JP2012104240A - Method of producing lithium borate based compound - Google Patents
Method of producing lithium borate based compound Download PDFInfo
- Publication number
- JP2012104240A JP2012104240A JP2010249038A JP2010249038A JP2012104240A JP 2012104240 A JP2012104240 A JP 2012104240A JP 2010249038 A JP2010249038 A JP 2010249038A JP 2010249038 A JP2010249038 A JP 2010249038A JP 2012104240 A JP2012104240 A JP 2012104240A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- molten salt
- raw material
- lithium borate
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 150000001875 compounds Chemical class 0.000 title claims abstract description 33
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 150000003839 salts Chemical class 0.000 claims abstract description 80
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 70
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 69
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000002994 raw material Substances 0.000 claims abstract description 63
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 35
- 229910052742 iron Inorganic materials 0.000 claims abstract description 34
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000007774 positive electrode material Substances 0.000 claims abstract description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 28
- 239000011572 manganese Substances 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 19
- 238000002844 melting Methods 0.000 claims abstract description 17
- 230000008018 melting Effects 0.000 claims abstract description 17
- 150000003624 transition metals Chemical class 0.000 claims abstract description 16
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000004327 boric acid Substances 0.000 claims abstract description 15
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 15
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 13
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 6
- -1 lithium borate compound Chemical class 0.000 claims description 95
- 239000007789 gas Substances 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 28
- 230000001603 reducing effect Effects 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 229910052749 magnesium Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052792 caesium Inorganic materials 0.000 claims description 5
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 229910052701 rubidium Inorganic materials 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910001963 alkali metal nitrate Inorganic materials 0.000 claims description 4
- RGVLTEMOWXGQOS-UHFFFAOYSA-L manganese(2+);oxalate Chemical compound [Mn+2].[O-]C(=O)C([O-])=O RGVLTEMOWXGQOS-UHFFFAOYSA-L 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 14
- 230000002829 reductive effect Effects 0.000 abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 26
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 24
- 239000000047 product Substances 0.000 description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 10
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 9
- 239000006230 acetylene black Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 8
- 238000000498 ball milling Methods 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000010955 niobium Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000007600 charging Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910052808 lithium carbonate Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000003273 ketjen black Substances 0.000 description 4
- 150000002697 manganese compounds Chemical class 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910013184 LiBO Inorganic materials 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 150000002506 iron compounds Chemical class 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000010450 olivine Substances 0.000 description 3
- 229910052609 olivine Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000447 polyanionic polymer Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000003746 solid phase reaction Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- WDHWFGNRFMPTQS-UHFFFAOYSA-N cobalt tin Chemical compound [Co].[Sn] WDHWFGNRFMPTQS-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- VBNVAWSZLUFQMG-UHFFFAOYSA-N carbonic acid;methoxymethane Chemical compound COC.OC(O)=O VBNVAWSZLUFQMG-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- HZRMTWQRDMYLNW-UHFFFAOYSA-N lithium metaborate Chemical compound [Li+].[O-]B=O HZRMTWQRDMYLNW-UHFFFAOYSA-N 0.000 description 1
- NMHMDUCCVHOJQI-UHFFFAOYSA-N lithium molybdate Chemical compound [Li+].[Li+].[O-][Mo]([O-])(=O)=O NMHMDUCCVHOJQI-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B35/00—Boron; Compounds thereof
- C01B35/08—Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
- C01B35/10—Compounds containing boron and oxygen
- C01B35/12—Borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、主にリチウムイオン二次電池の正極活物質として有用なリチウムボレート系化合物の製造方法、およびこの方法で得られるリチウムボレート系化合物に関する。 The present invention mainly relates to a method for producing a lithium borate compound useful as a positive electrode active material of a lithium ion secondary battery, and a lithium borate compound obtained by this method.
リチウム二次電池は、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられており、正極活物質としては、主としてLiCoO2などの層状化合物が用いられてきた。しかしながら、これらの化合物は満充電状態において、150℃前後で酸素が脱離しやすく、これが非水電解液の酸化発熱反応を引き起こしやすいという欠点がある。 Lithium secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices. Layered compounds such as LiCoO 2 have mainly been used as positive electrode active materials. However, these compounds have a drawback that oxygen is easily desorbed at about 150 ° C. in a fully charged state, and this easily causes an oxidative exothermic reaction of the non-aqueous electrolyte.
近年、正極活物質としては、リン酸オリビン系化合物LiMPO4(LiMnPO4、LiFePO4、LiCoPO4など)が提案されている。この系は、LiCoO2のような酸化物を正極活物質とする3価/4価の酸化還元反応の代わりに、2価/3価の酸化還元反応を用いることにより熱安定性を向上させ、さらに中心金属の周りに電気陰性度の大きいヘテロ元素のポリアニオンを配置することにより高放電電圧の得られる系として注目されている。 In recent years, olivine phosphate compounds LiMPO 4 (LiMnPO 4 , LiFePO 4 , LiCoPO 4, etc.) have been proposed as positive electrode active materials. This system improves thermal stability by using a bivalent / trivalent redox reaction instead of a trivalent / tetravalent redox reaction using an oxide such as LiCoO 2 as a positive electrode active material, Furthermore, it has been attracting attention as a system capable of obtaining a high discharge voltage by disposing a polyanion of a heteroelement having a high electronegativity around a central metal.
しかしながら、リン酸オリビン系化合物からなる正極材料は、リン酸ポリアニオンの分子量が大きいために、理論容量が170mAh/g程度に制限される。さらに、LiCoPO4やLiNiPO4は、動作電圧が高すぎて、その充電電圧に耐え得る電解液が無いという問題がある。 However, the positive electrode material made of an olivine phosphate compound is limited to a theoretical capacity of about 170 mAh / g because the molecular weight of the phosphate polyanion is large. Furthermore, LiCoPO 4 and LiNiPO 4 have a problem that the operating voltage is too high and there is no electrolyte solution that can withstand the charging voltage.
そこで、安価で、資源量が多く、環境負荷が低く、高いリチウムイオンの理論充放電容量を有し、且つ高温時に酸素を放出しないカソード材料として、LiFeBO3(理論容量220mAh/g)、LiMnBO3(理論容量222mAh/g)等のリチウムボレート系材料が注目されている。リチウムボレート系材料はポリアニオンユニットの中で最も軽い元素であるBを用いることで、エネルギー密度の向上が期待できる材料であり、また、ボレート系材料の真密度(3.46g/cm3)はリン酸オリビン鉄材料の真密度(3.60g/cm3)よりも小さく、軽量化も期待できる。 Accordingly, LiFeBO 3 (theoretical capacity 220 mAh / g), LiMnBO 3 is a cathode material that is inexpensive, has a large amount of resources, has a low environmental load, has a high theoretical charge / discharge capacity of lithium ions, and does not release oxygen at high temperatures. Lithium borate-based materials such as (theoretical capacity 222 mAh / g) are drawing attention. The lithium borate material is a material that can be expected to improve the energy density by using B, which is the lightest element in the polyanion unit, and the true density (3.46 g / cm 3 ) of the borate material is phosphorus. It is smaller than the true density (3.60 g / cm 3 ) of the acid olivine iron material, and weight reduction can also be expected.
ボレート系化合物の合成法としては、固相状態で原料化合物を反応させる固相反応法が知られている(下記非特許文献1〜3等参考)。しかしながら、固相反応法では、600℃以上という高温で長時間反応させることが必要であり、ドープ元素を固溶させることは可能であるが、結晶粒が10μm以上と大きくなり、イオンの拡散が遅いという問題につながる。しかも、高温で反応させるため、冷却過程において固溶しきれないドープ元素が析出して不純物が生成し、抵抗が高くなるという問題がある。更に、高温まで加熱するために、リチウム欠損や酸素欠損のボレート系化合物ができ、容量の増加やサイクル特性の向上が難しいという問題もある。 As a method for synthesizing a borate compound, a solid phase reaction method in which a raw material compound is reacted in a solid phase is known (see Non-Patent Documents 1 to 3 below). However, in the solid phase reaction method, it is necessary to react at a high temperature of 600 ° C. or higher for a long time, and it is possible to dissolve the dope element, but the crystal grains become as large as 10 μm or more, and the diffusion of ions It leads to the problem of being slow. In addition, since the reaction is performed at a high temperature, there is a problem that the doping element that cannot be completely dissolved in the cooling process is precipitated, impurities are generated, and the resistance is increased. Furthermore, since it is heated to a high temperature, a borate-based compound having lithium deficiency or oxygen deficiency is formed, and there is a problem that it is difficult to increase capacity and improve cycle characteristics.
そこで、本発明者等は、上記の問題点を克服すべく鋭意研究を重ねてきた。その結果、鉄化合物またはマンガン化合物を含む遷移金属化合物、ホウ酸、ならびに水酸化リチウムを原料として用いて、炭酸リチウムとその他のアルカリ金属炭酸塩との混合溶融塩中で、還元性雰囲気下において、上記原料を反応させる方法(溶融塩法)によれば、比較的穏和な条件下において、鉄またはマンガンを含むリチウムボレート系化合物を得ることができることを見出した(特許文献1参照)。 Therefore, the present inventors have conducted intensive research to overcome the above problems. As a result, using a transition metal compound containing an iron compound or a manganese compound, boric acid, and lithium hydroxide as raw materials, in a mixed molten salt of lithium carbonate and other alkali metal carbonate, in a reducing atmosphere, It has been found that a lithium borate-based compound containing iron or manganese can be obtained under a relatively mild condition by the method of reacting the above raw materials (molten salt method) (see Patent Document 1).
特許文献1に記載の方法により得られたリチウムボレート系化合物は、リチウムイオン二次電池の正極材料として用いた場合に、比較的温度の高い使用条件において、従来の方法で合成されたボレート系化合物と比較してサイクル特性、容量等が改善された。しかし、室温付近での評価はされていなかった。 The lithium borate compound obtained by the method described in Patent Document 1 is a borate compound synthesized by a conventional method under relatively high temperature use conditions when used as a positive electrode material for a lithium ion secondary battery. Cycle characteristics, capacity, etc. improved. However, it was not evaluated near room temperature.
本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、リチウムイオン二次電池用正極材料等として有用なリチウムボレート系材料について、室温付近におけるサイクル特性、容量等が改善された、優れた性能を有する材料を比較的簡単な手段によって製造できる方法を提供することである。 The present invention has been made in view of the current state of the prior art described above, and its main purpose is to provide a cycle characteristic and capacity near room temperature for a lithium borate material useful as a positive electrode material for a lithium ion secondary battery. It is an object of the present invention to provide a method capable of producing a material having an improved performance and the like with a relatively simple means.
本発明者等が鋭意研究し試行錯誤を重ねた結果、溶融塩として炭酸塩のかわりに硝酸塩を使用することで、正極材料として用いた場合に、室温においても優れた電池性能を示すリチウムボレート系化合物を得ることができることを新たに見出した。 As a result of the inventors' extensive research and trial and error, a lithium borate system that exhibits excellent battery performance even at room temperature when used as a positive electrode material by using nitrate as a molten salt instead of carbonate. It was newly found that a compound can be obtained.
すなわち、本発明のリチウムボレート系化合物の製造方法は、少なくとも硝酸リチウムを含むリチウム含有溶融塩原料と、純鉄、純マンガンならびに鉄および/またはマンガンを含む化合物からなる群から選ばれる少なくとも一種を含む遷移金属含有原料と、ホウ酸と、を二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、前記リチウム含有溶融塩原料の融点以上900℃以下の該リチウム含有溶融塩原料の溶融塩中で反応させることを特徴とする。 That is, the method for producing a lithium borate compound of the present invention includes at least one selected from the group consisting of a lithium-containing molten salt raw material containing at least lithium nitrate, and pure iron, pure manganese, and a compound containing iron and / or manganese. A transition metal-containing raw material and boric acid are reacted in a molten salt of the lithium-containing molten salt raw material in a mixed gas atmosphere containing carbon dioxide and a reducing gas, the melting point of the lithium-containing molten salt raw material being 900 ° C. or lower. It is characterized by making it.
本発明の製造方法により得られるリチウムボレート系化合物が、室温においても優れた電池性能を示すのは、次のような理由であると推測される。 It is estimated that the lithium borate compound obtained by the production method of the present invention exhibits excellent battery performance even at room temperature for the following reason.
本発明の製造方法により得られるリチウムボレート系化合物は、炭酸塩の溶融塩を用いた場合と比較して、不純物の生成が低減された結果、電池特性が向上したと推測される。本発明者等の調査の結果、溶融塩中でリチウムボレート系化合物を得るには、溶融塩に溶存種としてリチウム、ホウ素、遷移金属元素、等とともに酸化物イオン(O2−)が存在することが重要であることがわかった。溶融塩として使用した硝酸リチウムは、融点が低く、分解温度も低い(硝酸リチウムの融点は261℃、分解温度は約550℃。炭酸リチウムの融点は735℃、分解温度は約950℃。)ため、溶融塩中にO2−を放出し易いと考えられる。このような硝酸リチウムを含む溶融塩中では、反応活性が高く低温でも速やかに反応が進行するため、不純物が生成しにくい。 The lithium borate compound obtained by the production method of the present invention is presumed to have improved battery characteristics as a result of reduced generation of impurities compared to the case of using a carbonate molten salt. As a result of investigations by the present inventors, in order to obtain a lithium borate compound in a molten salt, oxide ions (O 2− ) must exist together with lithium, boron, transition metal elements, etc. as dissolved species in the molten salt. Was found to be important. The lithium nitrate used as the molten salt has a low melting point and a low decomposition temperature (the melting point of lithium nitrate is 261 ° C., the decomposition temperature is about 550 ° C., the melting point of lithium carbonate is 735 ° C., and the decomposition temperature is about 950 ° C.). It is considered that O 2− is easily released into the molten salt. In such a molten salt containing lithium nitrate, the reaction activity is high and the reaction proceeds promptly even at a low temperature, so that impurities are hardly generated.
また、同じ程度の温度において硝酸リチウムと炭酸リチウムとを比較した場合、硝酸リチウムの方が溶融塩の粘度が低い。そのため、硝酸リチウムの溶融塩中では、拡散速度、ひいては反応速度が速く、不純物が生成されにくいことも考えられる。 Further, when lithium nitrate and lithium carbonate are compared at the same temperature, lithium nitrate has a lower viscosity of the molten salt. Therefore, in the molten salt of lithium nitrate, the diffusion rate and thus the reaction rate is high, and it is considered that impurities are hardly generated.
なお、本発明において生成が抑制される不純物とは、たとえば、生成を抑制することが困難であるLiBO2、Li5Fe5O8、Fe3(BO3)O2、Li2Fe3O4等の他、MnO等の未反応物が挙げられる。なお、未反応物は、原料の仕込量を調節することで抑制される。 The impurities whose generation is suppressed in the present invention are, for example, LiBO 2 , Li 5 Fe 5 O 8 , Fe 3 (BO 3 ) O 2 , and Li 2 Fe 3 O 4 , which are difficult to suppress the generation. In addition to these, unreacted materials such as MnO can be used. In addition, unreacted substances are suppressed by adjusting the amount of raw materials charged.
さらに、硝酸リチウムは、その融点は261℃であるため、単独で用いてもリチウムボレート系化合物を低温で安定的に合成することが可能である。その結果、合成反応時に粒成長が抑制されて、微細なリチウムボレート系化合物が形成される。しかも溶融塩中にLiを含む硝酸塩が含まれていることによって、Liを過剰に含むリチウムボレート系化合物が形成されやすい。このようなリチウムボレート系化合物は、良好なサイクル特性と高い容量を有するリチウムイオン電池用正極材料となる。 Furthermore, since the melting point of lithium nitrate is 261 ° C., it is possible to stably synthesize a lithium borate compound at a low temperature even when used alone. As a result, grain growth is suppressed during the synthesis reaction, and a fine lithium borate compound is formed. In addition, since the molten salt contains a nitrate containing Li, a lithium borate-based compound containing excessive Li is easily formed. Such a lithium borate compound becomes a positive electrode material for a lithium ion battery having good cycle characteristics and high capacity.
本発明のリチウムボレート系化合物は、上記本発明の製造方法により得られ、
組成式:Li1+a−bAbM1−xM’xBO3+c
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3であって、かつa>bである)で表され、
リチウム二次電池の正極活物質として用いた場合に、試験温度30℃で0.1Cにて、初回定電圧充電を4.5Vで10時間行い4.5〜1.5Vで50サイクル充放電後の該リチウム二次電池の放電容量が初期放電容量の90%以上であることを特徴とする。
The lithium borate compound of the present invention is obtained by the production method of the present invention,
Composition formula: Li 1 + ab Ab M 1-x M ′ x BO 3 + c
(Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, where each subscript is as follows: 0 ≦ x ≦ 0. 5, 0 <a <1, 0 ≦ b <0.2, 0 <c <0.3, and a> b).
When used as a positive electrode active material for a lithium secondary battery, the initial constant voltage charge is performed at 0.1 C at a test temperature of 30 ° C. for 10 hours at 4.5 V, and after 50 cycles of charge and discharge at 4.5 to 1.5 V. The lithium secondary battery has a discharge capacity of 90% or more of the initial discharge capacity.
本発明のリチウムボレート系化合物の製造方法によれば、硝酸リチウムを使用した溶融塩法を用いる比較的簡便な手段によって、室温付近においても高容量を有し、サイクル特性にも優れた、リチウムイオン二次電池の正極材料として有用な本発明のリチウムボレート系化合物を得ることができる。 According to the method for producing a lithium borate compound of the present invention, lithium ions having a high capacity near room temperature and excellent cycle characteristics are obtained by a relatively simple means using a molten salt method using lithium nitrate. The lithium borate compound of the present invention useful as a positive electrode material for a secondary battery can be obtained.
以下に、本発明のリチウムボレート系化合物およびその製造方法を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「m〜n」は、下限mおよび上限nをその範囲に含む。また、その数値範囲内において、本明細書に記載した数値を任意に組み合わせることで数値範囲を構成し得る。 The best mode for carrying out the lithium borate compound of the present invention and the method for producing the same will be described below. Unless otherwise specified, the numerical range “mn” described in the present specification includes the lower limit m and the upper limit n in the range. In addition, the numerical range can be configured by arbitrarily combining the numerical values described in the present specification within the numerical range.
<リチウムボレート系化合物の製造方法>
本発明のリチウムボレート系化合物の製造方法は、少なくとも硝酸リチウムを含むリチウム含有溶融塩原料と、鉄、マンガン、鉄化合物およびマンガン化合物からなる群から選ばれる少なくとも一種を含む遷移金属含有原料と、ホウ酸と、をリチウム含有溶融塩原料の溶融塩中で反応させる。以下に、使用する原料を順に説明する。
<Method for producing lithium borate compound>
The method for producing a lithium borate compound of the present invention comprises a lithium-containing molten salt raw material containing at least lithium nitrate, a transition metal-containing raw material containing at least one selected from the group consisting of iron, manganese, iron compounds, and manganese compounds, and boron. The acid is reacted in the molten salt of the lithium-containing molten salt raw material. Below, the raw material to be used is demonstrated in order.
リチウム含有溶融塩原料は、本発明の製造方法においてフラックスとして他の原料を分散させる役割とともに、リチウム(Li)の供給源としての役割を果たす。リチウム含有溶融塩原料は、硝酸リチウムのみを用いてもよいが、その他の硝酸塩と混合して用いてもよい。具体的には、硝酸カリウム(KNO3)、硝酸ナトリウム(NaNO3)、硝酸ルビシウム(RbNO3)および硝酸セシウム(CsNO3)からなる群から選ばれる少なくとも一種のアルカリ金属硝酸塩である。これらのうちの一種以上のアルカリ金属硝酸塩を硝酸リチウムと混合して用いることで、リチウム含有溶融塩原料の融点が低下するため、低温でも安定したリチウムボレート系化合物の合成を行うことができる。つまり、硝酸リチウムは270℃以上で溶融するが、その他のアルカリ金属硝酸塩との混合溶融塩とすることで、270℃を下回る溶融温度とすることができる。その結果、合成温度を低温にしても溶融塩の粘度は低く、不純物の生成が抑制されるとともに微細なリチウムボレート系化合物の合成に好適である。 The lithium-containing molten salt raw material plays a role as a supply source of lithium (Li) as well as a role of dispersing other raw materials as a flux in the production method of the present invention. As the lithium-containing molten salt raw material, only lithium nitrate may be used, or a mixture with other nitrates may be used. Specifically, it is at least one alkali metal nitrate selected from the group consisting of potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ), rubium nitrate (RbNO 3 ), and cesium nitrate (CsNO 3 ). By using one or more of these alkali metal nitrates mixed with lithium nitrate, the melting point of the lithium-containing molten salt raw material is lowered, so that a stable lithium borate compound can be synthesized even at low temperatures. That is, although lithium nitrate melts at 270 ° C. or higher, a melting temperature lower than 270 ° C. can be achieved by using a mixed molten salt with other alkali metal nitrates. As a result, even if the synthesis temperature is lowered, the viscosity of the molten salt is low, which suppresses the generation of impurities and is suitable for the synthesis of fine lithium borate compounds.
もちろん、硝酸リチウムの融点は元々低いため、リチウム含有溶融塩原料として硝酸リチウムを単独で用いても、混合溶融塩を用いた場合と同等の効果が得られる。また、硝酸リチウムを単独で用いることで、得られるリチウムボレート系化合物にリチウム以外のアルカリ金属元素が残存することを避けられる。そのため、得られるリチウムボレート系化合物は、リチウムイオン二次電池の正極材料として好適である。 Of course, since the melting point of lithium nitrate is originally low, even if lithium nitrate is used alone as the lithium-containing molten salt raw material, the same effect as when the mixed molten salt is used can be obtained. Moreover, it can avoid that alkali metal elements other than lithium remain in the lithium borate type compound obtained by using lithium nitrate alone. Therefore, the obtained lithium borate compound is suitable as a positive electrode material for a lithium ion secondary battery.
リチウム含有溶融塩原料における硝酸リチウムの比率については、特に限定的ではないが、リチウム含有溶融塩原料全体を100mol%としたときに、60〜100mol%、さらには80〜100mol%が好ましい。 The ratio of lithium nitrate in the lithium-containing molten salt raw material is not particularly limited, but is preferably 60 to 100 mol%, more preferably 80 to 100 mol%, when the entire lithium-containing molten salt raw material is 100 mol%.
また、リチウム含有溶融塩原料は、溶融塩の融点を大きく上昇させない程度の割合で、リチウム供給源として硝酸リチウム以外のリチウム塩を含んでもよい。たとえば、炭酸リチウム(Li2CO3)、水酸化リチウム(LiOH等)、メタ硼酸リチウム(LiBO2等)、などは、これらのうちの一種以上がリチウム含有溶融塩原料に含まれても、反応により酸化物イオン(O2−)や硼酸イオン(BO3 −)しか生じないため望ましい。 Further, the lithium-containing molten salt raw material may contain a lithium salt other than lithium nitrate as a lithium supply source at a ratio that does not significantly increase the melting point of the molten salt. For example, lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH, etc.), lithium metaborate (LiBO 2 etc.), etc. are reacted even if one or more of these are contained in the lithium-containing molten salt raw material. As a result, only oxide ions (O 2− ) and borate ions (BO 3 − ) are generated.
遷移金属含有原料は、主として鉄(Fe)および/またはマンガン(Mn)の供給源であって、純鉄、純マンガンならびに鉄および/またはマンガンを含む化合物からなる群から選ばれる少なくとも一種を含む。鉄および/またはマンガンを含む化合物としては、鉄化合物、マンガン化合物、鉄および/またはマンガンを含み必要に応じて他の金属元素をも含む複合化合物が挙げられる。FeもMnも、本発明の製造方法の目的生成物であるリチウムボレート系化合物において2価で存在する場合が安定であることから、遷移金属含有原料は、酸化数が2価以下のFeおよび/またはMnを含むとよい。したがって、遷移金属含有原料としては、純鉄(0価)、純マンガン(0価)、2価の鉄化合物、2価のマンガン化合物、が挙げられる。2価の化合物としては、シュウ酸鉄、シュウ酸マンガンなどのシュウ酸塩、が挙げられる。これらのうちの一種を単独あるいは二種以上を混合して用いることができる。 The transition metal-containing raw material is mainly a source of iron (Fe) and / or manganese (Mn), and includes at least one selected from the group consisting of pure iron, pure manganese, and a compound containing iron and / or manganese. Examples of the compound containing iron and / or manganese include an iron compound, a manganese compound, and a composite compound containing iron and / or manganese and optionally containing other metal elements. Since both Fe and Mn are stable when they are present in the lithium borate compound that is the target product of the production method of the present invention, the transition metal-containing raw material contains Fe and / Alternatively, Mn may be included. Therefore, examples of the transition metal-containing raw material include pure iron (zero valent), pure manganese (zero valent), a divalent iron compound, and a divalent manganese compound. Examples of the divalent compound include oxalates such as iron oxalate and manganese oxalate. One of these can be used alone or in combination of two or more.
本発明で使用される遷移金属元素含有原料は、鉄および/またはマンガンを必須として含むが、さらに必要に応じて、その他の金属元素を含んでもよい。その他の金属元素としては、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種を例示できる。これらの金属元素は、純マグネシウムなどのように金属状態であってもよく、あるいは、2価までの価数の金属元素を含む化合物、たとえば、硫酸塩、炭酸塩、水酸化物などであってもよい。遷移金属元素含有原料は、上記列挙した金属元素を一種のみ含んでもよいし、二種以上の金属元素を同時に含んでもよい。遷移金属元素含有原料は、一種の化合物を単独または二種以上の化合物を混合して用いることができる。すなわち、遷移金属元素含有原料は、具体的には、鉄および/またはマンガンを含む原料を必須とし、必要に応じて、酸化コバルト、酸化マグネシウム、炭酸カルシウム、酸化カルシウム、酸化アルミニウム、酸化ニッケル、酸化ニオブ、チタン酸リチウム、酸化クロム(III)、酢酸銅(II)、酸化亜鉛、酸化ジルコニウム、炭化バナジウム、モリブデン酸リチウムおよびタングステン酸リチウムのうちの一種または二種以上を含んでもよい。 The transition metal element-containing raw material used in the present invention contains iron and / or manganese as an essential component, but may further contain other metal elements as necessary. Examples of other metal elements include at least one selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti, and Zr. These metal elements may be in a metallic state such as pure magnesium, or a compound containing a metal element having a valence of up to 2, for example, sulfate, carbonate, hydroxide, etc. Also good. The transition metal element-containing raw material may contain only one of the metal elements listed above, or may contain two or more metal elements at the same time. The transition metal element-containing raw material may be a single compound or a mixture of two or more compounds. That is, the transition metal element-containing raw material specifically requires a raw material containing iron and / or manganese, and if necessary, cobalt oxide, magnesium oxide, calcium carbonate, calcium oxide, aluminum oxide, nickel oxide, oxidation One or more of niobium, lithium titanate, chromium (III) oxide, copper (II) acetate, zinc oxide, zirconium oxide, vanadium carbide, lithium molybdate and lithium tungstate may be included.
遷移金属元素含有原料において、鉄およびマンガンからなる群から選ばれた少なくとも一種の遷移金属元素の含有量は、遷移金属元素含有原料に含まれる金属元素の合計量を100mol%として、50mol%以上であることが必要である。すなわち、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の金属元素の量は、遷移金属元素含有原料に含まれる金属元素の合計量を100mol%として、0〜50mol%さらには10〜30mol%とすることができる。 In the transition metal element-containing raw material, the content of at least one transition metal element selected from the group consisting of iron and manganese is 50 mol% or more, where the total amount of metal elements contained in the transition metal element-containing raw material is 100 mol%. It is necessary to be. That is, the amount of at least one metal element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr is the total amount of metal elements contained in the transition metal element-containing raw material Can be 0 to 50 mol%, further 10 to 30 mol%.
ホウ酸は、ホウ素(B)の供給源である。ホウ酸に対する遷移金属含有原料の配合割合に特に限定はないが、モル比で、0.9〜1.2さらには0.95〜1.1とすることがより好ましい。また、遷移金属含有原料およびホウ酸は、リチウム含有溶融塩原料の溶融塩中において、均一に分散される比率で使用されればよい。たとえば、リチウム含有溶融塩原料の合計量100質量部に対して、遷移金属含有原料およびホウ酸の合計量が50〜100質量部の範囲となる量であることが好ましく、80〜95質量部さらには90〜95質量部の範囲となる量であることがより好ましい。 Boric acid is a source of boron (B). There is no particular limitation on the blending ratio of the transition metal-containing raw material to boric acid, but it is more preferably 0.9 to 1.2, and more preferably 0.95 to 1.1 in terms of molar ratio. Further, the transition metal-containing raw material and boric acid may be used in a uniformly dispersed ratio in the molten salt of the lithium-containing molten salt raw material. For example, it is preferable that the total amount of the transition metal-containing raw material and boric acid be in the range of 50 to 100 parts by mass with respect to 100 parts by mass of the total amount of the lithium-containing molten salt raw material, Is more preferably 90 to 95 parts by mass.
具体的な反応方法については特に限定的ではないが、通常は、上記したリチウム含有溶融塩原料、遷移金属含有原料およびホウ酸を秤量し、ボールミル等を用いて均一に混合した後、加熱してリチウム含有溶融塩原料を溶融させればよい。これにより、リチウム含有溶融塩原料の溶融塩中において、リチウム含有溶融塩原料、遷移金属含有原料およびホウ酸の反応が進行して、目的とするリチウムボレート系化合物を得ることができる。 Although the specific reaction method is not particularly limited, usually, the above-described lithium-containing molten salt raw material, transition metal-containing raw material and boric acid are weighed, uniformly mixed using a ball mill or the like, and then heated. The lithium-containing molten salt raw material may be melted. Thereby, in the molten salt of a lithium containing molten salt raw material, reaction of a lithium containing molten salt raw material, a transition metal containing raw material, and boric acid advances, and the target lithium borate type compound can be obtained.
上記の反応は、二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、リチウム含有溶融塩原料の融点以上900℃以下のリチウム含有溶融塩原料の溶融塩中で行われる。 The above reaction is performed in a molten salt of a lithium-containing molten salt raw material having a melting point of 900 ° C. or lower and a melting point of the lithium-containing molten salt raw material in a mixed gas atmosphere containing carbon dioxide and a reducing gas.
溶融塩の温度、すなわちリチウム含有溶融塩原料を溶融させる温度は、反応温度に相当し、リチウム含有溶融塩原料の融点以上900℃以下である。反応温度が900℃を超えると、Liが蒸発してLiの欠損したリチウムボレート系化合物が生成される。また、反応温度が200℃未満では、溶融塩中にO2−が放出されにくく、リチウムボレート系化合物が合成されるまでに長時間を要するため、実用的ではない。したがって、望ましい反応温度は、300〜700℃、500〜700℃さらには600〜700℃である。ただし、反応温度はリチウム含有溶融塩原料の融点を上回る必要があるため、リチウム含有溶融塩原料の組成を調製することが必要である。この際、反応時間は、1〜20時間さらには5〜13時間とすればよい。 The temperature of the molten salt, that is, the temperature at which the lithium-containing molten salt raw material is melted corresponds to the reaction temperature and is not lower than the melting point of the lithium-containing molten salt raw material and not higher than 900 ° C. When the reaction temperature exceeds 900 ° C., Li evaporates and a lithium borate compound lacking Li is generated. On the other hand, if the reaction temperature is less than 200 ° C., O 2− is not easily released into the molten salt, and it takes a long time to synthesize a lithium borate compound, which is not practical. Therefore, desirable reaction temperature is 300-700 degreeC, 500-700 degreeC, and also 600-700 degreeC. However, since the reaction temperature needs to exceed the melting point of the lithium-containing molten salt raw material, it is necessary to prepare the composition of the lithium-containing molten salt raw material. At this time, the reaction time may be 1 to 20 hours, and further 5 to 13 hours.
上記した反応は、反応時において、遷移金属含有原料に含まれるFe等の金属元素を2価イオンとして溶融塩中に安定に存在させるために、二酸化炭素および還元性ガスを含む混合ガス雰囲気下で行う。この雰囲気下では、反応前の酸化数が2価以下の金属元素であっても2価の状態で安定に維持することが可能となる。二酸化炭素と還元性ガスの比率に特に限定はないが、還元性ガスを多く用いると、酸化雰囲気を制御する二酸化炭素が減少するため、硝酸リチウムの還元が促進されて反応速度が速くなる。しかし、還元性ガスが過多では、高過ぎる還元性によりリチウムボレート系化合物のFe2+が還元されて、反応生成物が破壊する虞がある。そのため、好ましい混合ガスの混合比率は、体積比で、二酸化炭素:還元性ガス=100:3〜60:40さらには75:25〜65:35とすることが好ましい。還元性ガスとしては、たとえば、水素、一酸化炭素などを用いることができ、水素が特に好ましい。 In the reaction described above, during the reaction, in order to allow a metal element such as Fe contained in the transition metal-containing raw material to exist stably as a divalent ion in the molten salt, in a mixed gas atmosphere containing carbon dioxide and a reducing gas. Do. Under this atmosphere, even a metal element whose oxidation number before reaction is divalent or less can be stably maintained in a divalent state. The ratio of carbon dioxide and reducing gas is not particularly limited. However, when a large amount of reducing gas is used, carbon dioxide for controlling the oxidizing atmosphere is reduced, so that the reduction of lithium nitrate is promoted and the reaction rate is increased. However, if the reducing gas is excessive, Fe 2+ of the lithium borate compound may be reduced due to too high reducing property, and the reaction product may be destroyed. Therefore, it is preferable that the mixing ratio of the mixed gas is a volume ratio of carbon dioxide: reducing gas = 100: 3 to 60:40, or 75:25 to 65:35. As the reducing gas, for example, hydrogen, carbon monoxide and the like can be used, and hydrogen is particularly preferable.
二酸化炭素と還元性ガスの混合ガスの圧力については、特に限定はなく、通常、大気圧とすればよいが、加圧下、あるいは減圧下のいずれであっても良い。 There is no particular limitation on the pressure of the mixed gas of carbon dioxide and reducing gas, and it may be usually atmospheric pressure, but it may be under pressure or under reduced pressure.
上記した反応を行った後、冷却し、固化したリチウム含有溶融塩を除去することによって、目的とするリチウムボレート系化合物を得ることができる。冷却速度に特に限定はないが、反応温度から室温まで急冷(たとえば冷却速度で50〜200℃/分)するのが好ましい。急冷することにより、さらに微細な粉状の生成物が得られる。 After performing the above reaction, the target lithium borate compound can be obtained by cooling and removing the solidified lithium-containing molten salt. The cooling rate is not particularly limited, but it is preferable to rapidly cool from the reaction temperature to room temperature (for example, at a cooling rate of 50 to 200 ° C./min). By quenching, a finer powdery product can be obtained.
リチウム含有溶融塩を除去する方法としては、冷却されて固化したリチウム含有溶融塩を溶解できる溶媒を用いて、生成物を洗浄することによって、リチウム含有溶融塩を溶解除去すればよい。たとえば、溶媒として、水を用いることも可能であるが、リチウムボレート系化合物に含まれる遷移金属の酸化を防止するために、アルコール、アセトンなどの非水溶媒等を用いることが好ましい。特に、無水酢酸と酢酸とを質量比で2:1〜1:1の割合で用いることが好ましい。この混合溶媒は、リチウム含有溶融塩を溶解除去する作用に優れていることに加えて、酢酸がリチウム含有溶融塩と反応して水が生成した場合に、無水酢酸が水を取り込んで酢酸を生じることによって、水が分離することを抑制できる。尚、無水酢酸と酢酸を用いる場合には、まず、無水酢酸を生成物に混合して、乳鉢等を用いてすりつぶして粒子を細かくした後、無水酢酸を粒子になじませた状態で酢酸を加えることが好ましい。この方法によれば、酢酸とリチウム含有溶融塩とが反応して生成した水が速やかに無水酢酸と反応して、生成物と水が触れ合う機会を低減できるので、目的物の酸化と分解を効果的に抑制することができる。 As a method for removing the lithium-containing molten salt, the lithium-containing molten salt may be dissolved and removed by washing the product using a solvent that can dissolve the cooled and solidified lithium-containing molten salt. For example, although water can be used as the solvent, it is preferable to use a nonaqueous solvent such as alcohol or acetone in order to prevent oxidation of the transition metal contained in the lithium borate compound. In particular, it is preferable to use acetic anhydride and acetic acid in a mass ratio of 2: 1 to 1: 1. This mixed solvent is excellent in the action of dissolving and removing the lithium-containing molten salt, and when acetic acid reacts with the lithium-containing molten salt to produce water, acetic anhydride takes in water to produce acetic acid. Therefore, it is possible to suppress the separation of water. When acetic anhydride and acetic acid are used, first, acetic anhydride is mixed with the product, ground with a mortar or the like to make particles fine, and then acetic anhydride is added in a state where acetic anhydride is intimately mixed with the particles. It is preferable. According to this method, since the water produced by the reaction of acetic acid and the lithium-containing molten salt reacts quickly with acetic anhydride and the product and water come into contact with each other, the oxidation and decomposition of the target product is effective. Can be suppressed.
<リチウムボレート系化合物>
上記した方法によって得られるリチウムボレート系化合物は、
組成式:Li1+a−bAbM1−xM’xBO3+c
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3であって、かつa>bである)で表される化合物である。
<Lithium borate compounds>
The lithium borate compound obtained by the above-described method is
Composition formula: Li 1 + ab Ab M 1-x M ′ x BO 3 + c
(Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, where each subscript is as follows: 0 ≦ x ≦ 0. 5, 0 <a <1, 0 ≦ b <0.2, 0 <c <0.3, and a> b).
本発明の製造方法により得られるリチウムボレート系化合物は、リチウム二次電池の正極活物質として用いた場合に、優れたサイクル特性を示す。具体的には、試験温度30℃で0.1Cにて、初回定電圧充電を4.5Vで10時間行い4.5〜1.5Vで充放電試験を行った場合には、50サイクル充放電後の放電容量が初期放電容量の90%以上である。上記の組成式のa、bおよびcのさらに好ましい範囲は、0.01≦a−b≦0.1、0.01≦c≦0.1である。 The lithium borate compound obtained by the production method of the present invention exhibits excellent cycle characteristics when used as a positive electrode active material of a lithium secondary battery. Specifically, when the initial constant voltage charge is performed at 4.5 V for 10 hours at a test temperature of 30 ° C. and the charge / discharge test is performed at 4.5 to 1.5 V, 50 cycle charge / discharge The later discharge capacity is 90% or more of the initial discharge capacity. More preferable ranges of a, b and c in the above composition formula are 0.01 ≦ ab ≦ 0.1 and 0.01 ≦ c ≦ 0.1.
該化合物は、硝酸リチウムの溶融塩を使用したことで、溶融塩中のリチウムイオンが、リチウムボレート系化合物のLiイオンサイトに浸入して、化学量論量と比較して、Liイオンを過剰に含む化合物となる。また、硝酸リチウムを含む溶融塩であれば、比較的低温で反応を行うことが可能となり、結晶粒の成長が抑制され、不純物相の量が大きく減少する。その結果、リチウムイオン二次電池の正極活物質として用いる場合に、良好なサイクル特性と高容量とを有する材料となる。上記した方法で得られるリチウムボレート系化合物は、平均粒径が500nm〜50μmさらには600nm〜20μmの範囲内にあるものが好ましい。尚、本明細書では、平均粒径は、走査型電子顕微鏡(SEM)による観察で得られた画像から複数個の粒子の最大径(粒子を挟む二本の平行線の距離の最大値)を実測して算出した値である。 The compound used a molten salt of lithium nitrate, so that the lithium ions in the molten salt penetrated into the Li ion site of the lithium borate compound, resulting in excessive Li ions compared to the stoichiometric amount. It becomes a compound containing. Moreover, if it is a molten salt containing lithium nitrate, it becomes possible to perform the reaction at a relatively low temperature, the growth of crystal grains is suppressed, and the amount of the impurity phase is greatly reduced. As a result, when used as a positive electrode active material of a lithium ion secondary battery, the material has good cycle characteristics and high capacity. The lithium borate compound obtained by the above-described method preferably has an average particle size in the range of 500 nm to 50 μm, more preferably 600 nm to 20 μm. In this specification, the average particle diameter is the maximum diameter of a plurality of particles (maximum value of the distance between two parallel lines sandwiching the particles) from an image obtained by observation with a scanning electron microscope (SEM). It is a value calculated by actual measurement.
<カーボン被覆処理>
上記した方法で得られる組成式:Li1+a−bAbM1−xM’xBO3+cで表されるリチウムボレート系化合物は、更に、カーボンによる被覆処理を行って導電性を向上させることが好ましい。
<Carbon coating treatment>
The lithium borate compound represented by the composition formula: Li 1 + ab Ab M 1-x M ′ x BO 3 + c obtained by the above-described method may be further subjected to a coating treatment with carbon to improve conductivity. preferable.
カーボン被覆処理の具体的な方法については、特に限定的ではなく、メタンガス、エタンガス、ブタンガスのような炭素含有ガスを含む雰囲気において熱処理を行う気相法の他、炭素源となる有機物とリチウムボレート系化合物とを均一に混合した後に熱処理によって有機物を炭化させることによる熱分解法も適用可能である。特に、上記リチウムボレート系化合物に、カーボン材料とLi2CO3を加え、ボールミルによってリチウムボレート系化合物がアモルファス化するまで均一に混合した後、熱処理を行うボールミリング法を適用することが好ましい。この方法によれば、ボールミリングによって正極活物質であるリチウムボレート系化合物がアモルファス化され、カーボンと均一に混合されて密着性が増加し、更に熱処理により、該リチウムボレート系化合物の再結晶化と同時にカーボンが該リチウムボレート系化合物の周りに均一に析出する。この際、Li2CO3が存在することにより、リチウム過剰ボレート系化合物がリチウム欠損になることはなく、高い充放電容量を示すものとなる。 The specific method of the carbon coating treatment is not particularly limited. In addition to a vapor phase method in which heat treatment is performed in an atmosphere containing a carbon-containing gas such as methane gas, ethane gas, or butane gas, an organic substance that is a carbon source and a lithium borate system A thermal decomposition method in which an organic substance is carbonized by heat treatment after the compound is uniformly mixed is also applicable. In particular, it is preferable to apply a ball milling method in which a carbon material and Li 2 CO 3 are added to the lithium borate-based compound, and the lithium borate-based compound is uniformly mixed by a ball mill until it becomes amorphous, followed by heat treatment. According to this method, the lithium borate compound, which is a positive electrode active material, is made amorphous by ball milling, and is uniformly mixed with carbon to increase adhesion. Further, by heat treatment, the lithium borate compound is recrystallized. At the same time, carbon is uniformly deposited around the lithium borate compound. At this time, the presence of Li 2 CO 3 does not cause the lithium excess borate compound to be deficient in lithium, and exhibits a high charge / discharge capacity.
アモルファス化の程度については、CuのKα線を光源とするX線回折測定において、ボールミリング前の結晶性を有する試料についての(011)面由来の回折ピークの半値幅をB(011)Crystal、ボールミリングにより得られた試料の同ピークの半値幅をB(011)millとした場合に、B(011)Crystal/B(011)millの比が0.1〜0.5程度の範囲であればよい。 Regarding the degree of amorphization, in the X-ray diffraction measurement using Cu Kα ray as the light source, the half-value width of the diffraction peak derived from the (011) plane of the sample having crystallinity before ball milling is represented by B (011) Crystal , there the half width of the peak of the sample obtained by ball milling the case of the B (011) mill, B ( 011) Crystal / B (011) the ratio of mill is in the range of about 0.1 to 0.5 That's fine.
この方法では、カーボン材料としては、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛等を用いることができる。 In this method, acetylene black (AB), ketjen black (KB), graphite or the like can be used as the carbon material.
リチウムボレート系化合物、カーボン材料、およびLi2CO3の混合割合については、リチウムボレート系化合物100質量部に対して、カーボン系材料を20〜40質量部、Li2CO3を20〜40質量部とすればよい。 Regarding the mixing ratio of the lithium borate compound, the carbon material, and Li 2 CO 3 , the carbon material is 20 to 40 parts by mass and the Li 2 CO 3 is 20 to 40 parts by mass with respect to 100 parts by mass of the lithium borate compound. And it is sufficient.
上記した方法でリチウムボレート系化合物がアモルファス化するまでボールミリング処理を行った後、熱処理を行う。熱処理は、リチウムボレート系化合物に含まれる遷移金属イオンを2価に保持するために、還元性雰囲気下で行う。この場合の還元性雰囲気としては、溶融塩中でのリチウムボレート系化合物の合成反応と同様に、2価の遷移金属イオンが金属状態まで還元されることを抑制するために、窒素および二酸化炭素からなる群から選ばれた少なくとも一種のガスと、還元性ガスの混合ガス雰囲気中であることが好ましい。窒素および二酸化炭素からなる群から選ばれた少なくとも一種のガスと、還元性ガスの混合割合は、リチウムボレート系化合物の合成反応時と同様とすればよい。 Ball milling is performed until the lithium borate-based compound becomes amorphous by the above-described method, and then heat treatment is performed. The heat treatment is performed in a reducing atmosphere in order to keep the transition metal ions contained in the lithium borate compound divalent. As the reducing atmosphere in this case, as in the synthesis reaction of the lithium borate compound in the molten salt, in order to suppress the reduction of the divalent transition metal ion to the metal state, nitrogen and carbon dioxide are used. It is preferably in a mixed gas atmosphere of at least one gas selected from the group consisting of a reducing gas and a reducing gas. The mixing ratio of the reducing gas and at least one gas selected from the group consisting of nitrogen and carbon dioxide may be the same as in the synthesis reaction of the lithium borate compound.
熱処理温度は、500〜800℃とすることが好ましい。熱処理温度が低すぎる場合には、リチウムボレート系化合物の周りにカーボンを均一に析出させることが難しく、一方、熱処理温度が高すぎると、リチウムボレート系化合物の分解やリチウム欠損が生じることがあり、充放電容量が低下するので好ましくない。熱処理時間は、通常、1〜10時間とすればよい。 The heat treatment temperature is preferably 500 to 800 ° C. If the heat treatment temperature is too low, it is difficult to deposit carbon uniformly around the lithium borate compound, while if the heat treatment temperature is too high, decomposition of the lithium borate compound or lithium deficiency may occur. This is not preferable because the charge / discharge capacity decreases. The heat treatment time may normally be 1 to 10 hours.
また、その他のカーボン被覆処理方法として、上記リチウムボレート系化合物に、カーボン材料とLiFを加え、上記した方法と同様にして、ボールミルによってリチウムボレート系化合物がアモルファス化するまで均一に混合した後、熱処理を行っても良い。この場合には、上記した場合と同様に、リチウムボレート系化合物の再結晶化と同時にカーボンが該リチウムボレート系化合物の周りに均一に析出して、導電性が向上し、更に、リチウムボレート系化合物の酸素原子の一部がフッ素原子と置換して、
組成式:Li1+a−bAbM1−xM’xBO3+c−yF2y
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeまたはMnであり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3、0<y<1であって、且つa>bである)で表されるフッ素含有リチウムボレート系化合物が形成される。
In addition, as another carbon coating treatment method, a carbon material and LiF are added to the lithium borate compound, and the mixture is uniformly mixed by a ball mill until the lithium borate compound becomes amorphous in the same manner as described above, followed by heat treatment. May be performed. In this case, as in the case described above, carbon is uniformly deposited around the lithium borate compound simultaneously with recrystallization of the lithium borate compound, and the conductivity is improved. Further, the lithium borate compound is further improved. A part of the oxygen atom of
Composition formula: Li 1 + ab Ab M 1-x M ′ x BO 3 + cy F 2y
Wherein A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is Fe or Mn, and M ′ is Mg, Ca, Co, Al, Ni And at least one element selected from the group consisting of Nb, Mo, W, Ti and Zr, where the subscripts are as follows: 0 ≦ x ≦ 0.5, 0 <a <1, 0 ≦ b <0.2, 0 <c <0.3, 0 <y <1, and a> b) are formed.
この化合物は、Fが添加されたことにより、正極として用いた場合に、平均電圧が2.6Vから2.8Vに上昇して、より優れた性能を有する正極材料となる。この際、LiFが存在することにより、リチウム過剰ボレート系化合物がリチウム欠損になることはなく、高い充放電容量を示すものとなる。 When this compound is used as a positive electrode due to the addition of F, the average voltage increases from 2.6 V to 2.8 V, and a positive electrode material having better performance is obtained. At this time, the presence of LiF does not cause the lithium excess borate compound to be deficient in lithium and exhibits a high charge / discharge capacity.
この方法では、リチウムボレート系化合物、カーボン材料およびLiFの混合割合については、リチウムボレート系化合物100質量部に対して、カーボン系材料を20〜40質量部、LiFを10〜40質量部とすればよい。更に、必要に応じて、Li2CO3が含まれていても良い。ボールミリングおよび熱処理の条件については、上記した場合と同様とすればよい。 In this method, the mixing ratio of the lithium borate compound, the carbon material, and LiF is 20 to 40 parts by mass of the carbon material and 10 to 40 parts by mass of LiF with respect to 100 parts by mass of the lithium borate compound. Good. Furthermore, Li 2 CO 3 may be included as necessary. The conditions for ball milling and heat treatment may be the same as described above.
<リチウムイオン二次電池用正極>
上記した溶融塩中で合成して得られるリチウムボレート系化合物、カーボン被覆処理を行ったリチウムボレート系化合物、およびフッ素添加されたリチウムボレート系化合物は、いずれもリチウム二次電池正極用活物質として有効に使用できる。これらのリチウムボレート系化合物を用いる正極は、通常のリチウムイオン二次電池用正極と同様の構造とすることができる。
<Positive electrode for lithium ion secondary battery>
The lithium borate compound obtained by synthesis in the above molten salt, the lithium borate compound subjected to carbon coating treatment, and the lithium borate compound added with fluorine are all effective as an active material for a lithium secondary battery positive electrode. Can be used for The positive electrode using these lithium borate compounds can have the same structure as a normal positive electrode for a lithium ion secondary battery.
たとえば、上記リチウムボレート系化合物に、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(VaporGrownCarbonFiber:VGCF)等の導電助剤、ポリフッ化ビニリデン(PolyVinylidineDiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)等のバインダー、N−メチル−2−ピロリドン(NMP)等の溶媒を加えてペースト状として、これを集電体に塗布することによって正極を作製することができる。導電助剤の使用量については、特に限定的ではないが、たとえば、リチウムボレート系化合物100質量部に対して、5〜20質量部とすることができる。また、バインダーの使用量についても、特に限定的ではないが、たとえば、リチウムボレート系化合物100質量部に対して、5〜20質量部とすることができる。また、その他の方法として、リチウムボレート系化合物と、上記の導電助剤およびバインダーを混合したものを、乳鉢やプレス機を用いて混練してフィルム状とし、これを集電体へプレス機で圧着する方法によっても正極を製造することが出来る。 For example, the lithium borate compound may be added to acetylene black (AB), ketjen black (KB), a vapor grown carbon fiber (Vapor Carbon Carbon Fiber: VGCF), or the like, a polyvinylidene fluoride (Polyvinylidene Fluoride: PVdF), a polytetrafluorocarbon. A positive electrode is prepared by adding a binder such as ethylene fluoride (PTFE) or styrene-butadiene rubber (SBR), or a solvent such as N-methyl-2-pyrrolidone (NMP), and applying this to a current collector. can do. Although there are no particular limitations on the amount of the conductive aid used, it can be, for example, 5 to 20 parts by mass with respect to 100 parts by mass of the lithium borate compound. The amount of the binder used is not particularly limited, but can be 5 to 20 parts by mass with respect to 100 parts by mass of the lithium borate compound, for example. In addition, as another method, a mixture of a lithium borate compound, the above conductive additive and a binder is kneaded with a mortar or a press to form a film, and this is crimped to a current collector with a press. The positive electrode can be manufactured also by the method to do.
集電体としては、特に限定はなく、従来からリチウムイオン二次電池用正極として使用されている材料、たとえば、アルミ箔、アルミメッシュ、ステンレスメッシュなどを用いることができる。更に、カーボン不織布、カーボン織布なども集電体として使用できる。 The current collector is not particularly limited, and materials conventionally used as positive electrodes for lithium ion secondary batteries, such as aluminum foil, aluminum mesh, and stainless steel mesh, can be used. Furthermore, a carbon nonwoven fabric, a carbon woven fabric, etc. can be used as a collector.
本発明のリチウムイオン二次電池用正極は、その形状、厚さなどについては特に限定的ではないが、たとえば、活物質を充填した後、圧縮することによって、厚さを10〜200μm、より好ましくは20〜100μmとすることが好ましい。従って、使用する集電体の種類、構造等に応じて、圧縮後に上記した厚さとなるように、活物質の充填量を適宜決めればよい。 The positive electrode for a lithium ion secondary battery of the present invention is not particularly limited with respect to its shape, thickness, etc. For example, the thickness is preferably 10 to 200 μm, more preferably by compression after filling with an active material. Is preferably 20 to 100 μm. Therefore, the filling amount of the active material may be appropriately determined so as to have the above-described thickness after compression according to the type and structure of the current collector to be used.
<リチウムイオン二次電池>
上記したリチウムイオン二次電池用正極を用いるリチウムイオン二次電池は、公知の手法により製造することができる。すなわち、正極材料として、上記した正極を使用し、負極材料として、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅−錫やコバルト−錫などの合金系材料、チタン酸リチウムなどの酸化物材料を使用し、電解液として、公知のエチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非水系溶媒に過塩素酸リチウム、LiPF6、LiBF4、LiCF3SO3などのリチウム塩を0.5mol/L〜1.7mol/Lの濃度で溶解させた溶液を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てればよい。
<Lithium ion secondary battery>
A lithium ion secondary battery using the above-described positive electrode for a lithium ion secondary battery can be produced by a known method. That is, the positive electrode described above is used as a positive electrode material, and as a negative electrode material, a known carbon-based material such as lithium, graphite, a silicon-based material such as a silicon thin film, an alloy-based material such as copper-tin or cobalt-tin, An oxide material such as lithium titanate is used, and as an electrolytic solution, a known nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate, lithium perchlorate, LiPF 6 , LiBF 4 , LiCF 3 SO 3 A lithium ion secondary battery according to an ordinary method using a solution in which a lithium salt such as 0.5 mol / L to 1.7 mol / L is dissolved, and using other known battery components. Just assemble.
以上、本発明のリチウムボレート系化合物の製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 As mentioned above, although embodiment of the manufacturing method of the lithium borate type compound of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.
以下に、本発明のリチウムボレート系化合物の製造方法の実施例を挙げて、本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples of the method for producing a lithium borate compound of the present invention.
〔実施例1〕溶融塩法による鉄含有リチウムボレート化合物の合成
原料として、鉄(高純度化学株式会社製、純度99.9%)0.01mol、ホウ酸H3BO3(キシダ化学株式会社製、純度99%)0.01mol、硝酸リチウム(キシダ化学株式会社製、純度99%)0.01mol、を混合した。この混合割合は、硝酸リチウム100質量部に対して、鉄およびホウ酸の合計量を100質量部の割合とした。
[Example 1] Synthesis of iron-containing lithium borate compound by molten salt method 0.01 mol of iron (manufactured by High-Purity Chemical Co., Ltd., purity 99.9%), boric acid H 3 BO 3 (manufactured by Kishida Chemical Co., Ltd.) , Purity 99%) 0.01 mol and lithium nitrate (Kishida Chemical Co., Ltd., purity 99%) 0.01 mol were mixed. The mixing ratio was such that the total amount of iron and boric acid was 100 parts by mass with respect to 100 parts by mass of lithium nitrate.
これに水2mLを加えて乳棒および乳鉢を用いて混合し、100℃に加熱後さらに混合し、100℃で乾燥した。その後、得られた粉体を金坩堝中で加熱して、二酸化炭素(流量:70mL/分)と水素(流量:30mL/分)の混合ガス雰囲気下で、650℃に加熱して、硝酸リチウムを溶融させた状態で13時間反応させた。 2 mL of water was added thereto, mixed using a pestle and mortar, heated to 100 ° C., further mixed, and dried at 100 ° C. Thereafter, the obtained powder was heated in a gold crucible and heated to 650 ° C. in a mixed gas atmosphere of carbon dioxide (flow rate: 70 mL / min) and hydrogen (flow rate: 30 mL / min) to obtain lithium nitrate. Was reacted for 13 hours in a molten state.
反応後、反応系である炉心全体を、加熱器である電気炉から取り出して、ガスを通じたまま室温まで急冷した。なお、このときの冷却速度は、51℃/分であった。その後、生成物をすり潰して、鉄含有リチウムボレート化合物の粉体を得た。 After the reaction, the entire reactor core as a reaction system was taken out of an electric furnace as a heater, and rapidly cooled to room temperature while passing gas. The cooling rate at this time was 51 ° C./min. Thereafter, the product was ground to obtain a powder of an iron-containing lithium borate compound.
得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。XDRパターンを図1に示した。このXDRパターンは、報告されている空間群C2/cの単斜晶LiFeBO3のパターンとほぼ一致した。 The obtained product was subjected to X-ray diffraction measurement using a CuKα ray by a powder X-ray diffractometer. The XDR pattern is shown in FIG. This XDR pattern almost coincided with the reported pattern of monoclinic LiFeBO 3 in the space group C2 / c.
また、生成物の走査型電子顕微鏡(SEM)写真を図2に示した。図2から平均粒径を算出したところ、6μmの微細な結晶粒からなる粉体であることが確認できた。 A scanning electron microscope (SEM) photograph of the product is shown in FIG. When the average particle size was calculated from FIG. 2, it was confirmed that the powder was composed of fine crystal grains of 6 μm.
さらに、生成物について誘導結合プラズマ(InductivelyCoupledPlasma:ICP)法によって元素分析した結果、組成式は、Li1.05FeBO3.08となり、リチウム過剰のLiFeBO3系リチウムボレート系化合物であることが確認できた。 Further, as a result of elemental analysis of the product by an inductively coupled plasma (ICP) method, the composition formula is Li 1.05 FeBO 3.08 , and it can be confirmed that it is a lithium-excess LiFeBO 3 -based lithium borate compound. It was.
〔比較例1〕固相法による鉄含有リチウムボレート化合物の合成
炭酸リチウムLi2CO3、シュウ酸鉄FeC2O4・2H2O、およびホウ酸H3BO3をモル比で1:1:1となるように混合した混合粉末をボールミリングした後、650℃で10時間熱処理により鉄含有リチウムボレート化合物を得た。
[Comparative Example 1] Synthesis of iron-containing lithium borate compound by solid phase method Lithium carbonate Li 2 CO 3 , iron oxalate FeC 2 O 4 .2H 2 O, and boric acid H 3 BO 3 in a molar ratio of 1: 1: After ball milling the mixed powder mixed so as to be 1, an iron-containing lithium borate compound was obtained by heat treatment at 650 ° C. for 10 hours.
〔参考例1〕溶融塩法による鉄含有リチウムボレート化合物の合成
原料として、シュウ酸鉄FeC2O4・2H2O(シグマアルドリッチ製、純度99.99%)、水酸化リチウム(無水)LiOH(キシダ化学株式会社製、純度98%)、ホウ酸H3BO3(キシダ化学株式会社製、純度99.5%)をそれぞれ0.005mol用い、これを炭酸塩混合物(炭酸リチウム(キシダ化学株式会社製、純度99.9%)、炭酸ナトリウム(キシダ化学株式会社製、純度99.5%)、および炭酸カリウム(キシダ化学株式会社製、純度99.5%)をモル比0.435:0.315:0.25で混合したもの)と混合した。混合割合は、炭酸塩混合物100質量部に対して、シュウ酸鉄、水酸化リチウム及びホウ酸の合計量を225質量部の割合とした。
As a starting material for the synthesis of Reference Example 1 Iron-containing lithium borate compound by molten salt method, iron oxalate FeC 2 O 4 · 2H 2 O ( Sigma-Aldrich, 99.99% purity), lithium hydroxide (anhydride) LiOH ( 0.005 mol each of Kishida Chemical Co., Ltd., purity 98%) and boric acid H 3 BO 3 (Kishida Chemical Co., Ltd., purity 99.5%) were used, and this was used as a carbonate mixture (lithium carbonate (Kishida Chemical Co., Ltd.). Product, purity 99.9%), sodium carbonate (produced by Kishida Chemical Co., Ltd., purity 99.5%), and potassium carbonate (produced by Kishida Chemical Co., Ltd., purity 99.5%) in a molar ratio of 0.435: 0. 315: 0.25). The mixing ratio was such that the total amount of iron oxalate, lithium hydroxide and boric acid was 225 parts by mass with respect to 100 parts by mass of the carbonate mixture.
これにアセトン20mlを加えてジルコニア製ボールミルにて500rpmで60分混合し、乾燥した。その後、得られた粉体を金坩堝中で加熱して、二酸化炭素(流量:100mL/分)と水素(流量:3mL/分)の混合ガス雰囲気下で、400℃に加熱して、炭酸塩混合物を溶融させた状態で15時間反応させた。 Acetone (20 ml) was added thereto, mixed in a zirconia ball mill at 500 rpm for 60 minutes, and dried. Thereafter, the obtained powder was heated in a gold crucible and heated to 400 ° C. in a mixed gas atmosphere of carbon dioxide (flow rate: 100 mL / min) and hydrogen (flow rate: 3 mL / min) to form carbonate. The mixture was allowed to react for 15 hours in the molten state.
反応後、温度を下げ100℃になった時点で反応系である炉心全体を、加熱器である電気炉から取り出して、ガスを通じたまま室温まで冷却した。 After the reaction, when the temperature was lowered to 100 ° C., the entire reactor core as a reaction system was taken out from the electric furnace as a heater and cooled to room temperature while passing gas.
次いで、生成物に無水酢酸(20ml)を加えて乳鉢ですりつぶし、酢酸(10ml)を加えて炭酸塩等を反応させて取り除き、ろ過して鉄含有リチウムボレート化合物の粉体を得た。 Next, acetic anhydride (20 ml) was added to the product and ground in a mortar, and acetic acid (10 ml) was added to react and remove carbonates and the like, followed by filtration to obtain a powder of an iron-containing lithium borate compound.
得られた生成物について、粉末X線回折装置により、CuKα線を用いてX線回折測定を行った。XDRパターンを図1に示した。XDRパターンは、報告されている空間群C2/cのLiFeBO3のパターンとほぼ一致した。また、生成物をSEMにより観察した結果、数μm以下の結晶粒からなる粉体であることが確認できた。さらに、生成物についてICP法によって元素分析した結果、組成式は、Li1.04FeBO3.10となり、リチウム過剰のLiFeBO3系リチウムボレート系化合物であることが確認できた。 The obtained product was subjected to X-ray diffraction measurement using a CuKα ray by a powder X-ray diffractometer. The XDR pattern is shown in FIG. The XDR pattern almost matched the reported pattern of LiFeBO 3 in space group C2 / c. Moreover, as a result of observing a product by SEM, it has confirmed that it was a powder which consists of a crystal grain of several micrometers or less. Furthermore, as a result of elemental analysis of the product by the ICP method, the composition formula was Li 1.04 FeBO 3.10 . It was confirmed that the product was a lithium-excess LiFeBO 3 -based lithium borate compound.
〔リチウムイオン二次電池の作製〕
実施例1、比較例1および参考例1にて得られたリチウムボレート系化合物のうちのいずれかを正極活物質として用いたリチウムイオン二次電池を作製した。
[Production of lithium ion secondary battery]
A lithium ion secondary battery using any one of the lithium borate compounds obtained in Example 1, Comparative Example 1 and Reference Example 1 as a positive electrode active material was produced.
はじめに、リチウムボレート系化合物100質量部に対して、50質量部のアセチレンブラック(AB)を添加し、遊星ボールミル(5mmのジルコニアボール)を用いて450rpmで5時間ミリング処理し、二酸化炭素と水素の混合ガス(CO2:H2(モル比)=100:3)の雰囲気下において、700℃で2時間熱処理した。 First, 50 parts by mass of acetylene black (AB) is added to 100 parts by mass of a lithium borate compound, and milling is performed at 450 rpm for 5 hours using a planetary ball mill (5 mm zirconia ball). Heat treatment was performed at 700 ° C. for 2 hours in an atmosphere of a mixed gas (CO 2 : H 2 (molar ratio) = 100: 3).
得られた粉末100質量部に対して、アセチレンブラック(AB)とポリテトラフルオロエチレン(PTFE)の混合物(AB:PTFE(質量比)=2:1の混合物)25質量部を添加し、シート法により3種類の電極(正極)を作製し、140℃で3時間真空乾燥した。 25 parts by mass of a mixture of acetylene black (AB) and polytetrafluoroethylene (PTFE) (a mixture of AB: PTFE (mass ratio) = 2: 1) is added to 100 parts by mass of the obtained powder, and the sheet method Thus, three types of electrodes (positive electrode) were prepared and vacuum-dried at 140 ° C. for 3 hours.
その後、所定の溶媒にLiPF6を溶解して1mol/Lとした溶液を電解液として用い、セパレータとしてポリプロピレン膜(セルガード製、Celgard2400)、負極としてリチウム金属箔、正極として既に説明した3種類のうちのいずれかの電極を用いたコイン電池(#E1、#C1および#01)を作製した。 Thereafter, a solution made by dissolving LiPF 6 in a predetermined solvent to 1 mol / L is used as an electrolyte, a polypropylene film (Celgard 2400, manufactured by Celgard) as a separator, a lithium metal foil as a negative electrode, and the three types already described as a positive electrode Coin batteries (# E1, # C1, and # 01) using any of the electrodes were prepared.
なお、電解液は、充放電試験の試験温度に応じて、溶媒が異なる2種類を準備し、上記のコイン電池に用いた。試験温度が30℃の場合には、エチレンカーボネート(EC):ジメチレンカーボネート(DMC)を体積比でEC:DMC=1:1に混合した溶媒を用いた。試験温度が60℃の場合には、エチレンカーボネート(EC):ジメエチレンカーボネート(DEC)を体積比でEC:DEC=1:1に混合した溶媒を用いた。 In addition, according to the test temperature of a charging / discharging test, the electrolyte solution prepared two types from which a solvent differs, and used it for said coin battery. When the test temperature was 30 ° C., a solvent in which ethylene carbonate (EC): dimethylene carbonate (DMC) was mixed at a volume ratio of EC: DMC = 1: 1 was used. When the test temperature was 60 ° C., a solvent in which ethylene carbonate (EC): dimethyl ether carbonate (DEC) was mixed at a volume ratio of EC: DEC = 1: 1 was used.
〔充放電試験〕
作製したコイン電池について30℃または60℃にて充放電試験を行った。試験条件は、試験温度30℃では0.1Cにて電圧4.5〜1.5V(初回定電圧充電は4.5Vで10時間)、試験温度60℃では0.1Cにて電圧4.2〜1.5V(初回定電圧充電は4.2Vで10時間)、とした。電池#E1の充放電特性を図3および図4、電池#01の充放電特性を図5に示した。また、各電池の5サイクル後の放電容量、5サイクル後における平均電圧、および初期放電容量を90%維持できるサイクル数を表1に示した。
(Charge / discharge test)
The manufactured coin battery was subjected to a charge / discharge test at 30 ° C. or 60 ° C. The test conditions are as follows: the test temperature is 30 ° C. and the voltage is 4.5 to 1.5 V at 0.1 C (the first constant voltage charge is 4.5 V for 10 hours), and the test temperature is 60 ° C. and the voltage is 4.2 at 0.1 C. To 1.5V (initial constant voltage charging is 4.2V for 10 hours). 3 and 4 show the charge / discharge characteristics of battery # E1, and FIG. 5 shows the charge / discharge characteristics of battery # 01. Table 1 shows the discharge capacity after 5 cycles of each battery, the average voltage after 5 cycles, and the number of cycles that can maintain 90% of the initial discharge capacity.
図3および図4から、実施例1にて合成されたリチウムボレート系化合物を正極活物質として用いた電池#E1は、30℃(室温付近)においても60℃においても、十分な電池特性を示すことがわかった。一方、参考例1にて合成されたリチウムボレート系化合物を正極活物質として用いた電池#01は、60℃で測定した5サイクル後の平均電圧が高かったが、30℃で測定すると非常に低かった。また、表1に示した30℃における充放電試験結果から、電池#E1は、いずれの項目においても電池#01よりも優れることがわかった。実施例1では、参考例1に比べて不純物の生成が抑えられ(図1)、合成温度が650℃で比較的高くても粒子が微細であった(図2)ことから、室温においてもサイクル特性に優れ高容量であったと推測される。
From FIG. 3 and FIG. 4, the battery # E1 using the lithium borate compound synthesized in Example 1 as the positive electrode active material exhibits sufficient battery characteristics at 30 ° C. (near room temperature) and 60 ° C. I understood it. On the other hand, Battery # 01 using the lithium borate compound synthesized in Reference Example 1 as the positive electrode active material had a high average voltage after 5 cycles measured at 60 ° C., but was very low when measured at 30 ° C. It was. Moreover, from the charge / discharge test results at 30 ° C. shown in Table 1, it was found that the battery # E1 was superior to the battery # 01 in all items. In Example 1, the generation of impurities was suppressed as compared to Reference Example 1 (FIG. 1), and the particles were fine even when the synthesis temperature was relatively high at 650 ° C. (FIG. 2). It is presumed that the characteristics were excellent and the capacity was high.
比較例1にて合成されたリチウムボレート系化合物は、固相反応法を用いたために粒子が大きく成長した。また、図示しないが、XRDパターンから、LiBO2およびFe3O4の存在が確認された。そのため、電池#C1は、容量が小さくサイクル特性も不十分であった。 Since the lithium borate compound synthesized in Comparative Example 1 used the solid phase reaction method, the particles grew greatly. Although not shown, the presence of LiBO 2 and Fe 3 O 4 was confirmed from the XRD pattern. Therefore, battery # C1 had a small capacity and insufficient cycle characteristics.
また、参考例1では、実施例1と同様に溶融塩法を用いてリチウムボレート系化合物を合成した。参考例1では、合成温度が400℃で低温であったため、生成物が微細な粒子で得られたと推測される。しかし、電池#01の30℃での容量およびサイクル特性は、電池#E1に比べて、容量およびサイクル特性ともに低いものであった。 In Reference Example 1, a lithium borate compound was synthesized using the molten salt method in the same manner as in Example 1. In Reference Example 1, since the synthesis temperature was 400 ° C. and low temperature, it was estimated that the product was obtained with fine particles. However, the capacity and cycle characteristics of the battery # 01 at 30 ° C. were lower in both capacity and cycle characteristics than the battery # E1.
したがって、硝酸リチウムを用いた溶融塩法により合成されたリチウムボレート系化合物は、正極活物質として使用した場合に、室温で使用しても、高容量と優れたサイクル特性をもたらすことがわかった。また、硝酸リチウムが低融点であることを利用して、実施例1よりも低温での合成も可能であることから、さらなる粒子の微細化が可能となり、電池特性の向上が予想される。 Therefore, it was found that the lithium borate compound synthesized by the molten salt method using lithium nitrate brings high capacity and excellent cycle characteristics even when used at room temperature when used as a positive electrode active material. Further, since it is possible to synthesize at a lower temperature than in Example 1 by utilizing the fact that lithium nitrate has a low melting point, it is possible to further refine the particles and to improve the battery characteristics.
リチウムイオン二次電池は、小型でエネルギー密度が高く、ポータブル電子機器の電源として広く用いられており、正極活物質としては、主としてLiCoO2などの層状化合物が用いられてきた。しかしながら、これらの化合物は満充電状態において、150℃前後で酸素が脱離しやすく、これが非水電解液の酸化発熱反応を引き起こしやすいという欠点がある。 Lithium ion secondary batteries are small and have high energy density, and are widely used as power sources for portable electronic devices, and layered compounds such as LiCoO 2 have mainly been used as positive electrode active materials. However, these compounds have a drawback that oxygen is easily desorbed at about 150 ° C. in a fully charged state, and this easily causes an oxidative exothermic reaction of the non-aqueous electrolyte.
さらに、硝酸リチウムは、その融点は261℃であるため、単独で用いてもリチウムボレート系化合物を低温で安定的に合成することが可能である。その結果、合成反応時に粒成長が抑制されて、微細なリチウムボレート系化合物が形成される。しかも溶融塩中にLiを含む硝酸塩が含まれていることによって、Liを過剰に含むリチウムボレート系化合物が形成されやすい。このようなリチウムボレート系化合物は、良好なサイクル特性と高い容量を有するリチウムイオン二次電池用正極材料となる。 Furthermore, since the melting point of lithium nitrate is 261 ° C., it is possible to stably synthesize a lithium borate compound at a low temperature even when used alone. As a result, grain growth is suppressed during the synthesis reaction, and a fine lithium borate compound is formed. In addition, since the molten salt contains a nitrate containing Li, a lithium borate-based compound containing excessive Li is easily formed. Such a lithium borate compound becomes a positive electrode material for a lithium ion secondary battery having good cycle characteristics and high capacity.
上記本発明のリチウムボレート系化合物の製造方法により得られるリチウムボレート系化合物は、
組成式:Li1+a−bAbM1−xM’xBO3+c
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3であって、かつa>bである)で表される。また、このリチウムボレート系化合物をリチウム二次電池の正極活物質として用いた場合に、試験温度30℃で0.1Cにて、初回定電圧充電を4.5Vで10時間行い4.5〜1.5Vで50サイクル充放電後の該リチウム二次電池の放電容量が初期放電容量の90%以上である。
The lithium borate-based compound that is obtained by the method for producing a lithium borate-based compound of the present invention,
Composition formula: Li 1 + ab Ab M 1-x M ′ x BO 3 + c
(Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, where each subscript is as follows: 0 ≦ x ≦ 0. 5,0 <a a <1,0 ≦ b <0.2,0 < c <0.3, and you express by a> b a is). Further, when this lithium borate compound is used as a positive electrode active material of a lithium secondary battery, initial constant voltage charging is performed at 4.5 V for 10 hours at 0.1 C at a test temperature of 30 ° C. discharge capacity of the lithium secondary battery after 50 cycles of charge and discharge Ru der 90% of the initial discharge capacity .5V.
<リチウムイオン二次電池用正極>
上記した溶融塩中で合成して得られるリチウムボレート系化合物、カーボン被覆処理を行ったリチウムボレート系化合物、およびフッ素添加されたリチウムボレート系化合物は、いずれもリチウムイオン二次電池正極用活物質として有効に使用できる。これらのリチウムボレート系化合物を用いる正極は、通常のリチウムイオン二次電池用正極と同様の構造とすることができる。
<Positive electrode for lithium ion secondary battery>
The lithium borate compound obtained by synthesis in the above molten salt, the lithium borate compound subjected to carbon coating treatment, and the lithium borate compound added with fluorine are all active materials for positive electrodes of lithium ion secondary batteries. Can be used effectively. The positive electrode using these lithium borate compounds can have the same structure as a normal positive electrode for a lithium ion secondary battery.
<リチウムイオン二次電池>
上記したリチウムイオン二次電池用正極を用いるリチウムイオン二次電池は、公知の手法により製造することができる。すなわち、正極材料として、上記した正極を使用し、負極材料として、公知の金属リチウム(この場合は「リチウム二次電池」と呼ばれる)、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅−錫やコバルト−錫などの合金系材料、チタン酸リチウムなどの酸化物材料を使用し、電解液として、公知のエチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの非水系溶媒に過塩素酸リチウム、LiPF6、LiBF4、LiCF3SO3などのリチウム塩を0.5mol/L〜1.7mol/Lの濃度で溶解させた溶液を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てればよい。
<Lithium ion secondary battery>
A lithium ion secondary battery using the above-described positive electrode for a lithium ion secondary battery can be produced by a known method. That is, the positive electrode described above is used as the positive electrode material, and as the negative electrode material, a known metal lithium (in this case, called “lithium secondary battery”) , a carbon-based material such as graphite, a silicon-based material such as a silicon thin film, Using an alloy material such as copper-tin or cobalt-tin, or an oxide material such as lithium titanate, the electrolyte is perchloric in a known non-aqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, or dimethyl carbonate. Use a solution prepared by dissolving lithium salt such as lithium acid, LiPF 6 , LiBF 4 , LiCF 3 SO 3 at a concentration of 0.5 mol / L to 1.7 mol / L, and other known battery components And what is necessary is just to assemble a lithium ion secondary battery according to a conventional method.
〔充放電試験用コイン電池の作製〕
実施例1、比較例1および参考例1にて得られたリチウムボレート系化合物のうちのいずれかを正極活物質として用いてコイン電池を作製した。
[Production of coin battery for charge / discharge test ]
A coin battery was fabricated using any of the lithium borate compounds obtained in Example 1, Comparative Example 1 and Reference Example 1 as the positive electrode active material.
Claims (14)
(式中、Aは、Na、K、RbおよびCsからなる群から選ばれた少なくとも一種の元素であり、Mは、FeおよびMnからなる群から選ばれた少なくとも一種の元素であり、M’は、Mg、Ca、Co、Al、Ni、Nb、Mo、W、TiおよびZrからなる群から選ばれた少なくとも一種の元素である。各添字は次の通りである:0≦x≦0.5、0<a<1、0≦b<0.2、0<c<0.3であって、かつa>bである)で表され、
リチウム二次電池の正極活物質として用いた場合に、試験温度30℃で0.1Cにて、初回定電圧充電を4.5Vで10時間行い4.5〜1.5Vで50サイクル充放電後の該リチウム二次電池の放電容量が初期放電容量の90%以上であることを特徴とするリチウムボレート系化合物。 Composition formula: Li 1 + ab Ab M 1-x M ′ x BO 3 + c
(Wherein, A is at least one element selected from the group consisting of Na, K, Rb and Cs, M is at least one element selected from the group consisting of Fe and Mn, M ′ Is at least one element selected from the group consisting of Mg, Ca, Co, Al, Ni, Nb, Mo, W, Ti and Zr, where each subscript is as follows: 0 ≦ x ≦ 0. 5, 0 <a <1, 0 ≦ b <0.2, 0 <c <0.3, and a> b).
When used as a positive electrode active material for a lithium secondary battery, the initial constant voltage charge is performed at 0.1 C at a test temperature of 30 ° C. for 10 hours at 4.5 V, and after 50 cycles of charge and discharge at 4.5 to 1.5 V. A lithium borate compound wherein the discharge capacity of the lithium secondary battery is 90% or more of the initial discharge capacity.
純鉄、純マンガンならびに鉄および/またはマンガンを含む化合物からなる群から選ばれる少なくとも一種を含む遷移金属含有原料と、
ホウ酸と、を二酸化炭素および還元性ガスを含む混合ガス雰囲気下において、前記リチウム含有溶融塩原料の融点以上900℃以下の該リチウム含有溶融塩原料の溶融塩中で反応させることを特徴とするリチウムボレート系化合物の製造方法。 A lithium-containing molten salt raw material containing at least lithium nitrate;
A transition metal-containing raw material containing at least one selected from the group consisting of pure iron, pure manganese and a compound containing iron and / or manganese;
Boric acid is reacted in the molten salt of the lithium-containing molten salt raw material in a mixed gas atmosphere containing carbon dioxide and a reducing gas at a melting point of the lithium-containing molten salt raw material of 900 ° C. or lower. A method for producing a lithium borate compound.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010249038A JP5110664B2 (en) | 2010-11-05 | 2010-11-05 | Method for producing lithium borate compound |
PCT/JP2011/006089 WO2012060084A1 (en) | 2010-11-05 | 2011-10-31 | Lithium borate compound and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010249038A JP5110664B2 (en) | 2010-11-05 | 2010-11-05 | Method for producing lithium borate compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012104240A true JP2012104240A (en) | 2012-05-31 |
JP5110664B2 JP5110664B2 (en) | 2012-12-26 |
Family
ID=46024212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010249038A Expired - Fee Related JP5110664B2 (en) | 2010-11-05 | 2010-11-05 | Method for producing lithium borate compound |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5110664B2 (en) |
WO (1) | WO2012060084A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013230273A (en) * | 2012-04-27 | 2013-11-14 | Universal Entertainment Corp | Gaming machine |
JP2013230272A (en) * | 2012-04-27 | 2013-11-14 | Universal Entertainment Corp | Gaming machine |
JP2013230271A (en) * | 2012-04-27 | 2013-11-14 | Universal Entertainment Corp | Gaming machine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105789625B (en) * | 2016-04-25 | 2018-06-01 | 湖南科技大学 | A kind of anode material for lithium-ion batteries LiCoBO3Preparation method |
CN114566633B (en) * | 2022-03-04 | 2025-02-11 | 中化国际(控股)股份有限公司 | A novel cobalt-free positive electrode material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104137A1 (en) * | 2009-03-09 | 2010-09-16 | 独立行政法人産業技術総合研究所 | Process for producing lithium borate compound |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3229765B2 (en) * | 1995-02-03 | 2001-11-19 | 三洋電機株式会社 | Lithium secondary battery |
JP3032757B1 (en) * | 1999-02-18 | 2000-04-17 | 株式会社東芝 | Non-aqueous electrolyte secondary battery |
JP2001048545A (en) * | 1999-08-09 | 2001-02-20 | Mitsubishi Chemicals Corp | Method for producing lithium manganese composite oxide and secondary battery using the same |
JP4357242B2 (en) * | 2003-09-09 | 2009-11-04 | 三洋電機株式会社 | Lithium secondary battery |
-
2010
- 2010-11-05 JP JP2010249038A patent/JP5110664B2/en not_active Expired - Fee Related
-
2011
- 2011-10-31 WO PCT/JP2011/006089 patent/WO2012060084A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010104137A1 (en) * | 2009-03-09 | 2010-09-16 | 独立行政法人産業技術総合研究所 | Process for producing lithium borate compound |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013230273A (en) * | 2012-04-27 | 2013-11-14 | Universal Entertainment Corp | Gaming machine |
JP2013230272A (en) * | 2012-04-27 | 2013-11-14 | Universal Entertainment Corp | Gaming machine |
JP2013230271A (en) * | 2012-04-27 | 2013-11-14 | Universal Entertainment Corp | Gaming machine |
Also Published As
Publication number | Publication date |
---|---|
JP5110664B2 (en) | 2012-12-26 |
WO2012060084A1 (en) | 2012-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5298286B2 (en) | Method for producing lithium silicate compound | |
JP5013622B2 (en) | Method for producing lithium borate compound | |
JP5116177B2 (en) | Method for producing lithium silicate compound | |
JP4959648B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2017183653A1 (en) | Material for positive electrodes | |
JP5164287B2 (en) | Lithium silicate compound and method for producing the same | |
JP5950389B2 (en) | Lithium silicate compound, positive electrode active material, method for producing positive electrode active material, non-aqueous electrolyte secondary battery and vehicle equipped with the same | |
JP5252064B2 (en) | Lithium silicate compound and method for producing the same | |
JP5765780B2 (en) | Lithium silicate compound, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the same | |
JP5110664B2 (en) | Method for producing lithium borate compound | |
JP5505868B2 (en) | Precursor of positive electrode active material for lithium secondary battery and method for producing the same | |
JP5769140B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP5880996B2 (en) | Lithium manganese silicate composite, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP2019003907A (en) | Positive electrode material | |
JP5608856B2 (en) | Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
WO2014155408A1 (en) | Hydrogen-containing lithium silicate compound, process for producing same, positive active material for nonaqueous-electrolyte secondary battery, positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery | |
JP5686378B2 (en) | Hydrogen-containing lithium silicate compound and method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120308 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120411 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120405 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20120604 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20120621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121004 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5110664 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |