[go: up one dir, main page]

JP2012112701A - Semiconductor type gas sensing element - Google Patents

Semiconductor type gas sensing element Download PDF

Info

Publication number
JP2012112701A
JP2012112701A JP2010260066A JP2010260066A JP2012112701A JP 2012112701 A JP2012112701 A JP 2012112701A JP 2010260066 A JP2010260066 A JP 2010260066A JP 2010260066 A JP2010260066 A JP 2010260066A JP 2012112701 A JP2012112701 A JP 2012112701A
Authority
JP
Japan
Prior art keywords
mol
tin oxide
gas
cerium
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260066A
Other languages
Japanese (ja)
Other versions
JP5345603B2 (en
Inventor
Tomoyo Minakoshi
知世 皆越
Toru Maekawa
亨 前川
Katsuhiro Nomura
勝裕 野村
Hiroyuki Kageyama
博之 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2010260066A priority Critical patent/JP5345603B2/en
Publication of JP2012112701A publication Critical patent/JP2012112701A/en
Application granted granted Critical
Publication of JP5345603B2 publication Critical patent/JP5345603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor type gas sensing element which has a gas sensitive part with reduced electric resistance and is highly sensitive to a detected gas.SOLUTION: A semiconductor type gas sensing element is constituted by providing a gas sensing part on a noble metal wire where 0.8 mol% or less of antimony and 0.8 mol% or less of cerium are solid-dissolved in tin oxide in the gas sensing part.

Description

本発明は、貴金属線にガス感応部を設けた半導体式ガス検知素子に関する。   The present invention relates to a semiconductor type gas detecting element in which a gas sensitive part is provided on a noble metal wire.

一般に、半導体式ガス検知素子は、金属酸化物半導体を主成分とするガス感応部を備える。ガス感応部は、通常、検知対象となるガス(以下、「被検知ガス」と称する。)が存在しない雰囲気では、金属酸化物半導体の粒子表面に酸素が吸着しており、この吸着酸素によって生じる空間電荷層が粒子内部に向かって広がっているため、自由電子の伝導パスが狭くなり、電気抵抗が高くなっている。一方、被検知ガスが存在する雰囲気では、ガス感応部に吸着している吸着酸素は被検知ガスとの酸化還元反応により、金属酸化物半導体の粒子表面から脱離するため、空間電荷層の厚みが薄くなり、ガス感応部の電気抵抗が低くなる。半導体式ガス検知素子は、この電気抵抗の変化をセンサ出力として取り出すことによって、被検知ガスを検知している。   In general, a semiconductor type gas detection element includes a gas sensitive part whose main component is a metal oxide semiconductor. In the gas sensitive portion, oxygen is adsorbed on the particle surface of the metal oxide semiconductor in an atmosphere in which a gas to be detected (hereinafter referred to as “detected gas”) does not exist, and is generated by this adsorbed oxygen. Since the space charge layer spreads toward the inside of the particle, the conduction path of free electrons is narrowed and the electric resistance is high. On the other hand, in the atmosphere where the gas to be detected exists, the adsorbed oxygen adsorbed on the gas sensitive part is desorbed from the surface of the metal oxide semiconductor particles by the oxidation-reduction reaction with the gas to be detected. Becomes thinner and the electric resistance of the gas sensitive part becomes lower. The semiconductor gas detection element detects the gas to be detected by taking out this change in electrical resistance as a sensor output.

尚、本発明における従来技術となる半導体式ガス検知素子は、一般的な技術であるため、特許文献等の従来技術文献は示さない。   In addition, since the semiconductor type gas detection element used as the prior art in this invention is a general technique, prior art documents, such as a patent document, are not shown.

しかし、このような半導体式ガス検知素子において、貴金属線を備え、この貴金属線が電極と加熱ヒーターとを兼ねる半導体式ガス検知素子では、半導体式ガス検知素子の電気抵抗は、ガス感応部の電気抵抗と貴金属線の電気抵抗との複合電気抵抗となる。このため、より低濃度(電気抵抗の変化が小さい)の被検知ガスを検知する場合には、半導体式ガス検知素子の複合電気抵抗におけるガス感応部の電気抵抗変化の寄与率を高める必要があり、ガス感応部自体の電気抵抗を小さくすることが求められている。   However, in such a semiconductor gas detection element, a noble metal wire is provided, and the noble metal wire serves as both an electrode and a heater. In the semiconductor gas detection element, the electric resistance of the semiconductor gas detection element is the electric resistance of the gas sensitive part. It becomes a combined electrical resistance of the resistance and the electrical resistance of the noble metal wire. For this reason, when detecting a gas to be detected having a lower concentration (small change in electric resistance), it is necessary to increase the contribution ratio of the change in the electric resistance of the gas sensitive part in the combined electric resistance of the semiconductor gas detection element. Therefore, it is required to reduce the electric resistance of the gas sensitive part itself.

本発明は、上記課題に鑑みてなされたものであり、ガス感応部の電気抵抗を小さくして、被検知ガスに対して高感度となる半導体式ガス検知素子を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor type gas detection element that is highly sensitive to a gas to be detected by reducing the electric resistance of a gas sensitive part.

本発明者らは、金属酸化物半導体に、金属酸化物半導体の金属の価数より大きな価数を有する金属を固溶させることによって、金属酸化物半導体の電気抵抗が小さくなることに着目し、鋭意検討した結果、特に金属酸化物半導体として酸化スズを用いた場合において、スズより大きな価数を有するアンチモンを所定量固溶させると共に、さらにセリウムを所定量固溶させることにより、被検知ガスに対して高感度なガス検知素子が得られることを見出し、本発明に至った。   The inventors pay attention to the fact that the electric resistance of the metal oxide semiconductor is reduced by dissolving a metal having a valence larger than that of the metal of the metal oxide semiconductor in the metal oxide semiconductor, As a result of intensive studies, especially when tin oxide is used as a metal oxide semiconductor, a predetermined amount of antimony having a valence higher than tin is solid-dissolved, and further a predetermined amount of cerium is solid-dissolved, so that the gas to be detected On the other hand, the inventors have found that a highly sensitive gas detection element can be obtained, and have reached the present invention.

すなわち、本発明に係る半導体式ガス検知素子の第1特徴構成は、貴金属線にガス感応部を設けた半導体式ガス検知素子であって、前記ガス感応部は、酸化スズに、アンチモンを0.8mol%以下の範囲、セリウムを0.8mol%以下の範囲で、固溶させた点にある。   That is, the first characteristic configuration of the semiconductor type gas detection element according to the present invention is a semiconductor type gas detection element in which a gas sensitive part is provided on a noble metal wire, and the gas sensitive part has an antimony content of 0. It is the point which made it solid-solve in the range of 8 mol% or less and the range of 0.8 mol% or less of cerium.

本構成のように、酸化スズにアンチモンを固溶させることにより酸化スズの電気抵抗を小さくすることができるため、被検知ガスに対する感度を向上させることができる。
一方、酸化スズにセリウムを固溶させると、酸化スズの焼成時における粒成長を抑制し、酸化スズの一次粒子径を小さくすることができる。酸化スズの粒子表面に吸着している吸着酸素の吸着・脱離による酸化スズの電気抵抗の変化は、その粒子径が小さい方が顕著になる。このため、本構成のように、酸化スズにセリウムを固溶させることにより、被検知ガスに対する感度を向上させることができる。
また、酸化スズにセリウムを固溶させると、ガス検知素子としての高温動作中に粒成長することを抑えることもできるため、熱安定性も向上する。
Since the electric resistance of tin oxide can be reduced by dissolving antimony in tin oxide as in this configuration, the sensitivity to the gas to be detected can be improved.
On the other hand, when cerium is dissolved in tin oxide, grain growth during firing of tin oxide can be suppressed, and the primary particle diameter of tin oxide can be reduced. The change in the electrical resistance of tin oxide due to adsorption / desorption of adsorbed oxygen adsorbed on the surface of tin oxide particles becomes more pronounced when the particle diameter is smaller. For this reason, the sensitivity with respect to to-be-detected gas can be improved by making cerium dissolve in tin oxide like this structure.
Further, when cerium is dissolved in tin oxide, it is possible to suppress grain growth during high-temperature operation as a gas detection element, so that thermal stability is also improved.

したがって、本構成によれば、被検知ガスに対して高感度であり、長期に亘って熱安定性に優れた半導体ガス検知素子を提供することができる。   Therefore, according to this configuration, it is possible to provide a semiconductor gas detection element that is highly sensitive to the gas to be detected and has excellent thermal stability over a long period of time.

本発明に係る半導体式ガス検知素子の第2特徴構成は、酸化スズに固溶させるセリウムとアンチモンとの比率を、Ce/Sb≦1とする点にある。   The second characteristic configuration of the semiconductor gas detection element according to the present invention is that the ratio of cerium and antimony dissolved in tin oxide is Ce / Sb ≦ 1.

酸化スズにアンチモンを固溶させると、その固溶量に応じて酸化スズの電気抵抗は低下する。一方、アンチモンを固溶させた酸化スズに、さらにセリウムを固溶させると、その固溶量に応じて酸化スズの電気抵抗の低下率が小さくなる。このため、本構成のように、セリウムの固溶量(mol%)/アンチモンの固溶量(mol%)を1以下となるように、それぞれを固溶させることによって、セリウムを固溶させることによる電気抵抗への影響を抑え、ガス感度を向上させることができる。   When antimony is dissolved in tin oxide, the electric resistance of tin oxide decreases according to the amount of the solid solution. On the other hand, when cerium is further dissolved in tin oxide in which antimony is dissolved, the rate of decrease in the electrical resistance of tin oxide is reduced according to the amount of the solid solution. For this reason, as in this configuration, cerium is dissolved by dissolving each so that the solid solution amount of cerium (mol%) / the solid solution amount of antimony (mol%) is 1 or less. The gas sensitivity can be improved by suppressing the influence on the electrical resistance.

本発明に係る半導体式ガス検知素子の第3特徴構成は、前記ガス感応部を被覆する触媒層をさらに備え、前記触媒層は、酸化スズにセリウムを0.8mol%以下の範囲で固溶させた点にある。   A third characteristic configuration of the semiconductor type gas detection element according to the present invention further includes a catalyst layer that covers the gas sensitive part, and the catalyst layer is formed by dissolving cerium in tin oxide in a range of 0.8 mol% or less. It is in the point.

本構成のように、酸化スズにセリウムを固溶させることにより、酸化スズの一次粒子径を小さくすることができるため、触媒層の比表面積を増やすことができる。このため、被検知ガスに対する選択性を向上させることができる。   Since the primary particle diameter of tin oxide can be reduced by dissolving cerium in tin oxide as in this configuration, the specific surface area of the catalyst layer can be increased. For this reason, the selectivity with respect to to-be-detected gas can be improved.

本発明に係る半導体式ガス検知素子の第4特徴構成は、前記触媒層に、白金、パラジウム、金、ロジウム、ルテニウム、イリジウムのうちの少なくともいずれか一種の貴金属触媒を担持させた点にある。   A fourth characteristic configuration of the semiconductor gas detection element according to the present invention is that the catalyst layer carries at least one kind of noble metal catalyst of platinum, palladium, gold, rhodium, ruthenium, and iridium.

本構成によれば、触媒層における化学活性が高まるため、被検知ガスに対する選択性をより向上させることができる。   According to this configuration, since the chemical activity in the catalyst layer is increased, the selectivity for the gas to be detected can be further improved.

本実施形態に係る半導体式ガス検知素子の概略図である。It is the schematic of the semiconductor type gas detection element which concerns on this embodiment. (a)は酸化スズへのアンチモンの固溶量を変えたときの酸化スズの電気抵抗の変化を示すグラフであり、(b)はアンチモンの固溶量を変えたときのメタンガスに対する濃度毎のガス感度を示すグラフである。(A) is a graph which shows the change of the electrical resistance of tin oxide when changing the solid solution amount of antimony in tin oxide, and (b) is a graph for each concentration with respect to methane gas when the solid solution amount of antimony is changed. It is a graph which shows gas sensitivity. (a)は酸化スズへのアンチモンの固溶量を変えたときの酸化スズの格子定数の変化を示すグラフであり、(b)はアンチモンの固溶量を変えて、長期高温動作をしたときのベースのセンサ出力の経時変化を示すグラフである。(A) is a graph which shows the change of the lattice constant of tin oxide when changing the solid solution amount of antimony in tin oxide, and (b) when long-term high-temperature operation is performed by changing the solid solution amount of antimony. It is a graph which shows a time-dependent change of the sensor output of the base. (a)は酸化スズへのセリウムの固溶量を変えたときの酸化スズの粒径の変化を示すグラフであり、(b)はセリウムの固溶有無によるメタンガスに対するガス感度の変化を示すグラフである。(A) is a graph which shows the change of the particle size of a tin oxide when changing the solid solution amount of cerium to a tin oxide, (b) is a graph which shows the change of the gas sensitivity with respect to methane gas by the solid solution presence or absence of cerium. It is. 長期高温動作をしたときの、酸化スズへのセリウムの固溶有無によるベースのセンサ出力の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the sensor output of a base by the solid solution presence or absence of the cerium to tin oxide at the time of long-term high temperature operation. 酸化スズへのセリウムの固溶量を変えたときの酸化スズの格子定数の変化を示すグラフである。It is a graph which shows the change of the lattice constant of a tin oxide when changing the solid solution amount of the cerium to a tin oxide. 別実施形態に係る半導体式ガス検知素子の概略図である。It is the schematic of the semiconductor type gas detection element which concerns on another embodiment. (a)は触媒層を設けない場合の各ガス種に対するガス感度の変化を示すグラフであり、(b)は触媒層として酸化スズを用いた場合の各ガス種に対するガス感度の変化を示すグラフであり、(c)は触媒層として酸化スズにセリウムを固溶させたものを用いた場合の各ガス種に対するガス感度の変化を示すグラフであり、(d)は触媒層としてセリウムを固溶させた酸化スズに白金を担持させたものを用いた場合の各ガス種に対するガス感度の変化を示すグラフである。(A) is a graph which shows the change of the gas sensitivity with respect to each gas kind when not providing a catalyst layer, (b) is a graph which shows the change of the gas sensitivity with respect to each gas kind at the time of using tin oxide as a catalyst layer. (C) is a graph showing changes in gas sensitivity with respect to each gas type when a catalyst layer in which cerium is dissolved in tin oxide is used as a catalyst layer, and (d) is a graph in which cerium is dissolved as a catalyst layer. It is a graph which shows the change of the gas sensitivity with respect to each gas kind at the time of using what carried | supported platinum on the made tin oxide.

以下、本発明に係る半導体式ガス検知素子の一実施形態について、図面を参照して説明する。但し、本発明はこれに限られるものではない。   Hereinafter, an embodiment of a semiconductor gas detection element according to the present invention will be described with reference to the drawings. However, the present invention is not limited to this.

本実施形態の半導体式ガス検知素子は、図1に示すように、コイル状の貴金属線1にガス感応部2を設けたものである。貴金属線1は、材質、線径、コイル径、コイル巻数等、特に限定されるものではなく、半導体式ガス検知素子において、一般に用いられるものを適用できる。   As shown in FIG. 1, the semiconductor type gas detection element of the present embodiment has a coil-like noble metal wire 1 provided with a gas sensitive part 2. The noble metal wire 1 is not particularly limited in terms of material, wire diameter, coil diameter, number of coil turns, and the like, and a commonly used semiconductor gas detection element can be applied.

ガス感応部2は、酸化スズに、アンチモンを0.8mol%以下の範囲、セリウムを0.8mol%以下の範囲で、固溶させたものである。   The gas sensitive part 2 is a solid solution of tin oxide in a range of 0.8 mol% or less and cerium in a range of 0.8 mol% or less.

アンチモンは、酸化スズに固溶させることにより、酸化スズの電気抵抗を小さくすることができ、被検知ガスに対するガス感度を向上させることができる。一方、アンチモンの酸化スズへの添加においては、半導体式ガス検知素子の作製直後には酸化スズに対してアンチモンが完全に固溶していない場合、半導体式ガス検知素子として高温で動作中に固溶が進み、センサ出力が不安定となる。このため、酸化スズへのアンチモンの固溶量は、後述する実施例で示すように、完全に固溶する0.8mol%以下としている。尚、酸化スズへのアンチモンの固溶量は、0.8mol%以下においては多い方が酸化スズの電気抵抗は小さくなるため好ましく、具体的には、0.1mol%〜0.8mol%が好ましく、0.2mol%〜0.8mol%がより好ましく、0.4mol%〜0.8mol%がさらに好ましく、0.6mol%〜0.8mol%がよりさらに好ましい。   When antimony is dissolved in tin oxide, the electric resistance of tin oxide can be reduced, and the gas sensitivity to the gas to be detected can be improved. On the other hand, in the addition of antimony to tin oxide, if antimony is not completely dissolved in the tin oxide immediately after the production of the semiconductor gas sensing element, it is solidified during operation at a high temperature as a semiconductor gas sensing element. Melting progresses and sensor output becomes unstable. For this reason, the solid solution amount of antimony in tin oxide is set to 0.8 mol% or less, which completely dissolves, as shown in Examples described later. The amount of antimony dissolved in tin oxide is preferably 0.8 mol% or less because the electric resistance of tin oxide is small, specifically, 0.1 mol% to 0.8 mol% is preferable. 0.2 mol% to 0.8 mol% is more preferable, 0.4 mol% to 0.8 mol% is more preferable, and 0.6 mol% to 0.8 mol% is still more preferable.

セリウムは、酸化スズに固溶させることにより、焼成時における酸化スズの粒成長を抑制し、酸化スズの一次粒子径を小さくすることができる。このため、酸化スズの粒子表面に吸着している吸着酸素の吸着・脱離による酸化スズの電気抵抗の変化を大きくすることができ、被検知ガスに対するガス感度を向上させることができる。また、半導体式ガス検知素子として高温で動作させた場合の酸化スズの粒成長も抑えることができるため、長期に亘る熱安定性を向上させることができる。尚、セリウムの場合にもアンチモンの場合と同様に、酸化スズへの添加量が多くなると、酸化スズに対してセリウムが完全に固溶せず、センサ出力が不安定となる。このため、酸化スズへのセンサの固溶量は、後述する実施例で示すように、完全に固溶する0.8mol%以下としている。酸化スズへのセリウムの固溶量も、0.8mol%以下においては多い方が好ましく、具体的には、0.1mol%〜0.8mol%が好ましく、0.2mol%〜0.8mol%がより好ましく、0.4mol%〜0.8mol%がさらに好ましく、0.6mol%〜0.8mol%がよりさらに好ましい。   By dissolving cerium in tin oxide, the growth of tin oxide particles during firing can be suppressed, and the primary particle diameter of tin oxide can be reduced. For this reason, the change in the electrical resistance of tin oxide due to adsorption / desorption of adsorbed oxygen adsorbed on the surface of tin oxide particles can be increased, and the gas sensitivity to the gas to be detected can be improved. Moreover, since it is possible to suppress the growth of tin oxide grains when the semiconductor gas sensing element is operated at a high temperature, the thermal stability over a long period of time can be improved. In the case of cerium, as in the case of antimony, if the amount added to tin oxide increases, cerium does not completely dissolve in tin oxide, and the sensor output becomes unstable. For this reason, as shown in the Example mentioned later, the solid solution amount of the sensor to tin oxide is 0.8 mol% or less which completely dissolves. The amount of cerium dissolved in tin oxide is preferably larger at 0.8 mol% or less, specifically, 0.1 mol% to 0.8 mol% is preferable, and 0.2 mol% to 0.8 mol% is preferable. More preferably, 0.4 mol% to 0.8 mol% is more preferable, and 0.6 mol% to 0.8 mol% is still more preferable.

また、酸化スズにアンチモンを固溶させると、その固溶量に応じて酸化スズの電気抵抗は低下する。一方、アンチモンを固溶させた酸化スズに、さらにセリウムを固溶させると、その固溶量に応じて酸化スズの電気抵抗の低下率が小さくなる。このため、酸化スズに固溶させるアンチモンとセリウムとは、その比率がCe/Sb≦1となるように固溶させることが好ましい。これにより、アンチモンの酸化スズに対する電気抵抗の寄与率がセリウムの酸化スズに対する電気抵抗の寄与率より大きくなるため、酸化スズの粒成長を抑えつつ、酸化スズの電気抵抗を小さくすることができる。このような観点から、Ce/Sb≦0.4(mol%)/0.6(mol%)となるように固溶することがより好ましい。   In addition, when antimony is dissolved in tin oxide, the electric resistance of tin oxide decreases according to the amount of the solid solution. On the other hand, when cerium is further dissolved in tin oxide in which antimony is dissolved, the rate of decrease in the electrical resistance of tin oxide is reduced according to the amount of the solid solution. For this reason, it is preferable that antimony and cerium to be dissolved in tin oxide are dissolved in such a manner that the ratio thereof is Ce / Sb ≦ 1. Thereby, since the contribution ratio of the electrical resistance with respect to tin oxide of antimony becomes larger than the contribution ratio of the electrical resistance with respect to tin oxide of cerium, the electrical resistance of tin oxide can be reduced while suppressing grain growth of tin oxide. From such a viewpoint, it is more preferable to make a solid solution so that Ce / Sb ≦ 0.4 (mol%) / 0.6 (mol%).

ガス感応部2は、共沈法等の従来公知の方法により酸化スズにアンチモン及びセリウムを固溶させた後、焼成(か焼)することにより作製することができる。焼成温度は、通常600℃〜900℃であるが、特にアンチモンの固溶量を多くする場合には高い方が好ましく、例えば、700℃〜900℃が好ましい。一方、焼成温度が高くなると、粒成長が促進され、酸化スズの一次粒子径が大きくなる傾向にある。この点についても、本発明のように、酸化スズに対し、アンチモンをセリウムと共に固溶させた場合には、多くの量のアンチモンを固溶させるべく焼成温度を高くしても、同時に固溶させたセリウムにより粒成長を抑えることができる。   The gas sensitive part 2 can be produced by solid-dissolving antimony and cerium in tin oxide by a conventionally known method such as a coprecipitation method, followed by firing (calcination). The firing temperature is usually 600 ° C. to 900 ° C., but in particular, when the amount of antimony dissolved is increased, a higher one is preferable, for example, 700 ° C. to 900 ° C. is preferable. On the other hand, when the firing temperature is high, grain growth is promoted and the primary particle diameter of tin oxide tends to be large. Also in this regard, when antimony is solid-solved with cerium with respect to tin oxide as in the present invention, even if the firing temperature is increased so that a large amount of antimony is solid-dissolved, it is also dissolved at the same time. Grain growth can be suppressed by cerium.

本発明に係る半導体式ガス検知素子では、被検知ガスは、特に限定されないが、後述の実施例に示すように、特にメタンに対してガス感度が向上することがわかっている。   In the semiconductor gas detection element according to the present invention, the gas to be detected is not particularly limited, but it is known that the gas sensitivity is improved particularly with respect to methane, as shown in Examples described later.

以下に、本発明を用いた実施例を示し、本発明をより詳細に説明する。但し、本発明はこれらの実施例に限定されるものではない。
(実施例1−1)
図1に示す半導体式ガス検知素子において、貴金属線1として白金コイル(線径20μm、コイル径0.28μm、コイル巻数12ターン)を用い、ガス感応部2として酸化スズ(SnO2)にアンチモン(Sb)を固溶させたものを用い、アンチモンの固溶量を変えた場合のガス感応部2の抵抗値の変化、及び10ppm〜5000ppmのメタンガス(CH4)に対するガス感度(Rair/Rgas)の変化について調べた。尚、ガス感応部2は、共沈法により酸化スズにアンチモンを固溶させた後、600〜900℃で焼成することにより作製した。
Hereinafter, examples using the present invention will be shown to describe the present invention in more detail. However, the present invention is not limited to these examples.
(Example 1-1)
In the semiconductor gas detection element shown in FIG. 1, a platinum coil (wire diameter: 20 μm, coil diameter: 0.28 μm, number of coil turns: 12 turns) is used as the noble metal wire 1, and antimony (SnO 2 ) is added to the antimony (SnO 2 ). Changes in the resistance value of the gas sensitive part 2 when the solid solution amount of antimony is changed using a solid solution of Sb), and gas sensitivity (R air / R gas ) with respect to 10 ppm to 5000 ppm of methane gas (CH 4 ) ) Was examined. In addition, the gas sensitive part 2 was produced by baking at 600-900 degreeC, after dissolving antimony in tin oxide by the coprecipitation method.

その結果、図2(a)に示すように、酸化スズにアンチモンを固溶させることによって、その固溶量の増加に応じて抵抗値が小さくなることが確認できた。特に、アンチモンの固溶量に関しては、0〜0.8mol%の範囲で抵抗値は急激に小さくなり、それ以降では抵抗値の変化は緩やかになっていることがわかった。
メタンガスに対するガス感度についても、図2(b)に示すように、アンチモンの固溶量の増加に応じて、ガス感度が高くなることが確認できた。また、アンチモンの固溶量が増えることにより、メタンガスの濃度差によるガス感度の差が大きくなり、ガス濃度に対する精度も向上していることがわかった。
したがって、ガス感度の観点からは、酸化スズに固溶させるアンチモンの量は、0.1mol%以上が好ましく、0.2mol%以上がより好ましく、0.4mol%以上がさらに好ましく、0.6mol%以上がよりさらに好ましいことがわかった。
As a result, as shown in FIG. 2 (a), it was confirmed that the resistance value decreases as the solid solution amount increases by dissolving antimony in tin oxide. In particular, with respect to the solid solution amount of antimony, it was found that the resistance value suddenly decreased in the range of 0 to 0.8 mol%, and thereafter the resistance value changed gradually.
As for gas sensitivity to methane gas, as shown in FIG. 2 (b), it was confirmed that the gas sensitivity increased as the amount of antimony dissolved increased. In addition, it was found that as the amount of antimony dissolved increases, the difference in gas sensitivity due to the difference in methane gas concentration increases and the accuracy with respect to the gas concentration also improves.
Therefore, from the viewpoint of gas sensitivity, the amount of antimony dissolved in tin oxide is preferably 0.1 mol% or more, more preferably 0.2 mol% or more, further preferably 0.4 mol% or more, and 0.6 mol%. It has been found that the above is even more preferable.

(実施例1−2)
酸化スズにアンチモンを固溶させた場合において、アンチモンの固溶量を変えた場合の酸化スズの格子定数の変化を調べた。また、実施例1−1と同様の半導体式ガス検知素子を用い、酸化スズにアンチモンを固溶させない場合、アンチモンをそれぞれ0.2mol%、0.8mol%、1.0mol%固溶させた場合の長期高温(350〜600℃)動作中におけるベースのセンサ出力の経時変化を調べた。
(Example 1-2)
When antimony was dissolved in tin oxide, the change in the lattice constant of tin oxide was investigated when the amount of antimony dissolved was changed. Moreover, when using the same semiconductor gas sensing element as in Example 1-1 and not dissolving antimony in tin oxide, 0.2 mol%, 0.8 mol%, and 1.0 mol% of antimony were dissolved in the tin oxide, respectively. The change over time of the sensor output of the base during long-term high-temperature (350 to 600 ° C.) operation was examined.

その結果、図3(a)に示すように、アンチモンの固溶量が0.8mol%を越えたあたりから、アンチモンの固溶量に対する格子定数の増加割合に関して直線性が保てなくなることがわかった。すなわち、格子定数の大きさは、ドーパントの添加量に依存して、直線的に変化するというベガード則が成り立っていないことがわかった。
また、図3(b)に示すように、アンチモンの固溶量が0.8mol%までは、高温で動作させてもベース出力は経時変化しないのに対し、アンチモンの固溶量が1.0mol%では、ベース出力が経時的に上昇していることがわかった。これは、ガス感応部2を作製(焼成)した時点では固溶が完了しておらず、その後のガス検知素子の高温動作中に固溶がさらに進行したためであると考えられる。
以上より、アンチモンの固溶量が0.8mol%を越えると酸化スズに完全に固溶できていないことがわかった。
As a result, as shown in FIG. 3A, it is found that the linearity cannot be maintained with respect to the rate of increase of the lattice constant with respect to the antimony solid solution amount after the antimony solid solution amount exceeds 0.8 mol%. It was. That is, it has been found that the Vegard rule that the magnitude of the lattice constant varies linearly depending on the amount of dopant added is not satisfied.
Further, as shown in FIG. 3 (b), when the solid solution amount of antimony is up to 0.8 mol%, the base output does not change with time even when operated at a high temperature, whereas the solid solution amount of antimony is 1.0 mol. % Showed that the base output increased with time. This is considered to be because the solid solution was not completed at the time when the gas sensitive part 2 was produced (fired), and the solid solution further progressed during the subsequent high temperature operation of the gas detection element.
From the above, it was found that when the solid solution amount of antimony exceeded 0.8 mol%, it was not completely dissolved in tin oxide.

実施例1−1及び1−2より、ガス検知素子として用いるためには、酸化スズに固溶するアンチモンの量は0.8mol%以下とする必要があり、ガス感度を考慮すれば、0.1mol%〜0.8mol%が好ましく、0.2mol%〜0.8mol%がより好ましく、0.4mol%〜0.8mol%がさらに好ましく、0.6mol%〜0.8mol%がよりさらに好ましいことがわかった。   From Examples 1-1 and 1-2, in order to use as a gas detection element, the amount of antimony dissolved in tin oxide needs to be 0.8 mol% or less. 1 mol% to 0.8 mol% is preferable, 0.2 mol% to 0.8 mol% is more preferable, 0.4 mol% to 0.8 mol% is more preferable, and 0.6 mol% to 0.8 mol% is still more preferable I understood.

(実施例1−3)
実施例1−1と同様の半導体式ガス検知素子において、ガス感応部2として酸化スズに固溶させる金属をアンチモンからセリウム(Ce)に変え、セリウムの固溶量を変えた場合のガス感応部2を構成する酸化スズの粒径の変化を調べた。また、ガス感応部2として、(0.4mol%)Ce−(0.6mol%)Sb−SnO2と、電気抵抗が同じになるように調製した(0.4mol%)Sb−SnO2とを用い、メタンガスの濃度を変化させた場合のガス感度の変化、及び長期高温動作中におけるベースのセンサ出力の経時変化について調べた。
(Example 1-3)
In the same semiconductor gas detection element as in Example 1-1, the gas sensitive part 2 is obtained by changing the metal dissolved in tin oxide from antimony to cerium (Ce) as the gas sensitive part 2 and changing the solid solution amount of cerium. The change in the particle size of tin oxide constituting 2 was examined. Further, as the gas sensing unit 2, and (0.4mol%) Ce- (0.6mol% ) Sb-SnO 2, the electric resistance was prepared to be the same and (0.4mol%) Sb-SnO 2 The change in gas sensitivity when the concentration of methane gas was changed and the change over time of the sensor output of the base during long-term high-temperature operation were investigated.

その結果、図4(a)に示すように、酸化スズの一次粒子径はセリウムの固溶量の増加に応じて小さくなることが確認できた。
また、図4(b)に示すように、ガス感応部2の電気抵抗を同じにした場合には、メタンガスに対する感度は、セリウムを固溶させて酸化スズの一次粒子径を小さくしたものの方が大きくなっていることがわかった。
さらに、図5に示すように、セリウムを固溶させた場合((0.4mol%)Ce−(0.6mol%)Sb−SnO2)には、セリウムを固溶していない場合((0.4mol%)Sb−SnO2)に比べて、センサ出力の経時変化が小さいことがわかった。これは、セリウムを固溶させることで、高温動作中における粒成長を抑えることができたためであると考えられる。
したがって、酸化スズにセリウムを固溶させることにより、ガス感応部2における酸化スズの粒成長を抑えることができ、ガス検知素子としての熱安定性を向上させることができることがわかった。
As a result, as shown in FIG. 4 (a), it was confirmed that the primary particle diameter of tin oxide became smaller as the amount of cerium solid solution increased.
As shown in FIG. 4B, when the electric resistance of the gas sensitive portion 2 is the same, the sensitivity to methane gas is better when the primary particle diameter of tin oxide is made smaller by dissolving cerium. I found it getting bigger.
Furthermore, as shown in FIG. 5, when cerium is dissolved ((0.4 mol%) Ce- (0.6 mol%) Sb-SnO 2 ), when cerium is not dissolved ((0 .4 mol%) Sb—SnO 2 ) was found to have a small change in sensor output with time. This is considered to be because grain growth during high temperature operation could be suppressed by dissolving cerium in solid solution.
Therefore, it was found that by dissolving cerium in tin oxide, it is possible to suppress the growth of tin oxide grains in the gas sensitive part 2 and to improve the thermal stability of the gas detection element.

(実施例1−4)
酸化スズにセリウムを固溶させた場合において、セリウムの固溶量を変えた場合の酸化スズの格子定数の変化を調べた。
(Example 1-4)
In the case where cerium was dissolved in tin oxide, the change in the lattice constant of tin oxide was investigated when the amount of cerium solid solution was changed.

その結果、図6に示すように、セリウムの固溶量が0.8mol%を越えたあたりから、ベガード則が成立しておらず、セリウムの固溶量が0.8mol%を越えると酸化スズに完全に固溶できていないことがわかった。   As a result, as shown in FIG. 6, Vegard's law was not established when the solid solution amount of cerium exceeded 0.8 mol%, and tin oxide exceeded 0.8 mol% when the solid solution amount of cerium exceeded 0.8 mol%. It was found that they were not completely dissolved.

以上より、ガス検知素子として用いるためには、酸化スズに固溶するセリウムの量は0.8mol%以下とする必要がある。一方、酸化スズの粒成長を抑え、ガス感度を向上させるため、及び熱安定性を向上させるためには、セリウムの固溶量が多い方が好ましい。このため、酸化スズへのセリウムの固溶量は、0.1mol%〜0.8mol%が好ましく、0.2mol%〜0.8mol%がより好ましく、0.4mol%〜0.8mol%がさらに好ましく、0.6mol%〜0.8mol%がよりさらに好ましい。   From the above, in order to use as a gas detection element, the amount of cerium dissolved in tin oxide needs to be 0.8 mol% or less. On the other hand, in order to suppress the grain growth of tin oxide, improve gas sensitivity, and improve thermal stability, it is preferable that the amount of cerium solid solution is large. For this reason, the solid solution amount of cerium in tin oxide is preferably 0.1 mol% to 0.8 mol%, more preferably 0.2 mol% to 0.8 mol%, and further 0.4 mol% to 0.8 mol%. Preferably, 0.6 mol% to 0.8 mol% is even more preferable.

〔別実施形態〕
上記の実施形態に係る半導体式ガス検知素子において、図7に示すように、ガス感応部2を被覆する触媒層3をさらに設けることもできる。触媒層3を構成する材料としては、酸化スズにセリウムを0.8mol%以下の範囲で固溶させたものが好ましい。セリウムは、上述の通り、酸化スズに固溶させることにより、焼成時における酸化スズの粒成長を抑制し、酸化スズの一次粒子径を小さくすることができる。このため、触媒層の比表面積を向上させることができ、被検知ガスに対する選択性を向上させることができる。酸化スズへのセリウムの固溶量は、上述の通り、完全に固溶する0.8mol%以下としている。酸化スズへのセリウムの固溶量も、0.8mol%以下においては多い方が好ましく、具体的には、0.1mol%〜0.8mol%が好ましく、0.2mol%〜0.8mol%がより好ましく、0.4mol%〜0.8mol%がさらに好ましく、0.6mol%〜0.8mol%がよりさらに好ましい。
また、触媒層を構成する材料の表面に、白金、パラジウム、金、ロジウム、ルテニウム、イリジウムのうちの少なくともいずれか一種の貴金属触媒を担持させることもできる。
[Another embodiment]
In the semiconductor type gas detection element according to the above embodiment, as shown in FIG. 7, a catalyst layer 3 that covers the gas sensitive part 2 may be further provided. As a material constituting the catalyst layer 3, a material obtained by dissolving cerium in tin oxide in a range of 0.8 mol% or less is preferable. As described above, cerium can be dissolved in tin oxide to suppress the growth of tin oxide grains during firing and to reduce the primary particle diameter of tin oxide. For this reason, the specific surface area of a catalyst layer can be improved and the selectivity with respect to to-be-detected gas can be improved. As described above, the solid solution amount of cerium in tin oxide is set to 0.8 mol% or less which completely dissolves. The amount of cerium dissolved in tin oxide is preferably larger at 0.8 mol% or less, specifically, 0.1 mol% to 0.8 mol% is preferable, and 0.2 mol% to 0.8 mol% is preferable. More preferably, 0.4 mol% to 0.8 mol% is more preferable, and 0.6 mol% to 0.8 mol% is still more preferable.
In addition, a noble metal catalyst of at least one of platinum, palladium, gold, rhodium, ruthenium and iridium can be supported on the surface of the material constituting the catalyst layer.

(実施例2−1)
図7に示す半導体式ガス検知素子において、貴金属線1として実施例1−1と同様の白金コイルを用い、ガス感応部2として(0.4mol%)Ce−(0.6mol%)Sb−SnO2を用い、(a)触媒層3を設けない場合、触媒層3として、(b)SnO2を用いた場合、(c)酸化スズにセリウムを固溶させた(0.7mol%)Ce−SnO2を用いた場合、(d)(0.7mol%)Ce−SnO2に(1mol%)Ptを担持させたものを用いた場合について、メタン(CH4)、イソブタン(i−C48)、エタノール(EtOH)、水素(H2)に対するガス感度を調べた。
(Example 2-1)
In the semiconductor type gas detection element shown in FIG. 7, the same platinum coil as that of Example 1-1 is used as the noble metal wire 1, and (0.4 mol%) Ce− (0.6 mol%) Sb—SnO is used as the gas sensitive part 2. When (a) the catalyst layer 3 is not used, (b) SnO 2 is used as the catalyst layer 3 (c) Ce— in which cerium is dissolved in tin oxide (0.7 mol%) When SnO 2 is used, (d) (0.7 mol%) Ce-SnO 2 loaded with (1 mol%) Pt is used, and methane (CH 4 ), isobutane (i-C 4 H 8 ) Gas sensitivity to ethanol (EtOH) and hydrogen (H 2 ) was examined.

その結果、触媒層3を設けない図8(a)に示す場合に比べて、触媒層3を設けた図8(b)〜(d)では、H2、EtOHに対するガス感度が小さくなり、炭化水素選択性が向上していることがわかった。
触媒層3を設けたものの中では、SnO2を用いた図8(b)の場合に比べ、(0.7mol%)Ce−SnO2を用いた図8(c)の場合では、炭化水素選択性がさらに向上し、(0.7mol%)Ce−SnO2に(1mol%)Ptを担持させたものを用いた図8(d)の場合では、メタン選択性が向上していることがわかった。
以上により、ガス選択性を向上させるためには、ガス感応部2に触媒層3を設けることが好ましく、触媒層3としては、酸化スズにセリウムを固溶させたものが好ましく、酸化スズにセリウムを固溶させたものに貴金属触媒を担持させたものがより好ましいことがわかった。
As a result, compared with the case shown in FIG. 8A in which the catalyst layer 3 is not provided, in FIGS. 8B to 8D in which the catalyst layer 3 is provided, gas sensitivity to H 2 and EtOH is reduced, and carbonization is performed. It was found that the hydrogen selectivity was improved.
Among those in which a catalyst layer 3, compared with the case of FIG. 8 using the SnO 2 (b), in the case of FIG. 8 using the (0.7mol%) Ce-SnO 2 (c) is a hydrocarbon selected In the case of FIG. 8D using (0.7 mol%) Ce—SnO 2 with (1 mol%) Pt supported, it was found that the methane selectivity was improved. It was.
As described above, in order to improve gas selectivity, it is preferable to provide the catalyst layer 3 in the gas sensitive part 2, and the catalyst layer 3 is preferably a solution in which cerium is dissolved in tin oxide, and cerium is added to tin oxide. It was found that a solution in which a noble metal catalyst is supported on a solid solution of is more preferable.

本発明に係る半導体式ガス検知素子は、被検知ガスに対して高感度であるため、各種ガスセンサ、各種ガス警報器等に適用することができる。   Since the semiconductor gas detection element according to the present invention is highly sensitive to the gas to be detected, it can be applied to various gas sensors, various gas alarms, and the like.

1 貴金属線
2 ガス感応層
3 触媒層
1 Precious metal wire 2 Gas sensitive layer 3 Catalyst layer

Claims (4)

貴金属線にガス感応部を設けた半導体式ガス検知素子であって、
前記ガス感応部は、酸化スズに、アンチモンを0.8mol%以下の範囲、セリウムを0.8mol%以下の範囲で、固溶させてある半導体式ガス検知素子。
A semiconductor type gas detection element having a gas sensitive part on a noble metal wire,
The gas sensitive part is a semiconductor gas detection element in which antimony is dissolved in tin oxide in a range of 0.8 mol% or less and cerium in a range of 0.8 mol% or less.
酸化スズに固溶させるセリウムとアンチモンとの比率が、Ce/Sb≦1である請求項1に記載の半導体式ガス検知素子。   2. The semiconductor type gas detection element according to claim 1, wherein a ratio of cerium and antimony to be dissolved in tin oxide is Ce / Sb ≦ 1. 前記ガス感応部を被覆する触媒層をさらに備え、前記触媒層は、酸化スズにセリウムを0.8mol%以下の範囲で固溶させてある請求項1または2に記載の半導体式ガス検知素子。   The semiconductor gas detection element according to claim 1, further comprising a catalyst layer that covers the gas sensitive part, wherein the catalyst layer is formed by dissolving cerium in tin oxide in a range of 0.8 mol% or less. 前記触媒層に、白金、パラジウム、金、ロジウム、ルテニウム、イリジウムのうちの少なくともいずれか一種の貴金属触媒を担持させてある請求項3に記載の半導体式ガス検知素子。   4. The semiconductor type gas detection element according to claim 3, wherein the catalyst layer carries a noble metal catalyst of at least one of platinum, palladium, gold, rhodium, ruthenium and iridium.
JP2010260066A 2010-11-22 2010-11-22 Semiconductor gas detector Expired - Fee Related JP5345603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260066A JP5345603B2 (en) 2010-11-22 2010-11-22 Semiconductor gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260066A JP5345603B2 (en) 2010-11-22 2010-11-22 Semiconductor gas detector

Publications (2)

Publication Number Publication Date
JP2012112701A true JP2012112701A (en) 2012-06-14
JP5345603B2 JP5345603B2 (en) 2013-11-20

Family

ID=46497089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260066A Expired - Fee Related JP5345603B2 (en) 2010-11-22 2010-11-22 Semiconductor gas detector

Country Status (1)

Country Link
JP (1) JP5345603B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755745A (en) * 1993-08-16 1995-03-03 New Cosmos Electric Corp Carbon monoxide gas sensing element
JPH11287780A (en) * 1998-04-02 1999-10-19 New Cosmos Electric Corp Gas detection element
JP2002139469A (en) * 2000-11-02 2002-05-17 Yazaki Corp Gas detection element and gas detection device having the gas detection element
JP2007510934A (en) * 2003-11-12 2007-04-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー System and method for detecting and analyzing gas
JP2008241430A (en) * 2007-03-27 2008-10-09 New Cosmos Electric Corp Semiconductor gas detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755745A (en) * 1993-08-16 1995-03-03 New Cosmos Electric Corp Carbon monoxide gas sensing element
JPH11287780A (en) * 1998-04-02 1999-10-19 New Cosmos Electric Corp Gas detection element
JP2002139469A (en) * 2000-11-02 2002-05-17 Yazaki Corp Gas detection element and gas detection device having the gas detection element
JP2007510934A (en) * 2003-11-12 2007-04-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー System and method for detecting and analyzing gas
JP2008241430A (en) * 2007-03-27 2008-10-09 New Cosmos Electric Corp Semiconductor gas detector

Also Published As

Publication number Publication date
JP5345603B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
Chatterjee et al. The effect of palladium incorporation on methane sensitivity of antimony doped tin dioxide
JP5255066B2 (en) Gas sensor with improved selectivity
JP6437689B1 (en) MEMS type semiconductor gas detector
JP4056987B2 (en) Hydrogen sensor and hydrogen detection method
JP2015077580A5 (en)
JP4916357B2 (en) Semiconductor gas detector
JP5155546B2 (en) Contact combustion type gas detection element and manufacturing method thereof
JP6472168B2 (en) Contact combustion type gas sensor
JP7158680B2 (en) gas sensor
JP5345603B2 (en) Semiconductor gas detector
JP6128598B2 (en) Metal oxide semiconductor gas sensor
JP6367666B2 (en) Oxygen sensor
JP2020173225A (en) Semiconductor gas detection element
JP3197457B2 (en) Ammonia gas sensor and method of manufacturing the same
JP4002969B2 (en) Combustible gas sensor
JP4870938B2 (en) Manufacturing method of semiconductor gas detection element
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP2010043905A (en) Gas sensor
JP6364356B2 (en) Gas detection method and gas sensor
JP7352461B2 (en) Semiconductor gas detection element
JP7352714B1 (en) Semiconductor gas detection element
Sharma et al. [Pt. sup. 2+] dispersed in [Ce. sub. 0.83][Ti. sub. 0.15][O. sub. 2-[delta]]: significant improvement in PROX activity by Ti substitution in Ce [O. sub. 2] in hydrogen rich stream
TW202011020A (en) Gas detection device having exceptional humidity resistance and exceptional sensitivity
JP2010145382A (en) GAS SENSOR FOR DETECTING Total-VOC, AND METHOD FOR MANUFACTURING THE SAME
JP4382245B2 (en) Gas sensor and gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees