JP2012071595A - Method of manufacturing composite molded object - Google Patents
Method of manufacturing composite molded object Download PDFInfo
- Publication number
- JP2012071595A JP2012071595A JP2011188692A JP2011188692A JP2012071595A JP 2012071595 A JP2012071595 A JP 2012071595A JP 2011188692 A JP2011188692 A JP 2011188692A JP 2011188692 A JP2011188692 A JP 2011188692A JP 2012071595 A JP2012071595 A JP 2012071595A
- Authority
- JP
- Japan
- Prior art keywords
- cavity
- fiber
- thermoplastic resin
- composite molded
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000000835 fiber Substances 0.000 claims abstract description 72
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 59
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 47
- 238000000465 moulding Methods 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 17
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229920005989 resin Polymers 0.000 abstract description 37
- 239000011347 resin Substances 0.000 abstract description 37
- 239000000463 material Substances 0.000 description 20
- 238000002347 injection Methods 0.000 description 16
- 239000007924 injection Substances 0.000 description 16
- 238000001746 injection moulding Methods 0.000 description 14
- -1 etc.) Polymers 0.000 description 6
- 239000008188 pellet Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、複合成形体の製造方法に関し、とくに、所望の形態、機械特性を有する繊維強化熱可塑性樹脂の複合成形体を効率よく容易に製造できる方法に関する。 The present invention relates to a method for producing a composite molded body, and more particularly to a method for efficiently and easily producing a composite molded body of a fiber reinforced thermoplastic resin having a desired form and mechanical properties.
繊維強化熱可塑性樹脂成形体の製造方法としては射出成形が一般的であり、通常、熱可塑性溶融樹脂中に短繊維の強化繊維を含有させた状態で成形型としての金型内に射出し、樹脂を冷却固化させて所定形状の成形品を得るようにしている。しかし、このような通常の射出成形品では、熱可塑性樹脂が短繊維の強化繊維のみで補強されており、補強効果に限界があるため、剛性などの力学特性の観点から用途が限定されていた。 As a method for producing a fiber-reinforced thermoplastic resin molded article, injection molding is generally used. Usually, the thermoplastic molten resin is injected into a mold as a molding die in a state in which reinforcing fibers of short fibers are contained in the thermoplastic molten resin. The resin is cooled and solidified to obtain a molded product having a predetermined shape. However, in such normal injection-molded products, the thermoplastic resin is reinforced only with the reinforcing fibers of short fibers, and there is a limit to the reinforcing effect, so the use is limited from the viewpoint of mechanical properties such as rigidity. .
このような限界を打破するために、より高い強度、剛性を有する長繊維強化樹脂や連続繊維強化樹脂で補強する方法が考えられる。しかし、成形品全体を効率よく製造するためには、上記射出成形短織維強化樹脂と長繊維あるいは連続繊維強化樹脂とを一体成形することが望まれるが、容易に一体成形するのは困難であった。すなわち、通常の射出成形法では、相当高い溶融樹脂供給圧が必要であるため、とくに成形すべき成形品が比較的大きな面積を有し、肉厚が薄いような場合、その大面積全体にわたって短繊維強化樹脂を充填させるには相当な高圧が必要である。この状態では、成形機に極めて高い型締力が要求されると同時に、長繊維あるいは連続繊維強化樹脂とを複合一体化しようとした際にその高圧のために、型内に配置した強化繊維と熱可塑性樹脂からなる予備成形体は、その意図した配置や、あるいは予備成形体そのものの意図した形状を保持できなくなるような不具合を生じやすい。また、残留歪が少なく、それによる反り等の変形が小さな成形を行うためには、成形品全面にわたってほぼ均―な圧カをかけることが望まれるが、上記のように高圧が要求され、しかも大面積の揚合、均―な圧力の付与が難しくなる。さらに、通常の射出成形機は横型に設置され、射出機の射出端に金型が設けられるが、このような装置を用いて、上記長繊維あるいは連続繊維強化樹脂の予備成形体を射出成形短繊維強化樹脂補強のためのインサート体として金型内に前もって挿入しておこうとする場合、インサート体の挿入方法、金型への把持方法等に特別の工夫が必要になり、操作、設備が複雑になるという問題がある。 In order to overcome such limitations, a method of reinforcing with a long fiber reinforced resin or a continuous fiber reinforced resin having higher strength and rigidity can be considered. However, in order to efficiently manufacture the entire molded product, it is desirable to integrally form the injection-molded short woven fiber reinforced resin and the long fiber or continuous fiber reinforced resin. However, it is difficult to easily integrally mold the molded product. there were. In other words, the normal injection molding method requires a considerably high molten resin supply pressure. Therefore, particularly when the molded product to be molded has a relatively large area and a thin wall thickness, the entire large area is short. A considerable high pressure is required to fill the fiber reinforced resin. In this state, the molding machine is required to have a very high clamping force, and at the same time, when trying to combine and integrate long fibers or continuous fiber reinforced resin, A preformed body made of a thermoplastic resin is likely to have a problem that the intended arrangement or the shape of the preformed body itself cannot be maintained. In addition, in order to perform molding with little residual distortion and small deformation such as warping, it is desirable to apply almost uniform pressure over the entire surface of the molded product, but high pressure is required as described above. It becomes difficult to lift large areas and apply uniform pressure. Furthermore, a normal injection molding machine is installed in a horizontal mold, and a mold is provided at the injection end of the injection machine. By using such an apparatus, the above-mentioned long fiber or continuous fiber reinforced resin preform is injection molded short. When it is going to be inserted in advance into the mold as an insert body for fiber reinforced resin reinforcement, special measures are required for the insertion method of the insert body, the gripping method to the mold, etc. There is a problem of complexity.
このように、射出成形短繊維強化樹脂成形体を長繊維あるいは連続繊維強化樹脂との一体成形により補強することは、従来技術では容易なことではない。なお、熱可塑性樹脂シートと熱可塑性樹脂製の部材とをプレス成形装置の金型内で一体化する技術は知られているが(例えば、特許文献1、2)、これら従来技術は、熱可塑性樹脂のみを主体とした成形を意図したもので、高い機械的特性(強度、剛性)を要求されるような構造体の成形、とくに繊維強化熱可塑性樹脂の複合成形体の成形が可能なものでない。 Thus, it is not easy in the prior art to reinforce the injection-molded short fiber reinforced resin molded body by integral molding with long fibers or continuous fiber reinforced resin. Although a technique for integrating a thermoplastic resin sheet and a thermoplastic resin member in a die of a press molding apparatus is known (for example, Patent Documents 1 and 2), these conventional techniques are thermoplastic. It is intended only for resin molding, and is not capable of molding structures that require high mechanical properties (strength, rigidity), especially composite moldings of fiber reinforced thermoplastic resins. .
そこで本発明の課題は、上記のような実情に鑑み、従来の射出成形技術に特別な手段を組み合わせ、不連続繊維強化樹脂成形体、とくに短繊維強化樹脂成形体と長繊維あるいは連続繊維強化樹脂成形体とを、大きな面積を有する成形品、さらにはその肉厚が薄い成形品に対しても、特別な手法によることなく低圧で容易にかつ反り等の変形を抑えて精度よく所望の形態に一体成形できるようにした複合成形体の製造方法を提供することにある。 Therefore, in view of the above circumstances, the object of the present invention is to combine a special means with the conventional injection molding technique, and to form a discontinuous fiber reinforced resin molded body, particularly a short fiber reinforced resin molded body and a long fiber or continuous fiber reinforced resin. Even for molded products with a large area, and molded products with a small wall thickness, the molded body can be easily shaped at a low pressure without any special technique, and can be accurately deformed to a desired shape without warping. An object of the present invention is to provide a method for producing a composite molded body that can be integrally molded.
上記課題を解決するために、本発明に係る複合成形体の製造方法は、竪型プレス機のプレス端に、該プレス機の作動に応じて相対移動可能な上型と下型とからなる金型を配置し、該金型のキャビティ内に、強化繊維と熱可塑性樹脂からなる予備成形体を配置し、該キャビティの残りの空間内に不連続強化繊維を含有する溶融熱可塑性樹脂を射出し、前記竪型プレス機によるプレスで前記キャビティを所定の容積に縮小することによって、前記不連続強化繊維含有溶融熱可塑性樹脂をキャビティ内に充満させつつ前記予備成形体をキャビティの所定の内面に押し付け、該不連続強化繊維含有熱可塑性樹脂と前記予備成形体を一体化して複合成形体に成形することを特徴とする方法からなる。 In order to solve the above-mentioned problems, a method for producing a composite molded body according to the present invention includes a metal mold comprising an upper mold and a lower mold that are movable relative to the press end of a vertical press machine according to the operation of the press machine. A mold is placed, a preform made of reinforcing fibers and thermoplastic resin is placed in the cavity of the mold, and a molten thermoplastic resin containing discontinuous reinforcing fibers is injected into the remaining space of the cavity. The preform is pressed against a predetermined inner surface of the cavity while the cavity is filled with the molten thermoplastic resin containing discontinuous reinforcing fibers by reducing the cavity to a predetermined volume by pressing with the vertical press. The discontinuous reinforcing fiber-containing thermoplastic resin and the preformed body are integrated and molded into a composite molded body.
このような本発明に係る複合成形体の製造方法においては、不連続強化繊維含有溶融熱可塑性樹脂をキャビティ内に供給(射出)する段階では、キャビティ内に空間部が残存していてもかまわないので、その供給圧力は従来の射出成形における射出(供給)圧力よりもはるかに低くて済む(例えば、1/2〜1/10程度の低圧で済む)。そして、キャビティ内に供給された不連続強化繊維含有溶融熱可塑性樹脂は竪型プレス機によるプレスによってキャビティ内に充満されるが、このときの型締め圧力(成形圧力)についても、対抗圧力となる上記キャビティ内への供給圧力が低圧であることから、従来の射出成形における型締め圧力よりもはるかに低くて済む(例えば、1/3〜1/6程度の低圧で済む)。このように低圧で不連続強化繊維含有熱可塑性樹脂と予備成形体との一体成形が可能になる。低圧成形が可能になる結果、大面積を有する成形品、さらにはその肉厚が薄いような成形品であっても、容易にその大面積全体にわたって不連続強化繊維含有溶融熱可塑性樹脂を充填させることが可能になり、所望の一体成形を行うことが可能になる。また、不連続強化繊維含有溶融熱可塑性樹脂は竪型プレス機による上下方向のプレス圧を利用してキャビティ内に充満されるが、樹脂が押し広げられる方向が、水平方向あるいはそれと同等の方向となるため、従来の射出成形における上下方向あるいはそれと同等の方向の場合に比べ、樹脂は容易に成形品全面にわたって均一に広がりやすくなるとともにキャビティ内全体にわたって均一な圧力がかかりやすくなり、樹脂の均一な分布が得られて残留歪が少なくなり、それによる反り等の変形の小さな成形が可能になる。つまり、均一な物性、機械特性の成形体が精度よく所望の形態で得られる。その結果、大きな面積を有する成形品に対しても、さらにはその肉厚が薄い成形品に対しても、特別な手法によることなく容易にかつ精度よく、不連続繊維強化樹脂成形体と予備成形体を用いた補強用の強化樹脂成形体とを一体成形できるようになり、目標とする複合成形体を効率よく製造することができる。 In such a method for producing a composite molded body according to the present invention, in the step of supplying (injecting) the discontinuous reinforcing fiber-containing molten thermoplastic resin into the cavity, a space may remain in the cavity. Therefore, the supply pressure is much lower than the injection (supply) pressure in the conventional injection molding (for example, a low pressure of about 1/2 to 1/10 is sufficient). The discontinuous reinforcing fiber-containing molten thermoplastic resin supplied into the cavity is filled into the cavity by pressing with a vertical press, and the clamping pressure (molding pressure) at this time is also a counter pressure. Since the supply pressure into the cavity is low, it can be much lower than the clamping pressure in conventional injection molding (for example, a low pressure of about 1/3 to 1/6 is sufficient). In this way, it becomes possible to integrally mold the discontinuous reinforcing fiber-containing thermoplastic resin and the preform at a low pressure. As a result of the low-pressure molding, even a molded product having a large area, or even a molded product having a thin wall thickness, is easily filled with a molten thermoplastic resin containing discontinuous reinforcing fibers over the entire large area. Therefore, a desired integral molding can be performed. Also, the discontinuous reinforcing fiber-containing molten thermoplastic resin is filled into the cavity using the vertical press pressure by the vertical press, but the direction in which the resin is spread is the horizontal direction or the equivalent direction. Therefore, compared with the case of the vertical direction in the conventional injection molding or the equivalent direction, the resin easily spreads uniformly over the entire surface of the molded product, and it is easy to apply a uniform pressure over the entire cavity. Distribution is obtained and residual strain is reduced, thereby enabling molding with small deformation such as warpage. That is, a molded article having uniform physical properties and mechanical characteristics can be obtained in a desired form with high accuracy. As a result, discontinuous fiber reinforced resin moldings and preforms can be easily and accurately applied to molded products with large areas and even molded products with a small thickness without using a special technique. The reinforcing resin molded body for reinforcement using the body can be integrally molded, and the target composite molded body can be efficiently manufactured.
上記本発明に係る複合成形体の製造方法において、上記予備成形体の強化繊維としては、連続繊維からなることが好ましいが、上記不連続強化繊維より平均繊維長の長い長繊維を使用することも可能であり、いずれの場合にも不連続繊維強化樹脂成形体の補強に供することができる。予備成形体の強化繊維として長繊維を使用する場合には、その重量平均繊維長が1〜50mmの繊維からなることが好ましい。上記予備成形体は、成形時金型キャビティ内で所定の形状に沿って一体化されるように可撓性であることが望ましい。予備成形体自体が常温で可撓性である場合に加え、予備成形体をあらかじめ予熱するような手法で可撓性にした状態に調整後、キャビティ内で一体化することもできる。 In the method for producing a composite molded body according to the present invention, the reinforcing fiber of the preform is preferably a continuous fiber, but a long fiber having an average fiber length longer than that of the discontinuous reinforcing fiber may be used. In any case, it can be used to reinforce the discontinuous fiber reinforced resin molding. When long fibers are used as the reinforcing fibers of the preform, the weight average fiber length is preferably 1 to 50 mm. The preform is preferably flexible so as to be integrated along a predetermined shape in the mold cavity during molding. In addition to the case where the preform itself is flexible at room temperature, the preform can be integrated into the cavity after being adjusted to a flexible state by a preheating method.
とくに本発明において好ましい形態の予備成形体として、上記連続繊維または上記長繊維からなる強化繊維が一方向に並行に配列されたシート状またはテープ状の予備成形体、またはその予備成形体を複数枚積層したものを挙げることができる。このような形態の予備成形体を使用すれば、該予備成形体をキャビティ内で、ひいては最終成形体に対して、容易に所望の位置に配置することができる。 In particular, as a preform in a preferable form in the present invention, a sheet-shaped or tape-shaped preform in which the reinforcing fibers made of the continuous fibers or the long fibers are arranged in parallel in one direction, or a plurality of the preforms. A laminate may be mentioned. If the preform in such a form is used, the preform can be easily placed in a desired position in the cavity, and thus with respect to the final molded body.
また、本発明において、射出後の複合成形体における上記不連続強化繊維含有溶融熱可塑性樹脂の、不連続強化繊維としては、従来の射出成形でも用いられていたような短繊維が好ましい。とくに、複合成形体における上記不連続強化繊維含有溶融熱可塑性樹脂の、含有する繊維長が重量平均繊維長0.4mm〜3mmであることが好ましい。不連続強化繊維を含有する溶融熱可塑性樹脂の、含有する繊維長は、全体構造として高い力学的特性を発現しやすいこと、および予備成形体との線膨張率のマッチングなどの点からは、比較的繊維長が長い方が望ましい。具体的には射出用の長繊維ペレットを使用することを例示することができる。この場合、特に射出後の繊維長が、つまり、上記不連続強化繊維含有溶融熱可塑性樹脂の、含有する繊維長が重量平均繊維長で0.4mm〜3mmの範囲になることが望ましい。重量平均繊維長が0.4mm未満では、通常のコンパウンドペレットを使用した場合のように、強化繊維の特性を引き出せないばかりか、成形収縮が大きくなり、線膨張率も大きくなる。このような難点を重量平均繊維長が0.4mm以上では抑制することができる。重量平均繊維長が3mmを超えると、力学的特性などの面では有利になるものの、射出成形をするには繊維長が長すぎ、流動性低下など成形性に問題が生じる。なお、射出前のペレット等における含有強化繊維の重量平均繊維長としては、2〜15mm程度の範囲、好ましくは5〜8mm程度の範囲のものが望ましく、このような繊維長のものが、射出成型用の混練機などにより、射出された際には上記の如く0.4mm〜3mmの重量平均繊維長となる形態が望ましい。 In the present invention, the discontinuous reinforcing fiber of the discontinuous reinforcing fiber-containing molten thermoplastic resin in the composite molded body after injection is preferably a short fiber as used in conventional injection molding. In particular, it is preferable that the fiber length contained in the discontinuous reinforcing fiber-containing molten thermoplastic resin in the composite molded body is a weight average fiber length of 0.4 mm to 3 mm. The fiber length of the melted thermoplastic resin containing discontinuous reinforcing fibers is easy to express high mechanical properties as a whole structure, and is compared in terms of matching of linear expansion coefficient with the preform. Longer fiber length is desirable. Specifically, the use of long fiber pellets for injection can be exemplified. In this case, it is particularly desirable that the fiber length after injection, that is, the fiber length contained in the discontinuous reinforcing fiber-containing molten thermoplastic resin is in the range of 0.4 mm to 3 mm in terms of weight average fiber length. When the weight average fiber length is less than 0.4 mm, the properties of the reinforcing fiber cannot be drawn out as in the case of using an ordinary compound pellet, and the molding shrinkage increases and the linear expansion coefficient also increases. Such difficulty can be suppressed when the weight average fiber length is 0.4 mm or more. When the weight average fiber length exceeds 3 mm, it is advantageous in terms of mechanical properties and the like, but the fiber length is too long for injection molding, resulting in problems in moldability such as a decrease in fluidity. The weight average fiber length of the reinforcing fibers contained in the pellets before injection is preferably in the range of about 2 to 15 mm, and preferably in the range of about 5 to 8 mm. As described above, it is desirable that the weight average fiber length is 0.4 mm to 3 mm when injected by a kneading machine.
また、本発明において強化繊維の種類はとくに限定されず、炭素繊維やガラス繊維、アラミド繊維等、あるいはこれらを複数種含むハイブリッド構成の強化繊維等、各種の強化繊維を使用できるが、より強度や剛性に優れた複合成形体を得るという面からは、上記予備成形体の強化繊維および上記不連続強化繊維の少なくとも一方が炭素繊維を含むことが好ましく、両方とも炭素繊維を含むことがより好ましい。 Further, in the present invention, the type of the reinforcing fiber is not particularly limited, and various reinforcing fibers such as carbon fiber, glass fiber, aramid fiber, or a hybrid reinforcing fiber including a plurality of these can be used. From the aspect of obtaining a composite molded body having excellent rigidity, at least one of the reinforcing fiber and the discontinuous reinforcing fiber of the preform preferably includes carbon fibers, and more preferably includes both carbon fibers.
また、上記竪型プレス機と金型の連結形態としては、上記金型の上型にプレス端が連結された形態に設定でき、竪型プレス機の動作により上型を上下動させて、型締め、型開きを行うようにした形態に設定できるが、この場合、上記キャビティ内の下型上に予備成形体を配置し、該下型のキャビティ形成面からキャビティ内に上記不連続強化繊維含有溶融熱可塑性樹脂を射出するようにすると、予備成形体を下型上に配置するだけの極めて簡単な操作で所望の一連の成形動作を開始することができるようになる。なお、上記キャビティ内の下型上に(可撓性)予備成形体を配置することには限定されず、上型に何らかの手法により予備成形体を配置して成形することも可能である。 Further, as a connecting form of the vertical press machine and the mold, the press end can be connected to the upper mold of the mold, and the upper mold is moved up and down by the operation of the vertical press machine. It can be set to a form that is clamped and opened, but in this case, a preform is placed on the lower mold in the cavity, and the discontinuous reinforcing fiber is contained in the cavity from the cavity forming surface of the lower mold. By injecting the molten thermoplastic resin, a desired series of molding operations can be started with an extremely simple operation of simply placing the preform on the lower mold. In addition, it is not limited to arrange | positioning a (flexible) preforming body on the lower mold | type in the said cavity, It is also possible to arrange | position and shape | mold a preforming body to an upper mold | type with a certain method.
なお、本発明において用いる熱可塑性樹脂の種類はとくに限定されず、使用可能な樹脂を例示すると、ポリアミド(ナイロン6、ナイロン66等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート、ポリアミドイミド、ポリフェニレンサルファイド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスチレン、ABS、液晶ポリエステルや、アクリロニトリルとスチレンの共重合体等を挙げることができる。これらの混合物でもよい。また、ナイロン6とナイロン66との共重合ナイロンのように共重合したものであってもよい。さらに得たい成形品の要求特性に応じて、難燃剤、耐候性改良剤、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を添加しておくことができる。 The type of thermoplastic resin used in the present invention is not particularly limited. Examples of usable resins include polyamide (nylon 6, nylon 66, etc.), polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polybutylene). Terephthalate, etc.), polycarbonate, polyamideimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polystyrene, ABS, liquid crystal polyester, and a copolymer of acrylonitrile and styrene. it can. A mixture of these may also be used. Moreover, what was copolymerized like the copolymer nylon of nylon 6 and nylon 66 may be used. Furthermore, depending on the required properties of the molded product to be obtained, flame retardants, weather resistance improvers, other antioxidants, heat stabilizers, UV absorbers, plasticizers, lubricants, colorants, compatibilizers, conductive fillers, etc. It can be added.
このように、本発明に係る複合成形体の製造方法によれば、不連続繊維強化樹脂成形体と長繊維あるいは連続繊維強化樹脂成形体とを格別の工夫を要することなく精度よく一体成形でき、大きな面積を有する成形品に対しても、さらにはその肉厚が薄い成形品に対しても、目標とする剛性等の機械特性を均一に発現でき、本来の特性である軽量性も併せ備えた所望の繊維強化熱可塑性樹脂の複合成形体を効率よく製造することができる。 Thus, according to the method for producing a composite molded body according to the present invention, the discontinuous fiber reinforced resin molded body and the long fiber or continuous fiber reinforced resin molded body can be integrally molded accurately without requiring any special device, Even for molded products with a large area, and even for molded products with a small wall thickness, the mechanical properties such as the target rigidity can be expressed uniformly, and the lightness that is the original characteristic is also provided. A composite molded body of a desired fiber-reinforced thermoplastic resin can be efficiently produced.
以下に、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る複合成形体の製造方法における主要ステップの状態を概略示している。図1において、1は、相対移動(可動)可能な上型2と下型3とからなる金型を示しており、本実施態様では、上型2が竪型プレス機4のプレス端に連結されて、プレス機4のプレス動作に応じて上下動されるようになっている。上型2と下型3によって、プレス機4のプレス動作に応じて容積が変化される所定形状のキャビティ5が形成される。下型3内には、被射出物質をキャビティ5内に射出、供給するための供給路6が設けられており、本実施態様では、供給路6は、導入端が下型3の側面側に開口され、そこから下型3内を折れ曲がって延び、被射出物質の供給端として、下型3のキャビティ5形成面である下型3上面の中央部にて開口されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows the state of main steps in a method for producing a composite molded body according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a mold composed of an
ここまでの装置構成により、竪型プレス機4を用いたプレス成形用の装置が構成されるが、その基本動作について、ここで先ず、図2を参照して説明しておく。上型2が目標とする成形品の体積よりもキャビティ5の容積が大きくなるように開いた状態(型開きした状態)で、供給路6を通してキャビティ5内に被射出物質7(例えば、溶融樹脂や繊維含有溶融樹脂)が供給開始され、ある量供給された段階から、竪型プレス機4によるプレス作動により、上型2が下型3に対して下降され、キャビティ5の容積が縮小されつつ、供給されていた,あるいは未だ供給されつつある被射出物質7がキャビティ5内に押し広げられ、やがて型締めが完了するとともに、所定の容積へと縮小されたキャビティ5内に被射出物質7が充満され、所定形状の成形品へとプレス成形される。以上がありうる成形手法のひとつであるが、成形装置はこのような動作をすることに限定するものではなく、金型の形状やその他の要件によりプレスの上下の動作制御は自由に設定すればよい。
With the apparatus configuration up to this point, an apparatus for press molding using the vertical press 4 is configured. The basic operation will be described first with reference to FIG. In a state where the
このような竪型プレス機4を用いたプレス成形では、前述したように、通常の射出成形法と比較して、被射出物質7の供給圧力が従来の射出成形における射出(供給)圧力に比べ1/2〜1/10程度の低圧で済み、型締め圧力P(成形圧力)についても、従来の射出成形における型締め圧力に比べ1/3〜1/6程度の低圧で済む。また、キャビティ5内全体にわたって均一な圧力がかかりやすくなり、樹脂の均一な分布が得られて残留歪が少なくなり、それによる反り等の変形の小さな成形が可能になる。
In press molding using such a vertical press machine 4, as described above, the supply pressure of the substance 7 to be injected is compared with the injection (supply) pressure in the conventional injection molding as compared with the normal injection molding method. A low pressure of about 1/2 to 1/10 is sufficient, and the mold clamping pressure P (molding pressure) can be a pressure of about 1/3 to 1/6 compared with the mold clamping pressure in the conventional injection molding. In addition, a uniform pressure is easily applied throughout the
本発明では、このような竪型プレス機4を用いたプレス成形における長所を最大限活かしつつ、複合成形体の成形が行われる。再び図1を参照して説明するに、金型1のキャビティ5内に、図示例では下型3のキャビティ形成面である上面上に、長繊維または連続繊維の強化繊維と熱可塑性樹脂からなるシート状予備成形体10が配置される。この配置に際しては、例えば、上型2の下縁と適当な把持具11との間に予備成形体10の縁部を把持するようにすればよい。図示例では、把持具11は伸縮自在なガイド部材12の上端に設けられている。この状態で、キャビティ5内に、不連続強化繊維を含有する溶融熱可塑性樹脂13が供給路6を通して供給、射出される。供給路6は下型3の上面中央部に開口されており、不連続強化繊維含有溶融熱可塑性樹脂13の供給により、予備成形体10は上方に向けて膨らみ、やがて上型2のキャビティ形成面である内面に沿わせられる。このとき同時に、竪型プレス機4の作動により、下型3に対して上型2が下降され、同時にキャビティ5内に成形圧P(プレス圧)が負荷される。上型2の下降時には、ガイド部材12が縮められ、予め定められたキャビティ高さになったときに下降動作は停止される。ただし、下降端ではキャビティ5内全体にわたって目標とする成形圧が加わっていることが望ましい。
In the present invention, the composite molded body is molded while taking full advantage of the advantages of press molding using the vertical press 4. Referring to FIG. 1 again, in the
このような一連の動作により、不連続強化繊維含有溶融熱可塑性樹脂13が所定の形状まで縮小されたキャビティ5内に充満されつつ、予備成形体10がキャビティ5の所定の内面(図示例では、上型2の内面)に押し付けられ、不連続強化繊維含有熱可塑性樹脂13と予備成形体10とが一体化されて複合成形体14に成形される。成形後、竪型プレス機4の作動により、上型2を開き、複合成形体14を取り出せばよい。
By such a series of operations, the preformed
このように、極めて簡単な操作で、かつ、低圧かつ均一な圧力にて、目標とする複合成形体14が効率よく製造される。低圧かつ均一な圧力での成形であることから、比較的大きな面積を有する場合にあっても、さらにはその肉厚が薄い成形品に対しても、所望の剛性等の機械特性を均一に発現できる、目標とする複合成形を容易に実施することができるようになる。 In this way, the target composite molded body 14 can be efficiently manufactured with an extremely simple operation and at a low pressure and a uniform pressure. Because it is molded at low pressure and uniform pressure, even if it has a relatively large area, even for molded products with thin wall thickness, desired mechanical properties such as rigidity are uniformly expressed. It is possible to easily perform the target composite molding.
なお、上述した例では、不連続強化繊維含有溶融熱可塑性樹脂13の供給機はとくに図示しなかったが、通常の射出成形で用いられている射出機や、不連続強化繊維と溶融熱可塑性樹脂とを混連可能な押出機などを適宜使用することができる。また射出ユニットからプレスに装着された金型、さらにキャビティへの流路も図1や図2では単純化して記しているが、ホットランナーなど既存の射出成形金型技術を自由に応用することが可能である。
In the above-described example, the discontinuous reinforcing fiber-containing molten
また、上記図示例では、予備成形体10を上型2の内面側に押し付けられるように配置したが、下型3の内面側に押し付けられるように配置することも可能である。さらに、上型2の内面側に押し付けられる予備成形体10と、下型3の内面側に押し付けられる予備成形体10を配置し、両予備成形体10間に不連続強化繊維含有溶融熱可塑性樹脂13を注入、充満させていくような形態を採用することも可能である。
In the illustrated example, the
前述の如く、本発明は、比較的大きな面積を有する複合成形体、さらにはその肉厚が薄い複合成形体の成形に好適なものであり、例えば、複合構造を有するパネル部材(例えば、主要剛性を受け持つ構造材の内面側に内装材や外面側に外装材を複合したパネル部材[例えば自動車用パネル部材]) の成形に好適なものである。図3に、このようなパネル部材における構造材21と内装材22や外装材23との一体化構成例を示す。この場合、構造材21を本発明における不連続強化繊維含有熱可塑性樹脂、内装材22や外装材23を本発明における予備成形体とすることにより、あるいはその逆に設定することにより、図示したいずれの一体化構成も成形可能である。
As described above, the present invention is suitable for molding a composite molded body having a relatively large area, and further a composite molded body having a thin wall thickness.For example, a panel member having a composite structure (for example, main rigidity It is suitable for forming a panel member [for example, a panel member for automobiles] in which an interior material is provided on the inner surface side of a structural material and a exterior material on the outer surface side. FIG. 3 shows an example of an integrated configuration of the
予備成形体として、一方向に引き揃えた炭素繊維(東レ(株)製、“トレカ”(登録商標)T700S−12K)にナイロン系樹脂を含浸させたテープ状の一方向強化繊維基材(幅:50mm、厚み:0.3mm)を用意した。射出するための不連続強化繊維含有熱可塑性樹脂としては、内部に強化繊維としての炭素繊維を含有するナイロン系樹脂(東レ(株)製、TLP1060)であり、ペレットの段階における炭素繊維の繊維長が約7mm、炭素繊維重量含有率Wf=約30%のものを用意した。 As a preform, a tape-shaped unidirectional reinforcing fiber substrate (width) in which nylon fibers are impregnated with carbon fiber (Toray Industries, Inc., “Treca” (registered trademark) T700S-12K) aligned in one direction. : 50 mm, thickness: 0.3 mm). The thermoplastic resin containing discontinuous reinforcing fibers for injection is a nylon resin (TLP1060, manufactured by Toray Industries, Inc.) containing carbon fibers as reinforcing fibers inside, and the fiber length of the carbon fibers at the pellet stage Of about 7 mm and carbon fiber weight content Wf = about 30%.
[実施例1]
竪型プレス機(アミノプレス社製、1000tプレス機)に設けた上型および下型を開き、図4(A)および(B)にそれぞれキャビティ31の平面形状にて示すように、予備成形体32の貼り付け位置を変えた2通りの方法で予備成形体32を配置した。図5(A)、(B)、(C)に示すように、キャビティ31を開いた状態で、射出装置におけるシリンダー温度を270℃、上型34、下型35からなる金型の型温80℃で上述の不連続強化繊維含有熱可塑性樹脂36を射出し、射出完了後に上型34をプレス機で成形圧力150tでプレス(型締め)して、平面寸法にて縦:400mm、横:210mmで厚みが2mmの成形品を成形した。
[Example 1]
The upper mold and the lower mold provided in the vertical press machine (Amino Press, 1000t press machine) are opened, and the preforms are shown in FIGS. The preformed
得られた成形品から、図4(A)および(B)中に示した矩形(40mm×25mm)の切り出し位置(41、43は予備成形体32(UDテープ)が配置された部分での切り出し位置、42、44は切り出し位置41、43に隣接する、予備成形体32が配置されていない部分での切り出し位置、45は不連続強化繊維含有熱可塑性樹脂36をキャビティ31内に射出するためのゲート位置をそれぞれ示している。)に沿って試験片を切り出し、曲げ試験(ISO178に準拠した曲げ試験)を行い、強度、弾性率を測定した。結果を表1に示す。
From the obtained molded product, the rectangular (40 mm × 25 mm) cutting positions shown in FIGS. 4 (A) and 4 (B) (41 and 43 are cut out at the portion where the preform 32 (UD tape) is arranged) The
一方向強化繊維基材(上記UDテープからなる予備成形体32)を両面に貼り付けた部分の試験片は、一方向強化繊維基材のない部分の試験片に比べ、強度で約2.5〜3倍程度、弾性率では約4〜6倍程度強化されていた。また、図6に示すように一方向強化繊維基材(UDテープ)を両面に貼り付けた試験片51の断面を顕微鏡で観察したところ、予備成形体32と、射出成形された繊維強化樹脂52はそれらの界面で良好に接着されていることが確認された。また、成形圧力としては、150tという低圧で良好に成形することができた。
The test piece of the portion where the unidirectional reinforcing fiber base material (
[実施例2]
実施例1において、図4(A)および(B)に示したのと同じ位置にて、図7(A)、(B)、(C)に示すように、キャビティ31内の下型35上のみに予備成形体32を設置した以外は(つまい、片面貼り付け形態とした以外は)、実施例1と同様の方法で成形品を成形し、試験片を切り出した。
[Example 2]
In the first embodiment, at the same position as shown in FIGS. 4A and 4B, as shown in FIGS. 7A, 7 </ b> B, and 7 </ b> C, on the
実施例1と同様に曲げ試験を行った結果、一方向強化繊維基材(上記UDテープからなる予備成形体32)のない試験片に比べ、一方向強化繊維基材を片面に貼り付けた部分の試験片は、強度で約2倍程度、弾性率では約2.5倍程度強化されていた。結果を表2に示す。また、図6に示したのと同様の断面観察を行った結果、予備成形体と、射出成形された繊維強化樹脂はそれらの界面で良好に接着されていることが確認された。
As a result of performing a bending test in the same manner as in Example 1, as compared with a test piece without a unidirectional reinforcing fiber base (
[比較例1]
従来の横型プレス機を用いて、金型(左右開き)の両型に、実施例1と同様に予備賦形体を配置して、実施例1と同様の成形条件にて成形しようとしたところ、成形圧力を350tまで引き上げても、繊維強化樹脂を十分に射出することができなかった。
[Comparative Example 1]
Using a conventional horizontal press machine, a preshaped object was placed in both molds (left and right opening) in the same manner as in Example 1 and molding was performed under the same molding conditions as in Example 1. Even when the molding pressure was increased to 350 t, the fiber reinforced resin could not be sufficiently injected.
本発明に係る複合成形体の製造方法は、繊維強化樹脂を用いたあらゆる複合成形体の製造に適用でき、とくに広い面積を有し、その肉厚が薄い成形体の製造に好適なものである。 The method for producing a composite molded body according to the present invention can be applied to the production of any composite molded body using a fiber reinforced resin, and is particularly suitable for the production of a molded body having a large area and a small thickness. .
1 金型
2 上型
3 下型
4 竪型プレス機
5 キャビティ
6 供給路
7 被射出物質
10 予備成形体
11 把持具
12 ガイド部材
13 不連続強化繊維含有溶融熱可塑性樹脂
14 複合成形体
21 構造材
22 内装材
23 外装材
31 キャビティ
32 予備成形体
33 竪型プレス機
34 上型
35 下型
36 不連続強化繊維含有熱可塑性樹脂
41、43 予備成形体が配置された部分での切り出し位置
42、44 予備成形体が配置されていない部分での切り出し位置
45 射出用ゲート位置
51 試験片
52 射出成形された繊維強化樹脂
DESCRIPTION OF SYMBOLS 1
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011188692A JP2012071595A (en) | 2010-08-31 | 2011-08-31 | Method of manufacturing composite molded object |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010193694 | 2010-08-31 | ||
JP2010193694 | 2010-08-31 | ||
JP2011188692A JP2012071595A (en) | 2010-08-31 | 2011-08-31 | Method of manufacturing composite molded object |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012071595A true JP2012071595A (en) | 2012-04-12 |
Family
ID=46167917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011188692A Withdrawn JP2012071595A (en) | 2010-08-31 | 2011-08-31 | Method of manufacturing composite molded object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012071595A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099993A1 (en) * | 2011-12-27 | 2013-07-04 | フジモリ産業株式会社 | Injection molded article using prepreg, and production method for injection molded article |
JP2014113715A (en) * | 2012-12-07 | 2014-06-26 | Mitsubishi Rayon Co Ltd | Molded article, and method for producing the same |
JP2014136365A (en) * | 2013-01-17 | 2014-07-28 | Meiki Co Ltd | Method and apparatus for compression molding of fiber composite molding |
JP2014148124A (en) * | 2013-02-01 | 2014-08-21 | Sato Tekkosho:Kk | Molding method and molding apparatus |
JP2015093479A (en) * | 2013-11-14 | 2015-05-18 | 株式会社ジェイテクト | Fiber reinforced composite molding and method for manufacturing the same |
WO2016167349A1 (en) * | 2015-04-17 | 2016-10-20 | 三菱レイヨン株式会社 | Fiber-reinforced composite material molded article and method for manufacturing same |
JP2017074697A (en) * | 2015-10-14 | 2017-04-20 | 株式会社タカギセイコー | Composite material molding system |
JP2018500204A (en) * | 2014-12-05 | 2018-01-11 | コンパニ・プラステイツク・オムニウム | Method for manufacturing power vehicle parts made of reinforced thermoplastic material |
JP2018086740A (en) * | 2016-11-28 | 2018-06-07 | 日立化成株式会社 | Production method of resin molded article |
US20200198193A1 (en) * | 2017-08-31 | 2020-06-25 | Toray Industries, Inc. | Integrally molded body |
CN111976097A (en) * | 2020-07-23 | 2020-11-24 | 深圳市华益盛模具股份有限公司 | Mold for realizing low-pressure molding of high-pressure injection molding machine |
CN113613870A (en) * | 2019-03-28 | 2021-11-05 | 帝人株式会社 | Method for producing press-molded article |
-
2011
- 2011-08-31 JP JP2011188692A patent/JP2012071595A/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099993A1 (en) * | 2011-12-27 | 2013-07-04 | フジモリ産業株式会社 | Injection molded article using prepreg, and production method for injection molded article |
JP2014113715A (en) * | 2012-12-07 | 2014-06-26 | Mitsubishi Rayon Co Ltd | Molded article, and method for producing the same |
JP2014136365A (en) * | 2013-01-17 | 2014-07-28 | Meiki Co Ltd | Method and apparatus for compression molding of fiber composite molding |
JP2014148124A (en) * | 2013-02-01 | 2014-08-21 | Sato Tekkosho:Kk | Molding method and molding apparatus |
JP2015093479A (en) * | 2013-11-14 | 2015-05-18 | 株式会社ジェイテクト | Fiber reinforced composite molding and method for manufacturing the same |
JP2018500204A (en) * | 2014-12-05 | 2018-01-11 | コンパニ・プラステイツク・オムニウム | Method for manufacturing power vehicle parts made of reinforced thermoplastic material |
CN107530926A (en) * | 2015-04-17 | 2018-01-02 | 三菱化学株式会社 | Fibre reinforced composites products formed and its manufacture method |
JPWO2016167349A1 (en) * | 2015-04-17 | 2017-04-27 | 三菱レイヨン株式会社 | Fiber-reinforced composite material molded article and method for producing the same |
WO2016167349A1 (en) * | 2015-04-17 | 2016-10-20 | 三菱レイヨン株式会社 | Fiber-reinforced composite material molded article and method for manufacturing same |
US11084187B2 (en) | 2015-04-17 | 2021-08-10 | Mitsubishi Chemical Corporation | Fiber-reinforced composite material molded article and method for manufacturing same |
JP2017074697A (en) * | 2015-10-14 | 2017-04-20 | 株式会社タカギセイコー | Composite material molding system |
JP2018086740A (en) * | 2016-11-28 | 2018-06-07 | 日立化成株式会社 | Production method of resin molded article |
US20200198193A1 (en) * | 2017-08-31 | 2020-06-25 | Toray Industries, Inc. | Integrally molded body |
US11794385B2 (en) * | 2017-08-31 | 2023-10-24 | Toray Industries, Inc. | Integrally molded body |
CN113613870A (en) * | 2019-03-28 | 2021-11-05 | 帝人株式会社 | Method for producing press-molded article |
US12251893B2 (en) | 2019-03-28 | 2025-03-18 | Teijin Limited | Method for manufacturing press-molded body |
CN111976097A (en) * | 2020-07-23 | 2020-11-24 | 深圳市华益盛模具股份有限公司 | Mold for realizing low-pressure molding of high-pressure injection molding machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012071595A (en) | Method of manufacturing composite molded object | |
US10821683B2 (en) | Method for molding flame-retardant bending beam integrated with three-dimensional nylon air duct and production mould thereof | |
US10576700B2 (en) | Method for producing a fiber-reinforced plastic molded article | |
EP3042753B1 (en) | Production method for fiber-reinforced components | |
JP5950194B2 (en) | Method for producing composite molded body | |
WO2013099828A1 (en) | Thermoplastic resin molded article having hollow portion and method for manufacturing same | |
EP3072661A1 (en) | Frp-molding jig and method for molding frp structure | |
CN107107415A (en) | The forming method of the composite shaped body of vertical injection press and use vertical injection press | |
JP6634155B2 (en) | Method and apparatus for manufacturing thermoplastic resin composite | |
KR20200133203A (en) | Manufacturing method of fiber reinforced resin | |
JP2012106490A (en) | Method for manufacturing composite molding and device for manufacturing composite molding | |
JP2021030466A (en) | Method of producing fiber-reinforced resin molded product | |
WO2020246622A1 (en) | Method for manufacturing thermoplastic fiber-reinforced resin molded article | |
CN105034246A (en) | Molding apparatus, method of molding, and molded products | |
JP5362596B2 (en) | Paste composition method, pasting composite mold and pasting device | |
KR20170133769A (en) | Resin trasferring mold forming method and device | |
JP5737036B2 (en) | Manufacturing method of resin molding | |
JP2019171739A (en) | Manufacturing method of composite molded product | |
JP6596873B2 (en) | Manufacturing method of molded body | |
JP6283941B2 (en) | Manufacturing method of molded products | |
KR102280657B1 (en) | Hybrid material parts forming device | |
CA3018310C (en) | Frp sheet press molding method and device and frp molded article | |
US20160257039A1 (en) | Molding device and method of manufacturing resin member | |
JP2016187935A (en) | Method for manufacturing molded article | |
CN117774226A (en) | Conformal continuous fiber reinforced composite structure, forming die and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141104 |