[go: up one dir, main page]

JP2012097984A - Cast-in-place concrete pile with steel pipe for extracting geothermal heat - Google Patents

Cast-in-place concrete pile with steel pipe for extracting geothermal heat Download PDF

Info

Publication number
JP2012097984A
JP2012097984A JP2010247314A JP2010247314A JP2012097984A JP 2012097984 A JP2012097984 A JP 2012097984A JP 2010247314 A JP2010247314 A JP 2010247314A JP 2010247314 A JP2010247314 A JP 2010247314A JP 2012097984 A JP2012097984 A JP 2012097984A
Authority
JP
Japan
Prior art keywords
steel pipe
heat
heat exchange
pile
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010247314A
Other languages
Japanese (ja)
Other versions
JP4727761B1 (en
Inventor
Masashi Tanaka
昌史 田中
Kozo Itagaki
浩三 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Foundation Co Ltd
Original Assignee
Taiyo Foundation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Foundation Co Ltd filed Critical Taiyo Foundation Co Ltd
Priority to JP2010247314A priority Critical patent/JP4727761B1/en
Application granted granted Critical
Publication of JP4727761B1 publication Critical patent/JP4727761B1/en
Publication of JP2012097984A publication Critical patent/JP2012097984A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

【課題】場所打ちコンクリート杭において、杭内に配設される熱交換パイプ内を循環する熱媒に地中熱を効率よく伝達することができ、また、地中熱を少ないコストで効率よく活用できる方法を提供する。
【解決手段】杭内の深さ方向に地中熱交換用の熱媒を循環させるための熱交換パイプ2を配設した場所打ちコンクリート杭11において、杭外周部11aの一部に熱伝導率が高い鋼管1を設置し、鋼管1の全外周面を地盤と接触させる。熱交換パイプ2を、鋼管1の内面に接するように配設することで、熱交換パイプ2内を循環する熱媒に地中熱を効率よく伝達することができる。また、地中熱の採熱が効率よく行える特定の地層(例えば、透水層22)の深さに当たる杭外周部11aに鋼管1を設置すれば、効率的かつ経済的である。
【選択図】図1
In a cast-in-place concrete pile, underground heat can be efficiently transmitted to a heat medium circulating in a heat exchange pipe disposed in the pile, and underground heat can be efficiently utilized at low cost. Provide a way to do it.
In a cast-in-place concrete pile 11 provided with a heat exchange pipe 2 for circulating a heat transfer medium for underground heat exchange in the depth direction in the pile, a thermal conductivity is partially applied to the outer periphery 11a of the pile. Is installed, and the entire outer peripheral surface of the steel pipe 1 is brought into contact with the ground. By disposing the heat exchange pipe 2 so as to be in contact with the inner surface of the steel pipe 1, the underground heat can be efficiently transmitted to the heat medium circulating in the heat exchange pipe 2. Moreover, if the steel pipe 1 is installed in the pile outer peripheral part 11a which hits the depth of the specific formation (for example, the water permeable layer 22) which can collect heat of underground heat efficiently, it will be efficient and economical.
[Selection] Figure 1

Description

本発明は、地中熱を効率よく活用するため、熱伝導率の高い鋼管を設けた場所打ちコンクリート杭に関するものである。   The present invention relates to a cast-in-place concrete pile provided with a steel pipe having a high thermal conductivity in order to efficiently use underground heat.

近年、地球温暖化の原因とされるCOの削減やヒートアイランド現象の緩和に効果のある地中熱利用技術が注目されている。この技術は、地中の温度が一年を通して変化が少ない点に着目し、地上と地中の温度差から得られる熱エネルギーを利用したものであり、建物内の冷暖房などに利用されている。 In recent years, attention has been focused on geothermal utilization technology that is effective in reducing CO 2 that is a cause of global warming and mitigating the heat island phenomenon. This technology pays attention to the fact that the temperature of the ground is little changed throughout the year, and uses thermal energy obtained from the temperature difference between the ground and the ground, and is used for air conditioning in buildings.

地中熱を利用する方法には坑内熱交換型と地下水利用型があり、いずれも地中熱を採熱するための坑井が必要であるが、この坑井を掘る費用が高いことが地中熱利用技術の普及を阻害する要因となっている。このため、建物の基礎杭を坑井として利用する方法が考え出され、基礎杭の中に熱交換パイプを挿入して地中熱を採熱する基礎杭利用タイプが注目されている。   There are two methods of using geothermal heat: the underground heat exchange type and the groundwater use type, both of which require a well for collecting ground heat, but the cost of digging this well is high. This is a factor that hinders the spread of medium heat utilization technology. For this reason, the method of using the foundation pile of a building as a well has been devised, and a foundation pile use type in which a heat exchange pipe is inserted into the foundation pile to collect ground heat has been attracting attention.

建物の基礎杭の杭種には、コンクリート製の既成杭や鋼管杭および場所打ちコンクリート杭などがあり、それぞれの杭種に応じた地中熱利用技術が考案されている。場所打ちコンクリート杭においては、例えば、鉄筋かごに樹脂製チューブなどからなる熱交換パイプを設置し、熱交換パイプ中に水などの熱媒体を循環させて地中熱交換を行う、いわゆる坑内熱交換型が用いられている。   Pile types of building foundation piles include precast concrete piles, steel pipe piles and cast-in-place concrete piles, and ground heat utilization technology has been devised for each pile type. In cast-in-place concrete piles, for example, a heat exchange pipe made of a resin tube or the like is installed in a reinforcing steel cage, and a heat medium such as water is circulated in the heat exchange pipe to perform underground heat exchange, so-called underground heat exchange. A mold is used.

特開2004−324913号公報JP 2004-324913 A 特開2004−332330号公報JP 2004-332330 A

従来、場所打ちコンクリート杭の中に熱媒体を循環させるための熱交換パイプ(樹脂製チューブなど)を鉄筋かごに沿わせて設置する方法があるが、通常、鉄筋かごの外縁は地盤から最低10cm離して施工されるため、地盤から熱交換パイプとの距離も10cm以上となり、熱伝導が悪く地中熱を有効に活用できないという課題があった。   Conventionally, there is a method of installing a heat exchange pipe (resin tube etc.) to circulate the heat medium in the cast-in-place concrete pile along the rebar cage, but usually the outer edge of the rebar cage is at least 10cm from the ground Since it is constructed separately, the distance from the ground to the heat exchange pipe is also 10 cm or more, and there is a problem that the heat conduction is poor and the underground heat cannot be effectively utilized.

特許文献1では、場所打ちコンクリート杭において、螺旋状に形成された熱交換パイプが鉄筋かご及び/又は鋼管の内側に配設されている。この場合、地盤と熱交換パイプとの間には鋼管およびコンクリートが介在し、地中熱はそれらを通して伝達される。しかし、地盤から熱交換パイプまでが上記のように少なくとも10cm以上離れていると思われる特許文献1においては、コンクリートの熱伝導率が低いために、地中熱が有効に活用されていない。   In Patent Document 1, in a cast-in-place concrete pile, a heat exchange pipe formed in a spiral shape is disposed inside a reinforcing bar and / or a steel pipe. In this case, steel pipe and concrete are interposed between the ground and the heat exchange pipe, and underground heat is transmitted through them. However, in Patent Document 1, which is considered to be at least 10 cm or more away from the ground to the heat exchange pipe as described above, the underground heat is not effectively utilized because the thermal conductivity of concrete is low.

また、特許文献2では、場所打ちコンクリート杭において、熱交換パイプを基礎杭の設計杭径と掘削孔との空隙に配置し、鉄筋かごの外周に設置されている偏心防止用のスペーサーに取り付けて支持する構成が提案されている。この場合、熱交換パイプは掘削孔壁の近くに配置されるため、従来のように熱交換パイプが杭内部に配置されたものと比べて、地中熱との熱伝達は効率よく行うことができる反面、熱交換パイプを杭内に挿入する際に、熱交換パイプが掘削孔壁に接触して損傷することが考えられる。   Further, in Patent Document 2, in a cast-in-place concrete pile, a heat exchange pipe is disposed in the gap between the design pile diameter of the foundation pile and the excavation hole, and is attached to a spacer for preventing eccentricity installed on the outer periphery of the reinforcing bar cage. Supporting configurations have been proposed. In this case, since the heat exchange pipe is arranged near the wall of the excavation hole, heat transfer with the underground heat can be performed more efficiently than the conventional heat exchange pipe arranged inside the pile. On the other hand, when the heat exchange pipe is inserted into the pile, it is conceivable that the heat exchange pipe contacts the borehole wall and is damaged.

また、掘削孔壁と熱交換パイプとの間に小さな隙間があることから、杭施工におけるコンクリート打設においてコンクリートの充填性が悪く、掘削孔壁とコンクリートとが密着しないために、杭の設計上必要な周面摩擦力が確保されなくなることも懸念される。   In addition, since there is a small gap between the excavation hole wall and the heat exchange pipe, the concrete filling performance in pile construction is poor, and the excavation hole wall and the concrete do not adhere to each other. There is also concern that the necessary peripheral frictional force will not be ensured.

本発明は、従来技術における上述のような課題を解決するためになされたものであり、場所打ちコンクリート杭において、杭の外周部の一部に熱伝導率の高い鋼管を設けて地中熱を効率よく採熱し、鋼管の内面に熱交換パイプを配設することにより地中熱を効率よく活用できる機能を有する場所打ちコンクリート杭を提供することを目的としている。   The present invention has been made to solve the above-described problems in the prior art, and in a cast-in-place concrete pile, a steel pipe having a high thermal conductivity is provided on a part of the outer peripheral portion of the pile to reduce underground heat. It aims at providing the cast-in-place concrete pile which has the function which can utilize geothermal heat efficiently by heat-collecting efficiently and arrange | positioning a heat exchange pipe on the inner surface of a steel pipe.

請求項1に記載の場所打ちコンクリート杭は、杭内の深さ方向に地中熱交換用の熱媒を循環させるための熱交換パイプを配設した場所打ちコンクリート杭において、前記コンクリート杭の外周部の一部に鋼管を設置し、前記熱交換パイプが前記鋼管の内面に接するように配設してあることを特徴とするものである。   The cast-in-place concrete pile according to claim 1, wherein the cast-in-place concrete pile is provided with a heat exchange pipe for circulating a heat medium for underground heat exchange in a depth direction in the pile. A steel pipe is installed in a part of the part, and the heat exchange pipe is arranged so as to contact the inner surface of the steel pipe.

本発明によれば、場所打ちコンクリート杭の外周部の一部に、熱伝導率の高い鋼管を設けることによって、前記鋼管の全外周面を地盤と接触させ、地盤が持つ地中熱を熱交換パイプ内の熱媒に、鋼管を介して効率よく伝達することができる。   According to the present invention, by providing a steel pipe with high thermal conductivity in a part of the outer peripheral portion of the cast-in-place concrete pile, the entire outer peripheral surface of the steel pipe is brought into contact with the ground, and the underground heat possessed by the ground is heat-exchanged. It can be efficiently transmitted to the heat medium in the pipe via the steel pipe.

すなわち、場所打ちコンクリート杭の外周部の一部に地中熱採熱用の鋼管を設置し、その鋼管の内面に接するように熱交換パイプを設けることで、まず、地盤と直接接している鋼管に地中熱が伝達され、続いて鋼管と接している熱交換パイプ内を流れる熱媒に地中熱が伝達される。   In other words, by installing a steel pipe for underground heat collection on a part of the outer periphery of the cast-in-place concrete pile, and by providing a heat exchange pipe so as to be in contact with the inner surface of the steel pipe, first, the steel pipe that is in direct contact with the ground The underground heat is transmitted to the heat transfer medium, and then the underground heat is transmitted to the heat transfer medium flowing in the heat exchange pipe in contact with the steel pipe.

このように、場所打ちコンクリート杭の外周部の一部に設けた鋼管の内面に熱交換パイプを配設するので、地盤から熱交換パイプまでの間隔がほとんどなく、鉄筋かごなどの杭内部に熱交換パイプを配設する場合に比べて効率のよい熱伝達が期待できる。   In this way, because the heat exchange pipe is arranged on the inner surface of the steel pipe provided on a part of the outer peripheral part of the cast-in-place concrete pile, there is almost no space from the ground to the heat exchange pipe, and heat is generated inside the pile such as a rebar cage. Efficient heat transfer can be expected compared to the case where an exchange pipe is provided.

なお、熱交換パイプは、前記鋼管の内面に接するようにあらかじめ地上にて固定されているため、特許文献2のように、杭施工におけるコンクリート打設においてコンクリートの充填性に問題が生じることはなく、杭としての機能は十分確保される。   In addition, since the heat exchange pipe is fixed on the ground in advance so as to be in contact with the inner surface of the steel pipe, there is no problem in concrete filling properties in concrete placement in pile construction as in Patent Document 2. The function as a pile is sufficiently secured.

さらに、杭の設計上、鋼管を場所打ちコンクリート杭の外周部の一部に設けてある、いわゆる場所打ち鋼管コンクリート杭において、その鋼管の内面に熱交換パイプを配設すれば、新たに鋼管を設ける必要が無いため、より少ないコストで地中熱を利用することができる。なお、場所打ちコンクリート杭には、場所打ち鋼管コンクリート杭を含むものとする。   Furthermore, in the design of piles, steel pipes are provided on a part of the outer periphery of cast-in-place concrete piles, so-called cast-in-place steel pipe concrete piles. Since there is no need to provide, underground heat can be used at a lower cost. Cast-in-place concrete piles include cast-in-place steel pipe concrete piles.

請求項2に記載の地中熱採熱用の鋼管を設けた場所打ちコンクリート杭は、請求項1記載の鋼管を設けた場所打ちコンクリート杭において、前記鋼管は、地中熱の採熱が効率よく行える、熱伝導率の高い地層または岩盤または地下水流のある透水層を含む位置に設置してあることを特徴とするものである。   The cast-in-place concrete pile provided with the steel pipe for underground heat collection according to claim 2 is the cast-in-place concrete pile provided with the steel pipe according to claim 1, wherein the steel pipe is efficient in collecting ground heat. It is characterized by being installed at a position that includes a well-formed stratum with high thermal conductivity or a bedrock or a permeable layer with groundwater flow.

本発明によれば、場所打ちコンクリート杭の全長にわたって鋼管を使用することなく、熱伝導率の高い地層または岩盤または地下水流のある透水層など、地中熱の採熱が効率よく行える特定の地層を含む位置に熱伝導率の高い鋼管を設置することにより、従来のコンクリートに比べて地中熱を杭内に多く取り込むことができる。   According to the present invention, a specific formation capable of efficiently collecting geothermal heat, such as a formation having high thermal conductivity or a bedrock or a permeable layer having a groundwater flow, without using a steel pipe over the entire length of a cast-in-place concrete pile. By installing a steel pipe having a high thermal conductivity at a position including, a greater amount of underground heat can be taken into the pile than conventional concrete.

鋼管は、深さ方向に、場所打ちコンクリート杭の外周部の一部の高さ部分に設置すればよく、熱伝導率の高い地層に対して杭の外周部を鋼管にすれば、地中熱を効率的に活用することができ、経済的である。   The steel pipe should be installed in the depth direction at a part of the outer peripheral part of the cast-in-place concrete pile, and if the outer peripheral part of the pile is made into a steel pipe against the formation with high thermal conductivity, the underground heat Can be used efficiently and is economical.

なお、本発明における場所打ちコンクリート杭は、地中熱採熱用の鋼管を杭の外周部の一部に配置し、地中熱を効率よく活用することを特徴とするが、それ以外の杭内の深さ方向に配設される熱交換パイプにおいても、杭体のコンクリートを介して地中熱の採熱が行われることは言うまでもない。   The cast-in-place concrete pile in the present invention is characterized in that a steel pipe for underground heat collection is arranged in a part of the outer peripheral portion of the pile to efficiently use the underground heat. It goes without saying that ground heat is also collected through the pile concrete in the heat exchange pipe disposed in the depth direction.

請求項3に記載の地中熱採熱用の鋼管を設けた場所打ちコンクリート杭は、請求項1または2記載の鋼管を設けた場所打ちコンクリート杭において、前記熱交換パイプは、前記鋼管の内面に、鉛直方向または水平方向に1または複数回折り返して配設し、あるいは、螺旋状に配設してあることを特徴とするものである。   The cast-in-place concrete pile provided with the steel pipe for underground heat collection according to claim 3 is the cast-in-place concrete pile provided with the steel pipe according to claim 1 or 2, wherein the heat exchange pipe is an inner surface of the steel pipe. In addition, one or a plurality of folds are arranged in the vertical direction or the horizontal direction, or are arranged in a spiral shape.

鋼管の内面に設けた熱交換パイプを鉛直方向や水平方向、または螺旋状に配設することによって、鋼管内面に接する熱交換パイプの接触面積を広くとれば、杭内に取り込まれた地中熱を熱交換パイプ内の熱媒により多く伝達することができる。   If the heat exchange pipe provided on the inner surface of the steel pipe is arranged vertically, horizontally, or spirally to increase the contact area of the heat exchange pipe that contacts the inner surface of the steel pipe, the underground heat captured in the pile Can be more transferred to the heat medium in the heat exchange pipe.

本発明によれば、請求項1および請求項2記載の鋼管を設けた場所打ちコンクリート杭において、鋼管内面に接する熱交換パイプの接触面積を広くとることにより、杭内に取り込まれた地中熱を熱交換パイプ内の熱媒により多く伝達することができる。   According to the present invention, in the cast-in-place concrete pile provided with the steel pipe according to claim 1 and claim 2, by taking a large contact area of the heat exchange pipe in contact with the inner surface of the steel pipe, Can be more transferred to the heat medium in the heat exchange pipe.

本発明は、以上のような構成からなるので次のような効果が得られる。   Since the present invention is configured as described above, the following effects can be obtained.

場所打ちコンクリート杭の外周部の一部に熱伝導率の高い鋼管を設けて地中熱を効率よく採熱し、鋼管の内面に接するように熱交換パイプを1または複数本配設することにより、熱交換パイプ内を循環する熱媒に地中熱を効率的に伝達することができる。   By providing a steel pipe with high thermal conductivity on a part of the outer periphery of the cast-in-place concrete pile, collecting ground heat efficiently, and arranging one or more heat exchange pipes so as to contact the inner surface of the steel pipe, The underground heat can be efficiently transmitted to the heat medium circulating in the heat exchange pipe.

また、鋼管は、場所打ちコンクリート杭の深さ方向の、地中熱の採熱が効率よく行える熱伝導率の高い地層または岩盤または地下水流のある透水層など特定の位置に設置すれば、少ないコストで地中熱を効率よく活用することが可能となる。   In addition, if steel pipes are installed in a specific position, such as a geological layer with high thermal conductivity that can efficiently collect ground heat in the depth direction of cast-in-place concrete piles, or a permeable layer with bedrock or groundwater flow, It is possible to efficiently use geothermal heat at a low cost.

本発明に係る地中熱採熱用の鋼管を設けた場所打ちコンクリート杭の一実施形態を概念的に示した正面図である。It is the front view which showed notionally one Embodiment of the cast-in-place concrete pile which provided the steel pipe for underground heat collection which concerns on this invention. 図1の実施形態の断面図であり、(a)はA−A断面、(b)はB−B断面を示したものである。It is sectional drawing of embodiment of FIG. 1, (a) shows the AA cross section, (b) shows the BB cross section. 図1の実施形態の鋼管内部を概念的に示した斜視図である。It is the perspective view which showed notionally the inside of the steel pipe of embodiment of FIG. 本発明に係る地中熱採熱用の鋼管を設けた場所打ちコンクリート杭において、鋼管内部に熱交換パイプを鉛直方向に複数回折り返して配設した場合の斜視図である。In a cast-in-place concrete pile provided with a steel pipe for underground heat collection according to the present invention, it is a perspective view in the case where a plurality of heat exchange pipes are folded back in the vertical direction inside the steel pipe.

以下、本発明を添付した図面に基づいて説明する。なお、本発明は以下に示される実施形態に限定されるものではない。   Hereinafter, the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited to embodiment shown below.

図1は、本発明に係る鋼管1を設けた場所打ちコンクリート杭11の一実施形態を示した正面図であり、図2(a)はA−Aの断面図、図2(b)はB−B断面図である。図3には、鋼管1内部の熱交換パイプ2の配設位置を斜視図に示した。   FIG. 1 is a front view showing an embodiment of a cast-in-place concrete pile 11 provided with a steel pipe 1 according to the present invention, FIG. 2 (a) is a cross-sectional view of AA, and FIG. It is -B sectional drawing. In FIG. 3, the arrangement position of the heat exchange pipe 2 inside the steel pipe 1 is shown in a perspective view.

まず、地盤を掘削し、杭孔を設ける。熱媒を循環させるための熱交換パイプ2は、鉄筋かご12と同時に建て込むため、鉄筋かご12に接続する。   First, excavate the ground and provide pile holes. Since the heat exchange pipe 2 for circulating the heat medium is built at the same time as the rebar cage 12, it is connected to the rebar cage 12.

鋼管1は、地中熱の採熱が効率よく行える特定の地層(例えば、透水層22)の深さに当たる杭外周部11aに設置されるように、鉄筋かご12と接続する。   The steel pipe 1 is connected to the reinforcing steel basket 12 so as to be installed on the pile outer peripheral portion 11a corresponding to the depth of a specific formation (for example, the water permeable layer 22) that can efficiently collect ground heat.

また、鋼管1の外径は、場所打ちコンクリート杭11の杭径Aと同じ径が施工しやすく一般的であるが、鋼管1を杭の上部において使用する場合には、鋼管1の表面積を広くして地盤との接触面積を広くすれば、地中熱を多く取り込むことができるため、杭径Aよりも大きな外径を使用しても構わない。   Further, the outer diameter of the steel pipe 1 is generally the same as the pile diameter A of the cast-in-place concrete pile 11 and is generally easy to construct. However, when the steel pipe 1 is used at the top of the pile, the surface area of the steel pipe 1 is increased. If the contact area with the ground is widened, a large amount of underground heat can be taken in. Therefore, an outer diameter larger than the pile diameter A may be used.

鋼管1と鉄筋かご12との接続方法は、例えば、鉄筋棒や平鋼を折り曲げて製作した鋼材を用いて溶接して固定する方法や鋼材を介してボルト締めで固定する方法などがあり(図示省略)、鉄筋かご12から外れることがなく、強度面や耐久性に問題がなければ、材質や固定方法などは問わない。   Examples of the method of connecting the steel pipe 1 and the rebar cage 12 include a method of fixing by welding using a steel material produced by bending a reinforcing bar or a flat steel, and a method of fixing by bolting via a steel material (illustrated). (Omitted) Any material or fixing method may be used as long as it does not come off from the reinforcing steel basket 12 and there is no problem in strength and durability.

図2(a)、図3に示したように、熱交換パイプ2は、杭上端から鋼管1上端の高さまでの範囲および鋼管1の下端から杭先端までの範囲については、鉄筋かご12の外側に配設されるフープ筋に外接するように固定し、主筋13と平行になるように設置する。   As shown in FIGS. 2A and 3, the heat exchange pipe 2 is located outside the reinforcing bar 12 in the range from the upper end of the pile to the height of the upper end of the steel pipe 1 and the range from the lower end of the steel pipe 1 to the tip of the pile. It fixes so that it may circumscribe to the hoop muscle arrange | positioned in (2), and it installs so that it may become parallel to the main muscle 13.

また、鋼管1を設置する深さの範囲は、図2(b)に示したように、熱交換パイプ2が鋼管1の内面に接するように配設する。   Moreover, the range of the depth which installs the steel pipe 1 is arrange | positioned so that the heat exchange pipe 2 may contact the inner surface of the steel pipe 1, as shown in FIG.2 (b).

なお、熱交換パイプ2は杭全長にわたって全範囲に設置する必要は必ずしもなく、地中熱を有効に活用するため任意の範囲において設置すればよい。   In addition, the heat exchange pipe 2 does not necessarily need to be installed in the entire range over the entire length of the pile, and may be installed in an arbitrary range in order to effectively use the underground heat.

例えば、図1に示したように、鋼管1が杭の中間の深度に設置されている場合、熱交換パイプ2は杭上端から鋼管1下端深度まで設置してもよいし、杭全長にわたって設置してもよい。   For example, as shown in FIG. 1, when the steel pipe 1 is installed at an intermediate depth of the pile, the heat exchange pipe 2 may be installed from the upper end of the pile to the lower end of the steel pipe 1 or installed over the entire length of the pile. May be.

なお、熱交換パイプ2を杭全長にわたって設置すれば採熱量は増えるものの、鋼管1より下方にある地層の熱伝導率が小さい場合には、地中熱利用全体としての効率性が低下する場合も考えられる。   If the heat exchange pipe 2 is installed over the entire length of the pile, the amount of heat collected will increase. However, if the thermal conductivity of the formation below the steel pipe 1 is small, the efficiency of the entire underground heat utilization may decrease. Conceivable.

図4には、本発明に係る地中熱採熱用の鋼管1を設けた場所打ちコンクリート杭11において、鋼管1内部に熱交換パイプ2を鉛直方向に複数回折り返して配設した場合の斜視図を示した。   FIG. 4 is a perspective view of a cast-in-place concrete pile 11 provided with a steel pipe 1 for underground heat collection according to the present invention, in which a plurality of heat exchange pipes 2 are vertically folded inside the steel pipe 1. The figure is shown.

鋼管1内部に配設する熱交換パイプ2を、鋼管1の範囲内で鉛直方向に複数回折り返すことによって、鋼管1内部に接する表面積が増え、鋼管1を介して杭内に取り込まれた地中熱を熱交換パイプ2内の熱媒により多く伝達することができる。   By exchanging a plurality of heat exchange pipes 2 arranged inside the steel pipe 1 in the vertical direction within the range of the steel pipe 1, the surface area in contact with the inside of the steel pipe 1 is increased, and the underground taken into the pile via the steel pipe 1 More heat can be transferred to the heat medium in the heat exchange pipe 2.

図4では、熱交換パイプ2を鉛直方向に5回折り返した場合を示しているが、配設位置などに問題がなければ、折り返す回数は限定されない。   Although FIG. 4 shows a case where the heat exchange pipe 2 is folded back five times in the vertical direction, the number of turns is not limited as long as there is no problem in the arrangement position.

また、図3および図4は熱交換パイプ2を鉛直方向に折り返した実施例を示しているが、鋼管1の内面に水平方向に折り返す方法でもよく、あるいは螺旋状に配設しても構わない。   3 and 4 show an embodiment in which the heat exchange pipe 2 is folded back in the vertical direction, it may be folded back horizontally on the inner surface of the steel pipe 1 or may be arranged in a spiral shape. .

熱交換パイプ2を鋼管1の内面に固定するには、例えば、鋼管1を杭孔に挿入する前に予め複数個のリング状の金具を熱交換パイプ2に通しておき、リング状の金具を鋼管1の内面に溶接または接着剤などで固定し、熱交換パイプ2を鋼管1の内面に密着させる。その他に、熱交換パイプ2の先端に金属製のパイプなどを接続しておき、鋼管1の内面に溶接して固定することもできる。   In order to fix the heat exchange pipe 2 to the inner surface of the steel pipe 1, for example, a plurality of ring-shaped metal fittings are passed through the heat exchange pipe 2 in advance before inserting the steel pipe 1 into the pile hole, The inner surface of the steel pipe 1 is fixed by welding or an adhesive, and the heat exchange pipe 2 is brought into close contact with the inner surface of the steel pipe 1. In addition, a metal pipe or the like can be connected to the tip of the heat exchange pipe 2 and can be fixed by welding to the inner surface of the steel pipe 1.

なお、鋼管1と熱交換パイプ2との固定方法は、上記に示した鋼管1と鉄筋かご12の接続方法と同様に、強度面や耐久性で問題がなければ、材質や固定方法などは問わない。   In addition, the fixing method of the steel pipe 1 and the heat exchange pipe 2 may be any material or fixing method as long as there is no problem in terms of strength and durability, as in the connecting method of the steel pipe 1 and the rebar cage 12 described above. Absent.

熱交換パイプ2は、樹脂製または金属製など強度面や耐久性に問題がなければ材質や種類は問わず、鉄筋かご12との接続方法は、鉄製または樹脂製などの結束線などを用いて、鉄筋かご12のフープ筋14に外接するように結束し、鋼管1と鉄筋かご12の接続方法と同様に、強度面や耐久性で問題がなければ、材質や固定方法などは問わない。   The heat exchange pipe 2 is made of resin or metal, so long as there is no problem in strength and durability, the material and type of the heat exchange pipe 2 are not limited. As long as the steel bars 1 are bound to the hoop bars 14 of the reinforcing bar 12 and the steel pipe 1 and the reinforcing bar 12 are connected as long as there is no problem in terms of strength and durability, the material and fixing method are not limited.

また、図2(a)に示したように、熱交換パイプ2は鉄筋かご12のフープ筋14に外接して固定されていれば、掘削孔壁23との間隔は偏心防止用のスペーサー15で確保されるので、鉄筋かご12に接続された熱交換パイプ2を杭孔に挿入する際に掘削孔壁23に接触することがなく、熱交換パイプ2が損傷することもない。   In addition, as shown in FIG. 2A, if the heat exchange pipe 2 is fixed to the hoop bar 14 of the reinforcing bar 12 so as to circumscribe, the distance from the excavation hole wall 23 is a spacer 15 for preventing eccentricity. Therefore, when the heat exchange pipe 2 connected to the reinforcing bar 12 is inserted into the pile hole, the excavation hole wall 23 is not contacted, and the heat exchange pipe 2 is not damaged.

このように、鋼管1に固定した熱交換パイプ2内に水などの熱媒を充填し、循環させることにより、地盤から鋼管1、鋼管1から熱交換パイプ2内の熱媒へと熱伝達を効率的に行うことができる。   In this way, the heat exchange pipe 2 fixed to the steel pipe 1 is filled with a heat medium such as water and circulated to transfer heat from the ground to the steel pipe 1 and from the steel pipe 1 to the heat medium in the heat exchange pipe 2. Can be done efficiently.

杭孔内に、鋼管1、熱交換パイプ2、鉄筋かご12を設置した後、杭孔内にコンクリートを打設し、鋼管を設けた場所打ちコンクリート杭11を完成させる。   After installing the steel pipe 1, the heat exchange pipe 2, and the rebar cage 12 in the pile hole, concrete is placed in the pile hole to complete the cast-in-place concrete pile 11 provided with the steel pipe.

1…鋼管、
2…熱交換パイプ、
11…場所打ちコンクリート杭、11a…杭外周部、
12…鉄筋かご、
13…主筋、
14…フープ筋、
15…スペーサー、
21…地層(不透水層など)、
22…地層(透水層など)、
23…掘削孔壁、
A…杭径
1 ... steel pipe,
2 ... heat exchange pipe,
11 ... Cast-in-place concrete pile, 11a ... Pile outer periphery,
12 ... rebar basket,
13 ... Main muscle,
14 ... Hoop muscle,
15 ... Spacer
21 ... Geologic formation (impermeable layer, etc.)
22 ... Geologic formation (permeable layer, etc.)
23 ... Drilling hole wall,
A ... Pile diameter

請求項1に記載の場所打ちコンクリート杭は、杭内の深さ方向に地中熱交換用の熱媒を循環させるための熱交換パイプを配設した場所打ちコンクリート杭において、前記コンクリート杭の外周部の深さ方向の一部の地中熱の採熱が効率よく行える、熱伝導率の高い地層または岩盤または地下水流のある透水層を含む位置に鋼管を設置し、前記熱交換パイプが前記鋼管の内面に接するように配設してあり、地盤と直接接している鋼管を介して、該鋼管と接している熱交換パイプ内を流れる熱媒に地中熱が伝達されることを特徴とするものである。
The cast-in-place concrete pile according to claim 1, wherein the cast-in-place concrete pile is provided with a heat exchange pipe for circulating a heat medium for underground heat exchange in a depth direction in the pile. A steel pipe is installed at a position including a geothermal layer with high thermal conductivity or a rock layer or a permeable layer with a groundwater flow, which can efficiently collect a part of the geothermal heat in the depth direction of the section, and the heat exchange pipe Ri arranged to tear so as to contact the inner surface of the steel pipe, characterized in that through the steel pipe in direct contact with the ground, ground heat is transferred to the heat medium flowing through the heat exchanger pipe which is in contact with the steel pipe It is what.

本発明によれば、場所打ちコンクリート杭の外周部の深さ方向の一部に、熱伝導率の高い鋼管を設けることによって、前記鋼管の全外周面を地盤と接触させ、地盤が持つ地中熱を熱交換パイプ内の熱媒に、鋼管を介して効率よく伝達することができる。
According to the present invention, by providing a steel pipe with high thermal conductivity in a part of the depth direction of the outer peripheral part of the cast-in-place concrete pile, the entire outer peripheral surface of the steel pipe is brought into contact with the ground, and the ground has the ground. Heat can be efficiently transferred to the heat medium in the heat exchange pipe via the steel pipe.

すなわち、場所打ちコンクリート杭の外周部の深さ方向の一部に地中熱採熱用の鋼管を設置し、その鋼管の内面に接するように熱交換パイプを設けることで、まず、地盤と直接接している鋼管に地中熱が伝達され、続いて鋼管と接している熱交換パイプ内を流れる熱媒に地中熱が伝達される。
That is, by installing a steel pipe for ground heat collection in a part of the depth direction of the outer periphery of the cast-in-place concrete pile, and by installing a heat exchange pipe so as to contact the inner surface of the steel pipe, The underground heat is transmitted to the steel pipe in contact with the steel pipe, and then the underground heat is transmitted to the heat medium flowing in the heat exchange pipe in contact with the steel pipe.

このように、場所打ちコンクリート杭の外周部の深さ方向の一部に設けた鋼管の内面に熱交換パイプを配設するので、地盤から熱交換パイプまでの間隔がほとんどなく、鉄筋かごなどの杭内部に熱交換パイプを配設する場合に比べて効率のよい熱伝達が期待できる。
In this way, because the heat exchange pipe is arranged on the inner surface of the steel pipe provided in the depth direction part of the outer peripheral part of the cast-in-place concrete pile, there is almost no space from the ground to the heat exchange pipe, such as a rebar cage Efficient heat transfer can be expected compared to the case where a heat exchange pipe is arranged inside the pile.

さらに、杭の設計上、鋼管を場所打ちコンクリート杭の外周部の深さ方向の一部に設けてある、いわゆる場所打ち鋼管コンクリート杭において、その鋼管の内面に熱交換パイプを配設すれば、新たに鋼管を設ける必要が無いため、より少ないコストで地中熱を利用することができる。なお、場所打ちコンクリート杭には、場所打ち鋼管コンクリート杭を含むものとする。
Furthermore, in the design of the pile, in the so-called cast-in-place steel pipe concrete pile in which the steel pipe is provided in a part of the depth direction of the outer peripheral portion of the cast-in-place concrete pile, if a heat exchange pipe is disposed on the inner surface of the steel pipe, Since there is no need to provide a new steel pipe, geothermal heat can be used at a lower cost. Cast-in-place concrete piles include cast-in-place steel pipe concrete piles.

なお、本発明における場所打ちコンクリート杭は、地中熱採熱用の鋼管を杭の外周部の深さ方向の一部に配置し、地中熱を効率よく活用することを特徴とするが、それ以外の杭内の深さ方向に配設される熱交換パイプにおいても、杭体のコンクリートを介して地中熱の採熱が行われることは言うまでもない。
In addition, the cast-in-place concrete pile in the present invention is characterized by arranging a steel pipe for underground heat collection in a part of the depth direction of the outer peripheral portion of the pile, and efficiently using the underground heat, It goes without saying that ground heat is also collected through the concrete of the pile body in other heat exchange pipes arranged in the depth direction in the pile.

請求項に記載の地中熱採熱用の鋼管を設けた場所打ちコンクリート杭は、請求項記載の鋼管を設けた場所打ちコンクリート杭において、前記熱交換パイプは、前記鋼管の内面に、鉛直方向または水平方向に1または複数回折り返して配設し、あるいは、螺旋状に配設してあることを特徴とするものである。
The cast-in-place concrete pile provided with the steel pipe for underground heat collection according to claim 2 is the cast-in-place concrete pile provided with the steel pipe according to claim 1 , wherein the heat exchange pipe is formed on the inner surface of the steel pipe. One or more folds are arranged in the vertical or horizontal direction, or are arranged in a spiral shape.

場所打ちコンクリート杭の外周部の深さ方向の一部に熱伝導率の高い鋼管を設けて地中熱を効率よく採熱し、鋼管の内面に接するように熱交換パイプを1または複数本配設することにより、熱交換パイプ内を循環する熱媒に地中熱を効率的に伝達することができる。
A steel pipe with high thermal conductivity is provided in part of the depth direction of the cast-in-place concrete pile to collect ground heat efficiently, and one or more heat exchange pipes are provided so as to contact the inner surface of the steel pipe By doing so, underground heat can be efficiently transmitted to the heat medium circulating in the heat exchange pipe.

Claims (3)

杭内の深さ方向に地中熱交換用の熱媒を循環させるための熱交換パイプを配設した場所打ちコンクリート杭において、前記コンクリート杭の外周部の一部に鋼管を設置し、前記熱交換パイプが、前記鋼管の内面に接するように配設してあることを特徴とする地中熱採熱用の鋼管を設けた場所打ちコンクリート杭。   In a cast-in-place concrete pile provided with a heat exchange pipe for circulating a heat medium for underground heat exchange in the depth direction in the pile, a steel pipe is installed on a part of the outer periphery of the concrete pile, and the heat A cast-in-place concrete pile provided with a steel pipe for underground heat collection, wherein an exchange pipe is disposed so as to be in contact with the inner surface of the steel pipe. 前記鋼管は、地中熱の採熱が効率よく行える、熱伝導率の高い地層または岩盤または地下水流のある透水層を含む位置に設置してあることを特徴とする請求項1記載の地中熱採熱用の鋼管を設けた場所打ちコンクリート杭。   2. The underground according to claim 1, wherein the steel pipe is installed at a position including a geothermal layer with high thermal conductivity or a bedrock or a permeable layer with a groundwater flow, which can efficiently collect ground heat. Cast-in-place concrete pile with steel pipe for heat collection. 前記熱交換パイプは、前記鋼管の内面に、鉛直方向または水平方向に1または複数回折り返して配設し、あるいは、螺旋状に配設してあることを特徴とする請求項1または2記載の地中熱採熱用の鋼管を設けた場所打ちコンクリート杭。   3. The heat exchange pipe according to claim 1, wherein the heat exchange pipe is arranged on the inner surface of the steel pipe by being folded one or more times in a vertical direction or a horizontal direction, or arranged in a spiral shape. Cast-in-place concrete piles with steel pipes for underground heat collection.
JP2010247314A 2010-11-04 2010-11-04 Cast-in-place concrete piles with steel pipes for underground heat collection Active JP4727761B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247314A JP4727761B1 (en) 2010-11-04 2010-11-04 Cast-in-place concrete piles with steel pipes for underground heat collection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247314A JP4727761B1 (en) 2010-11-04 2010-11-04 Cast-in-place concrete piles with steel pipes for underground heat collection

Publications (2)

Publication Number Publication Date
JP4727761B1 JP4727761B1 (en) 2011-07-20
JP2012097984A true JP2012097984A (en) 2012-05-24

Family

ID=44461673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247314A Active JP4727761B1 (en) 2010-11-04 2010-11-04 Cast-in-place concrete piles with steel pipes for underground heat collection

Country Status (1)

Country Link
JP (1) JP4727761B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185822A (en) * 2013-03-25 2014-10-02 Mitsui Kagaku Sanshi Kk Geothermal heat utilization heat exchanger and heat pump system using the same
JP2015017445A (en) * 2013-07-11 2015-01-29 大成建設株式会社 Pile structure
JP2015121040A (en) * 2013-12-24 2015-07-02 システム計測株式会社 Cast-in-place steel pipe concrete pile
KR101672353B1 (en) 2015-11-13 2016-11-03 엘에스 팜 주식회사 Assembling air house
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism
JP2018076763A (en) * 2016-11-11 2018-05-17 バウアー マシーネン ゲーエムベーハー Basic element and basic element manufacturing method
WO2020130379A1 (en) * 2018-12-17 2020-06-25 주식회사 포스코 Geothermal heat exchange pile
JP2020180433A (en) * 2019-04-23 2020-11-05 株式会社Ihi建材工業 Geothermal exchange segment and geothermal exchange equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930161B2 (en) * 2011-12-08 2016-06-08 三谷セキサン株式会社 Underground heat exchange equipment using ready-made piles
JP5834873B2 (en) * 2011-12-14 2015-12-24 Jfeエンジニアリング株式会社 Piping for heat exchange, steel bar and underground heat utilization system
JP5921891B2 (en) * 2012-01-18 2016-05-24 川田工業株式会社 Panel heat exchanger for underground heat source heat pump

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123951A (en) * 1987-11-09 1989-05-16 Isako Yamazaki Utilization of underground heat by foundation pile and method of accumulating heat
JPH0383226U (en) * 1989-12-09 1991-08-23
JP2002235957A (en) * 2001-02-09 2002-08-23 Kubota Corp Ground heat exchange equipment in landslide hazardous area
JP2003148079A (en) * 2001-11-12 2003-05-21 Kubota Corp Manufacturing method of ground heat exchange equipment and civil engineering construction pile used in the manufacturing method
JP2004271129A (en) * 2003-03-11 2004-09-30 Tone Boring Co Ltd Underground heat exchange system
JP2004324913A (en) * 2003-04-22 2004-11-18 Yasui Kenchiku Sekkei Jimusho:Kk In-situ concrete pile and geothermy utilizing method using the same
JP2005069537A (en) * 2003-08-22 2005-03-17 Asahi Kasei Homes Kk Buried pipe for heat exchange
JP2006029006A (en) * 2004-07-21 2006-02-02 Jfc Welded Pipe Manufacturing Co Ltd Cast-in-place reinforced concrete pile
JP2008090514A (en) * 2006-09-29 2008-04-17 Nippon Steel Engineering Co Ltd Soil heat source heat pump system performance prediction method and system, underground temperature calculation method
JP2010164292A (en) * 2008-12-19 2010-07-29 Daikin Ind Ltd In-ground heat exchanger and air conditioning system equipped with same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123951A (en) * 1987-11-09 1989-05-16 Isako Yamazaki Utilization of underground heat by foundation pile and method of accumulating heat
JPH0383226U (en) * 1989-12-09 1991-08-23
JP2002235957A (en) * 2001-02-09 2002-08-23 Kubota Corp Ground heat exchange equipment in landslide hazardous area
JP2003148079A (en) * 2001-11-12 2003-05-21 Kubota Corp Manufacturing method of ground heat exchange equipment and civil engineering construction pile used in the manufacturing method
JP2004271129A (en) * 2003-03-11 2004-09-30 Tone Boring Co Ltd Underground heat exchange system
JP2004324913A (en) * 2003-04-22 2004-11-18 Yasui Kenchiku Sekkei Jimusho:Kk In-situ concrete pile and geothermy utilizing method using the same
JP2005069537A (en) * 2003-08-22 2005-03-17 Asahi Kasei Homes Kk Buried pipe for heat exchange
JP2006029006A (en) * 2004-07-21 2006-02-02 Jfc Welded Pipe Manufacturing Co Ltd Cast-in-place reinforced concrete pile
JP2008090514A (en) * 2006-09-29 2008-04-17 Nippon Steel Engineering Co Ltd Soil heat source heat pump system performance prediction method and system, underground temperature calculation method
JP2010164292A (en) * 2008-12-19 2010-07-29 Daikin Ind Ltd In-ground heat exchanger and air conditioning system equipped with same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185822A (en) * 2013-03-25 2014-10-02 Mitsui Kagaku Sanshi Kk Geothermal heat utilization heat exchanger and heat pump system using the same
JP2015017445A (en) * 2013-07-11 2015-01-29 大成建設株式会社 Pile structure
JP2015121040A (en) * 2013-12-24 2015-07-02 システム計測株式会社 Cast-in-place steel pipe concrete pile
JP2017067419A (en) * 2015-10-02 2017-04-06 株式会社竹中工務店 Underground heat exchange mechanism
KR101672353B1 (en) 2015-11-13 2016-11-03 엘에스 팜 주식회사 Assembling air house
JP2018076763A (en) * 2016-11-11 2018-05-17 バウアー マシーネン ゲーエムベーハー Basic element and basic element manufacturing method
US10711424B2 (en) 2016-11-11 2020-07-14 Bauer Spezialtiefbau Gmbh Foundation element and method for producing a foundation element
WO2020130379A1 (en) * 2018-12-17 2020-06-25 주식회사 포스코 Geothermal heat exchange pile
CN113227504A (en) * 2018-12-17 2021-08-06 Posco公司 Pile for underground heat exchange
JP2022514549A (en) * 2018-12-17 2022-02-14 ポスコ Geothermal heat exchange pile
JP7182005B2 (en) 2018-12-17 2022-12-01 ポスコ Underground heat exchange pile
JP2020180433A (en) * 2019-04-23 2020-11-05 株式会社Ihi建材工業 Geothermal exchange segment and geothermal exchange equipment

Also Published As

Publication number Publication date
JP4727761B1 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4727761B1 (en) Cast-in-place concrete piles with steel pipes for underground heat collection
JP4594956B2 (en) Underground heat exchanger buried structure
CN103383018A (en) Construction method for embedding pipe in ground source heat pump pouring pile reinforcement cage
KR101311161B1 (en) Safety guide for inserting geothermal exchanger
CN101182711A (en) Shallow layer geothermal energy converting anchor rod
JP2006052588A (en) Pile with outer pipe for underground heat exchange and construction method of underground heat exchanger using the pile
JP2003148079A (en) Manufacturing method of ground heat exchange equipment and civil engineering construction pile used in the manufacturing method
KR100941731B1 (en) Underground heat exchange system and construction method
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
KR200417382Y1 (en) High Efficiency Geothermal Heat Exchanger for Heat Pump
JP2013133584A (en) Method for installing reinforcing bar cage for cast-in-place pile and ground heat use heat exchange pipe for ground heat use
JP6240421B2 (en) Pile structure and pile manufacturing method
CN112095634A (en) Anchor bolt pile plate retaining wall combined device and construction method
CN203238642U (en) Supporting retaining wall of foundation pit
JP5895306B2 (en) Ready-made concrete piles and geothermal heat utilization system for geothermal heat utilization
KR101370440B1 (en) Coil type underground heat exchanger construction structure, construction equipment and construction method
JP2010090566A (en) Groundwater intake facility
SK500712015U1 (en) Natural heat accumulator
CN111074906A (en) Heating system combining foundation pit supporting structure and building structure and construction method thereof
JP2013139957A (en) Heat exchanger consisting of cylindrical structure
JP7285882B2 (en) Geothermal heat utilization system
JP6089472B2 (en) Holding member and underground heat exchanger
CN112095618A (en) Pile-anchor type supporting structure shallow layer ground temperature energy utilization and transformation device and construction method thereof
JP2016070597A (en) Geothermal heat exchanger
JP5887128B2 (en) Installation method of underground heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Ref document number: 4727761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250