン部の潤滑性能を確保するためには各軸受部へ供給する潤滑油量を過剰にせざるを得ない。   In other words, the crankshaft sliding portion includes a plurality of crankpin portions for bearing the connecting rod in addition to the plurality of bearing portions. Usually, the lubricating oil supplied to the bearing portion is supplied to the crankpin portion and the bearing portion. An oil supply mode is adopted in which an oil passage (an in-shaft branch oil passage) that communicates with each other is supplied to the crankpin portion. In other words, in the above-described oil supply mode, the crankpin portion is located downstream of the bearing portion with respect to the traveling direction of the lubricant, and therefore the amount of lubricant supplied to the crankpin portion takes into account the passage resistance of the lubricant. In order to ensure the lubrication performance of the crankpin portion, the amount of lubricating oil supplied to each bearing portion must be excessive.

本発明の目的は、オイルポンプの駆動負荷を低減すると共に潤滑油のサイドフローを抑制することによりエンジンの燃費を改善できるエンジンの給油装置、エンジンの全長を長くすることなくエンジンの小型化を図ることができるエンジンの給油装置等を提供することである。   An object of the present invention is to reduce the driving load of an oil pump and to suppress the side flow of lubricating oil, thereby improving the fuel consumption of the engine, and reducing the size of the engine without increasing the overall length of the engine. It is to provide an engine oiling device or the like that can perform the above.

請求項1のエンジンの給油装置は、列状に配置された複数の軸部とコネクティングロッドを軸受けする複数のクランクピン部を備えたクランク軸と、前記複数の軸部を回転自在にエンジン本体に枢支する複数の軸受部を有し、これら複数の軸受部とクランクピン部にオイルポンプから主油路を介して潤滑油を給油可能なにおいて、一端が前記複数の軸受部のうち特定の特定軸受部に連通すると共に他端が複数のクランクピン部に連通するクランク軸内油路と、前記主油路から分岐し且つクランクピン部用流量制御弁を介して前記特定軸受部に連通するピン部給油路と、前記主油路から分岐し且つ軸受部用流量制御弁を介して前記特定軸受部以外の複数の軸受部に夫々連通する軸受部給油路を備えたことを特徴としている。   According to another aspect of the present invention, there is provided a fueling device for an engine, comprising: a plurality of shaft portions arranged in a row; a crankshaft having a plurality of crankpin portions for receiving connecting rods; and the plurality of shaft portions rotatably mounted on an engine body. A plurality of bearing parts pivotally supported, and the lubricating oil can be supplied from the oil pump to the plurality of bearing parts and the crankpin part through the main oil passage, and one end of the plurality of bearing parts is specified in particular A crankshaft oil passage that communicates with the bearing portion and the other end communicates with a plurality of crankpin portions, and a pin that branches from the main oil passage and communicates with the specific bearing portion via a flow control valve for the crankpin portion And a bearing portion oil passage that branches from the main oil passage and communicates with a plurality of bearing portions other than the specific bearing portion via a bearing flow control valve.

このエンジンの給油装置では、各クランクピン部に給油するピン部給油路と特定軸受部以外の複数の軸受部に給油する軸受部給油路を独立して形成したため、クランクピン部の潤滑油と特定軸受部以外の各軸受部の潤滑油を個別に制御することができ、エンジン状態に応じて各クランクピン部と特定軸受部以外の各軸受部の潤滑要求に適した給油制御を行うことができる。   In this engine oiling device, the pin oil supply passage for supplying oil to each crankpin portion and the bearing oil supply passage for supplying oil to a plurality of bearing portions other than the specific bearing portion are independently formed. Lubricating oil in each bearing part other than the bearing part can be individually controlled, and lubrication control suitable for lubrication requirements of each bearing part other than the crankpin part and the specific bearing part can be performed according to the engine state. .

請求項2の発明は、請求項1の発明において、前記軸受部給油路は、前記軸受部用流量制御弁が設置された共通油路と、軸受部用流量制御弁より下流側の前記共通油路と前記特定軸受部以外の複数の軸受部に夫々連通する複数の分岐給油路を備えたことを特徴としている。   According to a second aspect of the present invention, in the first aspect of the invention, the bearing oil supply passage includes a common oil passage in which the bearing flow control valve is installed, and the common oil downstream of the bearing flow control valve. The present invention is characterized in that a plurality of branch oil supply passages respectively communicating with the passage and a plurality of bearing portions other than the specific bearing portion are provided.

請求項3の発明は、請求項2の発明において、前記分岐給油路は、油圧が所定圧力以上のとき潤滑油を供給するように開弁する第1逆止弁と、この第1逆止弁の上流側部分と軸受部を連通し且つ第1逆止弁が開弁したときの潤滑油の流量よりも流量を制限可能な絞り通路を備えたことを特徴としている。   According to a third aspect of the present invention, in the second aspect of the present invention, the branch oil supply path has a first check valve that opens to supply lubricating oil when the hydraulic pressure is equal to or higher than a predetermined pressure, and the first check valve. And a throttle passage that allows the flow rate to be restricted more than the flow rate of the lubricating oil when the first check valve is opened and the first check valve is opened.

請求項4の発明は、請求項2又は3の発明において、前記主油路から分岐し且つ開閉弁を介して前記共通油路に連通する分岐油路と、前記クランクピン部用流量制御弁より下流側のピン部給油路と前記軸受部用流量制御弁より下流側の共通油路を連通する連通路を設け、前記連通路に前記開閉弁が開弁したとき開弁し且つ開閉弁が閉弁したとき閉弁する第2逆止弁を形成したことを特徴としている。   According to a fourth aspect of the present invention, in the second or third aspect of the invention, the branch oil passage that branches off from the main oil passage and communicates with the common oil passage through an on-off valve, and the crank pin flow control valve A communication passage that communicates the downstream oil supply passage of the pin and the common oil passage downstream of the bearing flow control valve is provided, and opens when the on-off valve opens in the communication passage and closes the on-off valve. It is characterized in that a second check valve is formed that closes when the valve is turned on.

請求項5の発明は、請求項1〜4の何れか1項の発明において、前記クランク軸内油路は、一端がクランク軸の中央側に位置する特定軸受部に連通し且つ他端が複数のクランクピン部に夫々連通する複数の専用油路を有することを特徴としている。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the crankshaft oil passage has one end communicating with a specific bearing portion located on the center side of the crankshaft and a plurality of other ends. And a plurality of dedicated oil passages respectively communicating with the crankpin portion.

請求項1の発明によれば、各クランクピン部の潤滑油と特定軸受部以外の各軸受部の潤滑油を個別に供給でき、エンジン状態に応じて各クランクピン部と特定軸受部以外の各軸受部の潤滑要求に適した給油制御ができるため、軸受部等の潤滑油のサイドフローを抑制でき、オイルポンプの駆動負荷を低減し、エンジンの燃費を改善することができる。また、潤滑油が複数の軸受部のうち特定軸受部からクランク軸内油路を経由してクランクピン部へ給油されるため、ピン部給油路が特定軸受部の給油路を兼用でき、エンジンのクランク軸方向長さを短縮化でき、潤滑油路全体を簡単化できる。   According to the first aspect of the present invention, the lubricating oil of each crankpin portion and the lubricating oil of each bearing portion other than the specific bearing portion can be individually supplied, and each of the crankpin portions and the specific bearing portion other than the specific bearing portion can be supplied according to the engine state. Since the oil supply control suitable for the lubrication requirement of the bearing portion can be performed, the side flow of the lubricating oil in the bearing portion or the like can be suppressed, the driving load of the oil pump can be reduced, and the fuel consumption of the engine can be improved. Further, since the lubricating oil is supplied from the specific bearing portion to the crank pin portion through the oil passage in the crankshaft among the plurality of bearing portions, the pin oil supply passage can also be used as the oil supply passage of the specific bearing portion. The length in the crankshaft direction can be shortened, and the entire lubricating oil passage can be simplified.

請求項2の発明によれば、共通油路から分岐した分岐給油路により特定軸受部以外の複数の軸受部に潤滑油を精度よく分配することができる。
請求項3の発明によれば、特定軸受部以外の複数の軸受部の要求流量が小さい時、小流量の潤滑油を特定軸受部以外の複数の軸受部に給油でき、潤滑油膜温度を早期に上昇することにより特定軸受部以外の複数の軸受部の摩擦抵抗を低減することができる。
According to the invention of claim 2, the lubricating oil can be accurately distributed to a plurality of bearing portions other than the specific bearing portion by the branch oil supply passage branched from the common oil passage.
According to the invention of claim 3, when the required flow rate of the plurality of bearing portions other than the specific bearing portion is small, a small flow amount of lubricating oil can be supplied to the plurality of bearing portions other than the specific bearing portion, and the lubricating oil film temperature can be increased early. By raising, the frictional resistance of a plurality of bearing parts other than the specific bearing part can be reduced.

請求項4の発明によれば、各軸受部の要求流量が大きい時、大流量の潤滑油を特定軸受部と特定軸受部以外の複数の軸受部の両方に早期に給油でき、各軸受部の信頼性を維持することができる。
請求項5の発明によれば、エンジンの気筒数に拘わらず専用通路長さの差異を小さくでき、潤滑油の通路抵抗を小さくすることができ、オイルポンプの駆動負荷を低減することができる。
According to the invention of claim 4, when the required flow rate of each bearing portion is large, a large amount of lubricating oil can be supplied to both the specific bearing portion and a plurality of bearing portions other than the specific bearing portion at an early stage. Reliability can be maintained.
According to the fifth aspect of the present invention, the difference in the length of the dedicated passage can be reduced regardless of the number of cylinders of the engine, the passage resistance of the lubricating oil can be reduced, and the driving load of the oil pump can be reduced.

本発明の実施例に係るエンジンの給油装置の全体構成図である。1 is an overall configuration diagram of an engine oiling apparatus according to an embodiment of the present invention. クランク軸の専用油路と各給油路を示す図である。It is a figure which shows the exclusive oil path of a crankshaft, and each oil supply path. 特定軸受部における縦断面図である。It is a longitudinal cross-sectional view in a specific bearing part. 特定軸受部以外の軸受部における縦断面図である。It is a longitudinal cross-sectional view in bearing parts other than a specific bearing part. 各作動モードにおける開閉弁とクランクピン部用流量制御弁と軸受部用流量制御弁の作動状態を示す表である。It is a table | surface which shows the operating state of the on-off valve, the crankpin part flow control valve, and the bearing part flow control valve in each operation mode. 特定軸受部における潤滑油の油圧と流量の関係を示すグラフである。It is a graph which shows the oil pressure of the lubricating oil in a specific bearing part, and the relationship of flow volume. 特定軸受部以外の軸受部における潤滑油の油圧と流量の関係を示すグラフである。It is a graph which shows the relationship between the oil_pressure | hydraulic of lubricating oil and flow volume in bearing parts other than a specific bearing part. 従来の給油装置と本実施例に係る給油装置の潤滑油量を比較したグラフである。It is the graph which compared the amount of lubricating oil of the conventional oil supply apparatus and the oil supply apparatus which concerns on a present Example.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

以下、本発明の実施例について図1〜図8に基づいて説明する。
図1に示すように、エンジンの給油装置1は、自動車の多気筒エンジン、例えば直列4気筒エンジンEを潤滑するものである。エンジンEは、シリンダヘッド(図示略)と、シリンダブロック2と、エンジンEの潤滑油を回収及び貯留可能なオイルパン4が上下に連結されている。シリンダヘッドには、複数の吸気弁と、複数の排気弁と、複数の吸気弁を駆動する吸気側カム軸と、複数の排気弁を駆動する排気側カム軸等が設置されている。シリンダブロック2には、列状に配置された4つのシリンダボア2aが形成され、各シリンダボア2a内を夫々上下方向に摺動可能な4つのピストン(図示略)が配置されている。
Embodiments of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, an engine oiling device 1 lubricates a multi-cylinder engine of an automobile, for example, an in-line four-cylinder engine E. In the engine E, a cylinder head (not shown), a cylinder block 2, and an oil pan 4 capable of collecting and storing the lubricating oil of the engine E are connected to each other in the vertical direction. The cylinder head is provided with a plurality of intake valves, a plurality of exhaust valves, an intake side camshaft that drives the plurality of intake valves, an exhaust side camshaft that drives the plurality of exhaust valves, and the like. The cylinder block 2 is formed with four cylinder bores 2a arranged in a row, and four pistons (not shown) are slidable in the vertical directions in the cylinder bores 2a.

シリンダブロック2の前後および気筒間の縦壁部3aは、ロアブロック3b(または軸受キャップ)とによりクランク軸10を回転自在に枢支している。4つのピストンとクランク軸10が4本のコネクティングロッド5を介して連結されている。縦壁部3aおよびロアブロック3bには、中央軸受部21(特定軸受部)と、4つの側部軸受部22(特定軸受部以外の軸受部)が形成されている。中央軸受部21は、第2気筒と第3気筒の間にクランク軸10と直交するように形成され、側部軸受部22は、第1気筒と第2気筒の間と、第3気筒と第4気筒の間と、第1気筒の外壁部と、第4気筒の外壁部に夫々クランク軸10と直交するように夫々形成されている。   The longitudinal wall 3a before and after the cylinder block 2 and between the cylinders pivotally supports the crankshaft 10 with a lower block 3b (or a bearing cap). Four pistons and the crankshaft 10 are connected via four connecting rods 5. A central bearing portion 21 (specific bearing portion) and four side bearing portions 22 (bearing portions other than the specific bearing portion) are formed in the vertical wall portion 3a and the lower block 3b. The central bearing portion 21 is formed between the second cylinder and the third cylinder so as to be orthogonal to the crankshaft 10, and the side bearing portion 22 is formed between the first cylinder and the second cylinder, and between the third cylinder and the third cylinder. Between the four cylinders, the outer wall of the first cylinder, and the outer wall of the fourth cylinder are formed so as to be orthogonal to the crankshaft 10, respectively.

図2に示すように、クランク軸10は、1つの中央軸部11と、4つの側部軸部12と、4つのクランクピン部13と、クランク軸内油路14等を備えている。中央軸部11は、クランク軸10の回転軸心と同軸状に配置され、クランク軸10の軸方向中央位置に形成されている。中央軸部11は、縦壁部3aおよびロアブロック3bに形成された中央軸受部21に軸受メタル21aを介して回転自在に枢支されている。中央軸部11の外周には、潤滑油を中央軸部11の内部へ導入可能な1対の開口部11aが形成されている。4つの側部軸部12は、クランク軸10の回転軸心と同軸状に配置され、クランク軸10の中央軸受部21の前後側方位置に夫々2つづつ形成されている。各側部軸部12は縦壁部3aおよびロアブロック3bに形成された側部軸受部22に軸受メタル22aを介して回転自在に枢支されている。軸受メタル21a,22aには、メタルの内外を連通可能な連通開口が形成されている。   As shown in FIG. 2, the crankshaft 10 includes one central shaft portion 11, four side shaft portions 12, four crankpin portions 13, an oil passage 14 in the crankshaft, and the like. The central shaft portion 11 is disposed coaxially with the rotational axis of the crankshaft 10 and is formed at a central position in the axial direction of the crankshaft 10. The central shaft portion 11 is pivotally supported via a bearing metal 21a on a central bearing portion 21 formed on the vertical wall portion 3a and the lower block 3b. On the outer periphery of the central shaft portion 11, a pair of openings 11 a are formed through which lubricating oil can be introduced into the central shaft portion 11. The four side shaft portions 12 are arranged coaxially with the rotational axis of the crankshaft 10, and two are formed respectively at the front and rear side positions of the central bearing portion 21 of the crankshaft 10. Each side shaft portion 12 is pivotally supported by a side bearing portion 22 formed in the vertical wall portion 3a and the lower block 3b via a bearing metal 22a. The bearing metal 21a, 22a is formed with a communication opening that allows communication between the inside and outside of the metal.

4つのクランクピン部13は、クランク軸10の回転軸心と同軸状に配置され、中央軸部11及び各側部軸部12から偏心した位置に形成されている。クランクピン部13は、軸受メタル5aを介して各コネクティングロッド5を回転自在に枢支している。各クランクピン部13の外周には、潤滑油を第1気筒〜第4気筒に対応したクランクピン部13へ供給可能な開口部13a〜13dが形成されている。   The four crankpin portions 13 are arranged coaxially with the rotational axis of the crankshaft 10 and are formed at positions eccentric from the central shaft portion 11 and the side shaft portions 12. The crankpin portion 13 pivotally supports each connecting rod 5 via a bearing metal 5a. Openings 13a to 13d capable of supplying lubricating oil to the crankpin portions 13 corresponding to the first to fourth cylinders are formed on the outer periphery of each crankpin portion 13.

クランク軸10の内部には、開口部11aと各開口部13a〜13dとを連通するクランク軸内油路14が設けられている。クランク軸内油路14は、中央油路14eと、第1〜第4専用油路14a〜14dにより構成されている。中央油路14eは、一方の開口部11aから他方の開口部11aに亙って軸心直交方向へ略直線状に形成され、中央軸受部21に供給された潤滑油をクランク軸10内部へ導入可能に構成されている。
第1専用油路14aは、中央油路14eに供給された潤滑油を側部軸部12を経由して第1気筒に対応したクランクピン部13の開口部13aへ流動可能に形成されている。第2専用油路14bは、中央油路14eに供給された潤滑油を第2気筒に対応したクランクピン部13の開口部13bへ流動可能に形成されている。
第3専用油路14cは、中央油路14eに供給された潤滑油を第3気筒に対応したクランクピン部13の開口部13cへ流動可能に形成されている。第4専用油路14dは、中央油路14eに供給された潤滑油を側部軸部12を経由して第4気筒に対応したクランクピン部13の開口部13dへ流動可能に形成されている。これにより、開口部11aからクランク軸10内部へ導入された潤滑油は、各開口部13a〜13dから夫々に対応した軸受メタル5aに給油される。尚、軸受メタル5aには、メタルの内外を連通可能な連通開口が形成されている。
Inside the crankshaft 10, there is provided an oil passage 14 in the crankshaft that connects the opening 11a and the openings 13a to 13d. The crankshaft oil passage 14 includes a central oil passage 14e and first to fourth dedicated oil passages 14a to 14d. The central oil passage 14e is formed substantially linearly in the direction orthogonal to the axial center from one opening 11a to the other opening 11a, and introduces lubricating oil supplied to the central bearing 21 into the crankshaft 10. It is configured to be possible.
The first dedicated oil passage 14a is formed so that the lubricating oil supplied to the central oil passage 14e can flow through the side shaft portion 12 to the opening 13a of the crankpin portion 13 corresponding to the first cylinder. . The second dedicated oil passage 14b is formed so that the lubricating oil supplied to the central oil passage 14e can flow to the opening 13b of the crankpin portion 13 corresponding to the second cylinder.
The third dedicated oil passage 14c is formed so that the lubricating oil supplied to the central oil passage 14e can flow to the opening 13c of the crankpin portion 13 corresponding to the third cylinder. The fourth dedicated oil passage 14d is formed so that the lubricating oil supplied to the central oil passage 14e can flow through the side shaft portion 12 to the opening 13d of the crankpin portion 13 corresponding to the fourth cylinder. . Thereby, the lubricating oil introduced into the crankshaft 10 from the opening 11a is supplied to the corresponding bearing metal 5a from each of the openings 13a to 13d. The bearing metal 5a is formed with a communication opening that allows communication between the inside and the outside of the metal.

図1に示すように、エンジンの給油装置1は、電動式オイルポンプ6と、主油路7と、ピン部給油路30と、軸受部給油路40と、クランクピン部用流量制御弁51と、軸受部用流量制御弁52と、コントロールユニット50等を備えている。オイルポンプ6は、吐出圧の下限が150kPaに設定された電動式の可変容量オイルポンプにより構成されている。尚、電動式オイルポンプ6に代えて機械式固定容量ポンプを適用することも可能である。   As shown in FIG. 1, the engine oil supply device 1 includes an electric oil pump 6, a main oil passage 7, a pin oil supply passage 30, a bearing oil supply passage 40, and a crankpin flow control valve 51. The bearing unit flow control valve 52 and the control unit 50 are provided. The oil pump 6 is an electric variable displacement oil pump whose lower limit of discharge pressure is set to 150 kPa. A mechanical fixed displacement pump can be applied instead of the electric oil pump 6.

主油路7は、オイルポンプ6の吐出部に接続され昇圧された潤滑油をエンジンEの各摺動部へ給油するための潤滑油路であり、シリンダブロック2に穿設された通路により構成されている。主油路7には、分岐主油路7aと、ピン部給油路30と、軸受部給油路40と、分岐油路45が夫々接続されている。
分岐主油路7aは、シリンダブロック2やシリンダヘッド等に穿設された通路により構成されている。分岐主油路7aには、ピストン潤滑用油路8と、ピストン冷却用油路9が接続されている。
The main oil passage 7 is a lubricating oil passage that is connected to the discharge portion of the oil pump 6 and supplies the pressurized lubricating oil to each sliding portion of the engine E. The main oil passage 7 includes a passage formed in the cylinder block 2. Has been. A branched main oil passage 7a, a pin portion oil supply passage 30, a bearing portion oil supply passage 40, and a branch oil passage 45 are connected to the main oil passage 7, respectively.
The branch main oil passage 7a is constituted by a passage formed in the cylinder block 2 or the cylinder head. A piston lubrication oil passage 8 and a piston cooling oil passage 9 are connected to the branch main oil passage 7a.

ピストン潤滑用油路8は、分岐主油路7aから分岐し、各気筒のシリンダボア2aの下方位置に設置された1対の潤滑用ノズル(図示略)に潤滑油を供給可能に形成されている。ピストン潤滑用油路8には、潤滑用ノズルの上流側位置に運転状態に応じて開閉可能な電磁切換弁54が設けられている。潤滑油は、各ピストンの背面に噴射され、ピストンに装着されたコンプレッションリングとオイルリングとの間のランド部へ供給される。これにより、ピストンが上昇移動するとき、潤滑油がオイルリングの先行域へ給油され、オイルリングのシリンダボア2aに対する摺動抵抗が低減される。   The piston lubricating oil passage 8 branches from the branched main oil passage 7a and is formed so as to be able to supply lubricating oil to a pair of lubricating nozzles (not shown) installed at positions below the cylinder bores 2a of the respective cylinders. . The piston lubricating oil passage 8 is provided with an electromagnetic switching valve 54 that can be opened and closed in accordance with the operating state at a position upstream of the lubricating nozzle. Lubricating oil is injected to the back surface of each piston and supplied to a land portion between the compression ring and the oil ring mounted on the piston. Thereby, when the piston moves upward, the lubricating oil is supplied to the preceding region of the oil ring, and the sliding resistance of the oil ring with respect to the cylinder bore 2a is reduced.

ピストン冷却用油路9は、分岐主油路7aから分岐し、各気筒のシリンダボア2aの下方位置に設置された冷却用ノズル(図示略)に潤滑油を供給可能に形成されている。潤滑油は、油圧に応じて開閉可能な圧力切換弁を介して各ピストンの冠面裏部に噴射され、ピストン冠面を冷却可能に構成されている。これにより、潤滑油がピストン冠面を冷却し、燃焼を安定化することができる。   The piston cooling oil passage 9 is branched from the branch main oil passage 7a, and is formed so as to be able to supply lubricating oil to a cooling nozzle (not shown) installed at a position below the cylinder bore 2a of each cylinder. Lubricating oil is injected to the back surface of the crown surface of each piston through a pressure switching valve that can be opened and closed in accordance with the oil pressure, so that the piston crown surface can be cooled. Thereby, lubricating oil can cool a piston crown surface and can stabilize combustion.

図1,図3に示すように、ピン部給油路30は、主油路7から分岐し、中央軸受部21へ潤滑油を給油するための潤滑油路である。ピン部給油路30は、主油路7と中央軸部11を支承する軸受メタル21aとを連通し、連通路31とクランクピン部用流量制御弁51等を備えている。連通路31は、下流端が流量制御弁51と軸受メタル21aとの間の位置に接続され、上流端が後述する共通通路41に接続されている。   As shown in FIGS. 1 and 3, the pin portion oil supply passage 30 is a lubricating oil passage that branches off from the main oil passage 7 and supplies lubricating oil to the central bearing portion 21. The pin portion oil supply passage 30 communicates with the main oil passage 7 and the bearing metal 21a that supports the central shaft portion 11, and includes a communication passage 31, a crank pin portion flow control valve 51, and the like. The communication passage 31 has a downstream end connected to a position between the flow control valve 51 and the bearing metal 21a, and an upstream end connected to a common passage 41 described later.

連通路31の途中部には、第2逆止弁33が介装されている。第2逆止弁33は、共通通路41の油圧が所定圧力以上のとき、潤滑油を共通通路41から軸受メタル21a側のピン部給油路30へ供給する。この第2逆止弁33は、後述する電磁開閉弁53が開弁したときそれによる油圧の増大に伴い連通し、電磁開閉弁53が閉弁したとき遮断するよう形成されている。また、第2逆止弁33は、逆止作用により、流量制御弁51により調圧され中央軸受部21に供給される潤滑油の油圧が、流量制御弁52により調圧され各側部軸受部22に供給される潤滑油の油圧より大きくても連通路31を介して各側部軸受部22の給油形態に影響を与えることはない。流量制御弁51は、例えば、デューティソレノイドにより駆動するスプール弁であり、コントロールユニット50から送信される制御信号によりデューティ制御される。   A second check valve 33 is interposed in the middle of the communication path 31. The second check valve 33 supplies lubricating oil from the common passage 41 to the pin portion oil supply passage 30 on the bearing metal 21a side when the hydraulic pressure of the common passage 41 is equal to or higher than a predetermined pressure. The second check valve 33 communicates with an increase in hydraulic pressure when an electromagnetic on-off valve 53 (described later) is opened, and is shut off when the electromagnetic on-off valve 53 is closed. Further, the second check valve 33 is adjusted by the flow rate control valve 51 and the hydraulic pressure of the lubricating oil supplied to the central bearing portion 21 is regulated by the flow rate control valve 52 by the non-return action. Even if it is larger than the hydraulic pressure of the lubricating oil supplied to 22, it does not affect the oil supply form of each side bearing portion 22 via the communication path 31. The flow control valve 51 is a spool valve that is driven by a duty solenoid, for example, and is duty-controlled by a control signal transmitted from the control unit 50.

図1,図2,図4に示すように、軸受部給油路40は、主油路7から分岐し、各側部軸受部22へ潤滑油を給油するための潤滑油路である。軸受部給油路40は、主油路7と各軸受メタル22aとを連通し、共通油路41と、4つの分岐給油路42等を備えている。共通油路41は、上流端が主油路7に接続され、その途中部に軸受部用流量制御弁52を備えている。流量制御弁52は、例えば、デューティソレノイドにより駆動するスプール弁であり、コントロールユニット50から送信される制御信号によりデューティ制御される。   As shown in FIGS. 1, 2, and 4, the bearing portion oil supply passage 40 is a lubricating oil passage that branches from the main oil passage 7 and supplies lubricating oil to the side bearing portions 22. The bearing portion oil supply passage 40 communicates the main oil passage 7 with each bearing metal 22a, and includes a common oil passage 41, four branch oil supply passages 42, and the like. The common oil passage 41 has an upstream end connected to the main oil passage 7 and is provided with a bearing flow control valve 52 in the middle thereof. The flow control valve 52 is, for example, a spool valve that is driven by a duty solenoid, and is duty-controlled by a control signal transmitted from the control unit 50.

4つの分岐給油路42は、夫々、上流端が流量制御弁52よりも下流側の共通油路41に並列状に接続され、下流端が側部軸部12を支承する軸受メタル22aへ連通されている。各分岐給油路42は、並列接続された第1逆止弁43とオリフィス44(絞り通路)を備えている。第1逆止弁43は、分岐給油路42の油圧が所定圧力以上のとき、潤滑油を軸受メタル22aへ供給する。オリフィス44は、上流端が第1逆止弁43の上流側の分岐給油路42に接続され、下流端が軸受メタル22aへ連通されている。オリフィス44は、軸受メタル22aへ供給される潤滑油量を第1逆止弁43が連通したときの潤滑油の流量よりも少量に制限するように形成されている。それ故、本実施例では、軸受メタル22aへ供給される潤滑油量をオリフィス44により制限するため、各軸受部22に形成される潤滑油膜の厚さを軸受特性数が境界摩擦領域に入らない範囲になるよう制御している。   Each of the four branch oil supply passages 42 is connected in parallel to the common oil passage 41 on the downstream side of the flow rate control valve 52 in the upstream end, and the downstream end communicates with the bearing metal 22 a that supports the side shaft portion 12. ing. Each branch oil supply passage 42 includes a first check valve 43 and an orifice 44 (throttle passage) connected in parallel. The first check valve 43 supplies lubricating oil to the bearing metal 22a when the hydraulic pressure of the branch oil supply passage 42 is equal to or higher than a predetermined pressure. The orifice 44 has an upstream end connected to the branch oil supply passage 42 on the upstream side of the first check valve 43, and a downstream end connected to the bearing metal 22a. The orifice 44 is formed so as to limit the amount of lubricating oil supplied to the bearing metal 22a to a smaller amount than the flow rate of lubricating oil when the first check valve 43 communicates. Therefore, in this embodiment, since the amount of lubricating oil supplied to the bearing metal 22a is limited by the orifice 44, the thickness of the lubricating oil film formed on each bearing portion 22 does not enter the boundary friction region. Controls to be within range.

図1に示すように、分岐油路45は、主油路7から分岐し、共通油路41へ潤滑油を給油するための潤滑油路である。分岐油路45は、一端(下流端)が流量制御弁52よりも下流側の共通油路41に接続され、他端(上流端)が主油路7に接続されている。分岐油路45の途中部には、電磁開閉弁53が設けられている。電磁開閉弁53は、ノーマルオープンタイプの電磁方向切換弁であり、コントロールユニット50から送信される制御信号によりオン−オフ制御される。これにより、電磁開閉弁53がオフ状態のとき、主油路7の油圧(潤滑油量)が分岐油路45から共通通路41へ供給され、電磁開閉弁53がオン状態のとき、分岐油路45から共通通路41への油圧の供給が遮断される。   As shown in FIG. 1, the branched oil passage 45 is a lubricating oil passage that branches from the main oil passage 7 and supplies lubricating oil to the common oil passage 41. One end (downstream end) of the branch oil passage 45 is connected to the common oil passage 41 on the downstream side of the flow control valve 52, and the other end (upstream end) is connected to the main oil passage 7. An electromagnetic opening / closing valve 53 is provided in the middle of the branch oil passage 45. The electromagnetic open / close valve 53 is a normally open type electromagnetic directional switching valve, and is on / off controlled by a control signal transmitted from the control unit 50. Thereby, when the electromagnetic on-off valve 53 is in the off state, the hydraulic pressure (lubricating oil amount) of the main oil passage 7 is supplied from the branch oil passage 45 to the common passage 41, and when the electromagnetic on-off valve 53 is in the on state, the branch oil passage The supply of hydraulic pressure from 45 to the common passage 41 is shut off.

主油路7には、流量センサ15が設置されている。流量センサ15は、主油路7を流れる潤滑油量を検出し、その検出値をコントロールユニット50へ送信する。また、第1気筒に対応するオリフィス44の上流側位置には、油温センサ16が設置されている。油温センサ16は、分岐給油路42を流れる潤滑油温度を検出し、その検出値をコントロールユニット50へ送信する。コントロールユニット50には、エンジンEの回転数センサ(図示略)や負荷センサ(図示略)等からエンジンEの運転状態を示すエンジン回転数や負荷等の検出値が送信されている。   A flow sensor 15 is installed in the main oil passage 7. The flow sensor 15 detects the amount of lubricating oil flowing through the main oil passage 7 and transmits the detected value to the control unit 50. An oil temperature sensor 16 is installed upstream of the orifice 44 corresponding to the first cylinder. The oil temperature sensor 16 detects the temperature of the lubricating oil flowing through the branch oil supply passage 42 and transmits the detected value to the control unit 50. The control unit 50 receives detection values such as an engine speed and a load indicating the operating state of the engine E from a rotation speed sensor (not shown), a load sensor (not shown), and the like of the engine E.

図5に基づき、コントロールユニット50による作動モード毎の電磁開閉弁53と流量制御弁51,52の制御について説明する。
コントロールユニット50は、始動モード、温間モード、高温モード、高回転/高負荷モード、フェールセーフモードの5つのモードにより、電磁開閉弁53と流量制御弁51,52を制御している。コントロールユニット50は、流量制御弁51を制御するための油圧マップと流量制御弁52を制御するための油圧マップを夫々メモリ内に格納している。
Based on FIG. 5, the control of the electromagnetic on-off valve 53 and the flow rate control valves 51 and 52 for each operation mode by the control unit 50 will be described.
The control unit 50 controls the electromagnetic on-off valve 53 and the flow control valves 51 and 52 in five modes including a start mode, a warm mode, a high temperature mode, a high rotation / high load mode, and a fail safe mode. The control unit 50 stores a hydraulic pressure map for controlling the flow rate control valve 51 and a hydraulic pressure map for controlling the flow rate control valve 52 in the memory.

流量制御弁51の油圧マップは、予め実験的又は理論的に求められたマップであり、各クランクピン部13を十分に潤滑可能な油圧と、エンジン回転数と、エンジン負荷との対応関係が設定されている。流量制御弁52の油圧マップは、予め実験的又は理論的に求められたマップであり、各軸受部22の潤滑油膜の厚さを所定の限界厚さ近傍に維持可能な油圧と、エンジン回転数と、エンジン負荷との対応関係が設定されている。流量制御弁51,52は、流量制御弁51,52がオン(作動)状態のとき、夫々の油圧マップに基づき制御される。   The hydraulic pressure map of the flow control valve 51 is a map obtained experimentally or theoretically in advance, and a correspondence relationship between the hydraulic pressure that can sufficiently lubricate each crankpin portion 13, the engine speed, and the engine load is set. Has been. The hydraulic pressure map of the flow control valve 52 is a map obtained experimentally or theoretically in advance. The hydraulic pressure that can maintain the thickness of the lubricating oil film of each bearing portion 22 in the vicinity of a predetermined limit thickness, and the engine speed And a correspondence relationship with the engine load is set. The flow rate control valves 51 and 52 are controlled based on the respective hydraulic maps when the flow rate control valves 51 and 52 are in an on (actuated) state.

始動モード、例えば、エンジンEの始動時等潤滑油温度が30℃より低いときは、電磁開閉弁53がオフ状態、流量制御弁51がオン状態、流量制御弁52がオフ状態に制御されている。中央軸受部21用の潤滑油は、主油路7から流量制御弁51を経由する第1のルートと主油路7、分岐油路45、共通油路41、連通路31、第2逆止弁33を経由する第2のルートの2ルートからピン部給油路30へ給油される。各側部軸受部22用の潤滑油は、主油路7、分岐油路45、共通油路41を経由して各分岐給油路42へ給油される。これにより、各給油路へ潤滑油を早期に充填することができる。   When the lubricating oil temperature is lower than 30 ° C., for example, when the engine E is started, for example, the electromagnetic on-off valve 53 is controlled to be off, the flow control valve 51 is on, and the flow control valve 52 is off. . The lubricating oil for the central bearing portion 21 includes the first route from the main oil passage 7 via the flow control valve 51, the main oil passage 7, the branch oil passage 45, the common oil passage 41, the communication passage 31, and the second check. Oil is supplied to the pin portion oil supply passage 30 from two routes of the second route via the valve 33. The lubricating oil for each side bearing portion 22 is supplied to each branch oil supply passage 42 via the main oil passage 7, the branch oil passage 45, and the common oil passage 41. Thereby, lubricating oil can be filled to each oil supply path at an early stage.

温間モード、例えば、潤滑油温度が30℃以上130℃未満のときは、電磁開閉弁53がオン状態、流量制御弁51がオン状態、流量制御弁52がオン状態に制御されている。
中央軸受部21用の潤滑油は、油圧マップに基づき主油路7からピン部給油路30により軸受メタル21aへ給油される。各側部軸受部22用の潤滑油は、油圧マップに基づき主油路7、共通油路41、各分岐給油路42、各オリフィス44を経由して各軸受メタル22aへ給油される。これにより、各側部軸受部22へ供給する潤滑油量を最小限に抑えることができ、潤滑油のサイドフローを減少し、各側部軸受部22に滞在する潤滑油温度を高めることによりオイルポンプ6の駆動負荷を低減できる。
In the warm mode, for example, when the lubricating oil temperature is 30 ° C. or higher and lower than 130 ° C., the electromagnetic on-off valve 53 is controlled to be on, the flow control valve 51 is on, and the flow control valve 52 is on.
Lubricating oil for the central bearing portion 21 is supplied from the main oil passage 7 to the bearing metal 21a through the pin portion oil supply passage 30 based on the oil pressure map. Lubricating oil for each side bearing portion 22 is supplied to each bearing metal 22a via the main oil passage 7, the common oil passage 41, each branch oil supply passage 42, and each orifice 44 based on the oil pressure map. As a result, the amount of lubricating oil supplied to each side bearing 22 can be minimized, the side flow of the lubricating oil can be reduced, and the temperature of the lubricating oil staying at each side bearing 22 can be increased. The driving load of the pump 6 can be reduced.

高温モード、所謂潤滑油温度が130℃以上のときは、電磁開閉弁53がオフ状態、流量制御弁51がオン状態、流量制御弁52がオフ状態に制御されている。
中央軸受部21用の潤滑油は、始動モードと同様に、第1,第2のルートから軸受メタル21aへ給油される。各側部軸受部22用の潤滑油は、主油路7、分岐油路45、共通油路41、各分岐給油路42、第1逆止弁43を経由して各軸受メタル22aへ給油される。これにより、中央軸受部21へ供給される潤滑油量を増加し、中央軸受部21と各クランクピン部13の潤滑油膜の厚さを確保できる。また、各側部軸受部22へ供給される潤滑油量を増加し、各側部軸受部22の潤滑油膜の厚さを確保でき、潤滑油粘度の過剰低下を抑制することができる。
When the so-called lubricating oil temperature is 130 ° C. or higher in the high temperature mode, the electromagnetic on-off valve 53 is controlled to be off, the flow control valve 51 is on, and the flow control valve 52 is off.
The lubricating oil for the central bearing portion 21 is supplied to the bearing metal 21a from the first and second routes, as in the start mode. Lubricating oil for each side bearing portion 22 is supplied to each bearing metal 22a via the main oil passage 7, the branch oil passage 45, the common oil passage 41, each branch oil passage 42, and the first check valve 43. The Thereby, the amount of lubricating oil supplied to the central bearing portion 21 can be increased, and the thickness of the lubricating oil film of the central bearing portion 21 and each crankpin portion 13 can be secured. Further, the amount of lubricating oil supplied to each side bearing portion 22 can be increased, the thickness of the lubricating oil film of each side bearing portion 22 can be secured, and an excessive decrease in the lubricating oil viscosity can be suppressed.

高回転/高負荷モードのときは、高温モードと同様に、電磁開閉弁53がオフ状態、流量制御弁51がオン状態、流量制御弁52がオフ状態に制御されている。
フェールセーフモードのときは、電磁開閉弁53がオフ状態に制御される。これにより、流量制御弁51,52が故障したときでも、中央軸受部21と各側部軸受部22と各クランクピン部13の潤滑油膜の厚さを確保できる。
In the high rotation / high load mode, similarly to the high temperature mode, the electromagnetic on-off valve 53 is controlled to be in the off state, the flow control valve 51 is in the on state, and the flow control valve 52 is in the off state.
In the fail safe mode, the electromagnetic on-off valve 53 is controlled to be in an off state. Thereby, even when the flow control valves 51 and 52 fail, the thickness of the lubricating oil film of the central bearing portion 21, the side bearing portions 22, and the crank pin portions 13 can be secured.

図6,図7に基づき、軸受部21と軸受部22に供給される潤滑油の流量特性について説明する。尚、図6,図7は、エンジン回転数が2000rpmのときの潤滑油の流量特性を示している。   The flow characteristics of the lubricating oil supplied to the bearing portion 21 and the bearing portion 22 will be described with reference to FIGS. 6 and 7 show the flow characteristics of the lubricating oil when the engine speed is 2000 rpm.

図6に示すように、中央軸受部21には、4つのクランクピン部13の潤滑に必要な流量L3を中央軸受部21の潤滑に必要な流量に付加した流量L1が供給されている。
流量L1は、油圧がP0kPa未満の範囲と、油圧がP0kPaからP1kPaまでの微小流量制御範囲Aと、油圧がP1kPa以上の範囲に分けて制御されている。
As shown in FIG. 6, the central bearing portion 21 is supplied with a flow rate L <b> 1 obtained by adding a flow rate L <b> 3 required for lubricating the four crankpin portions 13 to a flow rate required for lubricating the central bearing portion 21.
The flow rate L1 is controlled by being divided into a range where the oil pressure is less than P0 kPa, a minute flow rate control range A where the oil pressure is from P0 kPa to P1 kPa, and a range where the oil pressure is P1 kPa or more.

油圧がP0kPa未満のとき、電磁開閉弁53がオフ状態(開弁)のため、流量制御弁51を介して供給される潤滑油と電磁開閉弁53を介して供給される潤滑油が合流されて軸受メタル21aへ給油される。微小流量制御範囲Aのとき、電磁開閉弁53がオン状態(閉弁)のため、流量制御弁51を介して供給される潤滑油が軸受メタル21aへ給油される。油圧がP1kPa以上のとき、前述した油圧がP0kPa未満の場合と同様である。
以上により、微小流量制御範囲Aでは、中央軸受部21へ供給する潤滑油流量L1を、油圧マップに基づきデューティ制御し、各クランクピン部13を十分に潤滑しつつ、中央軸受部21の潤滑油膜の厚さを所定の限界厚さ近傍に維持するよう制御している。
When the hydraulic pressure is less than P0 kPa, the electromagnetic on-off valve 53 is in an off state (opened), so that the lubricating oil supplied through the flow control valve 51 and the lubricating oil supplied through the electromagnetic on-off valve 53 are merged. Oil is supplied to the bearing metal 21a. In the minute flow control range A, since the electromagnetic on-off valve 53 is in an ON state (closed), the lubricating oil supplied via the flow control valve 51 is supplied to the bearing metal 21a. When the oil pressure is P1 kPa or more, the same as the above-described case where the oil pressure is less than P0 kPa.
As described above, in the minute flow rate control range A, the lubricating oil flow rate L1 supplied to the central bearing portion 21 is duty-controlled based on the hydraulic pressure map, and the lubricating oil film of the central bearing portion 21 is sufficiently lubricated while each crankpin portion 13 is sufficiently lubricated. The thickness is controlled to be maintained in the vicinity of a predetermined limit thickness.

図7に示すように、側部軸受部22には、側部軸受部22の潤滑に必要な流量L2が供給されている。流量L2は、油圧がP2kPa未満の微小流量制御範囲Bと、油圧がP2kPa以上の範囲に分けて制御されている。
微小流量制御範囲Bのとき、電磁開閉弁53がオン状態(閉弁)のため、流量制御弁52を介して供給される潤滑油が軸受メタル22aへ給油される。
油圧がP2kPa以上のとき、電磁開閉弁53がオフ状態(開弁)のため、流量制御弁52を介して供給される潤滑油と電磁開閉弁53を介して供給される潤滑油が合流されて軸受メタル22aへ給油される。
As shown in FIG. 7, the side bearing portion 22 is supplied with a flow rate L <b> 2 necessary for lubrication of the side bearing portion 22. The flow rate L2 is controlled by being divided into a minute flow rate control range B where the hydraulic pressure is less than P2 kPa and a range where the hydraulic pressure is P2 kPa or more.
In the minute flow control range B, since the electromagnetic opening / closing valve 53 is in an ON state (valve closed), the lubricating oil supplied via the flow control valve 52 is supplied to the bearing metal 22a.
When the hydraulic pressure is P2 kPa or more, the electromagnetic on-off valve 53 is in an off state (opened), so that the lubricating oil supplied through the flow control valve 52 and the lubricating oil supplied through the electromagnetic on-off valve 53 are merged. Oil is supplied to the bearing metal 22a.

以上により、微小流量制御範囲Bでは、各側部軸受部22へ供給する潤滑油流量L2を、油圧マップに基づきデューティ制御し、側部軸受部22の潤滑油膜の厚さを所定の限界厚さ近傍に維持するよう制御している。油圧がP2kPa以上の範囲では、潤滑油流量L2の増加傾向を、微小流量制御範囲B内の増加傾向よりも大きくして、潤滑油膜の厚さを増加している。   As described above, in the minute flow rate control range B, the lubricating oil flow rate L2 supplied to each side bearing portion 22 is duty-controlled based on the hydraulic pressure map, and the thickness of the lubricating oil film of the side bearing portion 22 is set to a predetermined limit thickness. It is controlled to keep it close. In the range where the hydraulic pressure is P2 kPa or more, the increasing tendency of the lubricating oil flow rate L2 is made larger than the increasing tendency in the minute flow rate control range B, and the thickness of the lubricating oil film is increased.

次に、エンジンの給油装置1の作用、効果について説明する。
このエンジンの給油装置1では、各クランクピン部13に給油するピン部給油路30と4つの側部軸受部22に給油する軸受部給油路40を独立して形成したため、クランクピン部13の潤滑油と各側部軸受部22の潤滑油を個別に制御することができ、エンジン状態に応じて各クランクピン部13と各側部軸受部22の潤滑要求に適した給油制御を行うことができる。図8に示すように、従来の独立給油方式の給油装置では、全軸受部にクランクピン部の潤滑に必要な潤滑油を付加した潤滑油量を均等に供給する必要があった。本実施例の給油装置1では、中央軸受部21のみにクランクピン部13の潤滑に必要な潤滑油を付加し、各側部軸受部22の潤滑油量は潤滑油膜の厚さが所定の限界厚さ近傍まで低減できるため、潤滑油の総消費量を低減することができる。
Next, the operation and effect of the engine oiling device 1 will be described.
In the engine oil supply device 1, since the pin part oil supply passage 30 for supplying oil to each crankpin part 13 and the bearing part oil supply path 40 for supplying oil to the four side bearing parts 22 are formed independently, lubrication of the crankpin part 13 is performed. Oil and the lubricating oil of each side bearing portion 22 can be individually controlled, and oil supply control suitable for the lubrication requirements of each crankpin portion 13 and each side bearing portion 22 can be performed according to the engine state. . As shown in FIG. 8, in the conventional independent oil supply system oil supply device, it is necessary to uniformly supply the lubricating oil amount to which all the bearing portions are added with the lubricating oil necessary for lubricating the crankpin portion. In the oil supply device 1 of the present embodiment, the lubricating oil necessary for lubricating the crank pin portion 13 is added only to the central bearing portion 21, and the amount of lubricating oil in each side bearing portion 22 is limited by the thickness of the lubricating oil film. Since it can reduce to the thickness vicinity, the total consumption of lubricating oil can be reduced.

しかも、各クランクピン部13の潤滑油と各側部軸受部22の潤滑油を個別に供給でき、エンジン状態に応じて各クランクピン部13と各側部軸受部22の潤滑要求に適した給油制御ができるため、各側部軸受部22等の潤滑油のサイドフローを抑制でき、剪断応力により発生した熱量を各側部軸受部22に滞在する潤滑油に維持し、潤滑油の早期昇温を図り、摩擦抵抗の低減ができる。それ故、オイルポンプ6の駆動負荷を低減するため、エンジンEの燃費を改善することができる。また、潤滑油が中央軸受部21からクランク軸内油路14を経由して各クランクピン部13へ給油されるため、ピン部給油路30が軸受部21の給油路を兼用でき、エンジンEのクランク軸方向長さを短縮化でき、潤滑油路全体を簡単化できる。   In addition, the lubricating oil for each crankpin portion 13 and the lubricating oil for each side bearing portion 22 can be separately supplied, and lubrication suitable for the lubrication requirements of each crankpin portion 13 and each side bearing portion 22 according to the engine state. Since it can be controlled, the side flow of the lubricating oil in each side bearing portion 22 and the like can be suppressed, the amount of heat generated by the shearing stress is maintained in the lubricating oil staying in each side bearing portion 22, and the lubricating oil can be heated up quickly. To reduce frictional resistance. Therefore, since the driving load of the oil pump 6 is reduced, the fuel efficiency of the engine E can be improved. Further, since the lubricating oil is supplied from the central bearing portion 21 to each crankpin portion 13 via the crankshaft oil passage 14, the pin oil supply passage 30 can also be used as the oil supply passage of the bearing portion 21. The length in the crankshaft direction can be shortened, and the entire lubricating oil passage can be simplified.

軸受部給油路40は、軸受部用流量制御弁52が設置された共通油路41と、流量制御弁52より下流側の共通油路41と各側部軸受部22に夫々連通する4つの分岐給油路42を備えているため、共通油路41から分岐した分岐給油路42により各側部軸受部22に潤滑油を精度よく分配することができる。   The bearing portion oil supply passage 40 has four branches that communicate with the common oil passage 41 in which the flow control valve 52 for the bearing portion is installed, the common oil passage 41 on the downstream side of the flow control valve 52, and the side bearing portions 22, respectively. Since the oil supply passage 42 is provided, the lubricating oil can be accurately distributed to the side bearing portions 22 by the branch oil supply passage 42 branched from the common oil passage 41.

分岐給油路42は、油圧が所定圧力以上のとき潤滑油を供給するように開弁する第1逆止弁43と、この第1逆止弁43の上流側部分と側部軸受部22を連通し且つ第1逆止弁43が開弁したときの潤滑油の流量よりも流量を制限可能な絞り通路43を備えているため、各側部軸受部22の要求流量が小さい時、小流量の潤滑油を各側部軸受部22に給油でき、潤滑油膜温度を早期に上昇することにより各側部軸受部22の摩擦抵抗を低減することができる。   The branch oil supply passage 42 communicates the first check valve 43 that opens so as to supply lubricating oil when the hydraulic pressure is equal to or higher than a predetermined pressure, and the upstream side portion of the first check valve 43 and the side bearing portion 22. In addition, since the throttle passage 43 that can restrict the flow rate than the flow rate of the lubricating oil when the first check valve 43 is opened is provided, when the required flow rate of each side bearing portion 22 is small, a small flow rate is obtained. Lubricating oil can be supplied to each side bearing part 22, and the frictional resistance of each side bearing part 22 can be reduced by increasing the lubricating oil film temperature early.

主油路7から分岐し且つ電磁開閉弁53を介して共通油路41に連通する分岐油路45と、クランクピン部用流量制御弁51より下流側のピン部給油路30と軸受部用流量制御弁52より下流側の共通油路41を連通する連通路31を設け、連通路31に電磁開閉弁53が開弁したとき開弁し且つ電磁開閉弁53が閉弁したとき閉弁する第2逆止弁33を形成したため、各軸受部21,22の要求流量が大きい時、大流量の潤滑油を中央軸受部21と各側部軸受部22とに早期に給油でき、各軸受部21,22の摩擦抵抗を低減することができる。   A branch oil passage 45 that branches from the main oil passage 7 and communicates with the common oil passage 41 via the electromagnetic on-off valve 53, the pin portion oil supply passage 30 on the downstream side of the crank pin portion flow control valve 51, and the bearing portion flow rate. A communication passage 31 communicating with the common oil passage 41 on the downstream side of the control valve 52 is provided. The communication passage 31 is opened when the electromagnetic on-off valve 53 is opened, and is closed when the electromagnetic on-off valve 53 is closed. 2 Since the check valve 33 is formed, when the required flow rates of the bearing portions 21 and 22 are large, a large amount of lubricating oil can be supplied to the central bearing portion 21 and the side bearing portions 22 at an early stage. , 22 can be reduced.

クランク軸内油路14は、一端がクランク軸10の中央側に位置する中央軸受部21に連通し且つ他端が各クランクピン部13に夫々連通する第1〜第4専用油路14a〜14dと中央油路14eを有するため、エンジンEの気筒数に拘わらず潤滑油が流れる専用通路長さの差異を小さくでき、潤滑油の通路抵抗を小さくすることができ、オイルポンプ6の駆動負荷を低減することができる。   The crankshaft oil passage 14 has first to fourth dedicated oil passages 14a to 14d whose one end communicates with the central bearing portion 21 located on the center side of the crankshaft 10 and the other end communicates with each crankpin portion 13 respectively. And the central oil passage 14e, the difference in the length of the dedicated passage through which the lubricating oil flows can be reduced regardless of the number of cylinders of the engine E, the passage resistance of the lubricating oil can be reduced, and the driving load of the oil pump 6 can be reduced. Can be reduced.

次に、前記実施例を部分的に変更した変形例について説明する。
1〕前記実施例においては、4気筒エンジンの例を説明したが、少なくとも多気筒エンジンであればよく、2気筒以上の直列エンジンやV型エンジン等種々のエンジンに適用することができる。
Next, a modification in which the above embodiment is partially changed will be described.
1) In the above-described embodiment, an example of a four-cylinder engine has been described. However, at least a multi-cylinder engine may be used, and it can be applied to various engines such as an in-line engine having two or more cylinders and a V-type engine.

2〕前記実施例においては、クランク軸方向中央位置の中央軸受部にピン部給油路を連通した例を説明したが、第1気筒と第2気筒の間の側部軸受部、又は第3気筒と第4気筒の間の側部軸受部にピン部給油路を連通することも可能である。また、ピン部給油路を単一の軸受部に連通した例を説明したが、2つの軸受部に連通することも可能であり、複数の軸受部に連通しても本発明の効果を得ることができる。 2) In the above-described embodiment, the example in which the pin oil supply passage is connected to the central bearing portion at the center position in the crankshaft direction has been described, but the side bearing portion between the first cylinder and the second cylinder, or the third cylinder It is also possible to connect the pin portion oil supply passage to the side bearing portion between the cylinder and the fourth cylinder. Moreover, although the example which connected the pin part oil supply path to the single bearing part was demonstrated, it is also possible to connect to two bearing parts, and even if it communicates with several bearing parts, the effect of this invention is acquired. Can do.

3〕前記実施例においては、クランクピン部用流量制御弁と軸受部用流量制御弁にデューティソレノイドを用いた例を説明したが、潤滑油の流量制御が可能であれば良く、機械式の流量制御弁を適用することも可能である。
4〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。
3) In the above-described embodiment, the example in which the duty solenoid is used for the flow rate control valve for the crankpin portion and the flow rate control valve for the bearing portion has been described. It is also possible to apply a control valve.
4) In addition, those skilled in the art can implement the present invention in various forms added with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

本発明は、エンジンの給油装置において、軸受部給油路とピン部給油路を独立して設け、特定の軸受部にピン部給油路を連通したことにより、燃費を改善でき、エンジンの小型化を図ることができる。   The present invention provides an oil supply device for an engine in which a bearing oil supply passage and a pin oil supply passage are provided independently, and the pin oil supply passage is connected to a specific bearing portion, thereby improving fuel efficiency and reducing the size of the engine. Can be planned.

1 給油装置
5 コネクティングロッド
6 オイルポンプ
7 主油路
10 クランク軸
11 中央軸部
12 側部軸部
13 クランクピン部
14 クランク軸内油路
14a〜14d 第1〜第4専用油路
14e 中央油路
21 中央軸受部
22 側部軸受部
30 ピン部給油路
31 連通路
33 第2逆止弁
40 軸受部給油路
41 共通油路
42 分岐給油路
43 第1逆止弁
44 オリフィス
45 分岐油路
50 コントロールユニット
51 クランクピン部用流量制御弁
52 軸受部用流量制御弁
53 電磁開閉弁
E エンジン
DESCRIPTION OF SYMBOLS 1 Oil supply apparatus 5 Connecting rod 6 Oil pump 7 Main oil path 10 Crankshaft 11 Central shaft part 12 Side shaft part 13 Crankpin part 14 Crankshaft oil path 14a-14d 1st-4th exclusive oil path 14e Central oil path 21 Central bearing portion 22 Side bearing portion 30 Pin portion oil passage 31 Communication passage 33 Second check valve 40 Bearing portion oil passage 41 Common oil passage 42 Branch oil passage 43 First check valve 44 Orifice 45 Branch oil passage 50 Control Unit 51 Flow control valve for crankpin 52 Flow control valve for bearing 53 Electromagnetic on-off valve E Engine

Claims (5)

列状に配置された複数の軸部とコネクティングロッドを軸受けする複数のクランクピン部を備えたクランク軸と、前記複数の軸部を回転自在にエンジン本体に枢支する複数の軸受部を有し、これら複数の軸受部とクランクピン部にオイルポンプから主油路を介して潤滑油を給油可能なエンジンの給油装置において、
一端が前記複数の軸受部のうち特定の特定軸受部に連通すると共に他端が複数のクランクピン部に連通するクランク軸内油路と、
前記主油路から分岐し且つクランクピン部用流量制御弁を介して前記特定軸受部に連通するピン部給油路と、
前記主油路から分岐し且つ軸受部用流量制御弁を介して前記特定軸受部以外の複数の軸受部に夫々連通する軸受部給油路を備えたことを特徴とするエンジンの給油装置。
A plurality of shaft portions arranged in a row and a crankshaft having a plurality of crankpin portions for bearing connecting rods, and a plurality of bearing portions for pivotally supporting the plurality of shaft portions to the engine body In the oil supply device of the engine capable of supplying lubricating oil from the oil pump to the plurality of bearing portions and the crank pin portion through the main oil passage,
An oil passage in the crankshaft in which one end communicates with a specific bearing portion among the plurality of bearing portions and the other end communicates with a plurality of crankpin portions;
A pin portion oil supply passage that branches off from the main oil passage and communicates with the specific bearing portion via a flow control valve for a crankpin portion;
An oil supply device for an engine, comprising a bearing portion oil supply passage that branches off from the main oil passage and communicates with a plurality of bearing portions other than the specific bearing portion via a bearing portion flow control valve.
前記軸受部給油路は、前記軸受部用流量制御弁が設置された共通油路と、軸受部用流量制御弁より下流側の前記共通油路と前記特定軸受部以外の複数の軸受部に夫々連通する複数の分岐給油路を備えたことを特徴とする請求項1に記載のエンジンの給油装置。   The bearing part oil supply passage is provided in each of a plurality of bearing parts other than the common oil path in which the bearing part flow control valve is installed, the common oil path downstream of the bearing part flow control valve, and the specific bearing part. The engine oil supply device according to claim 1, further comprising a plurality of branch oil supply passages communicating with each other. 前記分岐給油路は、油圧が所定圧力以上のとき潤滑油を供給するように開弁する第1逆止弁と、この第1逆止弁の上流側部分と軸受部を連通し且つ第1逆止弁が開弁したときの潤滑油の流量よりも流量を制限可能な絞り通路を備えたことを特徴とする請求項2に記載のエンジンの給油装置。   The branch oil supply passage communicates a first check valve that opens so as to supply lubricating oil when the hydraulic pressure is equal to or higher than a predetermined pressure, an upstream portion of the first check valve, and a bearing portion, and a first reverse valve. The engine oil supply device according to claim 2, further comprising a throttle passage capable of restricting a flow rate rather than a flow rate of the lubricating oil when the stop valve is opened. 前記主油路から分岐し且つ開閉弁を介して前記共通油路に連通する分岐油路と、
前記クランクピン部用流量制御弁より下流側のピン部給油路と前記軸受部用流量制御弁より下流側の共通油路を連通する連通路を設け、
前記連通路に前記開閉弁が開弁したとき開弁し且つ開閉弁が閉弁したとき閉弁する第2逆止弁を形成したことを特徴とする請求項2又は3に記載のエンジンの給油装置。
A branch oil passage that branches off from the main oil passage and communicates with the common oil passage via an on-off valve;
A communication passage is provided for communicating a pin portion oil supply passage downstream from the crankpin flow control valve and a common oil passage downstream from the bearing flow control valve;
4. The engine oil supply according to claim 2, wherein a second check valve is formed in the communication path, which is opened when the on-off valve is opened and closed when the on-off valve is closed. 5. apparatus.
前記クランク軸内油路は、一端がクランク軸の中央側に位置する特定軸受部に連通し且つ他端が複数のクランクピン部に夫々連通する複数の専用油路を有することを特徴とする請求項1〜4の何れか1項に記載のエンジンの給油装置。   The oil passage in the crankshaft has a plurality of dedicated oil passages having one end communicating with a specific bearing portion located on the center side of the crankshaft and the other end communicating with a plurality of crankpin portions, respectively. Item 5. The engine fueling device according to any one of Items 1 to 4.
JP2010268066A 2010-12-01 2010-12-01 Engine oiling device Active JP5724332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010268066A JP5724332B2 (en) 2010-12-01 2010-12-01 Engine oiling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268066A JP5724332B2 (en) 2010-12-01 2010-12-01 Engine oiling device

Publications (2)

Publication Number Publication Date
JP2012117456A true JP2012117456A (en) 2012-06-21
JP5724332B2 JP5724332B2 (en) 2015-05-27

Family

ID=46500588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268066A Active JP5724332B2 (en) 2010-12-01 2010-12-01 Engine oiling device

Country Status (1)

Country Link
JP (1) JP5724332B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173450A (en) * 2013-03-06 2014-09-22 Fuji Heavy Ind Ltd Crank bearing structure of engine
JP2014199011A (en) * 2013-03-29 2014-10-23 マツダ株式会社 Oil supply device for engine
WO2016039078A1 (en) * 2014-09-11 2016-03-17 マツダ株式会社 Oil supply device for engine
EP3438424A1 (en) * 2017-08-02 2019-02-06 MAN Truck & Bus AG Device for lubricating an engine
JP2020007970A (en) * 2018-07-09 2020-01-16 株式会社豊田自動織機 Internal combustion engine
US10774702B2 (en) 2015-03-05 2020-09-15 Mazda Motor Corporation Oil supply device of engine, method of manufacturing engine, and oil supply passage structure of engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239806A (en) * 1990-02-19 1991-10-25 Nissan Motor Co Ltd Lubricating device of engine
JPH0419310A (en) * 1990-05-14 1992-01-23 Nissan Motor Co Ltd Engine lubrication system
JPH04113715U (en) * 1991-03-22 1992-10-06 三菱自動車工業株式会社 Conrod bearing lubrication structure
JPH0666119A (en) * 1992-08-11 1994-03-08 Nissan Motor Co Ltd Lubricating device for internal combustion engine
JPH06346717A (en) * 1993-01-19 1994-12-20 Toyota Motor Corp Lubrication device for internal combustion engine
JP2005256694A (en) * 2004-03-10 2005-09-22 Honda Motor Co Ltd Lubrication structure of valve train in internal combustion engine
JP2006266122A (en) * 2005-03-23 2006-10-05 Kawasaki Heavy Ind Ltd Engine crankshaft
JP2009264241A (en) * 2008-04-25 2009-11-12 Mazda Motor Corp Oil supply control device of engine
JP2010255502A (en) * 2009-04-24 2010-11-11 Mazda Motor Corp Oil supply device for engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239806A (en) * 1990-02-19 1991-10-25 Nissan Motor Co Ltd Lubricating device of engine
JPH0419310A (en) * 1990-05-14 1992-01-23 Nissan Motor Co Ltd Engine lubrication system
JPH04113715U (en) * 1991-03-22 1992-10-06 三菱自動車工業株式会社 Conrod bearing lubrication structure
JPH0666119A (en) * 1992-08-11 1994-03-08 Nissan Motor Co Ltd Lubricating device for internal combustion engine
JPH06346717A (en) * 1993-01-19 1994-12-20 Toyota Motor Corp Lubrication device for internal combustion engine
JP2005256694A (en) * 2004-03-10 2005-09-22 Honda Motor Co Ltd Lubrication structure of valve train in internal combustion engine
JP2006266122A (en) * 2005-03-23 2006-10-05 Kawasaki Heavy Ind Ltd Engine crankshaft
JP2009264241A (en) * 2008-04-25 2009-11-12 Mazda Motor Corp Oil supply control device of engine
JP2010255502A (en) * 2009-04-24 2010-11-11 Mazda Motor Corp Oil supply device for engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173450A (en) * 2013-03-06 2014-09-22 Fuji Heavy Ind Ltd Crank bearing structure of engine
JP2014199011A (en) * 2013-03-29 2014-10-23 マツダ株式会社 Oil supply device for engine
US10240496B2 (en) 2014-09-11 2019-03-26 Mazda Motor Corporation Engine oil supply apparatus
WO2016039078A1 (en) * 2014-09-11 2016-03-17 マツダ株式会社 Oil supply device for engine
JP2016056771A (en) * 2014-09-11 2016-04-21 マツダ株式会社 Oil supply device for engine
US20160208663A1 (en) * 2014-09-11 2016-07-21 Mazda Motor Corporation Engine oil supply apparatus
DE112015000155B4 (en) 2014-09-11 2024-10-17 Mazda Motor Corporation engine oil supply device
US10774702B2 (en) 2015-03-05 2020-09-15 Mazda Motor Corporation Oil supply device of engine, method of manufacturing engine, and oil supply passage structure of engine
JP2019027597A (en) * 2017-08-02 2019-02-21 エムアーエヌ トラック アンド バス アーゲーMAN Truck & Bus AG Device for lubricating internal combustion engine
CN109386341A (en) * 2017-08-02 2019-02-26 曼卡车和巴士股份公司 Device for lubricating internal combustion engines
CN109386341B (en) * 2017-08-02 2022-03-08 曼卡车和巴士股份公司 Device for lubricating an internal combustion engine
US11572812B2 (en) 2017-08-02 2023-02-07 Man Truck & Bus Ag Device for lubricating an internal combustion engine
JP7257114B2 (en) 2017-08-02 2023-04-13 エムアーエヌ トラック アンド バス エスエー Device for lubricating internal combustion engines
EP3438424A1 (en) * 2017-08-02 2019-02-06 MAN Truck & Bus AG Device for lubricating an engine
JP2020007970A (en) * 2018-07-09 2020-01-16 株式会社豊田自動織機 Internal combustion engine

Also Published As

Publication number Publication date
JP5724332B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5724332B2 (en) Engine oiling device
JP6183560B2 (en) Internal combustion engine
CN106050386B (en) System for piston cooling
JP5747500B2 (en) Engine oil circulation device
CN109386341B (en) Device for lubricating an internal combustion engine
US9121335B2 (en) System and method for an engine comprising a liquid cooling system and oil supply
JP2011058458A (en) Oil supply device of internal combustion engine
US9334766B2 (en) Method and apparatus for controlling oil flow in an internal combustion engine
US6955142B2 (en) Piston and cylinder oil squirter rail and system
JP6213200B2 (en) Engine cam cap
JP5691511B2 (en) Oil supply device for piston for internal combustion engine
US10598056B2 (en) Internal combustion engine
JP5903879B2 (en) Engine crankpin oiling structure and engine oiling device
JP2010255502A (en) Oil supply device for engine
JPS58135312A (en) Oil supplying apparatus for internal-combustion engine
JP2015124768A (en) Cooling structure of internal combustion engine
CN106812564B (en) Engine and vehicle with same
JP6094547B2 (en) Engine oil supply device
JP2017214915A (en) V type engine
US11486277B2 (en) Work vehicle engine with split-circuit lubrication system
JPH08128310A (en) Lubricating oil supply system for internal combustion engine
JP2023012837A (en) engine lubricator
JP2005105886A (en) Engine oil supply device
JP2021032173A (en) Lubrication device for engine
JP2021134772A (en) Oil jetting device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5724332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150