JP2012112851A - Ultrasonic inspection device and ultrasonic inspection method - Google Patents
Ultrasonic inspection device and ultrasonic inspection method Download PDFInfo
- Publication number
- JP2012112851A JP2012112851A JP2010263084A JP2010263084A JP2012112851A JP 2012112851 A JP2012112851 A JP 2012112851A JP 2010263084 A JP2010263084 A JP 2010263084A JP 2010263084 A JP2010263084 A JP 2010263084A JP 2012112851 A JP2012112851 A JP 2012112851A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- inspection object
- transmission
- inspection
- reception
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 187
- 238000000034 method Methods 0.000 title claims description 20
- 230000005540 biological transmission Effects 0.000 claims abstract description 131
- 239000012790 adhesive layer Substances 0.000 claims description 42
- 230000001902 propagating effect Effects 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 96
- 239000010959 steel Substances 0.000 abstract description 96
- 230000002093 peripheral effect Effects 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 238000009826 distribution Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229930182556 Polyacetal Natural products 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
【課題】検査対象物を迂回して超音波受信装置に到達する回折波を抑制することで、検査対象物の端部の検査を精度よく行う。
【解決手段】送信側超音波遮蔽キャップ14は、超音波送信面12の周囲を全周に渡って取り囲み、超音波送信面12の周囲より鋼板32の表面端部32aへ全周に渡って突出して設けられている。受信側超音波遮蔽キャップ24は、超音波受信面22の周囲を全周に渡って取り囲み、超音波受信面22の周囲より鋼板34の裏面端部34bへ全周に渡って突出して設けられている。送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24により、超音波送信面12から送信された超音波が検査対象物30を迂回して超音波受信面22に回折波として到達するのを抑制することができる。
【選択図】図1An object of the present invention is to accurately inspect an end portion of an inspection object by suppressing a diffracted wave that reaches an ultrasonic receiving device by bypassing the inspection object.
A transmission side ultrasonic shielding cap 14 surrounds the entire circumference of an ultrasonic transmission surface 12 and protrudes from the periphery of the ultrasonic transmission surface 12 to a surface end 32a of a steel plate 32 over the entire circumference. Is provided. The reception-side ultrasonic shielding cap 24 surrounds the entire circumference of the ultrasonic reception surface 22, and is provided so as to protrude from the periphery of the ultrasonic reception surface 22 to the back surface end 34 b of the steel plate 34 over the entire circumference. Yes. With the transmission side ultrasonic shielding cap 14 and the reception side ultrasonic shielding cap 24, the ultrasonic wave transmitted from the ultrasonic transmission surface 12 bypasses the inspection object 30 and reaches the ultrasonic reception surface 22 as a diffracted wave. Can be suppressed.
[Selection] Figure 1
Description
本発明は、超音波を用いて検査対象物の検査を行う超音波検査装置及び超音波検査方法に関する。 The present invention relates to an ultrasonic inspection apparatus and an ultrasonic inspection method for inspecting an inspection object using ultrasonic waves.
材料の非破壊評価を行うための手段として、放射線や電磁気、超音波等を利用した手法が用途に合わせて利用されている。その中でも超音波は、人体への影響が少なく、材料内部の検査が行えるため、生産現場等において導入しやすい方法として広く活用されている。 As means for performing non-destructive evaluation of materials, techniques using radiation, electromagnetics, ultrasonic waves, and the like are used according to applications. Among them, ultrasonic waves are widely used as a method that can be easily introduced at production sites and the like because they have little influence on the human body and can inspect materials.
しかし、超音波を固体材料内へ入射し、固体材料内からの超音波を受信するためには、従来は、材料と超音波センサ間に水やジェル等のカップリング剤を用いなければならなかった。そのため、製造ライン中の検査であっても、検査対象物全体を水に浸したり(水浸法)、超音波センサと検査対象物間のみに水を吹きかけたり(部分水浸法)する必要があり、その適用は一部に鉄鋼ライン等に限られていた。 However, in order to receive ultrasonic waves from inside the solid material and to receive ultrasonic waves from the inside of the solid material, conventionally, a coupling agent such as water or gel must be used between the material and the ultrasonic sensor. It was. Therefore, even for inspections on the production line, it is necessary to immerse the entire inspection object in water (water immersion method) or to spray water between the ultrasonic sensor and the inspection object only (partial immersion method). Yes, its application was limited to steel lines.
近年、空中に強力な超音波を伝搬させ材料内へ入射し、材料内を伝搬した後、材料から漏洩する超音波を感度よく受信できる空中超音波センサが開発された(空中超音波法に関する下記特許文献1〜6参照)。空中では高周波ほど減衰が大きいため、水浸法等で利用できる周波数帯(1MHz〜100MHz)よりも低い周波数帯に制限されるが、検査分解能を向上させるためにできるだけ高い周波数帯を用いることが望ましく、開発されている空中超音波センサの周波数帯は50kHz〜1MHz程度となっている。水浸法ほどの高い空間分解能は期待できないものの、非接触で検査が可能となるため、ライン中での全数検査への適用が十分期待できる。 In recent years, an aerial ultrasonic sensor has been developed that can receive high-accuracy ultrasonic waves in the air, enter the material, propagate through the material, and then receive the ultrasonic waves leaking from the material with high sensitivity (see below for the aerial ultrasonic method). Patent References 1 to 6). In the air, the higher the frequency, the higher the attenuation. Therefore, the frequency band is limited to a frequency band lower than the frequency band (1 MHz to 100 MHz) that can be used by the water immersion method, but it is desirable to use a frequency band as high as possible in order to improve inspection resolution. The frequency band of the developed aerial ultrasonic sensor is about 50 kHz to 1 MHz. Although high spatial resolution as high as the water immersion method cannot be expected, it is possible to inspect without contact, so it can be expected to be applied to 100% inspection in the line.
超音波を用いて検査対象物の検査を行う手法として、例えば特許文献1のように、検査対象物の表面側に配置された超音波送信装置から超音波を送信し、検査対象物中を透過した超音波を検査対象物の裏面側に配置された超音波受信装置で受信する透過法がある。しかし、透過法により検査対象物の端部の検査を行う場合は、超音波受信装置で受信される超音波には、検査対象物中を透過して超音波受信装置に到達する透過波だけでなく、検査対象物を迂回して超音波受信装置に到達する回折波も存在する。この回折波は、透過波とほぼ同時刻に超音波受信装置で受信され、さらに、超音波送信装置及び超音波受信装置を検査対象物の側面に近づけるほど、超音波受信装置での受信レベルが大きくなりやすい。検査対象物の端部の検査を精度よく行うためには、検査対象物中を透過して超音波受信装置に到達する透過波の振幅を超音波受信装置での受信信号から精度よく検出する必要があり、そのためには、検査対象物を迂回して超音波受信装置に到達する回折波を抑制することが望ましい。 As a technique for inspecting an inspection object using ultrasonic waves, for example, as in Patent Document 1, ultrasonic waves are transmitted from an ultrasonic transmission device arranged on the surface side of the inspection object, and transmitted through the inspection object. There is a transmission method in which the ultrasonic wave is received by an ultrasonic receiving device arranged on the back side of the inspection object. However, when the end of the inspection object is inspected by the transmission method, the ultrasonic wave received by the ultrasonic receiver is only transmitted waves that pass through the inspection object and reach the ultrasonic receiver. There is also a diffracted wave that bypasses the inspection target and reaches the ultrasonic receiver. This diffracted wave is received by the ultrasonic receiving device at approximately the same time as the transmitted wave, and further, the closer the ultrasonic transmitting device and the ultrasonic receiving device are to the side surface of the inspection object, the higher the reception level at the ultrasonic receiving device. Easy to grow. In order to accurately inspect the end of the inspection object, it is necessary to accurately detect the amplitude of the transmitted wave that passes through the inspection object and reaches the ultrasonic receiver from the received signal at the ultrasonic receiver. For this purpose, it is desirable to suppress diffracted waves that reach the ultrasonic receiving device by bypassing the inspection object.
本発明は、検査対象物を迂回して超音波受信装置に到達する回折波を抑制することで、検査対象物の端部の検査を精度よく行うことを目的とする。 An object of the present invention is to accurately inspect an end portion of an inspection object by suppressing a diffracted wave that reaches the ultrasonic receiving device by bypassing the inspection object.
本発明に係る超音波検査装置及び超音波検査方法は、上述した目的を達成するために以下の手段を採った。 The ultrasonic inspection apparatus and ultrasonic inspection method according to the present invention employ the following means in order to achieve the above-described object.
本発明に係る超音波検査装置は、検査対象物の表面端部と対向配置される超音波送信面であって、超音波を検査対象物の表面端部へ送信する超音波送信面を含む超音波送信装置と、検査対象物を介して超音波送信面と対向するよう検査対象物の裏面端部と対向配置される超音波受信面であって、超音波送信面から送信され且つ検査対象物中を透過した超音波を受信する超音波受信面を含む超音波受信装置と、を備える超音波検査装置であって、超音波送信装置は、超音波送信面の周囲を全周に渡って取り囲み、超音波送信面の周囲より検査対象物の表面端部へ全周に渡って突出し、超音波送信面から検査対象物の表面端部へ超音波を空中伝搬させるための貫通穴が超音波送信面側の端部から検査対象物の表面側の端部にかけて形成された送信側超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための送信側超音波遮蔽部材をさらに含むことを要旨とする。 An ultrasonic inspection apparatus according to the present invention is an ultrasonic transmission surface that is disposed opposite to a surface end portion of an inspection object, and includes an ultrasonic transmission surface that transmits ultrasonic waves to the surface end portion of the inspection object. An ultrasonic wave receiving device and an ultrasonic wave receiving surface that is arranged to face the back surface end of the inspection object so as to face the ultrasonic wave transmission surface through the inspection object, and is transmitted from the ultrasonic transmission surface and inspected An ultrasonic receiving device including an ultrasonic receiving surface that receives an ultrasonic wave transmitted through the inside, wherein the ultrasonic transmitting device surrounds the entire circumference of the ultrasonic transmitting surface The through-holes that project from the circumference of the ultrasonic transmission surface to the edge of the surface of the object to be inspected over the entire circumference and transmit ultrasonic waves from the ultrasonic wave transmission surface to the surface of the object of inspection are transmitted through the ultrasonic wave. Transmission formed from the edge on the surface side to the edge on the surface side of the inspection object An ultrasonic shielding member, further comprising a transmission-side ultrasonic shielding member for suppressing the ultrasonic wave transmitted from the ultrasonic transmission surface from reaching the ultrasonic reception surface by bypassing the inspection object The gist.
本発明の一態様では、超音波送信面は、検査対象物中に焦点が位置する凹曲面形状であり、送信側超音波遮蔽部材に形成された貫通穴の直径は、検査対象物の表面側が超音波送信面側より小さいことが好適である。 In one aspect of the present invention, the ultrasonic transmission surface has a concave curved surface shape in which a focal point is located in the inspection object, and the diameter of the through hole formed in the transmission-side ultrasonic shielding member is the surface side of the inspection object. It is preferable to be smaller than the ultrasonic transmission surface side.
本発明の一態様では、送信側超音波遮蔽部材の音響インピーダンスが検査対象物の音響インピーダンスより小さいことが好適である。 In one aspect of the present invention, it is preferable that the acoustic impedance of the transmission-side ultrasonic shielding member is smaller than the acoustic impedance of the inspection object.
本発明の一態様では、超音波受信装置は、超音波受信面の周囲を全周に渡って取り囲み、超音波受信面の周囲より検査対象物の裏面端部へ全周に渡って突出し、検査対象物の裏面端部から超音波受信面へ超音波を空中伝搬させるための貫通穴が超音波受信面側の端部から検査対象物の裏面側の端部にかけて形成された受信側超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための受信側超音波遮蔽部材をさらに含むことが好適である。 In one aspect of the present invention, the ultrasonic receiving device surrounds the entire circumference of the ultrasonic receiving surface, protrudes from the periphery of the ultrasonic receiving surface to the back surface end portion of the inspection object, and is inspected. A receiving-side ultrasonic shield in which a through-hole for propagating ultrasonic waves from the back end of the object to the ultrasonic receiving surface in the air is formed from the end on the ultrasonic receiving surface side to the end on the back side of the inspection object. Preferably, the apparatus further includes a reception-side ultrasonic shielding member for suppressing the ultrasonic wave transmitted from the ultrasonic transmission surface from reaching the ultrasonic reception surface by bypassing the inspection object. .
また、本発明に係る超音波検査装置は、検査対象物の表面端部と対向配置される超音波送信面であって、超音波を検査対象物の表面端部へ送信する超音波送信面を含む超音波送信装置と、検査対象物を介して超音波送信面と対向するよう検査対象物の裏面端部と対向配置される超音波受信面であって、超音波送信面から送信され且つ検査対象物中を透過した超音波を受信する超音波受信面を含む超音波受信装置と、を備える超音波検査装置であって、超音波受信装置は、超音波受信面の周囲を全周に渡って取り囲み、超音波受信面の周囲より検査対象物の裏面端部へ全周に渡って突出し、検査対象物の裏面端部から超音波受信面へ超音波を空中伝搬させるための貫通穴が超音波受信面側の端部から検査対象物の裏面側の端部にかけて形成された受信側超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための受信側超音波遮蔽部材をさらに含むことを要旨とする。 In addition, an ultrasonic inspection apparatus according to the present invention is an ultrasonic transmission surface that is disposed opposite to a surface end portion of an inspection object, and includes an ultrasonic transmission surface that transmits ultrasonic waves to the surface end portion of the inspection object. An ultrasonic transmission device including an ultrasonic transmission surface disposed opposite to the back end portion of the inspection object so as to face the ultrasonic transmission surface via the inspection object, and transmitted from the ultrasonic transmission surface and inspected An ultrasonic receiving device including an ultrasonic receiving surface that receives ultrasonic waves transmitted through an object, wherein the ultrasonic receiving device extends around the entire circumference of the ultrasonic receiving surface. The through-holes that project from the periphery of the ultrasonic receiving surface to the back end of the object to be inspected over the entire circumference and propagate ultrasonic waves from the back end of the inspection object to the ultrasonic receiving surface in the air. It is formed from the end on the sound wave receiving surface side to the end on the back side of the inspection object. A reception-side ultrasonic shielding member, further including a reception-side ultrasonic shielding member for suppressing the ultrasonic wave transmitted from the ultrasonic transmission surface from reaching the ultrasonic reception surface by bypassing the inspection object This is the gist.
本発明の一態様では、超音波受信面は、検査対象物中に焦点が位置する凹曲面形状であり、受信側超音波遮蔽部材に形成された貫通穴の直径は、検査対象物の裏面側が超音波受信面側より小さいことが好適である。 In one aspect of the present invention, the ultrasonic receiving surface has a concave curved surface shape in which the focal point is located in the inspection object, and the diameter of the through hole formed in the reception-side ultrasonic shielding member is the back surface side of the inspection object. It is preferable to be smaller than the ultrasonic wave receiving surface side.
本発明の一態様では、受信側超音波遮蔽部材の音響インピーダンスが検査対象物の音響インピーダンスより小さいことが好適である。 In one aspect of the present invention, it is preferable that the acoustic impedance of the reception-side ultrasonic shielding member is smaller than the acoustic impedance of the inspection object.
本発明の一態様では、検査対象物は、第1板状部材と第2板状部材が端部において接着層を介して接合されており、超音波送信面は、第1板状部材の表面端部と対向配置され、超音波を第1板状部材を介して接着層へ送信し、超音波受信面は、第1板状部材と接着層と第2板状部材を介して超音波送信面と対向するよう第2板状部材の裏面端部と対向配置され、超音波送信面から送信され且つ第1板状部材と接着層と第2板状部材を透過した超音波を受信することが好適である。 In one aspect of the present invention, the inspection object is such that the first plate-like member and the second plate-like member are bonded to each other through the adhesive layer at the end, and the ultrasonic transmission surface is the surface of the first plate-like member. The ultrasonic wave is transmitted to the adhesive layer through the first plate member, and the ultrasonic wave receiving surface is ultrasonically transmitted through the first plate member, the adhesive layer, and the second plate member. Receiving the ultrasonic wave transmitted from the ultrasonic transmission surface and transmitted through the first plate member, the adhesive layer, and the second plate member so as to face the rear surface end of the second plate member so as to face the surface. Is preferred.
また、本発明に係る超音波検査方法は、本発明に係る超音波検査装置を用いた超音波検査方法であって、検査対象物に対する超音波透過位置を2次元的に移動走査しながら、超音波送信装置から送信され且つ検査対象物中を透過した超音波を超音波受信装置で受信し、超音波受信装置で受信された、各超音波透過位置に対応する超音波の振幅に基づいて、検査対象物の検査を行うことを要旨とする。 Further, the ultrasonic inspection method according to the present invention is an ultrasonic inspection method using the ultrasonic inspection apparatus according to the present invention, wherein the ultrasonic transmission position with respect to the inspection object is moved and scanned in two dimensions. Based on the amplitude of the ultrasonic wave corresponding to each ultrasonic wave transmission position received by the ultrasonic wave reception device and received by the ultrasonic wave reception device, transmitted from the ultrasonic wave transmission device and transmitted through the inspection object, The gist is to inspect the inspection object.
本発明によれば、検査対象物の端部の検査を行う場合に、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に回折波として到達するのを抑制することができるので、検査対象物中を透過して超音波受信面に到達する透過波の振幅を超音波受信面での受信信号から精度よく検出することができる。その結果、検査対象物の端部の検査を精度よく行うことができる。 According to the present invention, when the end of the inspection object is inspected, the ultrasonic wave transmitted from the ultrasonic transmission surface is prevented from bypassing the inspection object and reaching the ultrasonic reception surface as a diffracted wave. Therefore, the amplitude of the transmitted wave that passes through the inspection object and reaches the ultrasonic wave reception surface can be accurately detected from the reception signal on the ultrasonic wave reception surface. As a result, the end of the inspection object can be inspected with high accuracy.
以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
図1〜3は本発明の実施形態に係る超音波検査装置の概略構成を示す図であり、図1は装置全体の概略構成を示し、図2,3は超音波送信センサ10及び超音波受信センサ20の概略構成を示す。本実施形態に係る超音波検査装置は、超音波送信センサ10と、超音波受信センサ20と、走査装置40と、超音波信号供給部41と、信号処理部42と、画像処理部44と、表示装置46と、検査判定部48と、を備える。 1 to 3 are diagrams illustrating a schematic configuration of an ultrasonic inspection apparatus according to an embodiment of the present invention. FIG. 1 illustrates a schematic configuration of the entire apparatus. FIGS. 2 and 3 illustrate an ultrasonic transmission sensor 10 and an ultrasonic reception. A schematic configuration of the sensor 20 is shown. The ultrasonic inspection apparatus according to the present embodiment includes an ultrasonic transmission sensor 10, an ultrasonic reception sensor 20, a scanning device 40, an ultrasonic signal supply unit 41, a signal processing unit 42, an image processing unit 44, A display device 46 and an inspection determination unit 48 are provided.
検査対象物30は、板状部材である鋼板32,34と、鋼板32,34同士を端部において接合するための接着層36とを含んで構成され、鋼板32の裏面端部32bと鋼板34の表面端部34aが接着層36を介して接合されている。鋼板32,34間における接着層36が設けられていない領域は空隙となっている。以下の説明では、本実施形態に係る超音波検査装置を用いた検査対象物30の検査の適用例として、鋼板32,34の接着層36による密着性を評価する場合について説明する。 The inspection object 30 is configured to include steel plates 32 and 34 that are plate-like members and an adhesive layer 36 for joining the steel plates 32 and 34 at the ends, and the back end portion 32b of the steel plate 32 and the steel plate 34. The surface end portion 34 a of the first and second surfaces are joined through an adhesive layer 36. A region where the adhesive layer 36 is not provided between the steel plates 32 and 34 is a gap. In the following description, as an application example of the inspection of the inspection object 30 using the ultrasonic inspection apparatus according to the present embodiment, a case where the adhesion by the adhesive layer 36 of the steel plates 32 and 34 is evaluated will be described.
超音波送信センサ10は、鋼板32を介して接着層36と対向するよう検査対象物30(鋼板32)の表面端部32aと対向配置される超音波送信面12と、送信側超音波遮蔽キャップ14とを含んで構成される。超音波送信面12は、例えば圧電素子等により構成することが可能である。超音波送信センサ10には、超音波信号供給部41からの超音波信号が供給される。超音波送信センサ10は、超音波信号供給部41から供給された超音波信号に基づいて、超音波送信面12から超音波を鋼板32の表面端部32aへ送信する。超音波送信面12から送信された超音波は、図1の矢印61に示すように、空中を伝搬して鋼板32の表面端部32aに入射する。鋼板32の表面端部32aに入射した超音波は、図1の矢印62に示すように、鋼板32を透過して接着層36に到達し、さらに、接着層36及び鋼板34を透過して検査対象物30(鋼板34)の裏面側に到達する。図1に示す例では、超音波送信センサ10はフォーカス型センサであり、超音波送信面12は、検査対象物30中(接着層36)に焦点38が位置する凹曲面形状であり、超音波送信面12から送信された超音波は、焦点38(接着層36)へ集束する。なお、送信側超音波遮蔽キャップ14の構成の説明については後述する。 The ultrasonic transmission sensor 10 includes an ultrasonic transmission surface 12 disposed to face the surface end portion 32a of the inspection object 30 (steel plate 32) so as to face the adhesive layer 36 through the steel plate 32, and a transmission-side ultrasonic shielding cap. 14. The ultrasonic transmission surface 12 can be constituted by, for example, a piezoelectric element. An ultrasonic signal from the ultrasonic signal supply unit 41 is supplied to the ultrasonic transmission sensor 10. The ultrasonic transmission sensor 10 transmits an ultrasonic wave from the ultrasonic transmission surface 12 to the surface end portion 32 a of the steel plate 32 based on the ultrasonic signal supplied from the ultrasonic signal supply unit 41. The ultrasonic wave transmitted from the ultrasonic transmission surface 12 propagates in the air and enters the surface end portion 32a of the steel plate 32 as indicated by an arrow 61 in FIG. The ultrasonic wave incident on the surface end portion 32a of the steel plate 32 passes through the steel plate 32 and reaches the adhesive layer 36, and further passes through the adhesive layer 36 and the steel plate 34 for inspection as shown by the arrow 62 in FIG. It reaches the back side of the object 30 (steel plate 34). In the example illustrated in FIG. 1, the ultrasonic transmission sensor 10 is a focus sensor, and the ultrasonic transmission surface 12 has a concave curved surface shape in which the focal point 38 is located in the inspection object 30 (adhesive layer 36). The ultrasonic wave transmitted from the transmission surface 12 is focused on the focal point 38 (adhesive layer 36). The configuration of the transmission side ultrasonic shielding cap 14 will be described later.
超音波受信センサ20は、検査対象物30(鋼板32と接着層36と鋼板34)を介して超音波送信面12と対向するよう検査対象物30(鋼板34)の裏面端部34bと対向配置される超音波受信面22と、受信側超音波遮蔽キャップ24とを含んで構成される。超音波受信面22も、例えば圧電素子等により構成することが可能である。検査対象物30(鋼板34)の裏面側に到達した超音波は、図1の矢印63に示すように、空中を伝搬して超音波受信面22に到達する。超音波受信センサ20は、超音波送信面12から送信され且つ検査対象物30(鋼板32と接着層36と鋼板34)を透過した超音波を超音波受信面22で受信する。図1に示す例では、超音波受信センサ20もフォーカス型センサであり、超音波受信面22も、検査対象物30中(接着層36)に焦点38が位置する凹曲面形状であり、焦点38に集束した超音波は、超音波受信面22全体に拡散して到達する。なお、受信側超音波遮蔽キャップ24の構成の説明については後述する。 The ultrasonic receiving sensor 20 is disposed so as to face the back end 34b of the inspection object 30 (steel plate 34) so as to face the ultrasonic transmission surface 12 via the inspection object 30 (steel plate 32, adhesive layer 36, and steel plate 34). An ultrasonic receiving surface 22 and a receiving-side ultrasonic shielding cap 24 are configured. The ultrasonic receiving surface 22 can also be configured by, for example, a piezoelectric element. The ultrasonic wave that has reached the back side of the inspection object 30 (steel plate 34) propagates in the air and reaches the ultrasonic wave receiving surface 22 as indicated by an arrow 63 in FIG. The ultrasonic reception sensor 20 receives ultrasonic waves transmitted from the ultrasonic transmission surface 12 and transmitted through the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) by the ultrasonic reception surface 22. In the example shown in FIG. 1, the ultrasonic reception sensor 20 is also a focus type sensor, and the ultrasonic reception surface 22 is also a concave curved surface shape in which the focal point 38 is located in the inspection object 30 (adhesive layer 36). The ultrasonic waves focused on are diffused and reach the entire ultrasonic receiving surface 22. The configuration of the reception-side ultrasonic shielding cap 24 will be described later.
走査装置40は、超音波送信センサ10及び超音波受信センサ20(超音波送信面12及び超音波受信面22)を、鋼板32,34の板面方向と平行に2次元的に移動走査させる。これによって、検査対象物30に対して超音波送信面12及び超音波受信面22の焦点38を鋼板32,34の板面方向と平行に2次元的に移動走査させることができ、検査対象物30に対する超音波透過位置(密着性評価位置)を鋼板32,34の板面方向と平行に2次元的に移動走査させることができる。鋼板32,34の接着層36による密着性を評価する際には、走査装置40により検査対象物30に対する超音波透過位置を2次元的に移動走査しながら、超音波送信装置10から超音波を送信し、検査対象物30中を透過した超音波を超音波受信装置20で受信する。その際に、超音波送信センサ10及び超音波受信センサ20をフォーカス型センサとすることで、検査対象物30に対する密着性評価位置の空間分解能を向上させることが可能となる。 The scanning device 40 causes the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 (the ultrasonic transmission surface 12 and the ultrasonic reception surface 22) to move and scan two-dimensionally in parallel with the plate surface directions of the steel plates 32 and 34. Thereby, the focal point 38 of the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 can be moved and scanned two-dimensionally in parallel with the plate surface direction of the steel plates 32 and 34 with respect to the inspection target object 30. The ultrasonic transmission position (adhesion evaluation position) with respect to 30 can be moved and scanned two-dimensionally in parallel with the plate surface direction of the steel plates 32 and 34. When evaluating the adhesion of the steel plates 32, 34 by the adhesive layer 36, ultrasonic waves are transmitted from the ultrasonic transmission device 10 while the scanning device 40 moves and scans the ultrasonic transmission position relative to the inspection object 30 in two dimensions. The ultrasonic wave reception device 20 receives the ultrasonic wave transmitted and transmitted through the inspection object 30. At that time, by using the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 as focus type sensors, the spatial resolution of the adhesion evaluation position with respect to the inspection object 30 can be improved.
信号処理部42は、超音波受信センサ20(超音波受信面22)で受信された、各超音波透過位置(密着性評価位置)に対応する超音波信号の振幅を検出する。画像処理部44は、信号処理部42で検出された超音波信号の振幅を、各超音波透過位置と対応付けて2次元面に画像化し、その2次元画像を表示装置46に表示させる。検査判定部48は、信号処理部42で検出された、各超音波透過位置に対応する超音波信号の振幅に基づいて、鋼板32,34の接着層36による密着性を評価することで、検査対象物30の検査を行う。例えば鋼板32(あるいは鋼板34)と接着層36との界面に剥離がある場合は、剥離が無い場合と比較して、検査対象物30(鋼板32と接着層36と鋼板34)を透過して超音波受信面22で受信される超音波信号のレベルが低下する。したがって、超音波受信面22で受信された、各超音波透過位置に対応する超音波の振幅を調べることで、鋼板32,34の接着層36による密着性を評価することが可能となる。 The signal processing unit 42 detects the amplitude of the ultrasonic signal corresponding to each ultrasonic transmission position (adhesion evaluation position) received by the ultrasonic reception sensor 20 (ultrasonic reception surface 22). The image processing unit 44 images the amplitude of the ultrasonic signal detected by the signal processing unit 42 in a two-dimensional plane in association with each ultrasonic transmission position, and causes the display device 46 to display the two-dimensional image. The inspection determination unit 48 evaluates the adhesion of the steel plates 32 and 34 by the adhesive layer 36 based on the amplitude of the ultrasonic signal corresponding to each ultrasonic transmission position detected by the signal processing unit 42. The object 30 is inspected. For example, when there is peeling at the interface between the steel plate 32 (or the steel plate 34) and the adhesive layer 36, the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) is transmitted through compared with the case where there is no peeling. The level of the ultrasonic signal received by the ultrasonic receiving surface 22 decreases. Therefore, it is possible to evaluate the adhesion of the steel plates 32 and 34 by the adhesive layer 36 by examining the amplitude of the ultrasonic wave received by the ultrasonic wave receiving surface 22 and corresponding to each ultrasonic wave transmitting position.
鋼板32,34端部での接着層36による密着性を評価する場合は、超音波送信面12から超音波を鋼板32の表面端部32aへ向けて送信し、鋼板34の裏面端部34bからの超音波を超音波受信面22で受信する。その際に、超音波送信センサ10(フォーカス型センサ)から送信される超音波エネルギーのほとんどは、図4の矢印61,62に示すように、焦点38に向かって集束するが、一部は、図4の矢印64に示すように、センサより広がる方向に空中を伝搬する回折波となり、図4の矢印65,66に示すように、検査対象物30を迂回して超音波受信面22に到達する。その結果、超音波受信面22で受信される超音波には、図4の矢印61〜63に示すように、検査対象物30中(鋼板32と接着層36と鋼板34)を透過して超音波受信面22に到達する透過波だけでなく、実際には、図4の矢印64〜66に示すように、検査対象物30(鋼板32と接着層36と鋼板34)を迂回して超音波受信面22に到達する回折波も存在する。この回折波は、透過波とほぼ同時刻に超音波受信面22で受信され、さらに、超音波送信面12及び超音波受信面22を検査対象物30の側面(鋼板32,34の側面32c,34c)に近づけるほど、超音波受信面22での受信レベルが大きくなりやすい。鋼板32,34端部での接着層36による密着性を精度よく評価するためには、検査対象物30中を透過して超音波受信面22に到達する透過波の振幅を超音波受信面22での受信信号から精度よく検出する必要があり、そのためには、検査対象物30を迂回して超音波受信面22に到達する回折波を抑制することが望ましい。特に、検査対象物30が鋼板32と接着層36と鋼板34のような3層構造では、その領域を透過する超音波のエネルギーが非常に小さくなるため、超音波受信面22での受信信号にわずかなエネルギーの回折波が混入しても、密着性評価に大きな影響を与えることになる。 When evaluating the adhesion by the adhesive layer 36 at the ends of the steel plates 32 and 34, the ultrasonic wave is transmitted from the ultrasonic transmission surface 12 toward the surface end portion 32a of the steel plate 32, and from the back end portion 34b of the steel plate 34. Are received by the ultrasonic wave receiving surface 22. At that time, most of the ultrasonic energy transmitted from the ultrasonic transmission sensor 10 (focus type sensor) is focused toward the focal point 38 as shown by arrows 61 and 62 in FIG. As shown by an arrow 64 in FIG. 4, a diffracted wave propagates in the air in a direction spreading from the sensor, and as shown by arrows 65 and 66 in FIG. To do. As a result, the ultrasonic wave received by the ultrasonic wave receiving surface 22 is transmitted through the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) as shown by arrows 61 to 63 in FIG. In addition to the transmitted wave reaching the sound wave receiving surface 22, in practice, as shown by arrows 64 to 66 in FIG. 4, the ultrasonic wave bypasses the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34). There is also a diffracted wave that reaches the receiving surface 22. This diffracted wave is received by the ultrasonic wave receiving surface 22 at substantially the same time as the transmitted wave. Further, the ultrasonic wave transmitting surface 12 and the ultrasonic wave receiving surface 22 are moved to the side surface of the inspection object 30 (the side surfaces 32c of the steel plates 32 and 34, 34c), the reception level at the ultrasonic wave receiving surface 22 tends to increase. In order to accurately evaluate the adhesion due to the adhesive layer 36 at the ends of the steel plates 32 and 34, the amplitude of the transmitted wave that passes through the inspection object 30 and reaches the ultrasonic receiving surface 22 is defined as the ultrasonic receiving surface 22. Therefore, it is desirable to suppress the diffracted wave that reaches the ultrasonic wave receiving surface 22 by bypassing the inspection object 30. In particular, when the inspection object 30 has a three-layer structure such as the steel plate 32, the adhesive layer 36, and the steel plate 34, the energy of the ultrasonic wave that passes through the region becomes very small. Even if a diffracted wave with a slight energy is mixed, the adhesion evaluation is greatly affected.
図5に示すように、検査対象物30として一枚の鋼板33(SPC270、厚さ0.8mm)を挟んで、フォーカス型センサである超音波送信センサ10及び超音波受信センサ20(ただし送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24は設けていない)を鋼板33と垂直に40mmの距離で正対させた場合に、超音波受信面22で受信された超音波信号の波形を図6に示す。鋼板33の側面(端面)33cから超音波送信面12及び超音波受信面22の中心軸までの距離Lが20mmの場合は、図6下の波形に示すように、鋼板33を迂回する回折波の影響をほとんど受けず、鋼板33中を透過する透過波を超音波受信面22での受信信号から検出することが可能である。しかし、鋼板33の側面(端面)33cからの距離Lが5mmの場合は、図6上の波形に示すように、回折波の影響が非常に大きく、信号処理部42の飽和電圧(2V)を超える電圧が測定され、鋼板33中を透過する透過波を超音波受信面22での受信信号から検出することは困難である。 As shown in FIG. 5, a single steel plate 33 (SPC 270, thickness 0.8 mm) is sandwiched as the inspection object 30, and the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 (however, on the transmission side) that are focus type sensors. When the ultrasonic shielding cap 14 and the receiving-side ultrasonic shielding cap 24 are not provided) at a distance of 40 mm perpendicular to the steel plate 33, the waveform of the ultrasonic signal received by the ultrasonic receiving surface 22 is as follows. As shown in FIG. When the distance L from the side surface (end surface) 33c of the steel plate 33 to the central axis of the ultrasonic wave transmitting surface 12 and the ultrasonic wave receiving surface 22 is 20 mm, as shown in the waveform at the bottom of FIG. It is possible to detect a transmitted wave that passes through the steel plate 33 from the reception signal at the ultrasonic wave receiving surface 22 without being substantially affected by the above. However, when the distance L from the side surface (end surface) 33c of the steel plate 33 is 5 mm, the influence of the diffracted wave is very large as shown in the waveform on FIG. 6, and the saturation voltage (2V) of the signal processing unit 42 is It is difficult to detect a transmitted wave passing through the steel plate 33 from the received signal at the ultrasonic wave receiving surface 22 because a voltage exceeding the voltage is measured.
そこで、本実施形態では、超音波送信面12から送信された超音波が検査対象物30を迂回して超音波受信面22に回折波として到達するのを抑制するために、送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24を超音波送信センサ10及び超音波受信センサ20にそれぞれ設けている。以下、超音波を遮蔽するための送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24の構成例について説明する。 Therefore, in the present embodiment, in order to suppress the ultrasonic wave transmitted from the ultrasonic transmission surface 12 from bypassing the inspection object 30 and reaching the ultrasonic reception surface 22 as a diffracted wave, the transmission side ultrasonic shielding is performed. The cap 14 and the reception-side ultrasonic shielding cap 24 are provided on the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20, respectively. Hereinafter, configuration examples of the transmission-side ultrasonic shielding cap 14 and the reception-side ultrasonic shielding cap 24 for shielding ultrasonic waves will be described.
図1〜3に示すように、送信側超音波遮蔽キャップ14は、超音波送信面12の周囲を全周に渡って取り囲み、超音波送信面12の周囲より検査対象物30(鋼板32)の表面端部32aへ全周に渡って突出して設けられており、超音波送信面12から鋼板32の表面端部32aへ超音波を空中伝搬させるための貫通穴14cが超音波送信面12側の端部から鋼板32の表面側の端部にかけて形成されている。送信側超音波遮蔽キャップ14の先端面14bと検査対象物30(鋼板32)の表面端部32aとの間には、僅かな(例えば3〜4mm程度の)空隙が形成される。あるいは、送信側超音波遮蔽キャップ14の先端面14bを鋼板32の表面端部32aに接触させることも可能である。 As shown in FIGS. 1 to 3, the transmission-side ultrasonic shielding cap 14 surrounds the entire circumference of the ultrasonic transmission surface 12, and the inspection object 30 (steel plate 32) is surrounded from the periphery of the ultrasonic transmission surface 12. A through-hole 14c for propagating ultrasonic waves in the air from the ultrasonic transmission surface 12 to the surface end portion 32a of the steel plate 32 is provided on the ultrasonic transmission surface 12 side. It is formed from the end portion to the end portion on the surface side of the steel plate 32. A slight gap (for example, about 3 to 4 mm) is formed between the distal end surface 14b of the transmission-side ultrasonic shielding cap 14 and the surface end portion 32a of the inspection object 30 (steel plate 32). Alternatively, the front end surface 14 b of the transmission-side ultrasonic shielding cap 14 can be brought into contact with the surface end portion 32 a of the steel plate 32.
広がる回折波成分を抑えて焦点38へ集束する成分のみを超音波受信面22から精度よく取り出すためには、送信側超音波遮蔽キャップ14の厚さを厚くすることで、送信側超音波遮蔽キャップ14中での超音波の減衰量を増加させることが好ましい。さらに、送信側超音波遮蔽キャップ14の貫通穴14cの内周面14aを、焦点38へ集束する成分を遮らないように、超音波送信面12の外周と焦点38とを結ぶ円錐面12aより外周側に配置するとともに、円錐面12aと内周面14aとの距離を短くすることが好ましい。そのためには、送信側超音波遮蔽キャップ14の内径(貫通穴14cの直径)は、検査対象物30(鋼板32)の表面側(図1,3の下側)が超音波送信面12側(図1,3の上側)より小さいことが好ましい。その際には、例えば図1〜3に示すように、超音波送信面12側から検査対象物30の表面側へ向かうにつれて、送信側超音波遮蔽キャップ14の内径(貫通穴14cの直径)を段階的に小さくすることも可能であるし、例えば図7,8に示すように、内周面14aを円錐面12aに近接配置するように、超音波送信面12側から検査対象物30の表面側へ向かうにつれて、送信側超音波遮蔽キャップ14の内径(貫通穴14cの直径)を徐々に小さくすることも可能である。なお、図1〜3に示す例では、送信側超音波遮蔽キャップ14の厚さは、検査対象物30の表面側が超音波送信面12側より厚く、図7に示す例では、送信側超音波遮蔽キャップ14の厚さは、超音波送信方向(鋼板32,34の板面と垂直方向)に関して一定であり、図8に示す例では、超音波送信面12側から検査対象物30の表面側へ向かうにつれて、送信側超音波遮蔽キャップ14の厚さが徐々に厚くなる。 In order to accurately extract only the component focused on the focal point 38 while suppressing the spreading diffracted wave component from the ultrasonic wave receiving surface 22, the transmission side ultrasonic wave shielding cap 14 is increased by increasing the thickness of the transmission side ultrasonic wave shielding cap 14. It is preferable to increase the attenuation amount of the ultrasonic wave in 14. Further, the inner peripheral surface 14a of the through hole 14c of the transmission-side ultrasonic shielding cap 14 has an outer periphery than the conical surface 12a that connects the outer periphery of the ultrasonic transmission surface 12 and the focal point 38 so as not to block the component that is focused on the focal point 38. It is preferable that the distance between the conical surface 12a and the inner peripheral surface 14a is shortened. For this purpose, the inner diameter of the transmission-side ultrasonic shielding cap 14 (the diameter of the through-hole 14c) is such that the surface side of the inspection object 30 (steel plate 32) (the lower side in FIGS. 1 and 3) is the ultrasonic transmission surface 12 side ( It is preferably smaller than the upper side of FIGS. In this case, for example, as shown in FIGS. 1 to 3, the inner diameter of the transmission-side ultrasonic shielding cap 14 (the diameter of the through hole 14 c) is increased from the ultrasonic transmission surface 12 side toward the surface side of the inspection object 30. For example, as shown in FIGS. 7 and 8, the surface of the object 30 to be inspected from the ultrasonic transmission surface 12 side so that the inner peripheral surface 14a is disposed close to the conical surface 12a. It is also possible to gradually reduce the inner diameter (diameter of the through hole 14c) of the transmission-side ultrasonic shielding cap 14 as it goes to the side. In the example shown in FIGS. 1 to 3, the thickness of the transmission-side ultrasonic shielding cap 14 is thicker on the surface side of the inspection object 30 than the ultrasonic transmission surface 12 side. In the example shown in FIG. The thickness of the shielding cap 14 is constant with respect to the ultrasonic transmission direction (perpendicular to the plate surfaces of the steel plates 32 and 34), and in the example shown in FIG. The thickness of the transmission-side ultrasonic shielding cap 14 gradually increases as it moves toward the center.
また、広がった回折波成分が送信側超音波遮蔽キャップ14の内部(内周面14a)で多重反射するとノイズの原因となる。回折波の内周面14aでの多重反射を抑えるためには、送信側超音波遮蔽キャップ14の音響インピーダンスは、検査対象物30(鋼板32,34)の音響インピーダンスより低いことが好ましい。例えば、送信側超音波遮蔽キャップ14の素材を、金属材料に比べて音響インピーダンスの低い樹脂製(例えばポリアセタール等)やゴム製とすることが可能である。 Further, when the spread diffracted wave component is subjected to multiple reflection inside the transmission side ultrasonic shielding cap 14 (inner peripheral surface 14a), it causes noise. In order to suppress the multiple reflection of the diffracted wave on the inner peripheral surface 14a, it is preferable that the acoustic impedance of the transmission side ultrasonic shielding cap 14 is lower than the acoustic impedance of the inspection object 30 (steel plates 32, 34). For example, the material of the transmission-side ultrasonic shielding cap 14 can be made of resin (for example, polyacetal) or rubber having a lower acoustic impedance than a metal material.
図1〜3に示すように、受信側超音波遮蔽キャップ24は、超音波受信面22の周囲を全周に渡って取り囲み、超音波受信面22の周囲より検査対象物30(鋼板34)の裏面端部34bへ全周に渡って突出して設けられており、超音波受信面22から鋼板34の裏面端部34bへ超音波を空中伝搬させるための貫通穴24cが超音波受信面22側の端部から鋼板34の裏面側の端部にかけて形成されている。受信側超音波遮蔽キャップ24の先端面24bと検査対象物30(鋼板34)の表面端部34bとの間には、僅かな(例えば3〜4mm程度の)空隙が形成される。あるいは、受信側超音波遮蔽キャップ24の先端面24bを鋼板34の表面端部34bに接触させることも可能である。 As shown in FIGS. 1 to 3, the reception-side ultrasonic shielding cap 24 surrounds the entire circumference of the ultrasonic reception surface 22, and the inspection object 30 (steel plate 34) is surrounded by the periphery of the ultrasonic reception surface 22. A through hole 24c for propagating ultrasonic waves in the air from the ultrasonic wave receiving surface 22 to the back surface edge portion 34b of the steel plate 34 is provided on the ultrasonic wave receiving surface 22 side. It is formed from the end portion to the end portion on the back surface side of the steel plate 34. A slight gap (for example, about 3 to 4 mm) is formed between the front end surface 24b of the reception-side ultrasonic shielding cap 24 and the surface end portion 34b of the inspection object 30 (steel plate 34). Alternatively, the front end surface 24 b of the reception-side ultrasonic shielding cap 24 can be brought into contact with the surface end portion 34 b of the steel plate 34.
検査対象物30を迂回する回折波成分を抑えて焦点38から拡散する成分のみを超音波受信面22から精度よく取り出すためには、受信側超音波遮蔽キャップ24の厚さを厚くすることで、受信側超音波遮蔽キャップ24中での超音波の減衰量を増加させることが好ましい。さらに、受信側超音波遮蔽キャップ24の貫通穴24cの内周面24aを、焦点38から拡散する成分を遮らないように、超音波受信面22の外周と焦点38とを結ぶ円錐面22aより外周側に配置するとともに、円錐面22aと内周面24aとの距離を短くすることが好ましい。そのためには、受信側超音波遮蔽キャップ24の内径(貫通穴24cの直径)は、検査対象物30(鋼板34)の裏面側(図1,3の上側)が超音波受信面22側(図1,3の下側)より小さいことが好ましい。その際には、例えば図1〜3に示すように、超音波受信面22側から検査対象物30の裏面側へ向かうにつれて、受信側超音波遮蔽キャップ24の内径(貫通穴24cの直径)を段階的に小さくすることも可能であるし、例えば図7,8に示すように、内周面24aを円錐面22aに近接配置するように、受音波送信面22側から検査対象物30の裏面側へ向かうにつれて、受信側超音波遮蔽キャップ24の内径(貫通穴24cの直径)を徐々に小さくすることも可能である。なお、図1〜3に示す例では、受信側超音波遮蔽キャップ24の厚さは、検査対象物30の裏面側が超音波受信面22側より厚く、図7に示す例では、受信側超音波遮蔽キャップ24の厚さは、超音波受信方向(鋼板32,34の板面と垂直方向)に関して一定であり、図8に示す例では、超音波受信面22側から検査対象物30の裏面側へ向かうにつれて、受信側超音波遮蔽キャップ24の厚さが徐々に厚くなる。 In order to accurately extract only the component that diffuses from the focal point 38 while suppressing the diffracted wave component that bypasses the inspection object 30, by increasing the thickness of the reception-side ultrasonic shielding cap 24, It is preferable to increase the attenuation amount of ultrasonic waves in the reception-side ultrasonic shielding cap 24. Further, the inner peripheral surface 24a of the through hole 24c of the reception-side ultrasonic shielding cap 24 is more peripheral than the conical surface 22a that connects the outer periphery of the ultrasonic reception surface 22 and the focal point 38 so as not to block components diffusing from the focal point 38. It is preferable that the distance between the conical surface 22a and the inner peripheral surface 24a is shortened. For this purpose, the inner diameter of the reception-side ultrasonic shielding cap 24 (the diameter of the through hole 24c) is such that the back side (upper side of FIGS. 1 and 3) of the inspection object 30 (steel plate 34) is the ultrasonic reception surface 22 side (see FIG. It is preferable to be smaller than (lower side of 1, 3). In this case, for example, as shown in FIGS. 1 to 3, the inner diameter of the reception-side ultrasonic shielding cap 24 (the diameter of the through hole 24 c) is increased from the ultrasonic reception surface 22 side toward the back surface side of the inspection object 30. For example, as shown in FIGS. 7 and 8, the back surface of the inspection object 30 can be reduced from the sound receiving / transmitting surface 22 side so that the inner peripheral surface 24 a is arranged close to the conical surface 22 a. The inner diameter of the reception-side ultrasonic shielding cap 24 (the diameter of the through hole 24c) can be gradually reduced toward the side. In the example shown in FIGS. 1 to 3, the receiving-side ultrasonic shielding cap 24 is thicker on the back side of the inspection object 30 than on the ultrasonic receiving surface 22 side. In the example shown in FIG. The thickness of the shielding cap 24 is constant in the ultrasonic wave receiving direction (perpendicular to the plate surfaces of the steel plates 32 and 34), and in the example shown in FIG. The thickness of the reception-side ultrasonic shielding cap 24 gradually increases as it goes to the front.
また、超音波が受信側超音波遮蔽キャップ24の内部(内周面24a)で多重反射するとノイズの原因となる。超音波の内周面24aでの多重反射を抑えるためには、受信側超音波遮蔽キャップ24の音響インピーダンスも、検査対象物30(鋼板32,34)の音響インピーダンスより低いことが好ましい。例えば、受信側超音波遮蔽キャップ24の素材も、金属材料に比べて音響インピーダンスの低い樹脂製(例えばポリアセタール等)やゴム製とすることが可能である。 In addition, if the ultrasonic waves are multiple-reflected inside the reception-side ultrasonic shielding cap 24 (inner peripheral surface 24a), it causes noise. In order to suppress the multiple reflection of the ultrasonic wave at the inner peripheral surface 24a, it is preferable that the acoustic impedance of the reception-side ultrasonic shielding cap 24 is also lower than the acoustic impedance of the inspection object 30 (steel plates 32 and 34). For example, the material of the reception-side ultrasonic shielding cap 24 can also be made of resin (for example, polyacetal) or rubber having a lower acoustic impedance than a metal material.
図1〜3に示す構成の送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24がそれぞれ取り付けられた超音波送信センサ10及び超音波受信センサ20を、図5に示す鋼板33を挟んで正対させた場合に、超音波受信面22で受信された超音波信号の波形を図9に示す。超音波の測定の際には、超音波送信センサ10と超音波受信センサ20との距離を40mmとし、送信側超音波遮蔽キャップ14の先端面14bと鋼板33の表面との距離、及び受信側超音波遮蔽キャップ24の先端面24bと鋼板33の裏面との距離を約3.5mmとしている。図9は、鋼板33の側面(端面)33cから超音波送信面12及び超音波受信面22の中心軸までの距離Lが5mm、20mmの場合における波形に加えて、比較対象のため、送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24が設けられていない場合(距離Lが20mm)における波形(図6下の波形と同じ)も示している。 The ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 to which the transmission-side ultrasonic shielding cap 14 and the reception-side ultrasonic shielding cap 24 having the configuration shown in FIGS. 1 to 3 are respectively attached are sandwiched by the steel plate 33 shown in FIG. FIG. 9 shows the waveform of the ultrasonic signal received by the ultrasonic wave receiving surface 22 when facing each other. When measuring ultrasonic waves, the distance between the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 is set to 40 mm, the distance between the tip surface 14b of the transmission-side ultrasonic shielding cap 14 and the surface of the steel plate 33, and the reception side. The distance between the front end surface 24b of the ultrasonic shielding cap 24 and the back surface of the steel plate 33 is about 3.5 mm. FIG. 9 shows the comparison result in addition to the waveform when the distance L from the side surface (end surface) 33c of the steel plate 33 to the central axis of the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 is 5 mm and 20 mm. A waveform (same as the waveform in the lower part of FIG. 6) when the ultrasonic shielding cap 14 and the reception-side ultrasonic shielding cap 24 are not provided (distance L is 20 mm) is also shown.
距離Lが20mmのときの波形は、超音波遮蔽キャップ14,24がある場合(図9中央)とない場合(図9下)とでほぼ同じであり、検査対象物30を透過する波形に超音波遮蔽キャップ14,24が影響しないことが示された。また、超音波遮蔽キャップ14,24がある場合において、距離Lが5mmのときの波形(図9上)と距離Lが20mmのときの波形(図9中央)とでは、約140μs辺りにある最初の波形は、よく似た波形で得られた。しかし、距離Lが5mmのときは、その後の波形は、非常に乱れたものとなっていた。これは、距離Lが5mmのときは、超音波遮蔽キャップ14,24があっても、回折波が測定されたことを示している。しかし、超音波遮蔽キャップ14,24がない場合(図6上の波形)と比べて、回折波が大きく減少しているため、最初に到達する透過波の波形を検出することができた。 The waveform when the distance L is 20 mm is almost the same when the ultrasonic shielding caps 14 and 24 are present (center of FIG. 9) and when the ultrasonic shield caps 14 and 24 are not present (bottom of FIG. 9). It was shown that the sonic shielding caps 14, 24 had no effect. In addition, in the case where the ultrasonic shielding caps 14 and 24 are present, the waveform when the distance L is 5 mm (upper part of FIG. 9) and the waveform when the distance L is 20 mm (center of FIG. 9) is about 140 μs. The waveform was obtained with a similar waveform. However, when the distance L was 5 mm, the subsequent waveform was very disturbed. This indicates that when the distance L is 5 mm, a diffracted wave is measured even if the ultrasonic shielding caps 14 and 24 are present. However, since the diffracted wave is greatly reduced as compared with the case without the ultrasonic shielding caps 14 and 24 (the waveform in FIG. 6), the waveform of the transmitted wave that reaches first can be detected.
次に、鋼板33の側面(端面)33cを位置x=0mmとし、超音波送信面12及び超音波受信面22の中心軸を、鋼板33内側へ20mm(x=−20mm)の位置から鋼板33外側へ5mm(x=5mm)の位置まで0.5mmピッチで移動させた場合に、超音波受信面22で受信された超音波信号の振幅の変化を図10に示す。図10は、120μsから150μs間の測定波形の振幅最大値の変化を示しており、縦軸は2Vを基準(0dB)としてデシベル表示している。図10の左端(x=−20mm)の振幅値が図9中央及び下の波形の振幅に対応する。図10に示すように、超音波遮蔽キャップ14,24がない場合は、鋼板33の端面33cから約10mm(x=−10mm)まで回折波の影響を顕著に受けており、鋼板33の端面33cから10mm〜15mm間(x=−10mm〜x=−15mm)では、回折波と透過波との干渉によって起こると考えられる振幅変動が現れた。一方、超音波遮蔽キャップ14,24がある場合は、鋼板33の端面33cから3mm(x=−3mm)程度まで回折波の影響を受け、鋼板33の端面33cから3mm〜6mm間(x=−3mm〜x=−6mm)に干渉による振幅変動が見られるものの、超音波遮蔽キャップ14,24がない場合と比べて回折波の影響を大きく抑えることができた。 Next, the side surface (end surface) 33c of the steel plate 33 is set to a position x = 0 mm, and the central axes of the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 are set to the inside of the steel plate 33 from the position of 20 mm (x = −20 mm). FIG. 10 shows changes in the amplitude of the ultrasonic signal received by the ultrasonic wave receiving surface 22 when moving outward at a pitch of 0.5 mm to a position of 5 mm (x = 5 mm). FIG. 10 shows a change in the maximum amplitude of the measured waveform between 120 μs and 150 μs, and the vertical axis is displayed in decibels with 2V as a reference (0 dB). The amplitude value at the left end (x = −20 mm) of FIG. 10 corresponds to the amplitude of the center and lower waveforms in FIG. As shown in FIG. 10, when there is no ultrasonic shielding cap 14, 24, the influence of the diffracted wave from the end surface 33 c of the steel plate 33 to about 10 mm (x = −10 mm) is significantly affected. From 10 mm to 15 mm (x = −10 mm to x = −15 mm), an amplitude variation that appears to be caused by interference between the diffracted wave and the transmitted wave appeared. On the other hand, when the ultrasonic shielding caps 14 and 24 are present, they are affected by the diffracted wave from the end face 33c of the steel plate 33 to about 3 mm (x = -3 mm), and between 3 mm and 6 mm from the end face 33c of the steel plate 33 (x =- Although an amplitude fluctuation due to interference is observed at 3 mm to x = −6 mm), the influence of the diffracted wave can be greatly suppressed as compared with the case where the ultrasonic shielding caps 14 and 24 are not provided.
次に、鋼板32,34端部に接着層36がある検査対象物30を作製し、この検査対象物30を挟んで超音波送信センサ10及び超音波受信センサ20を正対させた場合に、超音波受信面22で受信された超音波信号の振幅分布の画像化を行った。検査対象物30は、板厚0.8mmの鋼板32,34(SPC270)を両面テープ(接着層)36で張り合わせた構造とした。図11に、鋼板32,34の張り合わせの前に両面テープ(接着層)36を設置した状態と各部の寸法を示す。 Next, when the inspection object 30 having the adhesive layer 36 at the ends of the steel plates 32 and 34 is produced and the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 are opposed to each other with the inspection object 30 interposed therebetween, Imaging of the amplitude distribution of the ultrasonic signal received by the ultrasonic receiving surface 22 was performed. The inspection object 30 has a structure in which steel plates 32 and 34 (SPC 270) having a thickness of 0.8 mm are bonded to each other with a double-sided tape (adhesive layer) 36. FIG. 11 shows a state in which a double-sided tape (adhesive layer) 36 is installed and the dimensions of each part before the steel plates 32 and 34 are bonded together.
検査対象物30に対する超音波透過位置(密着性評価位置)を走査装置40により2次元的に移動走査させた場合に、各超音波透過位置に対応する超音波信号の振幅分布を画像処理部44により画像化した結果を図12A,12Bに示す。図12Aは超音波遮蔽キャップ14,24がない場合の振幅分布の画像を表し、図12Bは超音波遮蔽キャップ14,24がある場合の振幅分布の画像を表す。図12A,12Bでは、振幅最大値となる2Vを基準(0dB)としてデシベル表示しており、−20dBから−40dBを濃淡で示し、濃いほど振幅が大きい。また、図12A,12B中の白破線は、検査対象物30(鋼板32,34)の側面(端面)32c,34c(図1参照)である。 When the ultrasonic transmission position (adhesion evaluation position) with respect to the inspection object 30 is two-dimensionally moved and scanned by the scanning device 40, the amplitude distribution of the ultrasonic signal corresponding to each ultrasonic transmission position is image processing unit 44. FIG. 12A and 12B show the results obtained by imaging. 12A shows an image of the amplitude distribution when the ultrasonic shielding caps 14 and 24 are not provided, and FIG. 12B shows an image of the amplitude distribution when the ultrasonic shielding caps 14 and 24 are provided. In FIGS. 12A and 12B, the decibel display is performed using 2 V as the maximum amplitude value as a reference (0 dB), and −20 dB to −40 dB is shown by shading. The darker the amplitude, the larger the amplitude. Moreover, the white broken line in FIG. 12A, 12B is the side surfaces (end surface) 32c, 34c (refer FIG. 1) of the test target object 30 (steel plates 32, 34).
図12Aに示すように、超音波遮蔽キャップ14,24がない場合は、回折波の影響によって振幅の小さい白の領域が狭くなっており、両面テープ36の存在が分かりにくくなっている。また、両面テープ36の存在が確認可能な領域においても、鋼板32,34の端面32c,34cに沿った縞模様が現れており、鋼板32,34と両面テープ36との密着性良否の分布を示しているとは言い難い。これは、図10中のx=−10mm〜x=−15mmに現れた、回折波と透過波との干渉による振幅変動に起因した縞模様である。 As shown in FIG. 12A, when the ultrasonic shielding caps 14 and 24 are not provided, the white region having a small amplitude is narrowed due to the influence of the diffracted wave, and the presence of the double-sided tape 36 is difficult to understand. Further, even in the region where the presence of the double-sided tape 36 can be confirmed, striped patterns appear along the end surfaces 32c and 34c of the steel plates 32 and 34, and the distribution of the adhesion between the steel plates 32 and 34 and the double-sided tape 36 is determined. It's hard to say. This is a fringe pattern due to the amplitude variation due to the interference between the diffracted wave and the transmitted wave, which appears at x = −10 mm to x = −15 mm in FIG. 10.
一方、図12Bに示すように、超音波遮蔽キャップ14,24がある場合は、両面テープ36の接着領域の画像が鮮明に現れており、超音波遮蔽キャップ14,24が接着領域の画像化に大きな効果を与えていることがわかる。鋼板32,34の端面32c,34cから5mm程度までは、図10の結果と同様に、回折波の影響を受け、受信振幅が黒い領域となって現れているものの、端面32c,34cから5mm以上では、図10の結果と同様に、両面テープ36の輪郭が鮮明に現れており、鋼板32,34と両面テープ36との接着分布と考えられる分布も表示できている。両面テープ36における振幅の小さい白の領域は、鋼板32,34と両面テープ36との密着性が不十分な領域であると考えられる。 On the other hand, as shown in FIG. 12B, when the ultrasonic shielding caps 14 and 24 are present, the image of the adhesion region of the double-sided tape 36 appears clearly, and the ultrasonic shielding caps 14 and 24 are used to image the adhesion region. It turns out that it has a big effect. From the end faces 32c and 34c of the steel plates 32 and 34 up to about 5 mm from the end faces 32c and 34c, although the reception amplitude appears as a black region due to the influence of the diffracted wave as in the result of FIG. Then, like the result of FIG. 10, the outline of the double-sided tape 36 appears clearly, and the distribution considered to be the adhesive distribution between the steel plates 32 and 34 and the double-sided tape 36 can also be displayed. The white area with small amplitude in the double-sided tape 36 is considered to be an area where the adhesion between the steel plates 32 and 34 and the double-sided tape 36 is insufficient.
以上説明した本実施形態によれば、鋼板32,34端部での接着層36による密着性を評価する場合に、送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24により、超音波送信面12から送信された超音波が検査対象物30を迂回して超音波受信面22に回折波として到達するのを抑制することができる。したがって、検査対象物30中(鋼板32と接着層36と鋼板34)を透過して超音波受信面22に到達する透過波の振幅を超音波受信面22での受信信号から精度よく検出することができる。その結果、鋼板32,34端部での接着層36による密着性を精度よく評価することができる。さらに、送信側超音波遮蔽キャップ14を超音波送信センサ10自体、受信側超音波遮蔽キャップ24を超音波受信センサ20自体にそれぞれ設置することで、超音波送信センサ10及び超音波受信センサ20の走査の際には、超音波送信面12及び超音波受信面22とともに超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24も移動させることができる。その結果、回折波を抑制しながらの超音波送信センサ10及び超音波受信センサ20の走査が容易となる。 According to the embodiment described above, when evaluating the adhesion by the adhesive layer 36 at the ends of the steel plates 32 and 34, the transmission ultrasonic shielding cap 14 and the reception ultrasonic shielding cap 24 are used to transmit ultrasonic waves. It is possible to suppress the ultrasonic wave transmitted from the surface 12 from bypassing the inspection object 30 and reaching the ultrasonic wave receiving surface 22 as a diffracted wave. Therefore, the amplitude of the transmitted wave that passes through the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34) and reaches the ultrasonic wave receiving surface 22 is accurately detected from the received signal at the ultrasonic wave receiving surface 22. Can do. As a result, the adhesion by the adhesive layer 36 at the ends of the steel plates 32 and 34 can be accurately evaluated. Further, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 are installed by installing the transmission ultrasonic shielding cap 14 on the ultrasonic transmission sensor 10 itself and the reception ultrasonic shielding cap 24 on the ultrasonic reception sensor 20 itself. During scanning, the ultrasonic shielding cap 14 and the reception-side ultrasonic shielding cap 24 can be moved together with the ultrasonic transmission surface 12 and the ultrasonic reception surface 22. As a result, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 can be easily scanned while suppressing the diffracted wave.
以下、本実施形態に係る超音波検査装置を用いた超音波検査方法として、鋼板32,34の接着層36による密着性の評価方法について、図13のフローチャートを用いて説明する。まずステップS101では、超音波送信センサ10及び超音波受信センサ20を互いに正対させ、最も大きな超音波エネルギーを取得できるセンサ間距離を予め求めておく。次にステップS102では、超音波が空中を伝搬する距離及び検査対象物30中(鋼板32と接着層36と鋼板34)を伝搬する距離と、それらの音速とを考慮して、超音波受信面22に超音波(透過波)が到達する時間位置を決定する。 Hereinafter, as an ultrasonic inspection method using the ultrasonic inspection apparatus according to the present embodiment, an adhesion evaluation method using the adhesive layer 36 of the steel plates 32 and 34 will be described with reference to the flowchart of FIG. First, in step S101, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 are opposed to each other, and a distance between sensors that can acquire the largest ultrasonic energy is obtained in advance. Next, in step S102, the ultrasonic wave receiving surface in consideration of the distance that the ultrasonic wave propagates in the air, the distance that propagates in the inspection object 30 (the steel plate 32, the adhesive layer 36, and the steel plate 34), and the speed of sound thereof. The time position at which the ultrasonic wave (transmitted wave) reaches 22 is determined.
ステップS103では、超音波受信面22に透過波が到達する時間位置に、ある幅を持たせて時間ゲートを設定し、その時間ゲートにおける超音波信号(透過波)の振幅最大値を信号処理部42により検出する。次にステップS104では、超音波送信センサ10及び超音波受信センサ20を走査装置40により2次元的に移動走査しながら、超音波信号(透過波)の計測を繰り返し、各走査点(密着性評価位置)における超音波信号(透過波)の振幅最大値を記録していく。次にステップS105では、密着性評価位置の走査が完了したか否かが判定される。走査が完了していない場合(ステップS105の判定結果がNOの場合)は、ステップS103に戻る。一方、走査が完了した場合(ステップS105の判定結果がYESの場合)は、ステップS106に進む。 In step S103, a time gate is set with a certain width at the time position where the transmitted wave reaches the ultrasonic wave receiving surface 22, and the maximum amplitude value of the ultrasonic signal (transmitted wave) at the time gate is set as a signal processing unit. 42. Next, in step S104, measurement of ultrasonic signals (transmitted waves) is repeated while the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 are two-dimensionally moved and scanned by the scanning device 40, and each scanning point (adhesion evaluation) is measured. The maximum amplitude value of the ultrasonic signal (transmitted wave) at the position) is recorded. Next, in step S105, it is determined whether or not scanning of the adhesion evaluation position is completed. When the scanning is not completed (when the determination result of step S105 is NO), the process returns to step S103. On the other hand, when the scanning is completed (when the determination result of step S105 is YES), the process proceeds to step S106.
ステップS106では、各走査点における超音波信号の振幅最大値の分布を取得し、各走査点のうち、端面近傍の回折波の影響のある領域を密着性評価対象から除外する。次にステップS107では、密着性評価対象領域において、超音波信号の振幅最大値を予め設定された閾値と比較することで、密着性の良否を検査判定部48により判定する。 In step S106, the distribution of the maximum amplitude value of the ultrasonic signal at each scanning point is acquired, and a region affected by the diffracted wave near the end face is excluded from the adhesion evaluation targets among the scanning points. In step S107, the inspection determination unit 48 determines whether or not the adhesion is good by comparing the maximum amplitude value of the ultrasonic signal with a preset threshold value in the adhesion evaluation target region.
以上の説明では、超音波送信センサ10及び超音波受信センサ20がフォーカス型センサであり、超音波送信面12及び超音波受信面22が検査対象物30中(接着層36)に焦点38を有する凹曲面形状である場合について説明した。ただし、本実施形態では、超音波送信センサ10及び超音波受信センサ20がフォーカス型センサでなくてもよく、例えば図14に示すように、超音波送信面12及び超音波受信面22が平面であってもよい。その場合は、送信側超音波遮蔽キャップ14の貫通穴14cの内周面14aを、検査対象物30に入射する超音波成分を遮らないように、超音波送信面12の外周から延びる円柱面12aより外周側に配置するとともに、内周面14aを円柱面12aに近接配置することが好ましい。同様に、受信側超音波遮蔽キャップ24の貫通穴24cの内周面24aも、超音波受信面22の外周から延びる円柱面22aより外周側に配置するとともに、内周面24aを円柱面22aに近接配置することが好ましい。 In the above description, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 are focus sensors, and the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 have a focal point 38 in the inspection object 30 (adhesive layer 36). The case of a concave curved surface shape has been described. However, in this embodiment, the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 do not have to be focus type sensors. For example, as shown in FIG. 14, the ultrasonic transmission surface 12 and the ultrasonic reception surface 22 are flat. There may be. In that case, the cylindrical surface 12a extending from the outer periphery of the ultrasonic transmission surface 12 so that the inner peripheral surface 14a of the through hole 14c of the transmission-side ultrasonic shielding cap 14 does not block the ultrasonic component incident on the inspection object 30. It is preferable that the inner peripheral surface 14a is disposed closer to the cylindrical surface 12a while being disposed on the outer peripheral side. Similarly, the inner peripheral surface 24a of the through hole 24c of the reception-side ultrasonic shielding cap 24 is also arranged on the outer peripheral side from the cylindrical surface 22a extending from the outer periphery of the ultrasonic reception surface 22, and the inner peripheral surface 24a is formed on the cylindrical surface 22a. It is preferable to arrange them closely.
以上の説明では、送信側超音波遮蔽キャップ14及び受信側超音波遮蔽キャップ24を超音波送信センサ10及び超音波受信センサ20にそれぞれ設けた場合について説明した。ただし、本実施形態では、送信側超音波遮蔽キャップ14だけを超音波送信センサ10に設けることも可能であるし、受信側超音波遮蔽キャップ24だけを超音波受信センサ20に設けることも可能である。その場合でも、超音波送信面12から送信された超音波が検査対象物30を迂回して超音波受信面22に回折波として到達するのを抑制することが可能である。 In the above description, the case where the transmission-side ultrasonic shielding cap 14 and the reception-side ultrasonic shielding cap 24 are provided in the ultrasonic transmission sensor 10 and the ultrasonic reception sensor 20 has been described. However, in the present embodiment, only the transmission-side ultrasonic shielding cap 14 can be provided in the ultrasonic transmission sensor 10, or only the reception-side ultrasonic shielding cap 24 can be provided in the ultrasonic reception sensor 20. is there. Even in that case, it is possible to suppress the ultrasonic wave transmitted from the ultrasonic transmission surface 12 from reaching the ultrasonic reception surface 22 as a diffracted wave by bypassing the inspection object 30.
以上の説明では、本実施形態に係る超音波検査装置を用いた検査対象物30の検査の適用例として、鋼板32,34の接着層36による密着性を評価する場合について説明した。ただし、本実施形態に係る超音波検査装置は、鋼板32,34の接着層36による密着性の評価以外に、例えば検査対象物30の内部欠陥の検査等にも適用することが可能である。 In the above description, as an application example of the inspection of the inspection object 30 using the ultrasonic inspection apparatus according to the present embodiment, the case of evaluating the adhesion by the adhesive layer 36 of the steel plates 32 and 34 has been described. However, the ultrasonic inspection apparatus according to the present embodiment can be applied to, for example, inspection of internal defects of the inspection object 30 in addition to the evaluation of the adhesion by the adhesive layer 36 of the steel plates 32 and 34.
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.
10 超音波送信センサ、12 超音波送信面、14 送信側超音波遮蔽キャップ、20 超音波受信センサ、22 超音波受信面、24 受信側超音波遮蔽キャップ、30 検査対象物、32,34 鋼板、36 接着層(両面テープ)、38 焦点、40 走査装置、41 超音波信号供給部、42 信号処理部、44 画像処理部、46 表示装置、48 検査判定部。 DESCRIPTION OF SYMBOLS 10 Ultrasonic transmission sensor, 12 Ultrasonic transmission surface, 14 Transmission side ultrasonic shielding cap, 20 Ultrasonic reception sensor, 22 Ultrasonic reception surface, 24 Reception side ultrasonic shielding cap, 30 Inspection object, 32, 34 Steel plate, 36 adhesive layer (double-sided tape), 38 focal points, 40 scanning device, 41 ultrasonic signal supply unit, 42 signal processing unit, 44 image processing unit, 46 display device, 48 inspection determination unit.
Claims (9)
検査対象物を介して超音波送信面と対向するよう検査対象物の裏面端部と対向配置される超音波受信面であって、超音波送信面から送信され且つ検査対象物中を透過した超音波を受信する超音波受信面を含む超音波受信装置と、
を備える超音波検査装置であって、
超音波送信装置は、超音波送信面の周囲を全周に渡って取り囲み、超音波送信面の周囲より検査対象物の表面端部へ全周に渡って突出し、超音波送信面から検査対象物の表面端部へ超音波を空中伝搬させるための貫通穴が超音波送信面側の端部から検査対象物の表面側の端部にかけて形成された送信側超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための送信側超音波遮蔽部材をさらに含む、超音波検査装置。 An ultrasonic transmission surface including an ultrasonic transmission surface that is disposed opposite to the surface end of the inspection object and transmits ultrasonic waves to the surface end of the inspection object; and
An ultrasonic receiving surface disposed opposite to the back end of the inspection object so as to face the ultrasonic transmission surface via the inspection object, and transmitted from the ultrasonic transmission surface and transmitted through the inspection object An ultrasonic receiving device including an ultrasonic receiving surface for receiving sound waves;
An ultrasonic inspection apparatus comprising:
The ultrasonic transmission device surrounds the entire circumference of the ultrasonic transmission surface, protrudes from the circumference of the ultrasonic transmission surface to the surface edge of the inspection object, and extends from the ultrasonic transmission surface to the inspection object. A transmitting-side ultrasonic shielding member in which a through hole for allowing ultrasonic waves to propagate in the air to the surface end of the object is formed from the end on the ultrasonic transmission surface side to the end on the surface side of the inspection object. The ultrasonic inspection apparatus further includes a transmission-side ultrasonic shielding member for suppressing the ultrasonic wave transmitted from the transmission surface from reaching the ultrasonic reception surface by bypassing the inspection object.
超音波送信面は、検査対象物中に焦点が位置する凹曲面形状であり、
送信側超音波遮蔽部材に形成された貫通穴の直径は、検査対象物の表面側が超音波送信面側より小さい、超音波検査装置。 The ultrasonic inspection apparatus according to claim 1,
The ultrasonic transmission surface is a concave curved surface shape where the focal point is located in the inspection object,
The diameter of the through hole formed in the transmission side ultrasonic shielding member is an ultrasonic inspection apparatus in which the surface side of the inspection object is smaller than the ultrasonic transmission surface side.
送信側超音波遮蔽部材の音響インピーダンスが検査対象物の音響インピーダンスより小さい、超音波検査装置。 The ultrasonic inspection apparatus according to claim 1 or 2,
An ultrasonic inspection apparatus in which an acoustic impedance of a transmission-side ultrasonic shielding member is smaller than an acoustic impedance of an inspection object.
超音波受信装置は、超音波受信面の周囲を全周に渡って取り囲み、超音波受信面の周囲より検査対象物の裏面端部へ全周に渡って突出し、検査対象物の裏面端部から超音波受信面へ超音波を空中伝搬させるための貫通穴が超音波受信面側の端部から検査対象物の裏面側の端部にかけて形成された受信側超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための受信側超音波遮蔽部材をさらに含む、超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 1 to 3,
The ultrasonic receiving device surrounds the entire circumference of the ultrasonic receiving surface, protrudes from the periphery of the ultrasonic receiving surface to the back end of the inspection object, and extends from the back end of the inspection target. A receiving-side ultrasonic shielding member in which a through hole for propagating ultrasonic waves to the ultrasonic receiving surface in the air is formed from an end on the ultrasonic receiving surface side to an end on the back surface side of the inspection object. An ultrasonic inspection apparatus further including a reception-side ultrasonic shielding member for suppressing the ultrasonic wave transmitted from the transmission surface from reaching the ultrasonic reception surface by bypassing the inspection object.
検査対象物を介して超音波送信面と対向するよう検査対象物の裏面端部と対向配置される超音波受信面であって、超音波送信面から送信され且つ検査対象物中を透過した超音波を受信する超音波受信面を含む超音波受信装置と、
を備える超音波検査装置であって、
超音波受信装置は、超音波受信面の周囲を全周に渡って取り囲み、超音波受信面の周囲より検査対象物の裏面端部へ全周に渡って突出し、検査対象物の裏面端部から超音波受信面へ超音波を空中伝搬させるための貫通穴が超音波受信面側の端部から検査対象物の裏面側の端部にかけて形成された受信側超音波遮蔽部材であって、超音波送信面から送信された超音波が検査対象物を迂回して超音波受信面に到達するのを抑制するための受信側超音波遮蔽部材をさらに含む、超音波検査装置。 An ultrasonic transmission surface including an ultrasonic transmission surface that is disposed opposite to the surface end of the inspection object and transmits ultrasonic waves to the surface end of the inspection object; and
An ultrasonic receiving surface disposed opposite to the back end of the inspection object so as to face the ultrasonic transmission surface via the inspection object, and transmitted from the ultrasonic transmission surface and transmitted through the inspection object An ultrasonic receiving device including an ultrasonic receiving surface for receiving sound waves;
An ultrasonic inspection apparatus comprising:
The ultrasonic receiving device surrounds the entire circumference of the ultrasonic receiving surface, protrudes from the periphery of the ultrasonic receiving surface to the back end of the inspection object, and extends from the back end of the inspection target. A receiving-side ultrasonic shielding member in which a through hole for propagating ultrasonic waves to the ultrasonic receiving surface in the air is formed from an end on the ultrasonic receiving surface side to an end on the back surface side of the inspection object. An ultrasonic inspection apparatus further including a reception-side ultrasonic shielding member for suppressing the ultrasonic wave transmitted from the transmission surface from reaching the ultrasonic reception surface by bypassing the inspection object.
超音波受信面は、検査対象物中に焦点が位置する凹曲面形状であり、
受信側超音波遮蔽部材に形成された貫通穴の直径は、検査対象物の裏面側が超音波受信面側より小さい、超音波検査装置。 The ultrasonic inspection apparatus according to claim 4, wherein:
The ultrasonic receiving surface is a concave curved surface shape in which the focal point is located in the inspection object,
The diameter of the through hole formed in the reception-side ultrasonic shielding member is an ultrasonic inspection apparatus in which the back surface side of the inspection object is smaller than the ultrasonic reception surface side.
受信側超音波遮蔽部材の音響インピーダンスが検査対象物の音響インピーダンスより小さい、超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 4 to 6,
An ultrasonic inspection apparatus in which an acoustic impedance of a reception-side ultrasonic shielding member is smaller than an acoustic impedance of an inspection object.
検査対象物は、第1板状部材と第2板状部材が端部において接着層を介して接合されており、
超音波送信面は、第1板状部材の表面端部と対向配置され、超音波を第1板状部材を介して接着層へ送信し、
超音波受信面は、第1板状部材と接着層と第2板状部材を介して超音波送信面と対向するよう第2板状部材の裏面端部と対向配置され、超音波送信面から送信され且つ第1板状部材と接着層と第2板状部材を透過した超音波を受信する、超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 1 to 7,
The inspection object has the first plate-like member and the second plate-like member joined to each other via an adhesive layer at the end,
The ultrasonic transmission surface is disposed opposite to the surface end of the first plate member, and transmits ultrasonic waves to the adhesive layer via the first plate member.
The ultrasonic wave receiving surface is arranged to face the back surface end of the second plate member so as to face the ultrasonic wave transmitting surface via the first plate member, the adhesive layer, and the second plate member, and from the ultrasonic wave transmitting surface. An ultrasonic inspection apparatus that receives ultrasonic waves transmitted and transmitted through a first plate member, an adhesive layer, and a second plate member.
検査対象物に対する超音波透過位置を2次元的に移動走査しながら、超音波送信装置から送信され且つ検査対象物中を透過した超音波を超音波受信装置で受信し、
超音波受信装置で受信された、各超音波透過位置に対応する超音波の振幅に基づいて、検査対象物の検査を行う、超音波検査方法。 An ultrasonic inspection method using the ultrasonic inspection apparatus according to any one of claims 1 to 8,
While the ultrasonic transmission position with respect to the inspection object is two-dimensionally moving and scanned, the ultrasonic wave transmitted from the ultrasonic transmission apparatus and transmitted through the inspection object is received by the ultrasonic reception apparatus,
An ultrasonic inspection method for inspecting an inspection object based on an amplitude of an ultrasonic wave corresponding to each ultrasonic transmission position received by an ultrasonic receiver.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010263084A JP2012112851A (en) | 2010-11-26 | 2010-11-26 | Ultrasonic inspection device and ultrasonic inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010263084A JP2012112851A (en) | 2010-11-26 | 2010-11-26 | Ultrasonic inspection device and ultrasonic inspection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012112851A true JP2012112851A (en) | 2012-06-14 |
Family
ID=46497213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010263084A Pending JP2012112851A (en) | 2010-11-26 | 2010-11-26 | Ultrasonic inspection device and ultrasonic inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012112851A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015010944A (en) * | 2013-06-28 | 2015-01-19 | 株式会社豊田中央研究所 | Bondability evaluation apparatus and bondability evaluation method |
JP2018084416A (en) * | 2016-11-21 | 2018-05-31 | 株式会社日立パワーソリューションズ | Ultrasonic inspection device and ultrasonic inspection method |
JP2019537735A (en) * | 2016-11-02 | 2019-12-26 | フィージブル、インコーポレーテッド | Modular adaptive holder for sensors and battery cells for physical analysis |
JP2020027011A (en) * | 2018-08-10 | 2020-02-20 | ヤマハファインテック株式会社 | Ultrasonic inspection device |
CN110824000A (en) * | 2018-08-10 | 2020-02-21 | 雅马哈精密科技株式会社 | Ultrasonic inspection apparatus and ultrasonic inspection method |
JP2020085642A (en) * | 2018-11-26 | 2020-06-04 | 株式会社日立パワーソリューションズ | Ultrasonic inspection method and ultrasonic inspection device |
JP2020162337A (en) * | 2019-03-27 | 2020-10-01 | 株式会社カネカ | Inspection device and inspection method |
WO2023002867A1 (en) * | 2021-07-20 | 2023-01-26 | ヤマハファインテック株式会社 | Ultrasonic inspection device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5949098A (en) * | 1982-09-14 | 1984-03-21 | Matsushita Electric Works Ltd | Ultrasonic wave circuit |
JPS6379061A (en) * | 1986-09-22 | 1988-04-09 | Asahi Tokushu Gohan Kk | Apparatus for detecting adhesion-inferior laminated plate |
JPS63224585A (en) * | 1987-03-13 | 1988-09-19 | Matsushita Electric Ind Co Ltd | Ultrasonic wave vibrator |
JPH0228552A (en) * | 1988-07-19 | 1990-01-30 | Haabesuto:Kk | Pinhole detection device for film material |
JP2001050940A (en) * | 1999-08-04 | 2001-02-23 | Sekisui Plastics Co Ltd | Ultrasonic transducer |
JP2001351141A (en) * | 2000-06-09 | 2001-12-21 | Toshiba Corp | Detection device of foreign matter at paper sheet |
JP2007225436A (en) * | 2006-02-23 | 2007-09-06 | Nippon Sheet Glass Co Ltd | Measuring method of acoustic transmission characteristic of plate body |
-
2010
- 2010-11-26 JP JP2010263084A patent/JP2012112851A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5949098A (en) * | 1982-09-14 | 1984-03-21 | Matsushita Electric Works Ltd | Ultrasonic wave circuit |
JPS6379061A (en) * | 1986-09-22 | 1988-04-09 | Asahi Tokushu Gohan Kk | Apparatus for detecting adhesion-inferior laminated plate |
JPS63224585A (en) * | 1987-03-13 | 1988-09-19 | Matsushita Electric Ind Co Ltd | Ultrasonic wave vibrator |
JPH0228552A (en) * | 1988-07-19 | 1990-01-30 | Haabesuto:Kk | Pinhole detection device for film material |
JP2001050940A (en) * | 1999-08-04 | 2001-02-23 | Sekisui Plastics Co Ltd | Ultrasonic transducer |
JP2001351141A (en) * | 2000-06-09 | 2001-12-21 | Toshiba Corp | Detection device of foreign matter at paper sheet |
JP2007225436A (en) * | 2006-02-23 | 2007-09-06 | Nippon Sheet Glass Co Ltd | Measuring method of acoustic transmission characteristic of plate body |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015010944A (en) * | 2013-06-28 | 2015-01-19 | 株式会社豊田中央研究所 | Bondability evaluation apparatus and bondability evaluation method |
JP2019537735A (en) * | 2016-11-02 | 2019-12-26 | フィージブル、インコーポレーテッド | Modular adaptive holder for sensors and battery cells for physical analysis |
JP2018084416A (en) * | 2016-11-21 | 2018-05-31 | 株式会社日立パワーソリューションズ | Ultrasonic inspection device and ultrasonic inspection method |
CN110824000B (en) * | 2018-08-10 | 2022-11-29 | 雅马哈精密科技株式会社 | Ultrasonic inspection apparatus and ultrasonic inspection method |
CN110824000A (en) * | 2018-08-10 | 2020-02-21 | 雅马哈精密科技株式会社 | Ultrasonic inspection apparatus and ultrasonic inspection method |
US11435321B2 (en) | 2018-08-10 | 2022-09-06 | Yamaha Fine Technologies Co., Ltd. | Ultrasonic inspection device |
JP2020027011A (en) * | 2018-08-10 | 2020-02-20 | ヤマハファインテック株式会社 | Ultrasonic inspection device |
JP7190154B2 (en) | 2018-08-10 | 2022-12-15 | ヤマハファインテック株式会社 | ultrasonic inspection equipment |
JP2020085642A (en) * | 2018-11-26 | 2020-06-04 | 株式会社日立パワーソリューションズ | Ultrasonic inspection method and ultrasonic inspection device |
JP7101106B2 (en) | 2018-11-26 | 2022-07-14 | 株式会社日立パワーソリューションズ | Ultrasonic inspection method and ultrasonic inspection equipment |
JP2020162337A (en) * | 2019-03-27 | 2020-10-01 | 株式会社カネカ | Inspection device and inspection method |
WO2023002867A1 (en) * | 2021-07-20 | 2023-01-26 | ヤマハファインテック株式会社 | Ultrasonic inspection device |
JP7648147B2 (en) | 2021-07-20 | 2025-03-18 | ヤマハファインテック株式会社 | Ultrasonic Inspection Equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012112851A (en) | Ultrasonic inspection device and ultrasonic inspection method | |
US8104347B2 (en) | Ultrasonic inspection method and device for plastics walls | |
JP5237923B2 (en) | Adhesion evaluation apparatus and method | |
US20160274062A1 (en) | Ultrasonic test system, ultrasonic test method and method of manufacturing aircraft part | |
CN106596725B (en) | A kind of composite structure Zone R defect ultrasound method of discrimination | |
CN109196350B (en) | Method for detecting defects in materials by ultrasound | |
JP5306919B2 (en) | Ultrasonic flaw detection method and apparatus | |
CN109805956B (en) | Ultrasound inspection of structures with ramps | |
CA3001277A1 (en) | Nondestructive inspection apparatus and method of manufacturing bearing | |
KR101299517B1 (en) | An polymer material based flexible phased array ultrasonic transducer for ultrasonic nondestructive testing of material with uneven surface | |
JP2013127400A (en) | Ultrasonic inspection device | |
JP7214560B2 (en) | Ultrasonic inspection device and ultrasonic inspection system | |
JP2001208729A (en) | Defect detector | |
JP2009058238A (en) | Defect inspection method and apparatus | |
JP4679319B2 (en) | Method and apparatus for detecting tissue change by ultrasound | |
KR101767422B1 (en) | Seperable Ultrasonic Transducer with Enhanced Space Resolution | |
JP2003130851A (en) | Elastic parameter measuring device for material surface and coating layer | |
KR101113095B1 (en) | Ultrasonic measuring apparatus for nondestructive inspection | |
US11054399B2 (en) | Inspection method | |
KR20120015027A (en) | Longitudinal transducer wedges for maintaining contact medium membranes and longitudinal transducers using the same | |
JP2007263956A (en) | Ultrasonic flaw detection method and apparatus | |
JP6761780B2 (en) | Defect evaluation method | |
WO2019150953A1 (en) | Ultrasonic probe | |
Steinhausen et al. | New approaches to aircoupled ultrasound testing of composite lightweight materials | |
JP2007178186A (en) | Ultrasonic flaw detection method and ultrasonic flaw detection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20130315 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140107 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140520 |