[go: up one dir, main page]

JP2012066383A - Adhesive-bonded composite containing metal alloy, and manufacturing method for the same - Google Patents

Adhesive-bonded composite containing metal alloy, and manufacturing method for the same Download PDF

Info

Publication number
JP2012066383A
JP2012066383A JP2009008380A JP2009008380A JP2012066383A JP 2012066383 A JP2012066383 A JP 2012066383A JP 2009008380 A JP2009008380 A JP 2009008380A JP 2009008380 A JP2009008380 A JP 2009008380A JP 2012066383 A JP2012066383 A JP 2012066383A
Authority
JP
Japan
Prior art keywords
metal alloy
adhesive
thermosetting resin
metal
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009008380A
Other languages
Japanese (ja)
Inventor
Masanori Narutomi
正徳 成富
Naoki Ando
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2009008380A priority Critical patent/JP2012066383A/en
Priority to PCT/JP2010/050537 priority patent/WO2010082660A1/en
Publication of JP2012066383A publication Critical patent/JP2012066383A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite that is formed by combining a thermosetting resin molded product with a metal alloy shaped product by injection-bonding the thermosetting resin to metal alloys so as to have excellent corrosion resistance, weather resistance, and heat resistance.SOLUTION: A metal alloy piece 61 is subjected to NAT treatment as follows: (1) forming an uneven surface 72 where the roughness period is 1 to 10 μm and the height difference is up to about half of the roughness period, (2) forming ultra-fine irregularities with a period of 10 to 500 nm, most desirably 50 to 100 nm, on the inner-wall surfaces of the concaves, and (3) covering the surface with a thin layer of a hard ceramic phase. The composite is formed by integrating a metal alloy shaped product with a thermosetting resin molded product via an adhesive layer, by applying a one-pack epoxy adhesive, a phenol resin adhesive, or an unsaturated polyester-resin-based adhesive to insert the metal alloy piece applied with the adhesive into an injection mold, and injecting a thermosetting resin composition having the same kind as the adhesive into the mold.

Description

本発明は金属合金を含む接着複合体とその製造方法に関し、より詳細には、移動機械、電気機器、医療機器、一般機械その他の製造分野一般において用いられる金属合金を含む接着複合体とその製造方法に関する。さらに詳細には、本発明は、新たな基礎的製造技術に関し、具体的には金属部品と熱硬化性樹脂の射出成形物とをフェノール樹脂系接着剤やエポキシ系接着剤や不飽和ポリエステル樹脂系接着剤を介し強固に接着一体化した複合体とその製造技術に関し、特に、接着剤塗布済み金属合金部品を射出成形用金型にインサートした後に熱硬化性樹脂を金型内に射出成形することにより一挙に得る、射出接合の手段による金属合金を含む接着複合体とその製造方法に関する。   TECHNICAL FIELD The present invention relates to an adhesive composite containing a metal alloy and a method for manufacturing the same, and more particularly, to an adhesive composite containing a metal alloy used in mobile machinery, electrical equipment, medical equipment, general machinery and other general manufacturing fields, and the manufacture thereof. Regarding the method. More specifically, the present invention relates to a new basic manufacturing technique. Specifically, a metal part and an injection-molded product of a thermosetting resin are combined with a phenol resin adhesive, an epoxy adhesive, or an unsaturated polyester resin system. With regard to composites firmly bonded and integrated through an adhesive and its manufacturing technology, in particular, the injection of a thermosetting resin into a mold after inserting an adhesive-coated metal alloy part into an injection mold The present invention relates to an adhesive composite containing a metal alloy obtained by means of injection joining, and a method for producing the same.

金属と樹脂を一体化する技術は、自動車、家庭電化製品、産業機器等、あらゆる部品部材製造業から求められており、このために多くの接着剤が開発されている。この中には非常に優れた接着剤がある。例えば常温、または加熱により機能を発揮する接着剤は、金属と合成樹脂を一体化する接合に使用され、この方法は現在では一般的な接合技術である。   Technology for integrating metal and resin is required by various parts and materials manufacturing industries such as automobiles, home appliances, and industrial equipment, and many adhesives have been developed for this purpose. Among these are very good adhesives. For example, an adhesive exhibiting a function at room temperature or by heating is used for joining that integrates a metal and a synthetic resin, and this method is now a common joining technique.

一方、接着剤を使用しない接合方法も研究されてきた。マグネシウム、アルミニウムやその合金である軽金属類、また、ステンレスなど鉄合金類に対し、接着剤の介在なしで高強度の熱可塑性のエンジニアリング樹脂と一体化する方法がその例である。例えば、射出等の方法で樹脂成形と同時に接合をなす方法(以下、「射出接合」という)として、アルミニウム合金に対し熱可塑性樹脂であるポリブチレンテレフタレート樹脂(以下「PBT」という)またはポリフェニレンサルファイド樹脂(以下「PPS」という)を射出接合させる製造技術が開発されている(例えば特許文献1、2参照)。   On the other hand, bonding methods that do not use an adhesive have also been studied. An example is a method in which light metals such as magnesium, aluminum and alloys thereof, and iron alloys such as stainless steel are integrated with a high-strength thermoplastic engineering resin without an adhesive. For example, as a method of joining simultaneously with resin molding by a method such as injection (hereinafter referred to as “injection joining”), polybutylene terephthalate resin (hereinafter referred to as “PBT”) or polyphenylene sulfide resin which is a thermoplastic resin for an aluminum alloy Manufacturing techniques for injection joining (hereinafter referred to as “PPS”) have been developed (see, for example, Patent Documents 1 and 2).

これらは本発明者らによる技術であるが、その後の改良もあってその接合力はせん断破断力で25〜30MPaという高レベルに達している。接合理論も解明され、本発明者らの命名であるが、「NMT(Nano molding technologyの略)」として現在では金属加工業者に知られるものとなっている。加えて、本発明者らはマグネシウム合金、銅合金、チタン合金、ステンレス鋼、一般鋼材、亜鉛鍍金鋼板等もNMTで使用するのと同系統の樹脂の使用で射出接合できることを実証した(特許文献3、4、5、6、7、8、15、16参照)。これらはNMTとは異なる別原理に依っており、本発明者らはこの射出接合を「新NMT」と名付けた。   Although these are techniques by the present inventors, the joining force has reached a high level of 25 to 30 MPa as a shear breaking force due to subsequent improvements. The joining theory has also been elucidated, and is the name of the present inventors. However, it is now known to metalworkers as “NMT” (short for Nano molding technology). In addition, the present inventors have demonstrated that magnesium alloys, copper alloys, titanium alloys, stainless steel, general steel materials, galvanized steel plates, etc. can be injection-bonded by using the same type of resin as used in NMT (patent document) 3, 4, 5, 6, 7, 8, 15, 16). These depend on another principle different from NMT, and the inventors named this injection joint “new NMT”.

新NMT理論のほぼ最終的な条件について述べる。金属合金についてまず述べれば、その金属合金種に見合った化学処理をして以下の(1)〜(3)を備えた表面にすることが基本的な必要条件である。すなわち、
(1)1〜10μm周期で高低差がその周期の半分程度までの凹凸面とする、すなわちミクロンオーダーの粗度を有した表面とすること、
(2)前記の凹部内壁面は10〜500nm周期、最も好ましくは50〜100nm周期、の超微細凹凸面とすること、
(3)表面はセラミック質の硬質相の薄層で覆われたものにすること、具体的には、環境的に安定な金属酸化物や金属リン酸化物の薄層で覆われたものにすること、
である。これらを模式的に図にすると図14のようになる。同図で、70は金属合金の部分、71は金属合金表面の凹凸部、72は樹脂組成物であり、A,Bは超微細凸部の間隔、高さを表し、Cはそれより大きい凹凸の周期を示している。このようにした金属合金に液状の樹脂組成物が侵入したとして侵入後に硬く硬化したとしたら金属合金基材と硬化した樹脂分は非常に強固に接合する、という簡潔な考え方である。
The almost final conditions of the new NMT theory are described. First of all, regarding a metal alloy, it is a basic requirement that the surface be provided with the following (1) to (3) by chemical treatment corresponding to the metal alloy type. That is,
(1) An uneven surface with a height difference of up to about half of the period in a period of 1 to 10 μm, that is, a surface having a micron-order roughness,
(2) The inner wall surface of the recess is an ultra fine uneven surface with a period of 10 to 500 nm, most preferably with a period of 50 to 100 nm,
(3) The surface should be covered with a thin layer of a ceramic hard phase. Specifically, the surface should be covered with a thin layer of an environmentally stable metal oxide or metal phosphate. thing,
It is. These are schematically illustrated as shown in FIG. In the figure, 70 is a metal alloy part, 71 is an uneven part on the surface of the metal alloy, 72 is a resin composition, A and B indicate the spacing and height of the ultra fine protrusions, and C is an uneven part larger than that. Cycle. Assuming that the liquid resin composition has infiltrated into the metal alloy as described above and has been hardened after the intrusion, the metal alloy base material and the cured resin are bonded very firmly.

一般に射出成形機と言えば熱可塑性樹脂組成物を射出成形する機械を指すが、熱硬化性樹脂組成物を原料として射出成形する射出成形機もある。混同を避けるため「熱硬化性樹脂用射出成形機」と敢えて長名で言われ、その基本構造は一般の射出成形機と逆の温度設定になっている。すなわち、射出温度は70〜100℃と低い温度域に設定され、金型温度は150〜200℃の高温に設定される。そして射出される原料樹脂は熱硬化性樹脂組成物であり、その多くはフェノール樹脂系や不飽和ポリエステル樹脂系の熱硬化型樹脂組成物であり、少数派だがエポキシ樹脂系の熱硬化型樹脂組成物がある。   Generally speaking, an injection molding machine refers to a machine that injection-molds a thermoplastic resin composition, but there is also an injection molding machine that performs injection molding using a thermosetting resin composition as a raw material. In order to avoid confusion, it is daunted by the long name “injection molding machine for thermosetting resin”, and its basic structure has a temperature setting opposite to that of a general injection molding machine. That is, the injection temperature is set to a low temperature range of 70 to 100 ° C., and the mold temperature is set to a high temperature of 150 to 200 ° C. The raw material resin to be injected is a thermosetting resin composition, most of which are phenolic resin and unsaturated polyester resin thermosetting resin compositions. There is a thing.

射出成形用の不飽和ポリエステル樹脂組成物の組成は、1)不飽和ポリエステル樹脂またはビニルエステル樹脂、2)スチレン系モノマー、3)無機充填材、及び4)硬化剤の有機過酸化物、を少なくとも含んだコンパウンドであり、グレードによってはスチレン系モノマー含有量を減らしたもの、ガラス繊維を若干含むもの等がある。有機過酸化物に分解速度の遅いものを選ぶことで、冷蔵保管なら1ヶ月以上保存できるようにしたものである。一方、エポキシ樹脂系の組成物は、エポキシ樹脂と無機充填材及びアミン系またはフェノール樹脂系の硬化剤を含んだコンパウンドであり常温保管できるものが多い。また、フェノール樹脂系の組成物は、通常ノボラック型フェノール樹脂と無機充填材と硬化剤であるヘキサメチレンテトラミン(以下「ヘキサミン」という)を含んだコンパウンドであり、これは常温保管できる。   The composition of the unsaturated polyester resin composition for injection molding is at least 1) an unsaturated polyester resin or vinyl ester resin, 2) a styrene monomer, 3) an inorganic filler, and 4) an organic peroxide of a curing agent. Depending on the grade, there are compounds containing a reduced amount of styrene monomer, and some containing glass fibers. By selecting organic peroxides that have a slow decomposition rate, they can be stored for more than a month if stored refrigerated. On the other hand, many epoxy resin-based compositions are compounds containing an epoxy resin, an inorganic filler, and an amine-based or phenol resin-based curing agent and can be stored at room temperature. The phenol resin-based composition is usually a compound containing a novolac-type phenol resin, an inorganic filler, and a curing agent, hexamethylenetetramine (hereinafter referred to as “hexamine”), and can be stored at room temperature.

前記した、不飽和ポリエステル樹脂系、エポキシ樹脂系、フェノール樹脂系の射出成形用の熱硬化性樹脂組成物類は全て粉体混合物の形で供給されるのが普通である。これら射出成形機用とされているのとは違って、不飽和ポリエステル樹脂とスチレン系モノマーとガラス短繊維と若干の無機充填材、及び硬化剤の有機過酸化物を含んだ塊状成形コンパウンド(Bulk molding compoundの略、以下「BMC」という)というBMC成形機用の熱硬化型樹脂組成物もある。BMCは上記の組成からわかるように射出成形でGFRP材を得ようとしたもので、ガラス短繊維を含む上にスチレン系モノマー含有量も多いのでやや扱い難い原料である。すなわち、原料投入口に強制原料押し込み装置が設置された射出成形機がBMC成形機である。   The above-described thermosetting resin compositions for injection molding of unsaturated polyester resin type, epoxy resin type, and phenol resin type are usually supplied in the form of a powder mixture. Unlike those used for these injection molding machines, a bulk molding compound (Bulk) containing unsaturated polyester resin, styrenic monomer, short glass fiber, some inorganic filler, and organic peroxide as a curing agent. There is also a thermosetting resin composition for BMC molding machines, which is an abbreviation for molding compound, hereinafter referred to as “BMC”. As can be seen from the above composition, BMC is intended to obtain a GFRP material by injection molding. It contains a short glass fiber and has a high styrene monomer content, so it is somewhat difficult to handle. That is, an BMC molding machine is an injection molding machine in which a forced raw material pushing device is installed at the raw material inlet.

さて、新NMTによる射出接合とは、射出成形金型に新NMT型表面処理をした金属合金をインサートし、この金型に前述した特定組成のPBTやPPS系樹脂を射出することで強固な金属・樹脂の一体化物を得るものであった。本発明者らは新NMTの水平展開として、同様な射出接合を熱可塑性樹脂組成物ではなく熱硬化性樹脂組成物で得られるか否かを同時期に試験した。しかし残念ながら全く接合せず、本発明者らは当時のことだが、熱硬化性樹脂の射出接合は全く不可能と判断した。そのときの状況を詳細に述べてみる。   Now, injection joining with the new NMT is a strong metal by inserting a metal alloy with a new NMT surface treatment into an injection mold and injecting the PBT or PPS resin of the specific composition described above into this mold. -Obtained an integrated resin. As a horizontal development of the new NMT, the present inventors tested at the same time whether similar injection joining could be obtained with a thermosetting resin composition instead of a thermoplastic resin composition. However, unfortunately it was not bonded at all, and the present inventors determined that injection bonding of thermosetting resin was impossible at all at that time. I will describe the situation at that time in detail.

すなわち、本発明者らは前述の特許文献1〜8に従って各種金属合金を表面加工処理し、得られた金属合金片を熱硬化性樹脂用射出成形機に取り付けた金型にインサートし、市販の射出成形用の不飽和ポリエステル樹脂系熱硬化性樹脂組成物を射出した。しかしながら金型を開くと樹脂成形物と金属片は全く接合しておらずこれらは分かれて落下した。当時、エポキシ樹脂系の熱硬化性樹脂組成物も同様に射出接合試験したが、全く接合しなかった。接合しなかった理由は樹脂成形物の観察から明らかで、一言で結論を言えば、射出物の粘度過多が原因だった。   That is, the present inventors surface-treated various metal alloys according to the above-mentioned Patent Documents 1 to 8, and inserted the obtained metal alloy pieces into a mold attached to a thermosetting resin injection molding machine, An unsaturated polyester resin thermosetting resin composition for injection molding was injected. However, when the mold was opened, the resin molding and the metal piece were not joined at all, and they were separated and dropped. At that time, an epoxy resin thermosetting resin composition was similarly subjected to an injection bonding test, but it was not bonded at all. The reason for not joining was obvious from the observation of the resin molding, and in a word, the excess viscosity of the injection was the cause.

要するに、射出筒は原料樹脂を溶融すべくノズル温度を80〜90℃にしたが、この温度域では市販の射出成形用熱硬化性樹脂組成物はペースト状にはなるものの液状というまでには至らない。高圧でこのペースト状物は通常150〜180℃に加熱された金型内に入るが、高温で粘度が下がろうとするのと高温でのゲル化硬化が同時進行し、金型のキャビティー面やインサート金属合金片表面のミクロンオーダー凹部に侵入するには程遠い粘度しか得られない。要するに、微細凹凸や複雑形状のない言わば鏡面加工した金型へ固化しつつある樹脂組成物を高圧で押し込み、見た目綺麗な表面の形状物を得るのが熱硬化性樹脂射出成形の本来の姿なのだと認識するしかなかった。もちろん、電気部品用のやや精密な形状を実現するための改良コンパウンドもあるが、特許文献3〜8に示したような数μm周期の微細凹凸に対し、これを完全転写させるような流動性はとても持ち得ないことがわかった。そしてこの判断を得てこの方面の研究開発は中断した。   In short, the nozzle temperature of the injection cylinder was set to 80 to 90 ° C. in order to melt the raw material resin. However, in this temperature range, the commercially available thermosetting resin composition for injection molding is in the form of a paste, but not so liquid. Absent. This paste-like material usually enters a mold heated to 150 to 180 ° C. at high pressure, but the viscosity of the paste tends to decrease at high temperature and gel hardening at high temperature proceeds at the same time. In addition, only a viscosity far from the micron-order recesses on the surface of the insert metal alloy piece can be obtained. In short, the original form of thermosetting resin injection molding is to press the resin composition that is solidifying into a mirror-finished mold without fine irregularities and complicated shapes at high pressure to obtain a shape with a beautiful surface appearance. I had no choice but to recognize. Of course, there is an improved compound for realizing a slightly precise shape for electrical parts, but the fluidity to completely transfer the fine irregularities with a period of several μm as shown in Patent Documents 3 to 8 is not possible. I found out that I could not have it. With this judgment, research and development in this direction was interrupted.

同時期、金属合金に熱可塑性樹脂を射出接合する技術である新NMTはその方向を変え大きな発見に至った。すなわち、本発明者らが「NAT(Nano adhesion technologyの略)」と称する技術である。NATの基本は、金属合金同士や金属合金とCFRPを1液性エポキシ系接着剤で接着する技術であり、最高ではせん断破断力や引っ張り破断力で70〜80MPaという強烈な接着力を示す基礎技術である。NATの中身を端的に言えば、金属合金側は特許文献3〜8に示したのとほぼ同じ表面構造とすること、接着剤は塗布時または塗布後に温度を上げて10Pa秒程度以下の液状にした上で減圧加圧操作を加え金属合金上の微細凹部に液状接着剤を染込ます操作を加えること等である。これらに関しては特許文献9〜16に詳細が述べられている。   At the same time, the new NMT, a technology for injection-bonding a thermoplastic resin to a metal alloy, changed its direction and led to a great discovery. In other words, this is a technique that the present inventors call “NAT (abbreviation of Nano adhesion technology)”. The basics of NAT are technologies to bond metal alloys to each other and metal alloys to CFRP with a one-component epoxy adhesive, and the basic technology that shows a strong adhesive strength of 70 to 80 MPa with a shear breaking force or tensile breaking force at the maximum. It is. In short, the contents of NAT should have the same surface structure as that shown in Patent Documents 3 to 8 on the metal alloy side, and the adhesive should be in a liquid state of about 10 Pa seconds or less at the time of application or after application. For example, an operation of adding a pressure reducing pressure operation to infiltrate the liquid adhesive into the fine recesses on the metal alloy is performed. Details thereof are described in Patent Documents 9 to 16.

例えばNATの実例につきアルミニウム合金の実験例について簡単に述べてみる。すなわち、NATの要求するところに従いA7075アルミニウム合金片を表面処理する。次いで表面処理された中の必要部分に1液性エポキシ接着剤を塗る。これを50〜70℃に暖めておいたデシケータに入れて接着剤の粘度を下げ、次いで減圧/常圧戻しの圧変動操作を数回繰り返して接着剤をアルミニウム合金表面に染込ます。   For example, an experimental example of an aluminum alloy will be briefly described as an example of NAT. That is, A7075 aluminum alloy pieces are surface-treated according to the requirements of NAT. Next, a one-component epoxy adhesive is applied to the necessary part of the surface treated. This is put into a desiccator which has been heated to 50 to 70 ° C. to lower the viscosity of the adhesive, and then the pressure fluctuation operation of decompression / return to normal pressure is repeated several times to soak the adhesive on the aluminum alloy surface.

金属合金同士の接着を行うときは接着剤塗布面同士を合わせたのちクリップやクランプで固定し、120〜180℃の熱風乾燥機で硬化して接着物を得ることができる。金属合金片とCFRPの接着を行うときは、接着剤塗布付き金属合金片とCFRPプリプレグをくっ付けて固定し、同様に高温硬化処理をすればよい。通常、NATは上記の操作を連続して行うが、実際には、金属合金片に1液性エポキシ系接着剤を塗布し染込まし処理をしたものは、ポリ袋等に入れてベタベタ面を露出させないようにしつつ冷蔵庫等に保管すればいつでも使用できる状態となる。   When the metal alloys are bonded to each other, the adhesive-coated surfaces are combined and then fixed with a clip or a clamp, and cured with a hot air dryer at 120 to 180 ° C. to obtain an adhesive. When the metal alloy piece is bonded to the CFRP, the metal alloy piece with adhesive and the CFRP prepreg are attached and fixed, and similarly subjected to high temperature curing treatment. Normally, NAT performs the above operations continuously. In practice, however, a one-component epoxy adhesive applied to a metal alloy piece and soaked and treated is put in a plastic bag, etc. If it is stored in a refrigerator or the like without being exposed, it can be used anytime.

特開2004−216425号JP 2004-216425 A WO2004−055248WO2004-055248 特願2006−329410号Japanese Patent Application No. 2006-329410 特願2006−281961号Japanese Patent Application No. 2006-281196 特願2006−345273号Japanese Patent Application No. 2006-345273 特願2006−354636号Japanese Patent Application No. 2006-354636 特願2007−185547号Japanese Patent Application No. 2007-185547 特願2008−67313号Japanese Patent Application No. 2008-67313 特願2007−62736号Japanese Patent Application No. 2007-62736 特願2007−106454号Japanese Patent Application No. 2007-106454 特願2007−100727号Japanese Patent Application No. 2007-100727 特願2007−106455号Japanese Patent Application No. 2007-106455 特願2007−114576号Japanese Patent Application No. 2007-114576 特願2007−140072号Japanese Patent Application No. 2007-140072 特願2007―325736号Japanese Patent Application No. 2007-325736 特願2007―336378号Japanese Patent Application No. 2007-336378 特願2008―11551号Japanese Patent Application No. 2008-11551 特願2008―308019号Japanese Patent Application No. 2008-308019

熱硬化性樹脂の射出成形で、その成形品とあらかじめインサートした金属合金片とを強力に接着一体化できれば、工程の合理化、組み立ての容易化、大量生産化に寄与するところが大きいと言える。そのような観点から、過去の情報を集めたが、金属部品を熱硬化性樹脂射出用の射出成形金型にインサートし、熱硬化性樹脂を射出して成形品を得ると同時にその成形品を金属合金部品と強力に接着一体化するという技術は見出せなかった。接合を期待して粗面とした金属部品をインサートし、熱硬化性樹脂を射出して一体化部品を製造する例はあったが、これは金属表面の大きな凹凸面に樹脂をひっかけただけでミクロ的には接着しておらず本発明者らの意図と異なるものであった。   If the molded product and the metal alloy piece inserted in advance can be strongly bonded and integrated by injection molding of a thermosetting resin, it can be said that it greatly contributes to streamlining processes, facilitating assembly, and mass production. From such a point of view, past information was gathered, but metal parts were inserted into an injection mold for thermosetting resin injection, and thermosetting resin was injected to obtain a molded product. We could not find a technique to strongly bond and integrate with metal alloy parts. There was an example of manufacturing an integrated part by inserting a metal part with rough surfaces in anticipation of joining, and injecting a thermosetting resin. It was not adhered microscopically and was different from the intention of the present inventors.

金属合金片を射出成形金型にインサートし、熱硬化性樹脂を射出接合して金属合金片と熱硬化性樹脂を一体化することができれば、射出成形機という量産性に優れた生産機械が使用でき、得られる複合体は熱硬化性樹脂を有するものであって、耐熱性耐候性などに優れ、新たな広い分野に金属/樹脂複合体の用途進出が見込まれる。また、BMC成形機用の熱硬化型樹脂組成物についても金属合金片と一体化した複合体を形成することにより耐熱性耐候性などに優れ、新たな広い分野に適用されることが見込まれる。   If a metal alloy piece can be inserted into an injection mold and a thermosetting resin can be injected and joined to integrate the metal alloy piece and the thermosetting resin, an injection molding machine with excellent mass productivity can be used. The resulting composite has a thermosetting resin, is excellent in heat resistance and weather resistance, etc., and the application of the metal / resin composite is expected to enter a new wide field. Further, a thermosetting resin composition for a BMC molding machine is also excellent in heat resistance and weather resistance by forming a composite integrated with a metal alloy piece, and is expected to be applied to a new wide field.

それゆえ、NAT処理した金属合金片に接着剤組成物を塗布し染み込ませ、これを射出成形金型にインサートし、熱硬化性樹脂を射出して樹脂成形品と金属合金部品との一体化物を一挙に得る技術、すなわち、熱硬化性樹脂を使用した射出接合技術を開発せんとした。理論的には本発明者らが長きに渡って獲得してきた前述の基礎技術足し算で可能なはずだが、実際にはうまくいくか否かわからない。市販されている射出用の熱硬化性樹脂組成物やBMCが射出されて金型内で硬化するタイミングと、予め射出成形金型にインサートされた金属合金片上の接着剤組成物の硬化タイミングが上手く合わせられるかが鍵になる。射出用の熱硬化性樹脂組成物は化学各社から比較的安価に多種市販されており、実用面で言えば、このような市販品を使用すべきである。それゆえ、接着剤側の硬化速度の調整でタイミングが合わせられるかがポイントになる。   Therefore, an adhesive composition is applied and soaked into a NAT-treated metal alloy piece, this is inserted into an injection mold, a thermosetting resin is injected, and an integrated product of the resin molded product and the metal alloy part is formed. We decided to develop a technology that could be obtained all at once, that is, an injection joining technology using a thermosetting resin. Theoretically, this should be possible by the above-mentioned basic technology addition that has been acquired by the present inventors for a long time. A commercially available thermosetting resin composition for injection or BMC is injected and cured in the mold, and the curing timing of the adhesive composition on the metal alloy piece previously inserted in the injection mold is good. The key is to match. Various types of thermosetting resin compositions for injection are commercially available from chemical companies at a relatively low cost. In practical terms, such commercial products should be used. Therefore, the point is whether the timing can be adjusted by adjusting the curing speed on the adhesive side.

市販の熱硬化性樹脂用の射出成形機を用意し、汎用型として市販されている不飽和ポリエステル樹脂系、フェノール樹脂系、及びエポキシ系の射出成形用熱硬化性樹脂組成物を入手し実証実験を行った。幸い、不飽和ポリエステル樹脂系接着剤、フェノール樹脂系接着剤、エポキシ系接着剤の3種ともに、接着剤組成比や金型温度やインサートから射出するまでの保持時間を微調整の範囲で変動させることで強い射出接合力の得られることを確認した。   Prepared a commercially available injection molding machine for thermosetting resin, and obtained and commercialized unsaturated polyester resin, phenolic resin, and epoxy thermosetting resin compositions for injection molding that are commercially available as general-purpose molds. Went. Fortunately, for all three types of unsaturated polyester resin adhesives, phenol resin adhesives, and epoxy adhesives, the adhesive composition ratio, mold temperature, and holding time until injection from the insert are varied within the range of fine adjustment. It was confirmed that a strong injection joining force was obtained.

本発明は、前述した課題を解決すべくなしたものであり、本発明の請求項1による金属合金と熱硬化性樹脂の接着複合体は、表面に化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜500nmの不定期な周期の微細凹凸形状で覆われた形状であり、かつ、該表面が金属酸化物または金属リン酸化物の薄層である金属形状物と、射出成形で得られたエポキシ樹脂系熱硬化性樹脂組成物製の成形物と、がエポキシ系接着剤の硬化物層を間に挟んで一体化してなるものである。   The present invention has been made to solve the above-mentioned problems, and the adhesive composite of a metal alloy and a thermosetting resin according to claim 1 of the present invention has a surface roughness of micron order by chemical etching. The surface is covered with a fine irregular shape with an irregular period of 5 to 500 nm, and the surface is a metal oxide or metal phosphor oxide thin layer, and obtained by injection molding. The molded product made of the resulting epoxy resin thermosetting resin composition is integrated with a cured product layer of an epoxy adhesive in between.

本発明の請求項2による金属合金と熱硬化性樹脂の接着複合体は、表面に化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜500nmの不定期な周期の微細凹凸形状で覆われた形状であり、かつ、該表面が金属酸化物または金属リン酸化物の薄層である金属形状物と、射出成形で得られたフェノール樹脂系熱硬化性樹脂組成物製の成形物と、がフェノール樹脂系接着剤の硬化物層を間に挟んで一体化してなるものである。   The adhesive composite of the metal alloy and the thermosetting resin according to claim 2 of the present invention has a micron-order roughness by chemical etching on the surface, and the surface is covered with fine irregularities having an irregular period of 5 to 500 nm. A metal shape that has a cracked shape and the surface is a thin layer of a metal oxide or a metal phosphate, and a molded product made of a phenol resin thermosetting resin composition obtained by injection molding, Is formed by interposing a cured product layer of a phenolic resin adhesive in between.

本発明の請求項3による金属合金と熱硬化性樹脂の接着複合体は、表面に化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜500nmの不定期な周期の微細凹凸形状で覆われた形状であり、かつ、該表面が金属酸化物または金属リン酸化物の薄層である金属形状物と、射出成形で得られた不飽和ポリエステル樹脂系熱硬化性樹脂組成物製の成形物と、が、1)不飽和ポリエステル樹脂及び/またはビニルエステル樹脂と、2)スチレン系モノマーと、3)無機充填材と、4)有機過酸化物とからなる熱硬化性樹脂組成物である不飽和ポリエステル樹脂系接着剤の硬化物層を間に挟んで一体化してなるものである。   The adhesive composite of the metal alloy and thermosetting resin according to claim 3 of the present invention has a micron-order roughness by chemical etching on the surface, and the surface is covered with fine irregularities with an irregular period of 5 to 500 nm. And a molded product made of an unsaturated polyester resin-based thermosetting resin composition obtained by injection molding, and a molded product made of a thin layer of metal oxide or metal phosphate Is a thermosetting resin composition comprising 1) an unsaturated polyester resin and / or vinyl ester resin, 2) a styrene monomer, 3) an inorganic filler, and 4) an organic peroxide. It is formed by interposing a cured product layer of a saturated polyester resin adhesive between them.

請求項1ないし3のいずれか1項を引用する本発明の請求項4による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が10〜100nm径で同等の深さまたは高さの凹部もしくは凸部である超微細凹凸面で覆われた形状であり、かつ、該表面がナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウム薄層を有しているアルミニウム合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 4 of the present invention which refers to any one of claims 1 to 3 is characterized in that the metal shape has a surface roughness of micron order by chemical etching. In addition, the surface has a shape covered with an ultrafine uneven surface that is a concave or convex portion having a diameter of 10 to 100 nm and an equivalent depth or height, and the surface does not contain sodium ions and has a thickness of 2 nm or more It is made of an aluminum alloy having a thin aluminum oxide layer.

請求項1ないし3のいずれか1項を引用する本発明の請求項5による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともにその表面が5〜20nm径で20〜200nm長さの棒状物が無数に錯綜した形の超微細凹凸面で覆われた形状であり、かつ、該表面がマンガン酸化物の薄層を有しているマグネシウム合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 5 of the present invention quoting any one of claims 1 to 3, wherein the metal shape has a surface roughness of micron order by chemical etching. In addition, the surface has a shape in which a rod-shaped object having a diameter of 5 to 20 nm and a length of 20 to 200 nm is covered with an infinite number of complex fine uneven surfaces, and the surface has a thin layer of manganese oxide. It is made of a magnesium alloy.

請求項1ないし3のいずれか1項を引用する本発明の請求項6による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜20nm径で10〜30nm長さの棒状凸部が無数に有する直径80〜100nmの球状物が不規則に積み重なった形状の超微細凹凸面で覆われた形状であり、かつ、該表面がマンガン酸化物の薄層を有しているマグネシウム合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 6 of the present invention quoting any one of claims 1 to 3 is characterized in that the metal shape has a surface roughness of micron order by chemical etching. In addition, the surface is covered with an ultra-fine irregular surface of a shape in which spherical objects having a diameter of 5 to 20 nm and a rod-shaped convex part having a length of 10 to 30 nm and having an infinite number of diameters of 80 to 100 nm are randomly stacked, And the surface is made of a magnesium alloy having a thin layer of manganese oxide.

請求項1ないし3のいずれか1項を引用する本発明の請求項7による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が20〜40nmの粒径物や不定多角形状物が積み重なった形状の超微細凹凸面で覆われた形状であり、かつ、該表面がマンガン酸化物の薄層を有しているマグネシウム合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 7 of the present invention quoting any one of claims 1 to 3, wherein the metal shape has a surface roughness of micron order by chemical etching. In addition, the surface has a shape covered with a super fine uneven surface in a shape in which a particle size of 20 to 40 nm or an indefinite polygonal shape is stacked, and the surface has a thin layer of manganese oxide. It is made of a magnesium alloy.

請求項1ないし3のいずれか1項を引用する本発明の請求項8による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径または長径短径の平均が10〜150nmである孔開口部または凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 8 of the present invention which refers to any one of claims 1 to 3 is characterized in that the metal shape has a surface roughness of micron order by chemical etching. And the surface is almost entirely covered with an ultra fine uneven shape in which hole openings or recesses having an average diameter or major axis and minor axis of 10 to 150 nm are present on the entire surface at irregular intervals of 30 to 300 nm, And the surface is made of a copper alloy whose thin layer is mainly cupric oxide.

請求項1ないし3のいずれか1項を引用する本発明の請求項9による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径または長径短径の平均が10〜200nmである凸部が混在して全面に存在する超微細凹凸形状であり、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 9 of the present invention quoting any one of claims 1 to 3, wherein the metal shaped product has a surface roughness of micron order by chemical etching. In addition, the surface has an ultra-fine uneven shape in which convex portions having an average diameter or major axis and minor axis of 10 to 200 nm are mixed and exist on the entire surface, and the surface is mainly a thin layer of cupric oxide. It is made of copper alloy.

請求項1ないし3のいずれか1項を引用する本発明の請求項10による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径または長径短径の平均が10〜150nmである粒径物または不定多角形状物が連なり一部融け合って積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 10 of the present invention quoting any one of claims 1 to 3, wherein the metal shaped article has a surface roughness of micron order by chemical etching. And the surface is almost entirely covered with an ultrafine concavo-convex shape of a shape in which a particle diameter or an indefinite polygonal shape having an average diameter or major axis and minor axis of 10 to 150 nm is continuous and partly melted and stacked, And the surface is made of a copper alloy whose thin layer is mainly cupric oxide.

請求項1ないし3のいずれか1項を引用する本発明の請求項11による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混在して積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 11 of the present invention, which refers to any one of claims 1 to 3, is characterized in that the metal shape has a surface roughness of micron order by chemical etching. And the surface is almost entirely covered with a super fine uneven shape of a shape in which a particle having a diameter of 10 to 20 nm and an indefinite polygon having a diameter of 50 to 150 nm are mixed and stacked, and the surface is mainly It is made of a copper alloy that is a thin layer of cupric oxide.

請求項1ないし3のいずれか1項を引用する本発明の請求項12による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ及び幅が10〜350nm、長さが10nm以上の山状または連山状凸部が10〜350nm周期で全面に存在する超微細凹凸形状であり、かつ、該表面が主としてチタン酸化物の薄層であるチタン合金製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 12 of the present invention which refers to any one of claims 1 to 3 is characterized in that the metal shape has a surface roughness of micron order by chemical etching. In addition, the surface has an extremely fine concavo-convex shape having a height or width of 10 to 350 nm, and a mountain-shaped or continuous mountain-shaped convex portion having a length of 10 nm or more in a period of 10 to 350 nm, and the surface is mainly The titanium oxide is a thin layer of titanium oxide.

請求項1ないし3のいずれか1項を引用する本発明の請求項13による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによる山谷平均間隔(RSm)が1〜10μm、最大粗さ高さ(Rz)が1〜5μmである粗度があるとともに該表面が10μm角の面積内に円滑なドーム状形状と枯葉状形状の双方が混在する微細凹凸形状であり、かつ、該表面が主としてチタンとアルミニウムを含む金属酸化物薄層であるα−β型チタン合金のものとしたものである。   The bonded composite of a metal alloy and a thermosetting resin according to claim 13 of the present invention quoting any one of claims 1 to 3, wherein the metal shaped object has an average interval between peaks and valleys (RSm) by chemical etching. Has a roughness of 1 to 10 μm and a maximum roughness height (Rz) of 1 to 5 μm, and the surface has a fine concavo-convex shape in which both a smooth dome shape and a dead leaf shape are mixed within an area of 10 μm square And the surface is of an α-β type titanium alloy which is a metal oxide thin layer mainly containing titanium and aluminum.

請求項1ないし3のいずれか1項を引用する本発明の請求項14による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径20〜70nmの粒径物や不定多角形状物が積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が金属酸化物の薄層であるステンレス鋼部品のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 14 of the present invention which refers to any one of claims 1 to 3 is characterized in that the metal shape has a surface roughness of micron order by chemical etching. In addition, the surface is almost entirely covered with a super fine uneven shape in which a particle having a diameter of 20 to 70 nm or an indefinite polygonal shape is stacked, and the surface is a thin layer of metal oxide. It is for steel parts.

請求項1ないし3のいずれか1項を引用する本発明の請求項15による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ80〜150nm、奥行き80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面がマンガン酸化物、クロム酸化物、亜鉛リン酸化物または亜鉛とカルシウムのリン酸化物の薄層である鋼材製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 15 of the present invention which refers to any one of claims 1 to 3 is characterized in that the metal shape has a surface roughness of micron order by chemical etching. And the surface is almost entirely covered with an ultra-fine uneven shape having a height of 80 to 150 nm, a depth of 80 to 200 nm, and a width of several hundred to several thousand nm that is infinite, and the surface Is made of a steel material which is a thin layer of manganese oxide, chromium oxide, zinc phosphorous oxide or zinc and calcium phosphorous oxide.

請求項1ないし3のいずれか1項を引用する本発明の請求項16による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ80〜150nm、奥行きが80〜500nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面がマンガン酸化物、クロム酸化物、亜鉛リン酸化物または亜鉛とカルシウムのリン酸化物の薄層である鋼材製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 16 of the present invention quoting any one of claims 1 to 3, wherein the metal shape has a surface roughness of micron order by chemical etching. And the surface is almost entirely covered with an ultra-fine concavo-convex shape having a height of 80 to 150 nm, a depth of 80 to 500 nm, and a width of several hundred to several thousand nm, which is infinitely long, and The surface is made of a steel material which is a thin layer of manganese oxide, chromium oxide, zinc phosphorous oxide or zinc and calcium phosphorous oxide.

請求項1ないし3のいずれか1項を引用する本発明の請求項17による金属合金と熱硬化性樹脂の接着複合体は、前記金属形状物が、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ50〜100nm、奥行きが80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面がマンガン酸化物、クロム酸化物、亜鉛リン酸化物または亜鉛とカルシウムのリン酸化物の薄層である鋼材製のものとしたものである。   The adhesive composite of a metal alloy and a thermosetting resin according to claim 17 of the present invention which refers to any one of claims 1 to 3 is characterized in that the metal shape has a surface roughness of micron order by chemical etching. And the entire surface is almost entirely covered with an ultra-fine irregular shape having a height of 50 to 100 nm, a depth of 80 to 200 nm, and a width of several hundred to several thousand nm, which is infinite. The surface is made of a steel material which is a thin layer of manganese oxide, chromium oxide, zinc phosphorous oxide or zinc and calcium phosphorous oxide.

本発明の請求項18による金属合金と熱硬化性樹脂の接着複合体の製造方法は、金属合金材を機械的加工で所定形状に形状化する工程と、前記形状化された前記金属合金材の表面に5〜500nmの不定期な周期の微細凹凸形状で覆われるとともに該微細凹凸面で構成される大きな凹凸の山谷平均間隔(RSm)が1〜10μmで最大粗さ高さ(Rz)が0.2〜5μmとなる粗度を与える化学エッチング含む各種液処理を施す表面処理工程と、前記金属合金材に1液性エポキシ系接着剤を塗布する工程と、前記接着剤塗布済み金属合金材を射出成形用金型内にインサートする工程と、前記射出成形用金型を装填した射出成形機にてエポキシ系熱硬化性樹脂を射出し金型を開いて金属合金材と熱硬化性樹脂成形物の一体化品を離型させる工程と、を含むものである。   A method for producing a bonded composite of a metal alloy and a thermosetting resin according to claim 18 of the present invention includes a step of forming a metal alloy material into a predetermined shape by mechanical processing, and a step of forming the formed metal alloy material. The surface is covered with fine irregularities having an irregular period of 5 to 500 nm, and the average interval (RSm) of large irregularities constituted by the fine irregularities is 1 to 10 μm and the maximum roughness height (Rz) is 0. A surface treatment step of performing various liquid treatments including chemical etching that gives a roughness of 2 to 5 μm, a step of applying a one-component epoxy adhesive to the metal alloy material, and a metal alloy material coated with the adhesive Inserting into an injection mold and injection molding machine loaded with the injection mold to inject an epoxy thermosetting resin and open the mold to form a metal alloy material and a thermosetting resin molding The process of releasing the integrated product , Including.

本発明の請求項19による金属合金と熱硬化性樹脂の接着複合体の製造方法は、金属合金材を機械的加工で所定形状に形状化する工程と;前記形状化された前記金属合金材の表面に5〜500nmの不定期な周期の微細凹凸形状で覆われるとともに該微細凹凸面で構成される大きな凹凸の山谷平均間隔(RSm)が1〜10μmで最大粗さ高さ(Rz)が0.2〜5μmの粗度を与える化学エッチング含む各種液処理を施す表面処理工程と;前記金属合金材にフェノール樹脂系接着剤を塗布する工程と;前記接着剤塗布済み金属合金材を射出成形用金型内にインサートする工程と;前記射出成形用金型を装填した射出成形機にてフェノール樹脂系熱硬化性樹脂を射出し金型を開いて金属合金材と熱硬化性樹脂成形物の一体化品を離型させる工程と;を含むものである。   According to a nineteenth aspect of the present invention, there is provided a method for producing a bonded composite of a metal alloy and a thermosetting resin, the step of forming a metal alloy material into a predetermined shape by mechanical processing; The surface is covered with fine irregularities having an irregular period of 5 to 500 nm, and the average interval (RSm) of large irregularities constituted by the fine irregularities is 1 to 10 μm and the maximum roughness height (Rz) is 0. .Surface treatment process for performing various liquid treatments including chemical etching that gives a roughness of 2 to 5 μm; a process for applying a phenol resin adhesive to the metal alloy material; and an injection-coated metal alloy material for injection molding A step of inserting into a mold; injection of a phenol resin thermosetting resin with an injection molding machine loaded with the injection mold, the mold is opened, and the metal alloy material and the thermosetting resin molding are integrated. Process of releasing the chemical product And including;

本発明の請求項20による金属合金と熱硬化性樹脂の接着複合体の製造方法は、金属合金材を機械的加工で所定形状に形状化する工程と;前記形状化された前記金属合金材の表面に5〜500nmの不定期な周期の微細凹凸形状で覆われるとともに該微細凹凸面で構成される大きな凹凸の山谷平均間隔(RSm)が1〜10μmで最大粗さ高さ(Rz)が0.2〜5μmの粗度を与える化学エッチング含む各種液処理を施す表面処理工程と;1)不飽和ポリエステル樹脂及び/またはビニルエステル樹脂と、2)スチレン系モノマーと、3)無機充填材と、4)有機過酸化物とからなる不飽和ポリエステル樹脂系接着剤を作製する工程と;前記金属合金材に前記不飽和ポリエステル樹脂系接着剤を塗布する工程と;前記不飽和ポリエステル樹脂系接着剤塗布済み金属合金材を射出成形用金型内にインサートする工程と;前記金型を装填した射出成形機または塊状成形コンパウンド成形機にて不飽和ポリエステル系熱硬化性樹脂または塊状成形コンパウンドを射出し、金型を開いて金属合金材と熱硬化性樹脂成形物の一体化品を離型させる工程と;を含むものである。   A method for producing a bonded composite of a metal alloy and a thermosetting resin according to claim 20 of the present invention includes a step of forming a metal alloy material into a predetermined shape by mechanical processing; and The surface is covered with fine irregularities having an irregular period of 5 to 500 nm, and the average interval (RSm) of large irregularities constituted by the fine irregularities is 1 to 10 μm and the maximum roughness height (Rz) is 0. A surface treatment step for performing various liquid treatments including chemical etching that gives a roughness of 2 to 5 μm; 1) an unsaturated polyester resin and / or vinyl ester resin, 2) a styrene monomer, 3) an inorganic filler, 4) a step of producing an unsaturated polyester resin adhesive comprising an organic peroxide; a step of applying the unsaturated polyester resin adhesive to the metal alloy material; and the unsaturated polyester resin A step of inserting a metal alloy material coated with an adhesive into a mold for injection molding; an unsaturated polyester thermosetting resin or a block molding compound in an injection molding machine or a block molding compound molding machine loaded with the mold And releasing the mold to release the integrated product of the metal alloy material and the thermosetting resin molded product.

請求項18ないし20のいずれか1項を引用する本発明の請求項21による金属合金と熱硬化性樹脂の接着複合体の製造方法は、金属合金と熱硬化性樹脂の接着複合体の製造方法において、前記の金属合金材に接着剤を塗布する工程後に、これを風乾し、さらに風乾後に密閉容器に収納し、容器内を減圧しその後に加圧する操作を繰り返し行う、金属合金表面への樹脂組成物染み込まし工程を付加したものである。   A method for producing an adhesive composite of a metal alloy and a thermosetting resin according to claim 21 of the present invention, which refers to any one of claims 18 to 20, is a method of producing an adhesive composite of a metal alloy and a thermosetting resin. In the above, after the step of applying the adhesive to the metal alloy material, the resin is applied to the surface of the metal alloy, which is air-dried and then stored in a sealed container after air-drying, and the container is decompressed and then pressurized. A composition is impregnated and a process is added.

請求項19を引用する本発明の請求項22による金属合金と熱硬化性樹脂の接着複合体の製造方法は、前記の金属合金材に接着剤を塗布する工程後に、これを風乾し、さらに80〜100℃とした熱風乾燥機内に5〜15分入れてフェノール樹脂接着剤を予備硬化させるものである。   The method for producing a bonded composite of a metal alloy and a thermosetting resin according to claim 22 of the present invention which refers to claim 19 is air-dried after the step of applying an adhesive to the metal alloy material, and further 80 The phenol resin adhesive is precured by placing it in a hot air drier at ˜100 ° C. for 5-15 minutes.

請求項20を引用する本発明の請求項23による金属合金と熱硬化性樹脂の接着複合体の製造方法は、前記の不飽和ポリエステル樹脂系接着剤を作成する工程内に、サンドグラインドミルを使用して不飽和ポリエステル樹脂主液に無機充填材等を強制分散させる工程を含むものである。   A method for producing a bonded composite of a metal alloy and a thermosetting resin according to claim 23 of the present invention which refers to claim 20 uses a sand grind mill in the step of preparing the unsaturated polyester resin adhesive. And a step of forcibly dispersing an inorganic filler or the like in the unsaturated polyester resin main liquid.

本発明の金属合金と熱硬化性樹脂の複合体とその製造方法は、特定処理をした金属合金にエポキシ接着剤を塗布し、それを射出成形金型にインサートし、そこへエポキシ樹脂系熱硬化型樹脂組成物を射出して接着剤成分と射出樹脂成分を同時加熱硬化し強く一体化するものである。同様にフェノール樹脂系接着剤を塗布した金属合金片をインサートしてフェノール樹脂系熱硬化性樹脂組成物を射出接合できる。また、不飽和ポリエステル樹脂系接着剤を作製し、これを塗布した金属合金片を射出成形金型にインサートして不飽和ポリエステル樹脂系の熱硬化性樹脂組成物やBMCを射出接合できる。   The composite of a metal alloy and a thermosetting resin of the present invention and a method for producing the same are as follows: an epoxy adhesive is applied to a metal alloy that has been subjected to a specific treatment, and then inserted into an injection mold, and then an epoxy resin thermosetting The mold resin composition is injected and the adhesive component and the injection resin component are simultaneously heat-cured and strongly integrated. Similarly, a phenolic resin thermosetting resin composition can be injected and joined by inserting a metal alloy piece coated with a phenolic resin adhesive. In addition, an unsaturated polyester resin-based adhesive is prepared, and a metal alloy piece coated with the unsaturated polyester resin-based adhesive is inserted into an injection mold, and an unsaturated polyester resin-based thermosetting resin composition or BMC can be injection-bonded.

熱硬化性樹脂の射出成形とその成形品と金属合金片の接着が一挙に行えることから工程の合理化に役立ち、得られる一体化品は寸法安定性や耐熱性に優れる。金属合金をステンレス鋼やチタン合金としこれを部品端部に使用して中心重要部をフィラー入り熱硬化性樹脂部として一体化品を製造すれば、ネジ止め、ボルト止め、溶接ができるGFRP部材状となり組み立て容易な部材になると同時に標準部品化が可能となる。すなわち、安価な大量生産が可能になる。本発明は熱硬化性樹脂に関しても射出接合が可能なことを示したものである。   Since injection molding of thermosetting resin and adhesion of the molded product and metal alloy pieces can be performed at once, it helps to rationalize the process, and the obtained integrated product is excellent in dimensional stability and heat resistance. GFRP member shape that can be screwed, bolted, and welded if a metal alloy is made of stainless steel or titanium alloy, and this is used at the end of the component, and the central important part is made of a thermosetting resin part with a filler. Thus, it becomes a member that can be easily assembled, and at the same time, it can be made into a standard part. That is, inexpensive mass production is possible. The present invention shows that injection joining is possible also for thermosetting resins.

図1は、A7075アルミニウム合金を苛性ソーダ水溶液でエッチングし水和ヒドラジン水溶液で微細エッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 1 is a 10,000 times and 100,000 times electron micrograph of an A7075 aluminum alloy obtained by etching with an aqueous caustic soda solution and fine etching with an aqueous hydrazine solution. 図2は、A5052アルミニウム合金を苛性ソーダ水溶液でエッチングし水和ヒドラジン水溶液で微細エッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 2 is an electron micrograph of 10,000 times that obtained by etching an A5052 aluminum alloy with an aqueous caustic soda solution and finely etching with an aqueous hydrazine solution. 図3は、AZ31Bマグネシウム合金をクエン酸水溶液でエッチングし過マンガン酸カリ水溶液で化成処理等して得たものの2箇所の10万倍電顕写真である。FIG. 3 is a 100,000 times electron micrograph of two parts obtained by etching a AZ31B magnesium alloy with a citric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図4は、C1100銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。FIG. 4 is an electron micrograph of 10,000 times and 100,000 times that obtained by etching a C1100 copper alloy with an aqueous solution of sulfuric acid and hydrogen peroxide and performing surface hardening treatment with an aqueous solution of sodium chlorite. 図5は、C5191リン青銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。FIG. 5 is an electron micrograph of 10,000 times and 100,000 times obtained by etching a C5191 phosphor bronze alloy with an aqueous solution of sulfuric acid and hydrogen peroxide and surface hardening with an aqueous solution of sodium chlorite. 図6は、「KFC(神戸製鋼所社製)」銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。Fig. 6 shows 10,000 times and 100,000 times the electron microscope of “KFC (Kobe Steel)” copper alloy etched with sulfuric acid / hydrogen peroxide solution and surface hardened with sodium chlorite solution. It is a photograph. 図7は、「KLF5(神戸製鋼所社製)」銅合金を硫酸・過酸化水素水溶液でエッチングし亜塩素酸ソーダ水溶液で表面硬化処理等して得たものの1万倍、10万倍電顕写真である。FIG. 7 shows 10,000 times and 100,000 times the electron microscope of “KLF5 (Kobe Steel)” copper alloy etched with sulfuric acid / hydrogen peroxide aqueous solution and surface hardened with sodium chlorite aqueous solution. It is a photograph. 図8は、「KS40(神戸製鋼所社製)」純チタン系チタン合金を1水素2弗化アンモニウム水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 8 is an electron micrograph of 10,000 times that obtained by etching “KS40 (manufactured by Kobe Steel)” pure titanium-based titanium alloy with an aqueous solution of 1 hydrogen diammonium fluoride. 図9は、「KSTi−9(神戸製鋼所社製)」α−β系チタン合金を1水素2弗化アンモニウム水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 9 is an electron micrograph of 10,000 times that obtained by etching a “KSTi-9 (manufactured by Kobe Steel)” α-β titanium alloy with an aqueous solution of 1 hydrogen diammonium fluoride. . 図10は、SUS304を硫酸系水溶液でエッチング等して得たものの1万倍、10万倍電顕写真である。FIG. 10 is an electron micrograph of 10,000 times and 100,000 times that obtained by etching SUS304 with a sulfuric acid aqueous solution. 図11は、冷間圧延鋼材SPCCを硫酸水溶液でエッチングし過マンガン酸カリ水溶液で化成処理等して得たものの1万倍、10万倍電顕写真である。FIG. 11 is a 10,000 times and 100,000 times electron micrograph of what was obtained by etching the cold rolled steel SPCC with a sulfuric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図12は、冷間圧延鋼材SPHCを硫酸水溶液でエッチングし過マンガン酸カリ水溶液で化成処理等して得たものの1万倍、10万倍電顕写真である。FIG. 12 is an electron micrograph of 10,000 times and 100,000 times that obtained by etching the cold rolled steel SPHC with a sulfuric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図13は、金属片と射出成形による熱硬化性樹脂成形品とが一体化した接着複合体の形状を示す図である。FIG. 13 is a view showing the shape of an adhesive complex in which a metal piece and a thermosetting resin molded product by injection molding are integrated. 図14は、新NMT理論、NAT理論での金属合金表面構造を示す模式的部分断面図である。FIG. 14 is a schematic partial cross-sectional view showing a metal alloy surface structure in the new NMT theory and NAT theory.

以下、〔1〕本発明における着想、〔2〕金属合金を含む接着複合体とその製造方法の特徴に関して説明し、さらに実施例ついて説明する。
〔1〕本発明における着想
本発明者らは、背景技術において説明した、NATによる金属合金片と樹脂、あるいは金属合金片同士の接着接合の途中工程で得られる接着剤付き金属合金片を射出成形金型にインサートし、そこへ射出成形用に開発された熱硬化性樹脂材を射出するという考えを思いついた。接着剤と射出材料の双方がタイミングよく同時硬化したら両者は必ず接合すると予期したのである。要するに、過去に失敗した熱硬化性樹脂の射出接合を、中間に接着剤を挟むことで可能にできると判断した。既に、金属合金部と接着剤との間は加熱さえすれば60〜70MPaという強烈な接合力が得られることがわかっている。一方、射出樹脂組成物は、150〜180℃の金型内に押し出され、30秒〜1分程度でそれなりの硬化に至る。接着剤の硬化が速すぎなければ必ず成功すると思われた。
Hereinafter, [1] the concept of the present invention, [2] the characteristics of the bonded composite containing the metal alloy and the method for producing the same will be described, and further examples will be described.
[1] Idea in the present invention The present inventors have explained the injection molding of the metal alloy piece with an adhesive obtained in the intermediate process of the adhesive bonding between the metal alloy piece and the resin or the metal alloy pieces by NAT, as explained in the background art. I came up with the idea of inserting into a mold and injecting a thermosetting resin material developed for injection molding. We expected that if both the adhesive and the injection material were cured simultaneously in a timely manner, they would always join. In short, it has been determined that injection joining of thermosetting resins that have failed in the past can be made possible by sandwiching an adhesive in the middle. It has already been found that a strong bonding force of 60 to 70 MPa can be obtained by heating between the metal alloy part and the adhesive. On the other hand, the injection resin composition is extruded into a mold at 150 to 180 ° C., and reaches an appropriate degree of hardening in about 30 seconds to 1 minute. It seemed to be successful if the adhesive was not cured too quickly.

すなわち、接着剤の硬化タイミングと射出樹脂の硬化タイミングを合わせさえすれば良いはずであり、もし接着剤の硬化タイミングが遅ければインサートして金型を封じてからしばらく待機し(アイドル時間をとり)それからおもむろに射出すればよい。逆に接着剤の硬化が速く、インサートして金型を閉めてからできるだけ早く射出操作に移っても射出樹脂が硬化せんとした時に接着剤側がすでに完全硬化しているケースもあるだろう。このような場合は金型温度をやや下げて調整すればよいだろう。それでも接着剤側の硬化速度が速過ぎるようであれば接着剤自体を調整すればよい。すなわち、市販の接着剤の使用で調整不能な範囲になったとしても接着剤自体を自作する能力があれば対応できると思われた。   In other words, it is only necessary to match the curing timing of the adhesive with the curing timing of the injection resin. If the curing timing of the adhesive is slow, insert and seal the mold and wait for a while (take idle time). Then just inject. On the contrary, the adhesive cures quickly, and even if the injection is closed as soon as possible after inserting and closing the mold, the adhesive side may already be completely cured when the injection resin is cured. In such cases, the mold temperature should be adjusted slightly lower. If the curing speed on the adhesive side is still too fast, the adhesive itself may be adjusted. That is, even if it became the range which cannot be adjusted by use of a commercially available adhesive, it was thought that it could respond if there was an ability to make the adhesive itself.

以上から、本発明者らは、射出樹脂として不飽和ポリエステル樹脂系樹脂組成物、エポキシ樹脂系の樹脂組成物、フェノール樹脂系の樹脂組成物を用意した。これら全ては国内材料メーカーの市販品である。また、接着剤としては、市販品で入手できる1液性エポキシ接着剤、フェノール樹脂接着剤に加え、前述した本発明者らの発明技術(特許文献17)による不飽和ポリエステル樹脂系接着剤を作製し用意した。   From the above, the present inventors prepared an unsaturated polyester resin resin composition, an epoxy resin resin composition, and a phenol resin resin composition as the injection resin. All of these are commercial products from domestic material manufacturers. Moreover, as an adhesive, in addition to the one-component epoxy adhesive and phenol resin adhesive which can be obtained as a commercial product, the unsaturated polyester resin adhesive by the above-mentioned inventors' invention technology (Patent Document 17) is prepared. Prepared.

最初に使用した金属合金片はNAT処理した「A7075アルミニウム合金片であったが、エポキシ樹脂系、フェノール樹脂系、不飽和ポリエステル樹脂系の3系全てで予期した強い射出接合が観察できた。その後、射出接合品のせん断破断力が測定可能な一体化品が成形できる金型を作製し、金属合金種も全種に拡げ、この射出接合技術が一般論で整理できる基礎的技術であることを確認した。この技術は、本発明者らが一般論化したNAT技術を射出成形に転用した形になっているので、本発明者らは「新NAT」と呼称している。   The metal alloy piece used first was a NAT-processed “A7075 aluminum alloy piece, but the expected strong injection joining was observed in all three systems of epoxy resin system, phenol resin system and unsaturated polyester resin system. A mold that can be molded into an integrated product that can measure the shear breaking force of injection-bonded products, metal alloy types are expanded to all types, and this injection-bonding technology is a basic technology that can be organized in general terms. Since this technology is in the form of diverting the NAT technology generalized by the present inventors to injection molding, the present inventors have referred to as “new NAT”.

本発明者らは安価な不飽和ポリエステル樹脂系の射出成形用熱硬化型樹脂を手元に持っていたゆえに、上述の考えが成立するか否かを単純な試験で直ぐ確認することにした。すなわち、これを射出材料として使用し、一方の金型内にインサートするNAT処理済みA7075アルミニウム合金片上に塗布したのは市販の汎用1液性エポキシ接着剤であった。   Since the present inventors have an inexpensive unsaturated polyester resin-based thermosetting resin for injection molding at hand, it was decided to immediately confirm whether or not the above-mentioned idea is established by a simple test. That is, it was a commercially available general-purpose one-component epoxy adhesive that was used as an injection material and applied onto a NAT-treated A7075 aluminum alloy piece inserted into one mold.

この実験は、高温下に置かれたエポキシ接着剤がどのような時間軸で硬化するのか(数十秒単位、数分単位、十数分、……)、半硬化した接着剤層に大量の無機充填材を含む射出樹脂が流れ込んだ場合にどの程度の事件が起こるのか等を実際に見るためのものである。射出接合はうまく行かないと思っていた。何故なら射出樹脂の方はラジカル重合であるし、接着剤の方は付加重合である。良いタイミングでゲル同士が混ざり合えば反って互いに干渉し合って接合する可能性も考えられなくもないが、干渉し合って双方とも重合速度が落ちることで悪い結果となる可能性も十分にあると思われたからである。   In this experiment, the time axis of the epoxy adhesive placed under high temperature is cured (tens of seconds, minutes, tens of minutes, etc.). It is for actually seeing how many incidents occur when the injection resin containing the inorganic filler flows. I thought injection joining wouldn't work. This is because the injection resin is radical polymerization, and the adhesive is addition polymerization. If the gels are mixed at a good timing, there is a possibility that they will warp and interfere with each other and join together, but there is also a possibility that both will interfere and the polymerization rate will decrease, resulting in a bad result. Because it was thought.

接着剤に市販の1液性エポキシ接着剤を使い、射出樹脂に不飽和ポリエステル樹脂系熱硬化性樹脂組成物を使った射出接合実験の結果はやはり射出接合せずであった。しかし予期したように以下のことが確認できた。実験では、エポキシ接着剤「EP106NL(セメダイン社製)」を塗布し染込まし処理をしたA7075アルミニウム合金片を180℃とした金型にインサートして金型を閉め、金型閉めの後からの時間を15秒、45秒、75秒、135、195秒というふうにアイドル時間を取って熱硬化型樹脂を射出した。   The result of the injection joining experiment using a commercially available one-component epoxy adhesive as the adhesive and the unsaturated polyester resin thermosetting resin composition as the injection resin was not injection joining. However, as expected, the following could be confirmed. In the experiment, an A7075 aluminum alloy piece, which was coated with an epoxy adhesive “EP106NL (made by Cemedine)”, soaked and processed, was inserted into a mold set at 180 ° C., and the mold was closed. The thermosetting resin was injected at idle times such as 15 seconds, 45 seconds, 75 seconds, 135, and 195 seconds.

金型を開いて成形品を取り出すとアルミニウム合金片と樹脂硬化物とは接着しているように見えたが、金槌で叩くと全てのケースで剥がれた。剥がれた金属合金片の表面を観察すると、アイドル時間15秒品では塗ったはずの接着剤が流されて消失しており金属表面は綺麗であった。一方、195秒品では接着剤硬化物の層が金属上にしっかり付着していた。そしてこれらの中間の75秒、135秒品では接着剤硬化物の層は金属上にしっかり付着しているものの、表面は削られたようになっていた。   When the mold was opened and the molded product was taken out, the aluminum alloy pieces and the cured resin appeared to be bonded, but when struck with a hammer, they were peeled off in all cases. When the surface of the peeled metal alloy piece was observed, the adhesive that had been applied was washed away in the product with an idle time of 15 seconds, and the metal surface was clean. On the other hand, in the 195 second product, the layer of the cured adhesive was firmly attached on the metal. In these intermediate 75-second and 135-second products, the layer of the cured adhesive was firmly adhered on the metal, but the surface was cut away.

使用した1液性エポキシ接着剤「EP106NL(セメダイン社製)」はジシアンジアミド硬化型のものであり、メーカー指示の硬化条件は120℃・40分+150℃・20分とある。これが180℃下では3分もあるとほぼ全硬化に至るものとみられた。そして180℃にされ1〜2分の間には、ゲル化が高速で進んで金属合金表面近傍の成分は比較的しっかり硬化し、その一方で、外気に接している上層の接着剤成分もゲル化が進む。もしそこへ同類の射出樹脂がゲル化を進行させながら運動エネルギーを持って突撃してきたら、これは必ず強い混ざり合いを生むと予想できた。   The one-component epoxy adhesive “EP106NL (manufactured by Cemedine)” used is a dicyandiamide curing type, and the curing conditions specified by the manufacturer are 120 ° C. and 40 minutes + 150 ° C. and 20 minutes. When this was 180 minutes at 3 minutes, it was considered that almost complete curing was achieved. Then, during 1 to 2 minutes after being heated to 180 ° C., the gelation progresses at a high speed and the components near the surface of the metal alloy harden relatively firmly, while the adhesive component of the upper layer in contact with the outside air also gels. Progress. If a similar injection resin was charged with kinetic energy as it progressed to gelation, it could be expected that this would surely create a strong mix.

特に、上記の実験で、アイドル時間が15秒のものはアルミニウム合金上に接着剤の欠片らしきものも見当たらぬのに、75秒、135秒のものではアルミニウム合金に接着剤硬化物がしっかりと全面付着しており、その上で硬化した接着剤相の表面全面は明らかに何ものかに削り取られた粗面状となっていたからである。接着剤樹脂と射出樹脂の両樹脂成分が混ざり合って強く干渉し合うことは強い接着に至るので好ましいが、この工程で接着剤のアンカー部分が外れると困るのである。実験結果は、アイドル持間75、135秒のものではアルミニウム合金と接着剤の間の接着力生成に何ら問題のなかったことが示されている。   In particular, in the above experiment, when the idle time is 15 seconds, there is no adhesive piece on the aluminum alloy, but when it is 75 seconds or 135 seconds, the hardened adhesive is firmly attached to the aluminum alloy. This is because the entire surface of the adhesive phase that has been adhered and hardened thereon was clearly roughened by being scraped off. It is preferable that both the resin components of the adhesive resin and the injection resin are mixed and strongly interfere with each other because it leads to strong adhesion, but it is difficult to remove the anchor portion of the adhesive in this step. The experimental results show that there was no problem in the generation of the adhesive force between the aluminum alloy and the adhesive when the idle holding time was 75 and 135 seconds.

〔2〕金属合金を含む接着複合体とその製造方法の特徴
金属合金を含む接着複合体とその製造方法について、個別の事項に分けて説明する。
(a)金属合金部品
本発明でいう金属合金部品、すなわち前述のNATで被着材として使用する金属合金には理論上特にその種類に制限はない。全金属種としてもよいが、実際に意味を有しているのは硬質で実用的な金属種、合金種である。すなわち、水銀は当然ながら液状だから本発明に関係せず、鉛など軟質金属種も本発明者の考える金属種からは除外されている。当然であるが、化学的には存在するが大気中で活発に反応するアルカリ金属種、アルカリ土類金属種(マグネシウムを除いて)も基本的には除外の対象である。
[2] Features of Adhesive Composite Containing Metal Alloy and Manufacturing Method Thereof The adhesive composite containing metal alloy and the manufacturing method thereof will be described separately.
(A) Metal alloy part The metal alloy part as used in the present invention, that is, the metal alloy used as the adherend in the above-mentioned NAT is theoretically not limited in particular. All metal species may be used, but what is actually meaningful is a hard and practical metal species or alloy species. That is, since mercury is naturally liquid, it is not related to the present invention, and soft metal species such as lead are excluded from the metal species considered by the present inventors. Of course, alkali metal species and alkaline earth metal species (except for magnesium) that exist chemically but react actively in the atmosphere are also basically excluded.

本発明者らは、実質的にNATが役立つ金属合金種として、マグネシウム、アルミニウム、銅、チタン、鉄を主成分とする合金種を考えている。以下、これらについて説明する。しかし、あくまでもNAT理論は金属種を限定していないし、さらに言えば金属であること自体も限定していない。非金属にNATで条件とする粗度や超微細凹凸面、かつ、高硬度の表面層とすることの3条件を同時に備えさせることは容易でない。要するにNATは表面形状とその表面薄層硬度だけを規定してアンカー効果論で接着を論じているので、少なくとも下記した金属合金種に限定されるものではない。   The present inventors consider an alloy type mainly composed of magnesium, aluminum, copper, titanium, and iron as a metal alloy type that is useful for NAT. Hereinafter, these will be described. However, the NAT theory does not limit the metal species, and moreover, it does not limit the metal itself. It is not easy to simultaneously provide the non-metal with the three conditions of roughness, ultra-fine uneven surface, and high hardness surface layer, which are required by NAT. In short, since NAT discusses adhesion by anchor effect theory by defining only the surface shape and its surface thin layer hardness, it is not limited to at least the following metal alloy types.

特許文献7においてアルミニウム合金に関する記載、特許文献8においてマグネシウム合金に関する記載、特許文献9において銅合金に関する記載、特許文献10においてチタン合金に関する記載、特許文献11においてステンレス鋼に関する記載、特許文献12において一般鋼材に関する記載をそれぞれ行っている。アルミニウム合金から一般鋼材まで並べたこれらの金属合金種に関しては、これら各特許文献の〔金属合金部品〕の項が本発明にも適用されるので、個々の詳細説明は省略する。個々の内容については本発明においても全く同様である。   Patent Document 7 describes aluminum alloy, Patent Document 8 describes magnesium alloy, Patent Document 9 describes copper alloy, Patent Document 10 describes titanium alloy, Patent Document 11 describes stainless steel, Patent Document 12 general The description about steel materials is given respectively. Regarding these metal alloy types arranged from aluminum alloys to general steel materials, the section of [Metal Alloy Parts] in each of these patent documents is also applied to the present invention, and therefore, detailed description thereof is omitted. The individual contents are exactly the same in the present invention.

(b)金属合金材の化学エッチング
腐食には全面腐食、孔食、疲労腐食など種類があるが、その金属合金に対して全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献記録(例えば「化学工学便覧(化学工学協会編集)」)によれば、アルミニウム合金は塩基性水溶液、マグネシウム合金は酸性水溶液、ステンレス鋼や一般鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩等の水溶液で全面腐食するとの記録がある。
(B) Chemical etching of metal alloy materials There are various types of corrosion, including general corrosion, pitting corrosion, and fatigue corrosion. You can choose. According to literature records (for example, "Chemical Engineering Handbook (edited by Chemical Engineering Association)"), aluminum alloys are basic aqueous solutions, magnesium alloys are acidic aqueous solutions, stainless steel and general steel materials in general are hydrohalic acid such as hydrochloric acid, sulfurous acid, There is a record that the entire surface is corroded by an aqueous solution of sulfuric acid or a salt thereof.

また、耐食性の強い銅合金は、強酸性とした過酸化水素などの酸化剤によって全面腐食させられるし、チタン合金は蓚酸や弗化水素酸系の特殊な酸で全面腐食させられることが専門書や特許文献から散見される。実際に市場で販売されている金属合金類は、純銅系銅合金や純チタン系チタン合金のように純度が99.9%以上で合金とは言い難いものもあるが、これらも本発明には含まれる。実際に世間で使用されているものの大部分は特徴的な物性を求めて多種多用な元素が混合されていて、純金属系のものは少なく、実質的には合金である。   In addition, copper alloys with strong corrosion resistance can be totally corroded by oxidizing agents such as hydrogen peroxide that have been made strongly acidic, and titanium alloys can be corroded entirely by special acids such as oxalic acid or hydrofluoric acid. And are often found in patent literature. Some metal alloys that are actually sold in the market, such as pure copper-based copper alloys and pure titanium-based titanium alloys, have a purity of 99.9% or more and cannot be said to be alloys. included. Most of the materials that are actually used in the world are mixed with a wide variety of elements in order to obtain characteristic physical properties. There are few pure metal materials, and they are substantially alloys.

すなわち、純金属から合金化した目的の金属のほとんどが、もともとの金属物性を低下させることなく耐食性を上げることにあった。それゆえ、合金では前記したように文献から参照して適用した酸塩基類や特定の化学物質を使っても、目標とする化学エッチングができない場合もよくある。要するに、前記した酸塩基類、特定化学薬品の使用は基本であって、実際には使用する酸塩基水溶液の濃度、液温度、浸漬時間、場合によっては添加物を工夫しつつ試行錯誤して適正な化学エッチングを行うことになる。   That is, most of the target metals alloyed from pure metals have improved corrosion resistance without deteriorating the original metal properties. Therefore, in the case of an alloy, the target chemical etching is often not possible even when using acid bases or specific chemical substances applied with reference to the literature as described above. In short, the use of the acid-bases and specific chemicals described above is fundamental, and in practice, the concentration of the acid-base aqueous solution to be used, the liquid temperature, the immersion time, and in some cases, appropriate by trial and error while devising the additive Chemical etching is performed.

化学エッチング法について言えば、特許文献7にアルミニウム合金に関する記載、特許文献8にマグネシウム合金に関する記載、特許文献9に銅合金に関する記載、特許文献10にチタン合金に関する記載、特許文献11にステンレス鋼に関する記載、及び、特許文献12に一般鋼材に関する記載をそれぞれ行っている。アルミニウム合金から一般鋼材に関しては、これら各特許文献の〔化学エッチング〕の項を確認するとよい。本発明においても全く同様に適用できる。   Speaking of chemical etching, Patent Document 7 describes aluminum alloy, Patent Document 8 describes magnesium alloy, Patent Document 9 describes copper alloy, Patent Document 10 describes titanium alloy, Patent Document 11 relates to stainless steel. Description and Patent Document 12 describe general steel materials. For general steel materials from aluminum alloys, it is advisable to check the [Chemical Etching] section of each of these patent documents. The present invention can be applied in exactly the same manner.

従って詳細はこれら特許文献を参照すればよい。実際に行う作業として全般的に共通する点を説明すると、金属合金形状物を得たらまず各金属用の市販脱脂剤を溶かした水溶液に浸漬して脱脂し水洗する。この工程は、金属合金形状物を得る工程で付着した機械油や指脂の大部分を除けるので好ましく、常に行うべきである。次いで、薄く希釈した酸塩基水溶液に浸漬して水洗するのが好ましい。   Therefore, these patent documents should be referred to for details. To explain the points that are generally common as work actually performed, when a metal alloy shaped product is obtained, it is first immersed in an aqueous solution in which a commercial degreasing agent for each metal is dissolved, degreased and washed with water. This step is preferred and should always be performed because it removes most of the machine oil and finger grease deposited in the step of obtaining the metal alloy shape. Then, it is preferably immersed in a thinly diluted acid-base aqueous solution and washed with water.

これは、本発明者らが予備酸洗浄や予備塩基洗浄と称している工程で、一般鋼材のように酸で腐食するような金属種では、塩基性水溶液に浸漬し水洗し、また、アルミニウム合金のように塩基性水溶液で特に腐食が早い金属種では、希薄酸水溶液に浸漬し水洗することである。これらは、化学エッチングに使用する水溶液と逆性のものを前もって金属合金に付着(吸着)させる工程であり、その後の化学エッチングが誘導期間なしに始まることになって処理の再現性が著しく向上する。それゆえ、予備酸洗浄、予備塩基洗浄工程は本質的なものではないが、実務上、採用することが好ましい。   This is a process that the present inventors have called pre-acid cleaning and pre-base cleaning, and in the case of a metal species that corrodes with an acid such as general steel, it is immersed in a basic aqueous solution and washed with water, and an aluminum alloy For a metal species that is particularly corrosive in a basic aqueous solution, it is immersed in a dilute acid aqueous solution and washed with water. These are processes in which a solution opposite to the aqueous solution used for chemical etching is attached (adsorbed) to the metal alloy in advance, and the subsequent chemical etching starts without an induction period, so that the reproducibility of the process is remarkably improved. . Therefore, the preliminary acid cleaning and preliminary base cleaning steps are not essential, but are preferably employed in practice.

(c)表面硬化処理、微細エッチング
金属合金種によっては前記の化学エッチングを行っただけで同時にナノオーダーの微細エッチングもなされ、さらに合金種によっては表面の自然酸化層が元よりも厚くなって硬化処理も処理済みになっている場合もある。例えば、純チタン系のチタン合金は化学エッチングだけを行うことで微細エッチングもなされる。しかし、多くは化学エッチングによりミクロンオーダーの大きな凹凸面を作った後で微細エッチングや表面硬化処理を行う必要がある。
(C) Surface hardening treatment, fine etching Depending on the type of metal alloy, fine etching on the nano-order is also performed at the same time by performing the above chemical etching, and depending on the type of alloy, the natural oxide layer on the surface becomes thicker and hardened. Processing may have already been processed. For example, a pure titanium-based titanium alloy is also finely etched by performing only chemical etching. However, in many cases, it is necessary to perform fine etching or surface hardening treatment after forming a large uneven surface on the order of microns by chemical etching.

この時でも予測できない化学現象に見舞われることが多い。すなわち、表面硬化処理や表面安定化処理を目的として化学エッチング後の金属合金に酸化剤等を反応させ、あるいは化成処理をした時に得られる表面が偶然ながら超微細凹凸化される例である。マグネシウム合金を過マンガン酸カリ系水溶液で化成処理した場合に生じた酸化マンガンとみられる表面層は10万倍電子顕微鏡でようやく判別がつく5〜10nm直径の棒状結晶が錯綜したものである。この試料をXRD(X線回折計)で分析したが、酸化マンガン類由来の回折線は検出できなかった。表面が酸化マンガンで覆われていることはXPS分析で明らかである。XRDで検出できなかった理由は結晶が検出限界を超えた薄い層であったからとみている。   Even at this time, we are often hit by unpredictable chemical phenomena. That is, this is an example in which the surface obtained by reacting an oxidant or the like with a metal alloy after chemical etching or chemical conversion treatment for the purpose of surface hardening treatment or surface stabilization treatment is made ultra fine irregularities by chance. The surface layer that appears to be manganese oxide formed when a magnesium alloy is subjected to chemical conversion treatment with a potassium permanganate aqueous solution is a complex of 5 to 10 nm diameter rod-like crystals that can finally be distinguished with a 100,000-fold electron microscope. This sample was analyzed by XRD (X-ray diffractometer), but diffraction lines derived from manganese oxides could not be detected. It is clear by XPS analysis that the surface is covered with manganese oxide. The reason why XRD could not be detected is that the crystal was a thin layer exceeding the detection limit.

要するに、マグネシウム合金では化成処理が微細エッチング操作を兼ねていたことになった。銅合金でも同様で、塩基性下の酸化で表面を酸化第2銅に変化させる硬化処置をとったところ、純銅系銅合金では、その表面は円形や円が歪んだ形の穴開口部が一面に生じ特有の微細凹凸面になる。純銅系でない銅合金では凹部型でなく10〜150nm径の粒径物や不定多角形状物が連なり、一部融け合って積み重なった形の超微細凹凸形状になったりする。この場合でも表面のほとんどは酸化第2銅で覆われており、硬化と微細凹凸化が同時に生じる。   In short, in the magnesium alloy, the chemical conversion treatment also served as a fine etching operation. The same is true for copper alloys. When a hardening treatment is performed to change the surface to cupric oxide by oxidation under basic conditions, the surface of a pure copper-based copper alloy has a hole opening with a circular shape or a distorted circle. It becomes a peculiar fine uneven surface. A copper alloy that is not a pure copper type is not a concave shape, but is continuous with a particle having a diameter of 10 to 150 nm or an indefinite polygonal shape. Even in this case, most of the surface is covered with cupric oxide, and hardening and micro unevenness occur simultaneously.

未だ詳細が不明であるのは一般鋼材である。化学エッチング工程だけで微細凹凸も一挙になされることが多く、もともと表層(自然酸化層)が硬いこともあってそのままNAT用として使用できないことはなかった。問題は自然酸化層の耐食性が十分でないために、接着工程までに腐食が始まってしまったり、接着後の環境がきびしいと直ぐ接着力が低下したりすることであった。   It is a general steel material whose details are still unknown. In many cases, fine unevenness is often made only by the chemical etching process, and the surface layer (natural oxide layer) was originally hard, so that it could not be used as it is for NAT. The problem is that the corrosion resistance of the natural oxide layer is not sufficient, so that the corrosion starts before the bonding process, or the adhesive force is reduced immediately if the environment after bonding is severe.

これらは化成処理によって防ぐことができる可能性はあるが、前例がないので接着物を温度衝撃試験にかける試験、一般環境下に放置する試験、塗装したものを塩水噴霧装置にかける試験、その他を行って接着の耐久性を調べる必要がある。少なくとも4週間という短期間で、化成処理をせずにフェノール樹脂系接着剤で接着した鋼材(実際にはSPCC:冷間圧延鋼材)は接合力が急減した。しかし前記化成処理をした一般鋼材(SPCC)はこの条件では当初の接着力から低下しなかった。   Although there is a possibility that these can be prevented by chemical conversion treatment, there are no precedents, so there are tests to apply the adhesive to the temperature shock test, tests to leave in a general environment, tests to apply the coated material to a salt spray device, etc. It is necessary to go and check the durability of the bond. In a short period of at least 4 weeks, the bonding strength of a steel material (actually SPCC: cold rolled steel material) bonded with a phenol resin adhesive without chemical conversion treatment decreased sharply. However, the general steel (SPCC) subjected to the chemical conversion treatment did not deteriorate from the initial adhesive force under these conditions.

また、本発明者らの経験では、化成処理を行って耐食性向上を兼ねた表面処理や超微細凹凸作成処理をした場合、一般に、化成処理層の膜厚が厚いと、接着力が低下することの多いことがわかっている。前記のマグネシウム合金に付着した酸化マンガン薄層のようにXRDで回折線が検出されないような薄層である方が強い接着力が観察される。化成処理層が厚くなった物同士をエポキシ樹脂系接着剤で接着し、破壊試験した場合、破壊面はほとんどが金属相と化成皮膜の間となる。   In addition, in the experience of the present inventors, when the surface treatment and the formation of ultra-fine irregularities are performed to improve the corrosion resistance by performing a chemical conversion treatment, generally, if the film thickness of the chemical conversion treatment layer is thick, the adhesive strength is reduced. I know that there are many. A strong adhesive force is observed when the thin layer is such that a diffraction line is not detected by XRD, such as the thin layer of manganese oxide adhered to the magnesium alloy. When the chemical conversion layer is thickened with an epoxy resin adhesive and subjected to a destructive test, the fracture surface is mostly between the metal phase and the chemical conversion film.

本発明者らの経験では、化成処理で作成した厚い皮膜(化成皮膜)とエポキシ接着剤硬化物との接合力は、その化成皮膜と内部金属合金相との接合力より常に強かった。すなわち、一般鋼材でも化成処理時間をさらに伸ばして化成処理層を厚くすれば接着物の永続性は向上するはずである。しかしながら化成皮膜を厚くすれば接着力自体が低下する。どの程度でバランスを取るかは、おそらく本発明を使用した後の商業化研究開発に委ねられる。   In our experience, the bonding force between a thick film (chemical conversion film) prepared by chemical conversion treatment and the cured epoxy adhesive was always stronger than the bonding force between the chemical conversion film and the internal metal alloy phase. That is, even with a general steel material, if the chemical conversion treatment time is further extended to thicken the chemical conversion treatment layer, the durability of the adhesive should be improved. However, if the chemical conversion film is thickened, the adhesive strength itself is lowered. The degree of balance is probably left to commercial research and development after using the present invention.

(d)エポキシ系接着剤
まずエポキシ系接着剤について述べる。エポキシ系接着剤は通常、1)エポキシ樹脂、2)硬化剤又は硬化剤と硬化助剤、及び3)無機充填材からなるが、NATを使用する本発明ではこの他に、4)超微細無機充填材の混合分散が耐熱性向上に有効であり、射出接合する相手の熱硬化性樹脂組成物の物性次第では、5)エラストマー成分の混合も有効である。
(D) Epoxy adhesive First, an epoxy adhesive will be described. Epoxy adhesives are usually composed of 1) an epoxy resin, 2) a curing agent or a curing agent and a curing aid, and 3) an inorganic filler, but in the present invention using NAT, in addition to this, 4) an ultrafine inorganic material The mixing and dispersion of the filler is effective for improving the heat resistance, and 5) mixing of the elastomer component is also effective depending on the physical properties of the thermosetting resin composition to be joined by injection.

市販のエポキシ系接着剤は1),2),3)を含み、種類によっては5)も含む。接着剤としての硬化物性や温度物性に関与するのは1)と2)であり、3),5)は接着剤相に強い破壊の力がかかったときに全体破壊に繋がらないようにするのが役目である。本発明では1),2),3)の組み合わせや、1),2),3),5)の組み合わせによる市販の1液性エポキシ系接着剤が使用できるが、さらに4)超微細無機充填材を加えて良分散させた接着剤も好ましく使用できる。   Commercially available epoxy adhesives include 1), 2), 3), and 5) depending on the type. It is 1) and 2) that are related to the cured and temperature properties as an adhesive, and 3) and 5) do not lead to total destruction when a strong breaking force is applied to the adhesive phase. Is the role. In the present invention, a combination of 1), 2) and 3) and a commercially available one-part epoxy adhesive based on a combination of 1), 2), 3) and 5) can be used. An adhesive that is well dispersed by adding a material can also be preferably used.

上記した各成分についてやや詳細に述べる。まず1)のエポキシ樹脂であるが、市中にビスフェノール型エポキシ樹脂、多官能ポリフェノール型エポキシ樹脂、脂環型エポキシ樹脂等が市販されており、エポキシ基が多官能の化合物、例えば複数の水酸基やアミノ基を有する多官能化合物やオリゴマー等と結合した多官能エポキシ樹脂も多種が市販されている。   Each of the above components will be described in some detail. First, the epoxy resin of 1) is commercially available, such as bisphenol type epoxy resin, polyfunctional polyphenol type epoxy resin, alicyclic epoxy resin, etc., and the epoxy group is a polyfunctional compound such as a plurality of hydroxyl groups or Various polyfunctional epoxy resins bonded with polyfunctional compounds having amino groups, oligomers, and the like are also commercially available.

接着剤に使うには最終品が少なくともペースト状であることが必要であり、それゆえに全エポキシ樹脂の内の過半を占めるのは液状で粘度の低いビスフェノール型エポキシ樹脂の単量体型とするのが好ましい。市販の汎用の1液性エポキシ系接着剤でのエポキシ樹脂成分の大部分はこのビスフェノールA型エポキシ樹脂の短量体型であり、他のエポキシ樹脂成分の含量は少ない。通常、接着剤硬化物の迅性を確保するためにビスフェノール型エポキシ樹脂の多量体型を加え、硬化物の強靭性をさらに確保するためにエポキシ基が多官能型の化合物も加えるのが普通だが、そこまでしなくとも常温下の強い接着力が発揮できるのがエポキシ系接着剤の特徴でもある。   In order to use it as an adhesive, it is necessary that the final product is at least a paste. Therefore, the majority of all epoxy resins are liquid and low-viscosity bisphenol-type epoxy resin monomer types. preferable. Most of the epoxy resin components in commercially available general-purpose one-component epoxy adhesives are short-form types of this bisphenol A type epoxy resin, and the content of other epoxy resin components is small. Normally, it is common to add a multimeric form of bisphenol-type epoxy resin to ensure the quickness of the cured adhesive, and to add a compound with a polyfunctional epoxy group to further secure the toughness of the cured product. It is also a feature of the epoxy adhesive that it can exert a strong adhesive force at room temperature without reaching that point.

次いで2)の硬化剤成分であるが、エポキシ樹脂の硬化能力はアミン系化合物、フェノール樹脂、酸無水物等にある。本発明では1液性エポキシ系接着剤が好ましいとしているが、その意味は塗布して染み込まし操作(後述する)までする間に少なくともゲル化が進行すべきでないということである。NATでは被着物の金属合金表面の凹凸はミクロンオーダーであり、かつそのミクロンオーダー凹部の内壁面にある超微細凹凸の凹部径は数十nmのレベルである。それゆえ、ゲル化が始まってしまった高分子液では多少の圧力があってもこの超微細凹部に高分子成分が侵入し難い。   Next, it is the curing agent component of 2), but the curing ability of the epoxy resin is in an amine compound, a phenol resin, an acid anhydride or the like. In the present invention, a one-component epoxy adhesive is preferred, but the meaning is that gelation should not proceed at least during the application, soaking, and operation (described later). In NAT, the unevenness of the metal alloy surface of the adherend is on the order of microns, and the diameter of the recesses of the ultrafine unevenness on the inner wall surface of the recesses on the order of microns is on the order of several tens of nm. Therefore, in the polymer solution in which gelation has started, the polymer component does not easily enter the ultrafine recess even if there is some pressure.

例えばアミン系化合物のうちの脂肪族アミンであるが、これを硬化剤として使用するとエポキシ樹脂と混合した直後からゲル化が始まる。この性質は2液性エポキシ接着剤として重要であるが本発明では好ましくない。このような接着剤の場合、硬化剤を混合してからの塗布や染み込まし操作を高速で手際よく行えば接着力の低下は小さく抑えられるものの、手際次第で接着力が変動する。要するに脂肪族アミンを硬化剤とした物は量産方法、基礎的生産法として好ましくない。   For example, it is an aliphatic amine among amine compounds, but when this is used as a curing agent, gelation starts immediately after mixing with an epoxy resin. This property is important as a two-component epoxy adhesive, but is not preferred in the present invention. In the case of such an adhesive, if the application and soaking after mixing with the curing agent is performed at high speed and skillfully, the decrease in the adhesive force can be suppressed small, but the adhesive force varies depending on the skill. In short, a product using an aliphatic amine as a curing agent is not preferable as a mass production method or a basic production method.

結論的に言えば、硬化剤としてジシアンジアミドやイミダゾール類や酸無水物類が好ましい。市販の1液性エポキシ系接着剤に使用されている硬化剤はほとんどがジシアンジアミドやイミダゾール類を使用している。また、市販のエポキシ系接着剤には酸無水物類を硬化剤とする物は存在しないが作製はごく容易である。射出樹脂がエポキシ樹脂系の熱硬化型樹脂としても、その硬化系が酸無水物類であれば接着剤側も酸無水物を硬化剤とするものが好ましい。   In conclusion, dicyandiamide, imidazoles and acid anhydrides are preferred as the curing agent. Most of the curing agents used in commercially available one-component epoxy adhesives use dicyandiamide and imidazoles. In addition, there are no commercially available epoxy adhesives that use acid anhydrides as curing agents, but they are very easy to produce. Even if the injection resin is an epoxy resin-based thermosetting resin, if the curing system is an acid anhydride, it is preferable that the adhesive side also uses an acid anhydride as a curing agent.

3)の充填材は重要な役目を果たす。すなわち、現在の破壊理論に従えば、物体が破壊に至る前段には応力集中域の中の何処か微少な部分や応力集中域近辺の強度の弱い部分で微小な局所破壊がまず起こり、この局所破壊が隣の微小部分の応力集中を高めて局所破壊の連鎖に進むと考える。この微小破壊の連鎖は拡大し、破壊部の大きさは微小でなくなり大きなヒビとなり、遂にはそれが完全破壊、接着系では被着材同士の剥がれに至るとのメカニズム論である。実際、接着剤硬化物の強度は全てで一様なわけはなくミクロ的には必ず強弱がある。従って、もし破壊が連鎖し易ければ微小破壊は殆ど完全破壊に至り、完全破壊はミクロ的に強度の弱い部分での強度値で決まることになる。それゆえ、最も弱い微小部分の局所破壊が起こってもこれが連鎖せぬようにすれば次に弱い微小部分で局所破壊が起こるまで事件は起こらず、結果的に接着力は向上する。   The filler of 3) plays an important role. In other words, according to the current fracture theory, a minute local fracture occurs first in a small part of the stress concentration area or in a weak intensity area near the stress concentration area before the object breaks. It is thought that the fracture increases the stress concentration of the adjacent minute part and proceeds to the chain of local fracture. This is a mechanism theory that the chain of microfractures expands and the size of the fractured part is not microscopic and becomes a large crack, which eventually leads to complete fracture and peeling of the adherends in the adhesive system. Actually, the strength of the cured adhesive is not uniform at all, and it is always strong and weak in the micro. Therefore, if destruction is easy to chain, microfracture almost reaches complete destruction, and complete destruction is determined by a strength value at a microscopically weak part. Therefore, even if the local breakage of the weakest minute part occurs, if this is not linked, the incident does not occur until the next local breakage occurs in the weakest minute part, and the adhesive force is improved as a result.

局所破壊が生じてもそれを局所で止める上で無機充填材の存在が効くというのが現行の破壊理論である。市販の1液性エポキシ接着剤には無機充填材が必ず含まれる。具体的には粒径数μm〜数十μmのシリカ、クレー(粘土、カオリン)、タルク、アルミナ等の粉体が無機充填材として通常数%以上含まれている。添加する無機充填材の詳細は接着剤性能を左右するだけに接着剤メーカーの重要企業秘密であるが、どのような無機物粉体であろうと添加があるかないかは接着力に雲泥の差を生じる。   The current fracture theory is that even if local fracture occurs, the presence of the inorganic filler is effective in stopping it locally. A commercially available one-component epoxy adhesive always contains an inorganic filler. Specifically, powder of silica, clay (clay, kaolin), talc, alumina or the like having a particle size of several μm to several tens of μm is usually contained in an amount of several percent or more as an inorganic filler. The details of the inorganic filler to be added is an important trade secret of the adhesive manufacturer only because it affects the adhesive performance, but it depends on whether the inorganic powder is added or not.

本発明はNATに関するものである。しかしながら市販の1液性エポキシ接着剤は、前述したように1)エポキシ樹脂、2)硬化剤成分、3)無機充填材を含むもの、または、1)エポキシ樹脂、2)硬化剤成分、3)無機充填材、5)エラストマー成分を含むものであり、これらは当然ながらNATを全く斟酌していない。本発明者らは、NAT用接着剤として、4)超微細無機充填材の有用性を確認した(特許文献18)。すなわち、4)超微細無機充填材をエポキシ接着剤中にうまく分散させて添加することができれば、NAT処理した金属合金片との高温下での接着力を高めることができる。すなわち、この添加は常温下での接着力向上にほとんど役立たないが、高温下での接着力の急減を抑制する効果がある。   The present invention relates to NAT. However, as described above, commercially available one-component epoxy adhesives include 1) an epoxy resin, 2) a curing agent component, 3) an inorganic filler, or 1) an epoxy resin, 2) a curing agent component, and 3). Inorganic filler, 5) It contains an elastomer component, and of course these do not give NAT at all. The present inventors have confirmed the usefulness of 4) an ultrafine inorganic filler as an adhesive for NAT (Patent Document 18). That is, 4) If the ultrafine inorganic filler can be well dispersed in the epoxy adhesive and added, the adhesive force at a high temperature with the NAT-treated metal alloy piece can be increased. That is, this addition hardly helps to improve the adhesive strength at room temperature, but has an effect of suppressing a sudden decrease in adhesive strength at high temperatures.

(e)フェノール樹脂系接着剤
フェノール樹脂系接着剤は優れたものが市販されている。自作する場合であっても、原材料は市販品から容易に調達できる。フェノール樹脂は、フェノールとホルムアルデヒドの混合物に触媒を加えて付加縮合反応をさせて得たポリマーで、反応時の原料混合比、触媒及び加熱の条件等によってレゾール樹脂とノボラック樹脂という分子構造が異なる2種のフェノール樹脂になる。本発明に関する接着剤原料としてレゾール樹脂もノボラック樹脂も使えるが基本はレゾール樹脂である。
(E) Phenol resin adhesives Excellent phenol resin adhesives are commercially available. Even if you make your own, you can easily procure raw materials from commercial products. Phenol resin is a polymer obtained by adding a catalyst to a mixture of phenol and formaldehyde and subjecting it to an addition condensation reaction. The molecular structure of resole resin and novolak resin differs depending on the raw material mixing ratio, catalyst, and heating conditions during the reaction. Become a seed phenolic resin. Although a resole resin or a novolak resin can be used as an adhesive material for the present invention, the basic is a resole resin.

具体的には、レゾール樹脂が熱硬化性であり、かつ、ケトンやアルコールなどの有機溶剤に溶けることを利用しており、これら溶剤をレゾール樹脂に加え粘度を下げ接着剤として使用している。市販品はさらにエポキシ接着剤を若干混入して接着物性の向上を図ったものもあり、多いものではエポキシ接着剤の含量を接着剤成分の半分近くまで増やしたものもある。これらはフェノール樹脂を硬化剤としたエポキシ系接着剤であると言えるが、市場ではこれらもフェノール樹脂系接着剤として扱い、呼称として、フェノール樹脂接着剤、熱硬化型フェノール樹脂接着剤、フェノール樹脂系接着剤などと言われる。本発明者等は全てを包含してフェノール樹脂系接着剤とした。   Specifically, it utilizes the fact that the resol resin is thermosetting and dissolves in an organic solvent such as ketone or alcohol, and these solvents are added to the resole resin to lower the viscosity and are used as an adhesive. Some commercially available products further improve the adhesive properties by mixing a little epoxy adhesive, and many have increased the epoxy adhesive content to almost half of the adhesive component. It can be said that these are epoxy adhesives with a phenol resin as a curing agent, but these are also treated as phenol resin adhesives in the market and named as phenol resin adhesives, thermosetting phenol resin adhesives, phenol resin adhesives. It is said to be adhesive. The inventors of the present invention have included phenolic resin adhesives in all.

共通する特徴は、接着剤自体が大量の溶剤を含む低粘度液体であること、及び、ゲル化や硬化固化の反応に脱水縮合反応が含まれることである。後記した性質、すなわち、ゲル化、固化の間に水蒸気を発生するのは接着剤として全く好ましくない性質であり、汎用接着剤としてフェノール樹脂系接着剤が使われない理由でもある。その一方、接着法を工夫して確実に接合できた場合、接着層はフェノール樹脂自体であり耐熱性、耐水性に優れたものとなる。本発明者らが使用したのは国内で多く使用されている「110(セメダイン社製)」である。これは、若干のエポキシ接着剤が混入されたレゾール型のフェノール樹脂品であり溶剤として40〜50%のメチルエチルケトン(以下、「MEK」という)が使用されている。本発明者らは「110」をフェノール樹脂系接着剤として標準的なものと考え、これを使用して実験を進めた。   The common feature is that the adhesive itself is a low-viscosity liquid containing a large amount of solvent, and that a dehydration condensation reaction is included in the reaction of gelation or curing and solidification. The properties described later, that is, the generation of water vapor during gelation and solidification is a property that is not preferable as an adhesive, and is also the reason why a phenol resin adhesive is not used as a general-purpose adhesive. On the other hand, when the bonding method can be devised reliably, the adhesive layer is a phenol resin itself and has excellent heat resistance and water resistance. The present inventors used “110 (manufactured by Cemedine)” which is widely used in Japan. This is a resol type phenolic resin product in which some epoxy adhesive is mixed, and 40 to 50% methyl ethyl ketone (hereinafter referred to as “MEK”) is used as a solvent. The present inventors considered "110" as a standard phenolic resin adhesive, and proceeded with the experiment using this.

接着剤成分に無機充填材やエラストマー成分等を添加分散させることは、本発明者らが種々行った過去の接着剤に関する開発経過からみて、好ましいことだし必要なことだと考えていたが、フェノール樹脂系接着剤に関して経験を積み重ねるに従って前記の考え方は必ずしも通じないことがわかってきた。すなわち、フェノール樹脂系接着剤は、使用環境によって無機有機の充填材の添加効果がほとんどなくなるか場合によっては逆効果になることもあるとわかった。これらはフェノール樹脂系接着剤特有のものであり、フェノール樹脂系接着剤においてはその破壊理論がエポキシ接着剤等と異なるのであろう。   It was considered desirable and necessary to add and disperse an inorganic filler, an elastomer component, etc. in the adhesive component from the viewpoint of the past development of various adhesives conducted by the present inventors. It has been found that the above-mentioned concept does not necessarily become clear as experience with resin-based adhesives is accumulated. That is, it has been found that the phenol resin adhesive has little or no effect of adding an inorganic / organic filler depending on the use environment, or may be counterproductive in some cases. These are peculiar to phenol resin adhesives, and the destruction theory of phenol resin adhesives will be different from that of epoxy adhesives.

すなわち、しっかりとフェノール樹脂接着剤が硬化し、かつ、射出側のフェノール樹脂もほぼ同タイミングで硬化した場合に両者は非常に強く接着するであろう。しかしながら、接着剤側のフェノール樹脂はレゾール樹脂であって、射出樹脂が近づいて来つつある場面でもゲル化硬化が進行中で水蒸気を排出しつつあるとする。一方、射出樹脂は、通常、ノボラック樹脂と硬化剤ヘキサメチレンテトラアミン(以下「ヘキサミン」と言う)が樹脂成分であり、このコンパウンドは重合時に水蒸気を排出しない。硬化メカニズムは、140〜150℃になるとヘキサミンの熱分解が始まることから開始するとされており、ヘキサミンの分解生成物がノボラック樹脂の付加重合を進めるとされている。   That is, when the phenolic resin adhesive is firmly cured and the phenolic resin on the injection side is also cured at substantially the same timing, the two will adhere very strongly. However, the phenol resin on the adhesive side is a resol resin, and it is assumed that gelling curing is in progress and discharging water vapor even when the injection resin is approaching. On the other hand, in the injection resin, a novolak resin and a curing agent hexamethylenetetraamine (hereinafter referred to as “hexamine”) are resin components, and this compound does not discharge water vapor during polymerization. The curing mechanism is said to start from the start of thermal decomposition of hexamine at 140 to 150 ° C., and it is said that the decomposition product of hexamine advances the addition polymerization of the novolak resin.

要するに、脱水縮合ではないのでレゾール樹脂のゲル化固化と異なって水蒸気を発生しない。重合機構の異なる2種だが、混ざり合えばヘキサミンの分解生成物がレゾール樹脂の反応も誘って互いに結合するだろう。問題は、レゾール樹脂側の膜厚にあると思われる。すなわち、膜厚が厚いと脱水縮合に因って発生する水蒸気量が多く、発生水蒸気量が多いとこれらは最終的にボイドとなり良い結果を生まない。それでは、接着剤塗布量はごく少なくほとんど厚さのない接着剤塗布層こそが良いのだろうか。おそらくそう単純ではないだろう。すなわち、接着剤層が余りに薄いと脱水縮合反応も早く片付いてしまうと思われる。余りに接着剤相の硬化速度が早いと射出接合させるのは難しい。   In short, since it is not dehydration condensation, it does not generate water vapor unlike gelling solidification of resole resin. Although they have two different polymerization mechanisms, when they are mixed, the decomposition product of hexamine will bind to each other with the reaction of the resole resin. The problem seems to be the film thickness on the resol resin side. That is, when the film thickness is thick, the amount of water vapor generated due to dehydration condensation is large, and when the amount of water vapor generated is large, these eventually become voids and do not produce good results. Then, what is better is an adhesive coating layer with very little adhesive coating and almost no thickness? Probably not so simple. That is, if the adhesive layer is too thin, the dehydration condensation reaction seems to get away quickly. If the curing speed of the adhesive phase is too fast, it is difficult to perform injection joining.

実験結果から結論的に言えば、接着剤塗布層はかなり薄くてよい。具体的に言えば、単純に1回の筆塗り程度である。50%程度含まれている溶剤が揮発すれば非常に薄い膜厚になると思われるが、接着剤の常識では薄すぎると思われるその程度の薄さで十分に機能を果した。これで溶剤が揮発し、予備加熱によってレゾール樹脂の脱水縮合の過半が進んだとして接着剤層は厚さ0.1mm以下の薄いものになる。充填材を含まないフェノール樹脂接着剤の場合だが、塗布量(厚さ)の薄い箇所、厚い箇所(2度塗りした箇所)で接着力に差異があるように感じられなかった。   In conclusion from the experimental results, the adhesive coating layer can be quite thin. More specifically, it is about a single brush painting. If the solvent contained in about 50% is volatilized, it seems that the film thickness will be very thin. As a result, the solvent is volatilized, and the majority of the dehydration condensation of the resole resin proceeds by preheating, and the adhesive layer becomes a thin one having a thickness of 0.1 mm or less. In the case of a phenol resin adhesive that does not contain a filler, it did not feel that there was a difference in adhesive strength between a thin application amount (thickness) part and a thick part (parts applied twice).

ところが、充填材を含ませ、かつ、湿式粉砕機の使用で良く分散させたにも拘わらず充填材を含ませたフェノール樹脂接着剤を使用すると、塗布を厚くした箇所で明らかに接着力が落ちた。化学的理由はわからないが、接着剤層が薄いほど良いということと、色々と充填材を添加して接着剤層を複雑化させることとは相反することなのかもしれない。敢えて予想すると、発生する僅かな水分子が大量の射出樹脂の中にまぎれてレゾール樹脂部から消えれば、ボイドなく且つ強度のバラツキの少ない(充填材添加の必要ない)接着剤硬化層になり、これが理想に近いのかもしれない。   However, when a phenol resin adhesive containing a filler and containing a filler is used even though it is well dispersed by use of a wet pulverizer, the adhesive strength clearly decreases at the thickened portion of the coating. It was. I don't know the chemical reason, but it may be contradictory to the fact that the thinner the adhesive layer is, the better it is to add various fillers to complicate the adhesive layer. If we dare to predict, if a small amount of water molecules generated are covered in a large amount of injection resin and disappear from the resol resin part, it becomes an adhesive cured layer with no voids and little variation in strength (no need to add filler), This may be close to ideal.

(f)不飽和ポリエステル樹脂系接着剤
基本的にはガラス繊維強化プラスチック(以下「GFRP(Glass fiber reinforced plasticsの略)」という)用のマトリックス樹脂と同じ組成であり、1)不飽和ポリエステル樹脂及び/またはビニルエステル樹脂、2)スチレン系モノマー、3)無機充填材、及び4)有機過酸化物からなる。GFRP製造用に市販されているGFRPマトリックス樹脂用主液は、1),2)の混合液である。1)の不飽和ポリエステル樹脂やビニルエステル樹脂の多くは高粘度液状なので、低粘度液体である2)のスチレンやα−メチルスチレンに溶かし、扱い易い中粘度液状物としている。GFRPは、1),2)と4)有機過酸化物(硬化剤)にガラス繊維が加わったものである。1),2),4)とガラス繊維に、さらに3)無機充填材の加わったGFRPもある。一方、本発明で使用する不飽和ポリエステル樹脂系接着剤であるが、前記したようにガラス繊維は必要とせず、1),2),3),4)が必須成分となる。
(F) Unsaturated polyester resin adhesive Basically, it has the same composition as the matrix resin for glass fiber reinforced plastic (hereinafter referred to as “GFRP”). 1) Unsaturated polyester resin and / Or vinyl ester resin, 2) styrenic monomer, 3) inorganic filler, and 4) organic peroxide. The main liquid for GFRP matrix resin marketed for GFRP manufacture is a mixed liquid of 1) and 2). Since most of the unsaturated polyester resins and vinyl ester resins of 1) are high-viscosity liquids, they are dissolved in styrene and α-methylstyrene of 2), which are low-viscosity liquids, to make medium viscosity liquids that are easy to handle. GFRP is a glass fiber added to 1), 2) and 4) organic peroxide (curing agent). There is also GFRP in which 1), 2), 4) and glass fiber are further added with 3) inorganic filler. On the other hand, the unsaturated polyester resin adhesive used in the present invention does not require glass fiber as described above, and 1), 2), 3) and 4) are essential components.

不飽和ポリエステル樹脂系接着剤の市販品は存在しない。NAT処理済み金属合金材に塗布して能力を発揮するこの種の接着剤は本発明者らの発明品である(特許文献17)。中身の要点は、1),2)混合液に3)無機充填材を加えた後に、最新型の湿式粉砕機に通して3)無機充填材を主液1),2)中に良く分散させることである。無機充填材に粒径分布の中心が10〜15μm程度のタルクやクレーの微粉を使用し、最新型湿式粉砕機のビーズミル(サンドグラインドミルの1種)を使用して強制分散させれば、微粉含有にも拘わらず透明液となって良い分散液となる。この液100質量部に1質量部程度の低分解速度型の4)有機過酸化物を加えて混合すると、夏季で1時間、その他の季節は数時間以内に使い切る条件が付くが、高性能のNAT用接着剤として使用が可能となる。   There are no commercial products of unsaturated polyester resin adhesives. This type of adhesive that exhibits its ability when applied to a NAT-treated metal alloy material is the inventors' invention (Patent Document 17). The main points of the contents are 1), 2) 3) Add the inorganic filler to the mixture, then pass it through the latest wet pulverizer 3) Disperse the inorganic filler in the main liquid 1), 2) well That is. If fine particles of talc or clay with a particle size distribution center of about 10 to 15 μm are used for the inorganic filler and forcedly dispersed using a bead mill (a kind of sand grind mill) of the latest wet pulverizer, the fine powder Despite the content, it becomes a transparent liquid which can be a transparent liquid. When 100 parts by weight of this liquid is mixed with about 1 part by weight of a low decomposition rate type 4) organic peroxide, it can be used up within 1 hour in summer and within several hours in other seasons. It can be used as an adhesive for NAT.

上記で使用が可能な有機過酸化物として、キックオフ温度(熱分解開始温度)の高いもので、ビス(1−ヒドロキシシクロヘキシル)パーオキサイド、ヒドロヘキシヘプチルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーベンゾエート、t−ブチルパーアセナート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、t−ブチルパーオキシベンゾエート等が使用できる。これらの中でも、BMCにも硬化剤としてよく配合されるt−ブチル−パーオキシイソプロピルモノカーボネート、t−ヘキシル−パーオキシイソプロピルモノカーボネート、またはt−ブチルパーオキシベンゾエート等が本発明においても特に好ましい。   Organic peroxides that can be used as described above are those having a high kick-off temperature (starting temperature for thermal decomposition), such as bis (1-hydroxycyclohexyl) peroxide, hydroxyheptyl peroxide, t-butyl hydroperoxide, cumene. Hydroperoxide, t-butyl perbenzoate, t-butyl peracenate, di-t-butyl peroxide, dicumyl peroxide, t-butyl-peroxyisopropyl monocarbonate, t-hexyl-peroxyisopropyl monocarbonate, t-Butyl peroxybenzoate can be used. Among these, t-butyl-peroxyisopropyl monocarbonate, t-hexyl-peroxyisopropyl monocarbonate, t-butyl peroxybenzoate, or the like that is often blended in BMC as a curing agent is also particularly preferable in the present invention.

(g)接着剤塗布及びその後の処理
前記で得た各種接着剤をNAT処理済みの金属合金片の必要箇所に塗布する。筆塗りでもヘラ塗りでもよい。エポキシ系接着剤は粘度の高いことが多い。この場合、50〜70℃に予め加熱しておいた減圧容器または圧力容器に塗布物を入れ、数分おいてから数十mmHg程度まで減圧して数秒おき、その後空気を入れて常圧に戻すか数気圧や数十気圧の圧力下にするのが好ましい。容器を暖めておくのは、接着剤粘度を十数Pa秒以下にするためである。減圧と昇圧のサイクルは1回ではなく繰り返すのが好ましい。減圧下で接着剤と金属合金間の空気が抜け、常圧戻しで接着剤が金属面上の超微細凹部に侵入し易くなる。
(G) Adhesive application and subsequent treatment The various adhesives obtained above are applied to the necessary portions of the NAT-treated metal alloy pieces. Brush painting or spatula painting may be used. Epoxy adhesives often have high viscosity. In this case, the coated material is put in a vacuum vessel or a pressure vessel preheated to 50 to 70 ° C., and after a few minutes, the pressure is reduced to about several tens of mmHg for several seconds, and then air is added to return to normal pressure. It is preferable to set the pressure under several atmospheres or several tens of atmospheres. The reason for keeping the container warm is to make the viscosity of the adhesive 10 or less Pa seconds or less. The cycle of pressure reduction and pressure increase is preferably repeated instead of once. The air between the adhesive and the metal alloy escapes under reduced pressure, and the adhesive easily enters the ultrafine recesses on the metal surface when returned to normal pressure.

フェノール樹脂系接着剤の場合、塗布した後、十数分は放置する。溶剤のケトン(多くはMEKが使用されている)が揮発する。その後の扱いは途中まで前述のエポキシ系接着剤と同じになる。すなわち、50〜70℃に前もって暖めておいた減圧容器等に入れ、減圧/常圧戻し操作を数回繰り返すのが好ましい。60〜70℃になることで溶剤は揮発し切ると同時にレゾールは固体からペースト状になり粘度が低下する。   In the case of a phenol resin adhesive, after application, leave it for more than ten minutes. The solvent ketone (mostly MEK is used) volatilizes. The subsequent treatment is the same as that of the above-mentioned epoxy adhesive part way through. That is, it is preferable to put in a decompression vessel or the like that has been preheated to 50 to 70 ° C. and repeat the decompression / normal pressure return operation several times. When the temperature reaches 60 to 70 ° C., the solvent is completely evaporated, and at the same time, the resol is changed from a solid to a paste and the viscosity is lowered.

減圧容器等から金属合金片を出し、次はこれらを90〜100℃にセットした熱風乾燥機内に10〜15分入れる。この加熱を予備加熱処理と言うが、フェノール樹脂系接着剤にのみ必要な工程である。予備加熱工程は、レゾール樹脂を90℃程度とすることで脱水縮合反応を進行させゲル化を過半分程度進める目的の工程である。金属合金上の接着剤層は90℃近くまで昇温されると溶解して液状となり、脱水反応も起こって別所温泉泥地獄のように激しく発泡する。   Metal alloy pieces are taken out from a decompression vessel or the like, and then placed in a hot air dryer set at 90 to 100 ° C. for 10 to 15 minutes. Although this heating is called preheating treatment, it is a process necessary only for the phenol resin adhesive. The preheating step is a step intended to advance the gelation by causing the dehydration condensation reaction to proceed by setting the resol resin to about 90 ° C. When the temperature of the adhesive layer on the metal alloy is raised to nearly 90 ° C., the adhesive layer dissolves and becomes liquid, and a dehydration reaction occurs and foams violently like the Bessho hot spring mud hell.

しかしこれも10分程度で大人しくなる。そのタイミングで熱風乾燥機から出すのが好ましい。この操作はやや職人的になるが、結果から言えば、多少の時間ズレは接着力にあまり影響がなく、かなり大雑把でも高い接着力が得られた。熱風乾燥機から出して放冷すると塗布された接着剤は再び固体に戻る。ベタベタしていないのがエポキシ系接着剤塗布物との違いである。   However, this also grows up in about 10 minutes. It is preferable to take out from the hot air dryer at that timing. Although this operation is somewhat craftsman, according to the results, a slight time shift has little effect on the adhesive force, and a high adhesive force was obtained even if it was fairly rough. When it is taken out from the hot air dryer and allowed to cool, the applied adhesive returns to solid again. What is not sticky is the difference from the epoxy adhesive coating.

不飽和ポリエステル樹脂系接着剤の場合、塗布作業は、前述の1),2)含む主液に3)無機充填材粉体を添加分散させ、その液に4)有機過酸化物を加えて混合した瞬間から始まり、手際良く進めなくてはならない。混合した瞬間から接着剤となるが、同時にゲル化も始まる。もちろん、好ましい有機過酸化物を使用した場合、ゲル化はそれほど高速でないから、冷蔵庫に入れて5℃以下で保管し、使用時だけ小分けすれば半日は使用可能になる。   In the case of an unsaturated polyester resin adhesive, the coating operation is performed by adding and dispersing 3) inorganic filler powder in the main liquid containing 1) and 2), and 4) adding organic peroxide to the liquid and mixing. It starts from the moment you do it, and you have to do it well. It becomes an adhesive from the moment of mixing, but at the same time gelation begins. Of course, when a preferred organic peroxide is used, gelation is not so fast, so it can be used for half a day if it is placed in a refrigerator and stored at 5 ° C. or lower and divided only during use.

金属合金に塗布した後の扱いはエポキシ系接着剤と似た扱い方で良い。すなわち、前もって50℃程度に暖めておいた減圧容器に塗布物を入れ、減圧/常圧戻しの作業を数回行う。金属合金表面への接着剤の染み込まし処理だが、エポキシ系接着剤の場合と異なるのは、使用する真空ポンプからスチレン等が排出され臭気が出ることである。減圧により接着剤中のスチレン系モノマーの一部が揮発する。同時に、50℃近くのやや暖かい温度下でゲル化がやや進行し、接着剤層は粘性ある液状に変わる。それゆえ、この処理の終了時の姿はエポキシ接着剤の場合に似ていて塗布箇所はベタベタ物となる。   The treatment after applying to the metal alloy may be similar to the epoxy adhesive. That is, the coating material is put in a decompression container that has been heated to about 50 ° C. in advance, and the decompression / normal pressure return operation is performed several times. The adhesive soaking process on the metal alloy surface is different from the epoxy adhesive in that styrene and the like are discharged from the vacuum pump to be used, and an odor is generated. A part of the styrenic monomer in the adhesive volatilizes due to the reduced pressure. At the same time, gelation slightly proceeds at a slightly warm temperature near 50 ° C., and the adhesive layer changes to a viscous liquid. Therefore, the appearance at the end of this treatment is similar to that of an epoxy adhesive, and the applied portion is solid.

(h)接着剤塗布物の保管
これらの接着剤塗布と塗布後の処理を行ったものに関し、エポキシ接着剤とフェノール樹脂接着剤を塗布したものは長期保管が可能である。エポキシ接着物塗布品は接着剤塗布箇所の上にポリエチフィルムをそのまま載せて貼り付け、さらに大きなポリ袋に全体を入れて密封できるのであれば、密封して冷蔵庫に入れておけば1ヶ月以上保管できる。また、フェノール樹脂系接着剤は、塗布面にゴミが付着しないようにさえしておけば、数週間はOKで、全体をポリ袋に入れて密閉できれば、冷蔵庫に入れて数ヶ月は全く問題なく使用できる。
(H) Storage of adhesive applied product With regard to those subjected to the adhesive application and the treatment after application, those coated with an epoxy adhesive and a phenol resin adhesive can be stored for a long time. If an epoxy adhesive product can be sealed by placing a polyethylene film on the adhesive application site as it is and putting the whole in a large plastic bag, it can be sealed and stored in the refrigerator for more than a month. it can. The phenolic resin adhesive can be used for several weeks as long as dust does not adhere to the coated surface. If the whole can be sealed in a plastic bag, it can be stored in the refrigerator for months without any problems. Can be used.

保管が難しいのは不飽和ポリエステル樹脂系接着剤を塗布し、塗布後の処理をした金属合金片であって、これはそのまま数時間内に射出接合工程に進めるべきである。端的に言えば、接着剤を作成した瞬間(有機過酸化物を加えた瞬間)から射出接合工程まで途切らせず順次工程を進めるべきなのが不飽和ポリエステル樹脂系の接着剤を使い同系の射出成形用熱硬化性樹脂組成物を射出する場合である。   What is difficult to store is a piece of metal alloy that has been coated with an unsaturated polyester resin adhesive and processed after application, and this should proceed directly to the injection joining process within a few hours. In short, it is necessary to proceed from the moment when the adhesive is created (the moment when the organic peroxide is added) to the injection joining process without any interruption. In this case, the thermosetting resin composition for molding is injected.

(i)射出用熱硬化性樹脂組成物
市販されている射出成形用熱硬化性樹脂組成物は基本的に3種類で、一つは不飽和ポリエステル樹脂系のもの、一つはフェノール樹脂系のもの、もう一つはエポキシ樹脂系のものである。これらは各機械メーカーが上市している熱硬化型樹脂用の射出成形機を使用して射出成形できる。これらの射出成形機の基本構造は、射出筒の温度制御が40〜90℃で水冷と電気加熱の双方を備えたものになっており、粉状原料を溶融してペースト状まではするがそれ以上昇温してゲル化が促進される温度域までは上げない、というやや難しい温度制御を行う。一方、金型温度は低くても150℃程度、多くは160〜180℃として金型内で樹脂組成物を硬化固化させる。
(I) Thermosetting resin composition for injection There are basically three types of commercially available thermosetting resin compositions for injection molding, one of unsaturated polyester resin type, one of phenol resin type. One is an epoxy resin type. These can be injection-molded using an injection molding machine for thermosetting resins marketed by each machine manufacturer. The basic structure of these injection molding machines is that the temperature control of the injection cylinder is 40 to 90 ° C, and both water cooling and electric heating are provided. The somewhat difficult temperature control is performed such that the temperature is not raised to the temperature range where gelation is promoted by increasing the temperature. On the other hand, even if the mold temperature is low, the resin composition is cured and solidified in the mold at about 150 ° C., most of which is 160 to 180 ° C.

このような温度条件が通常となっており、逆に樹脂メーカーはこのような温度条件内で成形できるように樹脂組成物を調整している。加えて、製品用途により耐熱性を重視したり、成形時の精密性(流動性)を重視したり、無機充填材を増やして寸法安定性を重視したグレード等がある。ただ、多種ある射出成形用の熱硬化性樹脂組成物も大きく成形条件が異なるわけではないので、本発明に関し全て使用できる。   Such temperature conditions are normal, and conversely, resin manufacturers adjust the resin composition so that molding can be performed within such temperature conditions. In addition, there are grades that place importance on heat resistance depending on product use, place importance on precision (fluidity) during molding, and increase the number of inorganic fillers and place importance on dimensional stability. However, various thermosetting resin compositions for injection molding are not greatly different in molding conditions, and can all be used in the present invention.

一方、不飽和ポリエステル樹脂系の射出成形用樹脂組成物に近いが、BMCと呼ばれる樹脂材料がある。BMCについてはその概要を背景技術において前述したが、組成は不飽和ポリエステル樹脂、スチレン系モノマー、ガラス短繊維、無機充填材、及び有機過酸化物の混合物である。要するに不飽和ポリエステル樹脂系の射出成形用材料とほとんど同じだが、ガラス短繊維が含まれることが異なる。ガラス繊維を含むので硬化物はGFRPとなる。BMCの成形はBMC成形機に依るが、BMC成形機の基本構造は前記射出成形機と全く同じである。違いは前述したが、BMC成形機にはBMCの強制供給装置が設置されていることである。要するに、BMCも本発明に使用できる。   On the other hand, there is a resin material called BMC, although it is close to an unsaturated polyester resin-based resin composition for injection molding. The outline of BMC is described above in the background art, but the composition is a mixture of unsaturated polyester resin, styrene monomer, short glass fiber, inorganic filler, and organic peroxide. In short, it is almost the same as an unsaturated polyester resin-based injection molding material, except that short glass fibers are included. Since it contains glass fiber, the cured product becomes GFRP. The BMC molding depends on the BMC molding machine, but the basic structure of the BMC molding machine is exactly the same as the injection molding machine. As described above, the difference is that a BMC compulsory supply device is installed in the BMC molding machine. In short, BMC can also be used in the present invention.

(j)射出接合の操作
熱硬化性樹脂用射出成形機、またはBMC成形機にセットした射出成形用金型に前述の接着剤塗布済み金属合金部品をインサートし、前記の射出成形用樹脂やBMCを射出する。各種樹脂の射出成形条件は射出樹脂メーカーの指示する条件通りで良い。標準的な市販樹脂を使用する場合、射出筒温度は70〜90℃、金型温度は150〜180℃とするのが多いが、これで特に問題はない。
(J) Operation of injection joining The above-mentioned adhesive-coated metal alloy part is inserted into an injection mold set in a thermosetting resin injection molding machine or a BMC molding machine, and the above injection molding resin or BMC Inject. The injection molding conditions for various resins may be the same as those specified by the injection resin manufacturer. When a standard commercially available resin is used, the injection cylinder temperature is often set to 70 to 90 ° C. and the mold temperature is set to 150 to 180 ° C., but this is not particularly problematic.

1液性エポキシ系接着剤を塗布した金属合金片をインサート物とし、射出樹脂にエポキシ系の熱硬化性樹脂組成物を使用し、上手く射出接合させる作業の手順について述べる。まず、金型に金属合金片をインサートし、一旦金型を閉める。金型は150〜180℃に加熱されているので金型内で接着剤のゲル化が進む。金型を閉めても射出操作に移らず、金型閉めから30秒後に一旦金型を開く。その時に金属合金上の接着剤の様子を見る。針で突っついてもよい。接着剤のゲル化が明らかでまだ軟性がやや残っている程度だとする。この場合、インサート金属合金を新しいものに交換し、金型を閉めて30秒後に樹脂が射出されるようにする。保圧操作を続け、数分後に金型を開いて成形物を離型する。   A procedure of an operation of using a metal alloy piece coated with a one-component epoxy adhesive as an insert and using an epoxy thermosetting resin composition as an injection resin for successful injection joining will be described. First, a metal alloy piece is inserted into the mold, and the mold is once closed. Since the mold is heated to 150 to 180 ° C., the gelation of the adhesive proceeds in the mold. Even if the mold is closed, the injection operation is not performed, and the mold is once opened 30 seconds after the mold is closed. At that time, the state of the adhesive on the metal alloy is observed. You may poke with a needle. Suppose the gelation of the adhesive is obvious and the softness remains a little. In this case, the insert metal alloy is replaced with a new one, and the resin is injected 30 seconds after the mold is closed. The pressure holding operation is continued, and after a few minutes, the mold is opened to release the molded product.

成形された熱硬化性樹脂とインサートしていた金属合金片とが接着剤を介して一体化している。両者間を強引に引き剥がし、金属合金側の接着面を何とか露出させてみると接合の様子がわかる。もし容易に金属片が剥がれて金属合金表面に硬化した接着剤層が存在する場合、これは接着剤の硬化が早過ぎたことを示すからインサートしてからのアイドル時間を次は短くすべきである。一方、金属片表面に薄く樹脂汚れのようなものが全面に付着していると接着状況としては非常に良いと判断する。また、インサートしてからのアイドル時間が短すぎて、樹脂射出時に接着剤のゲル化が進んでいなかった場合、金属表面上の未硬化の接着剤は射出樹脂流れに押し流されて綺麗に清掃された状態となり、金属合金片は磨かれたように綺麗になる。もちろん全く接着しない。   The molded thermosetting resin and the inserted metal alloy piece are integrated through an adhesive. When the two are forcibly peeled off and the adhesive surface on the metal alloy side is somehow exposed, the state of bonding can be seen. If there is a hardened adhesive layer on the metal alloy surface that is easily peeled off, this indicates that the adhesive has hardened too early and the idle time after insertion should be shortened next. is there. On the other hand, it is judged that the state of adhesion is very good when a thin, resin-like material adheres to the entire surface of the metal piece. Also, if the idle time after insertion is too short and the gelation of the adhesive has not progressed during resin injection, the uncured adhesive on the metal surface will be washed away by the injection resin flow and cleaned cleanly. As a result, the metal alloy pieces are cleaned as if they were polished. Of course, it does not adhere at all.

従って、ほぼ射出接合しそうなアイドル時間を見つけたら、その後に数個の接着剤塗布と染込まし処理を済ませた金属合金片をインサートし、インサート後から射出するまでの時間を当初時間より短長させて変え、射出接合試験をすればよい。一体化物の破断強度を測定して最適なアイドル時間を明らかにする。実際に試験をするとわかるがそれほど敏感でなく最適条件となるアイドル時間の時間幅は30秒近くある。フェノール樹脂接着剤の場合も前述した1液性エポキシ系接着剤ケースと全く同じである。5個程度の接着剤塗布と染み込まし処理をした金属合金片をインサートし、インサート後から射出するまでの時間を変えながら射出接合試験をすれば最適なアイドル時間が明らかになる。   Therefore, after finding an idle time that is likely to be injection-bonded, insert several pieces of metal alloy pieces that have been infused and treated with adhesive after that, and the time from injection to injection is shorter than the initial time. Change it and do the injection joining test. Determine the optimum idle time by measuring the breaking strength of the monolith. Although it can be seen from actual tests, the time width of idle time which is not so sensitive and is an optimum condition is close to 30 seconds. The phenol resin adhesive is exactly the same as the one-pack epoxy adhesive case described above. Inserting metal alloy pieces that have been soaked and treated with about 5 adhesives, and performing an injection joining test while changing the time from injection to injection, the optimum idle time becomes clear.

不飽和ポリエステル樹脂系接着剤の場合、アイドル時間は通常なしとする。しかしながら金属合金片を射出成形金型にインサートし、できるだけ早く射出するとしても金型を閉めてから射出まで10〜15秒かかる。これは熱硬化性樹脂の射出成形では射出筒ノズルは射出時とその数十秒後までの間を除いて金型に接触させないからである。よって金型閉めと射出筒の金型接近をスイッチONしても射出筒ノズルが金型に接触するのに10数秒かかるのが普通である。接着剤の硬化が速過ぎると感じた場合、まず行うべき対策は金型温度を5〜10℃下げてみることである。   In the case of an unsaturated polyester resin adhesive, the idle time is usually none. However, even if the metal alloy piece is inserted into the injection mold and injected as soon as possible, it takes 10 to 15 seconds from the closing of the mold to the injection. This is because in the injection molding of thermosetting resin, the injection cylinder nozzle is not brought into contact with the mold except during the injection and until several tens of seconds after the injection. Therefore, even if the mold closing and the mold approaching of the injection cylinder are switched on, it usually takes 10 seconds or more for the injection cylinder nozzle to contact the mold. If you feel that the curing of the adhesive is too fast, the first action you should take is to lower the mold temperature by 5-10 ° C.

使用した射出成形用樹脂のメーカーが指定した金型温度条件より若干低く硬化時間が1分〜数分伸びるだろうが、金属合金上の接着剤のゲル化硬化の速度も遅くなり、アイドル時間も伸びるので双方の硬化タイミングを合わすことが容易になる。射出接合するが射出樹脂自体の十分な強度が出ていないと感じた場合、射出接合で得た一体化物を120〜150℃とした熱風乾燥機に1時間程度入れた後硬化させる手がある。   Although the curing time will be slightly lower than the mold temperature specified by the manufacturer of the injection molding resin used, it will extend from 1 minute to several minutes, but the gel curing speed of the adhesive on the metal alloy will also be slower and idle time will also be Since it stretches, it becomes easy to match both timings of curing. When injection joining is performed but it is felt that the injection resin itself does not have sufficient strength, there is a hand that the integrated product obtained by injection joining is placed in a hot air dryer at 120 to 150 ° C. for about 1 hour and then cured.

以下、本発明の実施の形態を実施例によって説明する。なお、図13は射出接合で得た金属合金片と熱硬化性樹脂製形状物の接着一体化物を図示したものであり、60は金属合金片と熱硬化性樹脂組成物の射出成形片とを一体化した設置役複合体、61は金属合金片、62は硬化した熱硬化性樹脂組成物の射出成形片、63は接着剤層を示す。   Hereinafter, embodiments of the present invention will be described by way of examples. FIG. 13 shows a bonded integrated product of a metal alloy piece and a thermosetting resin shaped product obtained by injection joining, and 60 shows a metal alloy piece and an injection-molded piece of a thermosetting resin composition. An integrated installation combination composite, 61 is a metal alloy piece, 62 is an injection-molded piece of a cured thermosetting resin composition, and 63 is an adhesive layer.

(a)X線表面観察(XPS観察)
数μm径の表面を深さ1〜2nmまでの範囲で構成元素を観察する形式のESCA「AXIS−Nova(クラトス/島津製作所社製)」を使用した。
(b)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(日立製作所社製)」及び「JSM−6700F(日本電子)」を使用し1〜2KVにて観察した。
(c)走査型プローブ顕微鏡観察
「SPM−9600(島津製作所社製)」を使用した。これはダイナミックフォース型の走査型プローブ顕微鏡である。
(d)X線回折分析(XRD分析)
「XRD−6100(島津製作所社製)」を使用した。
(e)複合体の接合強度の測定
引っ張り試験機「AG−10kNX(島津製作所社製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
(A) X-ray surface observation (XPS observation)
An ESCA “AXIS-Nova (Kuratos / Shimadzu Corporation)” in the form of observing constituent elements on a surface having a diameter of several μm in a depth range of 1 to 2 nm was used.
(B) Electron Microscope Observation An SEM type electron microscope “S-4800 (manufactured by Hitachi, Ltd.)” and “JSM-6700F (JEOL)” were used and observed at 1 to 2 KV.
(C) Scanning probe microscope observation “SPM-9600 (manufactured by Shimadzu Corporation)” was used. This is a dynamic force type scanning probe microscope.
(D) X-ray diffraction analysis (XRD analysis)
“XRD-6100 (manufactured by Shimadzu Corporation)” was used.
(E) Measurement of Bonding Strength of Composite Material Using a tensile tester “AG-10kNX (manufactured by Shimadzu Corporation)”, the shear breaking force was measured at a pulling speed of 10 mm / min.

次に接合系の実験例について各金属片の種類毎に説明する。
[実験例1](アルミニウム合金の表面処理)
市販の3mm厚A7075板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を水に投入して60℃、濃度7.5%の水溶液とした。これに前記アルミニウム合金板材を7分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記の合金板材を1分浸漬してよく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、先ほどの合金板材を4分浸漬してよく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記合金板材を1分浸漬し水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記合金板材を2分浸漬し、水洗した。次いで5%濃度の過酸化水素水溶液を40℃とし前記合金板材を5分浸漬し水洗した。次いで67℃にした温風乾燥機に15分入れて乾燥させた。
Next, an experimental example of the joining system will be described for each type of metal piece.
[Experiment 1] (Surface treatment of aluminum alloy)
A commercially available 3 mm thick A7075 plate was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. A commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co.)” was poured into water to form an aqueous solution at 60 ° C. and a concentration of 7.5%. The aluminum alloy sheet was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 1 minute and washed with water. Next, a 1.5% concentration aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the above alloy plate material was immersed for 4 minutes and washed with water. Subsequently, a 3% concentration aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in the tank for 1 minute and washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 2 minutes and washed with water. Next, a 5% hydrogen peroxide aqueous solution was set to 40 ° C., and the alloy sheet was immersed for 5 minutes and washed with water. Subsequently, it put into the warm air dryer which was 67 degreeC for 15 minutes, and was made to dry.

乾燥後、アルミ箔で前記アルミニウム合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。同じ処理をしたA7075片を電子顕微鏡観察したところ40〜100nm径の凹部で覆われていることがわかった。1万倍、10万倍の電顕写真を図1に示した。また、別の1個を走査型プローブ顕微鏡にかけて粗度データを得た。これによると山谷平均間隔(RSm)は3〜4μm、最大高さ(Rz)は1〜2μmであった。   After drying, the aluminum alloy sheets were wrapped together with aluminum foil, which was then stored in a plastic bag. An A7075 piece subjected to the same treatment was observed with an electron microscope and found to be covered with a recess having a diameter of 40 to 100 nm. The electron micrographs of 10,000 times and 100,000 times are shown in FIG. Another piece was subjected to a scanning probe microscope to obtain roughness data. According to this, the peak-valley average interval (RSm) was 3-4 μm, and the maximum height (Rz) was 1-2 μm.

[実験例2](アルミニウム合金の表面処理)
市販の1.6mm厚A5052板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を水に投入して60℃、濃度7.5%の水溶液とした。これに前記アルミニウム合金板材を7分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の塩酸水溶液を用意し、これに前記の合金板材を1分浸漬してよく水洗した。次いで別の槽に40℃とした1.5%濃度の苛性ソーダ水溶液を用意し、先ほどの合金板材を2分浸漬してよく水洗した。続いて別の槽に40℃とした3%濃度の硝酸水溶液を用意し、これに前記合金板材を1分浸漬し水洗した。次いで別の槽に60℃とした一水和ヒドラジンを3.5%含む水溶液を用意し、これに前記合金板材を2分浸漬し、水洗した。
[Experimental example 2] (Surface treatment of aluminum alloy)
A commercially available 1.6 mm thick A5052 plate was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. A commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co.)” was poured into water to form an aqueous solution at 60 ° C. and a concentration of 7.5%. The aluminum alloy sheet was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrochloric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 1 minute and washed with water. Next, a 1.5% strength aqueous caustic soda solution at 40 ° C. was prepared in a separate tank, and the above alloy plate material was immersed for 2 minutes and washed with water. Subsequently, a 3% concentration aqueous nitric acid solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in the tank for 1 minute and washed with water. Next, an aqueous solution containing 3.5% monohydric hydrazine at 60 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 2 minutes and washed with water.

次いで67℃にした温風乾燥機に15分入れて乾燥させた。乾燥後、アルミ箔で前記アルミニウム合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。同じ処理をしたA5052片を電子顕微鏡観察したところ30〜100nm径の凹部で覆われていることがわかった。1万倍、10万倍の電顕写真を図2に示した。また、別の1個を走査型プローブ顕微鏡にかけて粗度データを得た。これによると山谷平均間隔(RSm)は1.8〜2.6μm、最大高さ(Rz)は0.3〜0.5μmであった。   Subsequently, it put into the warm air dryer which was 67 degreeC for 15 minutes, and was made to dry. After drying, the aluminum alloy sheets were wrapped together with aluminum foil, which was then stored in a plastic bag. An A5052 piece treated in the same way was observed with an electron microscope and found to be covered with a recess having a diameter of 30 to 100 nm. An electron micrograph of 10,000 times and 100,000 times is shown in FIG. Another piece was subjected to a scanning probe microscope to obtain roughness data. According to this, the mean valley interval (RSm) was 1.8 to 2.6 μm, and the maximum height (Rz) was 0.3 to 0.5 μm.

[実験例3](マグネシウム合金の表面処理)
市販の1mm厚AZ31B板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス社製)」を水に投入して65℃、濃度7.5%の水溶液とした。これに前記マグネシウム合金板材を5分浸漬しよく水洗した。続いて別の槽に40℃とした1%濃度の水和クエン酸水溶液を用意し、これに前記の合金板材を6分浸漬してよく水洗した。次いで別の槽に65℃とした1%濃度の炭酸ナトリウムと1%濃度の炭酸水素ナトリウムを含む水溶液を用意し、先ほどの合金板材を5分浸漬してよく水洗した。
[Experiment 3] (Surface treatment of magnesium alloy)
A commercially available 1 mm thick AZ31B plate was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. A commercially available magnesium alloy degreasing agent “Cleaner 160 (manufactured by Meltex Co., Ltd.)” was poured into water to form an aqueous solution at 65 ° C. and a concentration of 7.5%. The magnesium alloy sheet was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1% concentration hydrated citric acid aqueous solution at 40 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 6 minutes and washed with water. Next, an aqueous solution containing 1% concentration sodium carbonate and 1% concentration sodium hydrogen carbonate at 65 ° C. was prepared in another tank, and the above alloy plate was dipped for 5 minutes and washed with water.

続いて別の槽に65℃とした15%濃度の苛性ソーダ水溶液を用意し、これに前記合金板材を5分浸漬し水洗した。次いで別の槽に40℃とした0.25%濃度の水和クエン酸水溶液に1分浸漬して水洗した。次いで45℃とした過マンガン酸カリを2%、酢酸を1%、水和酢酸ナトリウムを0.5%含む水溶液に1分浸漬し、15秒水洗し、90℃にした温風乾燥機に15分入れて乾燥させた。乾燥後、アルミ箔で前記マグネシウム合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。   Subsequently, a 15% strength aqueous caustic soda solution at 65 ° C. was prepared in another tank, and the alloy plate material was immersed in this for 5 minutes and washed with water. Subsequently, it was immersed in a 0.25% strength hydrated citric acid aqueous solution at 40 ° C. for 1 minute and washed in another tank. Next, it was immersed in an aqueous solution containing 2% potassium permanganate at 45 ° C., 1% acetic acid and 0.5% hydrated sodium acetate for 1 minute, washed with water for 15 seconds, and placed in a warm air dryer at 90 ° C. for 15 minutes. Poured and dried. After drying, the magnesium alloy sheet was wrapped together with aluminum foil, which was then sealed in a plastic bag.

同じ処理をしたAZ31B片を電子顕微鏡観察したところ5〜10nm径の棒状結晶が複雑に絡み合っている箇所やそれらの塊が100nm径程度の集まりとなり、その集まりが面を作っている超微細な凹凸形状で覆われている箇所があった。それら2箇所の10万倍電顕写真を図3に示した。また、別の1個を走査型プローブ顕微鏡で走査して粗度観測を行ったところJISで言う山谷平均間隔、すなわち凹凸周期の平均値(RSm)が2〜3μm、最大粗さ高さ(Rz)が1〜1.5μmであった。   Observation of an AZ31B piece treated in the same manner with an electron microscope revealed that 5-10 nm diameter rod-like crystals were intricately entangled and their lumps were gathered together with a diameter of about 100 nm, and the gathering formed ultra fine irregularities. There was a part covered with the shape. The 100,000 times electron micrographs of these two places are shown in FIG. In addition, when another one was scanned with a scanning probe microscope and the roughness was observed, the mean interval between peaks and valleys referred to in JIS, that is, the average value (RSm) of the uneven period was 2 to 3 μm, and the maximum roughness height (Rz) ) Was 1 to 1.5 μm.

[実験例4](銅合金の表面処理)
市販の1mm厚の純銅系銅合金であるタフピッチ銅(C1100)板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%含む水溶液を60℃として5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗し予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を10分浸漬し水洗した。
[Experimental Example 4] (Surface treatment of copper alloy)
A commercially available tough pitch copper (C1100) plate material, which is a pure copper-based copper alloy with a thickness of 1 mm, was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was immersed in water at 60 ° C. for 5 minutes and then washed with water, and then 1.5% caustic soda at 40 ° C. It was immersed in an aqueous solution for 1 minute, washed with water, and washed with a preliminary base. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (manufactured by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared, and the copper alloy piece was immersed in this for 10 minutes and washed with water.

次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、前記の合金板材を1分浸漬してよく水洗した。次いで先ほどのエッチング用槽に1分浸漬して水洗し、そして先ほどの酸化処理用の槽に1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥させた。乾燥後、アルミ箔で前記銅合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。   Next, an aqueous solution containing 10% of caustic soda at 65 ° C. and 5% of sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water. Next, it was immersed in the etching tank for 1 minute and washed with water, and then immersed in the oxidation treatment tank for 1 minute and washed with water. Next, it was dried for 15 minutes in a warm air dryer set at 90 ° C. After drying, the copper alloy sheets were wrapped together with aluminum foil, which was then sealed and stored in a plastic bag.

同じ処理をしたC1100片を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は3〜7μm、最大粗さ高さ(Rz)は3〜5μmであった。また、10万倍電子顕微鏡観察したところ、直径または長径短径の平均が10〜150nmの孔開口部または凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われていた。その1万倍、10万倍電顕写真を図4に示した。   A piece of C1100 treated in the same way was subjected to a scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 3 to 7 μm, and the maximum roughness height (Rz) was 3 to 5 μm. Moreover, when observed with an electron microscope of 100,000 times, almost the entire surface is an extremely fine uneven shape in which hole openings or recesses having an average diameter or major axis and minor axis of 10 to 150 nm are present at irregular intervals of 30 to 300 nm. It was covered. The 10,000 times and 100,000 times electron micrographs are shown in FIG.

[実験例5](銅合金の表面処理)
市販の0.8mm厚のリン青銅(C5191)板材を購入し18mm×45mmの長方形片に切断し、金属板1である銅合金片とした。槽に市販のアルミ合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。ここへ前記銅合金板材を5分浸漬して脱脂し、よく水洗した。続いて別の槽に25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を15分浸漬し水洗した。
[Experimental Example 5] (Surface treatment of copper alloy)
A commercially available phosphor bronze (C5191) plate material having a thickness of 0.8 mm was purchased and cut into 18 mm × 45 mm rectangular pieces to obtain a copper alloy piece as the metal plate 1. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The said copper alloy board | plate material was immersed here for 5 minutes, degreased | defatted, and washed well with water. Subsequently, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (made by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared in another tank, and the copper alloy piece was added to this for 15 minutes. It was immersed and washed with water.

次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、65℃としてから前記の合金板材を1分浸漬してよく水洗した。次いで再び先ほどのエッチング液に1分浸漬し水洗した。次いで酸化用の水溶液に1分再度浸漬し、水洗した。前記の銅合金片を、90℃にした温風乾燥機に15分入れて乾燥させた。アルミニウム箔に包んで保管した。   Next, an aqueous solution containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water after reaching 65 ° C. Next, it was again immersed in the previous etching solution for 1 minute and washed with water. Subsequently, it was immersed again in the aqueous solution for oxidation for 1 minute and washed with water. The copper alloy piece was dried in a hot air dryer set at 90 ° C. for 15 minutes. Wrapped in aluminum foil and stored.

同じ処理をしたC5191片を1万倍、10万倍電顕写真を図5に示したが、10万倍電子顕微鏡観察で、直径または長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状であり、純銅系であるタフピッチ銅の微細構造とは全く異なった形状であった。また、1個を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大粗さ高さ(Rz)は0.3〜0.4μmであった。   FIG. 5 shows a C5191 piece having the same treatment at a magnification of 10,000 times and a magnification of 100,000 times. In the observation with an electron microscope of 100,000 times, convex portions having an average diameter or major axis and minor axis of 10 to 200 nm are mixed. The shape of the ultra-fine irregularities present on the entire surface was completely different from the microstructure of tough pitch copper, which is pure copper. One piece was applied to a scanning probe microscope. As a result, the mean valley interval (RSm) in JIS was 1 to 3 μm, and the maximum roughness height (Rz) was 0.3 to 0.4 μm.

[実験例6](銅合金の表面処理)
市販の1mm厚の鉄含有銅合金「KFC(神戸製鋼所社製)」板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%含む水溶液を60℃として5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗し予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を8分浸漬し水洗した。
[Experimental Example 6] (Surface treatment of copper alloy)
A commercially available 1 mm thick iron-containing copper alloy “KFC (manufactured by Kobe Steel)” plate was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was immersed in water at 60 ° C. for 5 minutes and then washed with water, and then 1.5% caustic soda at 40 ° C. It was immersed in an aqueous solution for 1 minute, washed with water, and washed with a preliminary base. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (made by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared, and the copper alloy piece was immersed in this for 8 minutes and washed with water.

次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、前記の合金板材を1分浸漬してよく水洗した。次いで先ほどのエッチング用槽に1分浸漬して水洗し、そして先ほどの酸化処理用の槽に1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥させた。乾燥後、アルミ箔で前記銅合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。   Next, an aqueous solution containing 10% of caustic soda at 65 ° C. and 5% of sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water. Next, it was immersed in the etching tank for 1 minute and washed with water, and then immersed in the oxidation treatment tank for 1 minute and washed with water. Next, it was dried for 15 minutes in a warm air dryer set at 90 ° C. After drying, the copper alloy sheets were wrapped together with aluminum foil, which was then sealed and stored in a plastic bag.

同じ処理をしたKFC銅合金片を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大粗さ高さ(Rz)は0.3〜0.5μmであった。また、10万倍電子顕微鏡観察したところ、直径または長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状で全面が覆われていた。1万倍、10万倍電顕写真を図6に示した。   The same treated KFC copper alloy piece was subjected to a scanning probe microscope. As a result, the mean valley and valley interval (RSm) in JIS was 1 to 3 μm, and the maximum roughness height (Rz) was 0.3 to 0.5 μm. Further, when observed with an electron microscope of 100,000 times, the entire surface was covered with an ultrafine uneven shape in which convex portions having an average diameter or major axis and minor axis of 10 to 200 nm were mixed and present on the entire surface. The 10,000 times and 100,000 times electron micrographs are shown in FIG.

[実験例7](銅合金の表面処理)
市販の0.7mm厚の特殊銅合金「KLF5(神戸製鋼所社製)」板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%含む水溶液を60℃として5分浸漬して水洗し、次いで40℃とした1.5%濃度の苛性ソーダ水溶液に1分浸漬して水洗し予備塩基洗浄した。次いで25℃とした銅合金用エッチング材「CB5002(メック社製)」を20%、30%過酸化水素を18%含む水溶液を用意し、これに前記銅合金片を8分浸漬し水洗した。
[Experimental Example 7] (Surface treatment of copper alloy)
Commercially available 0.7 mm thick special copper alloy “KLF5 (manufactured by Kobe Steel)” plate material was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” was immersed in water at 60 ° C. for 5 minutes and then washed with water, and then 1.5% caustic soda at 40 ° C. It was immersed in an aqueous solution for 1 minute, washed with water, and washed with a preliminary base. Next, an aqueous solution containing 20% of an etching material for copper alloy “CB5002 (made by MEC)” at 25 ° C. and 18% of 30% hydrogen peroxide was prepared, and the copper alloy piece was immersed in this for 8 minutes and washed with water.

次いで別の槽に65℃とした苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液を酸化用水溶液として用意し、前記の合金板材を1分浸漬してよく水洗した。次いで先ほどのエッチング用槽に1分浸漬して水洗し、そして先ほどの酸化処理用の槽に1分浸漬してよく水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥させた。乾燥後、アルミ箔で前記銅合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。   Next, an aqueous solution containing 10% of caustic soda at 65 ° C. and 5% of sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the alloy plate was immersed for 1 minute and washed with water. Next, it was immersed in the etching tank for 1 minute and washed with water, and then immersed in the oxidation treatment tank for 1 minute and washed with water. Next, it was dried for 15 minutes in a warm air dryer set at 90 ° C. After drying, the copper alloy sheets were wrapped together with aluminum foil, which was then sealed and stored in a plastic bag.

同じ処理をしたKLF5銅合金片を走査型プローブ顕微鏡にかけた。その結果、JISで言う山谷平均間隔(RSm)は1〜3μm、最大粗さ高さ(Rz)は0.3〜0.5μmであった。また、10万倍電子顕微鏡観察したところ、直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混ざり合って積み重なった形状、言わば溶岩台地斜面ガラ場状の超微細凹凸形状でほぼ全面が覆われていた。1万倍、10万倍電顕写真を図7に示す。   A piece of KLF5 copper alloy treated in the same way was subjected to a scanning probe microscope. As a result, the mean valley and valley interval (RSm) in JIS was 1 to 3 μm, and the maximum roughness height (Rz) was 0.3 to 0.5 μm. In addition, when observed with an electron microscope of 100,000 times, a shape in which a particle size of 10 to 20 nm and an indefinite polygonal shape of 50 to 150 nm are mixed and stacked together, that is, a lava plateau slope-like ultra fine uneven shape. Almost the entire surface was covered. The 10,000 times and 100,000 times electron micrographs are shown in FIG.

[実験例8](チタン合金の表面処理)
市販の純チタン型チタン合金JIS1種「KS40(神戸製鋼所社製)」1mm厚板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。前記水溶液に前記チタン合金板材を5分浸漬して脱脂し、よく水洗した。
[Experiment 8] (Surface treatment of titanium alloy)
A commercially available pure titanium type titanium alloy JIS type 1 “KS40 (manufactured by Kobe Steel)” 1 mm thick plate material was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The titanium alloy plate was immersed in the aqueous solution for 5 minutes to degrease and washed thoroughly with water.

続いて別の槽に60℃とした1水素2弗化アンモニウムを40%含む万能エッチング材「KA−3(金属加工技術研究所社製)」を2%含む水溶液を用意し、これに前記チタン合金片を3分浸漬しイオン交換水でよく水洗した。次いで3%濃度の硝酸水溶液に1分浸漬し水洗した。90℃とした温風乾燥機に15分入れて乾燥させた。乾燥後、アルミ箔で前記チタン合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。   Subsequently, an aqueous solution containing 2% of a universal etching material “KA-3 (manufactured by Metalworking Technology Laboratories)” containing 40% of ammonium monofluoride at 60 ° C. prepared in another tank was prepared. The alloy piece was immersed for 3 minutes and washed thoroughly with ion exchange water. Subsequently, it was immersed in a 3% nitric acid aqueous solution for 1 minute and washed with water. It put into the warm air dryer which was 90 degreeC for 15 minutes, and was dried. After drying, the titanium alloy sheets were wrapped together with aluminum foil and stored in a plastic bag.

同じ処理をしたKS40チタン合金片の電子顕微鏡、及び走査型プローブ顕微鏡による観察を行った。電子顕微鏡での観察から、幅と高さが10〜数百nmで長さが数百〜数μmの湾曲した連山状突起が間隔周期10〜数百nmで面上に林立している形状の超微細凹凸面を有していることがわかった。この1万倍、10万倍電顕写真を図8に示した。また、走査型プローブ顕微鏡の観察で、山谷平均間隔(RSm)は1〜3μm、最高粗さ高さ(Rz)は0.8〜1.5μmであった。また、XPSによる分析から表面には酸素とチタンが大量に観察され、少量の炭素が観察された。これらから表層は酸化チタンが主成分であることがわかり、しかも暗色であることから3価のチタンの酸化物と推定された。   The KS40 titanium alloy pieces subjected to the same treatment were observed with an electron microscope and a scanning probe microscope. From the observation with an electron microscope, a curved continuous mountain-shaped projection having a width and height of 10 to several hundred nm and a length of several hundred to several μm stands on the surface with an interval period of 10 to several hundred nm. It was found to have an ultra fine uneven surface. The 10,000 times and 100,000 times electron micrographs are shown in FIG. Moreover, by observation with a scanning probe microscope, the mean valley interval (RSm) was 1 to 3 μm, and the maximum roughness height (Rz) was 0.8 to 1.5 μm. Further, from the analysis by XPS, a large amount of oxygen and titanium were observed on the surface, and a small amount of carbon was observed. From these, it was found that the surface layer was mainly composed of titanium oxide, and because it was dark, it was presumed to be a trivalent titanium oxide.

[実験例9](チタン合金の表面処理)
市販のα−β型チタン合金「KSTi−9(神戸製鋼社製)」の1mm厚板材を切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。前記水溶液に前記チタン合金板材を5分浸漬して脱脂し、よく水洗した。
[Experimental example 9] (Surface treatment of titanium alloy)
A 1 mm thick plate material of a commercially available α-β type titanium alloy “KSTi-9 (manufactured by Kobe Steel)” was cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The titanium alloy plate was immersed in the aqueous solution for 5 minutes to degrease and washed thoroughly with water.

次いで別の槽に40℃とした苛性ソーダ1.5%濃度の水溶液を用意し、1分浸漬して水洗した。次いで別の槽に、市販汎用エッチング試薬「KA−3(金属加工技術研究所社製)」を2質量%溶解した水溶液を60℃にして用意し、これに前記チタン合金片を3分浸漬しイオン交換水でよく水洗した。黒色のスマットが付着していたので40℃とした3%濃度の硝酸水溶液に3分浸漬し、次いで超音波を効かしたイオン交換水に5分浸漬してスマットを落とし、再び3%硝酸水溶液に0.5分浸漬し水洗した。次いで90℃とした温風乾燥機に15分入れて乾燥させた。得られたチタン合金片に金属光沢はなく暗褐色であった。乾燥後、アルミ箔で前記チタン合金板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。   Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in a separate tank, immersed for 1 minute and washed with water. Next, in another tank, an aqueous solution in which 2% by mass of a commercially available general-purpose etching reagent “KA-3 (manufactured by Metalworking Technology Laboratories)” is dissolved is prepared at 60 ° C., and the titanium alloy piece is immersed in this for 3 minutes. Wash thoroughly with ion-exchanged water. Since black smut was attached, it was immersed in 3% nitric acid aqueous solution at 40 ° C. for 3 minutes, then immersed in ion-exchanged water treated with ultrasonic waves for 5 minutes to remove the smut, and again into 3% nitric acid aqueous solution. It was immersed for 0.5 minutes and washed with water. Next, it was dried for 15 minutes in a warm air dryer set at 90 ° C. The obtained titanium alloy piece was dark brown with no metallic luster. After drying, the titanium alloy sheets were wrapped together with aluminum foil and stored in a plastic bag.

同じ処理をしたKSTi−9チタン合金片を、電子顕微鏡及び走査型プローブ顕微鏡で観察した。1万倍、10万倍電子顕微鏡で観察した結果を図9に示す。その様子は実験例8の電顕観察写真図8に酷似した部分に加え、表現が難しい枯葉状の部分が多く見られた。また、走査型プローブ顕微鏡による走査解析によると山谷平均間隔RSmは4〜6μm、最大粗さ高さRzは1〜2μmと出た。   The KSTi-9 titanium alloy piece treated in the same manner was observed with an electron microscope and a scanning probe microscope. The results of observation with an electron microscope of 10,000 times and 100,000 times are shown in FIG. In addition to the portion very similar to the electron microscopic observation photograph 8 of Experimental Example 8, many dead leaf-like portions that are difficult to express were seen. Moreover, according to the scanning analysis by a scanning probe microscope, the average valley / slope RSm was 4 to 6 μm, and the maximum roughness height Rz was 1 to 2 μm.

[実験例10](ステンレス鋼の表面処理)
市販のステンレス鋼SUS304の1mm厚板材を入手し、切断して45mm×18mmの長方形片多数とした。槽に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」を7.5%含む水溶液を60℃として脱脂用水溶液とした。前記水溶液に前記ステンレス鋼板材を5分浸漬して脱脂し、よく水洗した。続いて別の槽に65℃とした1水素2弗化アンモニウムを1%と98%硫酸を5%含む水溶液を用意し、これに前記ステンレス鋼片を4分浸漬しイオン交換水でよく水洗した。次いで40℃とした3%濃度の硝酸水溶液に3分浸漬して水洗した。90℃とした温風乾燥機に15分入れて乾燥させた。乾燥後、アルミ箔で前記ステンレス鋼板材をまとめて包み、さらにこれをポリ袋に入れて封じ保管した。
[Experimental Example 10] (Stainless steel surface treatment)
Commercially available stainless steel SUS304 1 mm thick plate material was obtained and cut into a large number of 45 mm × 18 mm rectangular pieces. An aqueous solution containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” in a tank was made 60 ° C. to obtain a degreasing aqueous solution. The stainless steel plate material was immersed in the aqueous solution for 5 minutes for degreasing and thoroughly washed with water. Subsequently, an aqueous solution containing 1% ammonium difluoride and 5% 98% sulfuric acid at 65 ° C. was prepared in another tank, and the stainless steel piece was immersed in this for 4 minutes and washed thoroughly with ion-exchanged water. . Next, it was immersed in a 3% nitric acid aqueous solution at 40 ° C. for 3 minutes and washed with water. It put into the warm air dryer which was 90 degreeC for 15 minutes, and was dried. After drying, the stainless steel plate material was wrapped together with aluminum foil, which was then stored in a plastic bag.

同じ処理をしたSUS304片の電子顕微鏡、及び走査型プローブ顕微鏡による観察を行った。電子顕微鏡観察から、直径30〜70nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地斜面ガラ場状、の超微細凹凸形状で覆われていた。1万倍、10万倍電顕写真を図10に示す。走査型プローブ顕微鏡の走査解析で、山谷平均間隔(RSm)は1〜2μmであり、その最大高低差(Rz)は0.3〜0.4μmであった。さらに別の1個をXPS分析にかけた。XPSでは表面の約1nm深さより浅い部分の元素情報が得られる。このXPS分析から表面には酸素と鉄が大量に、また、少量のニッケル、クロム、炭素、ごく少量のモリブデン、珪素が観察された。これらから表層は金属酸化物が主成分であることがわかった。この分析パターンはエッチング前のSUS304とほとんど同じであった。   The SUS304 pieces subjected to the same treatment were observed with an electron microscope and a scanning probe microscope. From observation with an electron microscope, it was covered with a super fine uneven shape of a laminar slope slanted shape, that is, a shape in which particles having a diameter of 30 to 70 nm and indefinite polygonal shapes were stacked. The 10,000 times and 100,000 times electron micrographs are shown in FIG. In the scanning analysis of the scanning probe microscope, the mean valley interval (RSm) was 1 to 2 μm, and the maximum height difference (Rz) was 0.3 to 0.4 μm. Another one was subjected to XPS analysis. In XPS, element information of a portion shallower than the surface depth of about 1 nm can be obtained. From this XPS analysis, a large amount of oxygen and iron were observed on the surface, and a small amount of nickel, chromium, carbon, a very small amount of molybdenum and silicon were observed. From these, it was found that the surface layer was mainly composed of metal oxide. This analysis pattern was almost the same as SUS304 before etching.

〔実験例11〕(一般鋼材の表面処理)
市販の厚さ1.6mmの冷間圧延鋼材「SPCC」板材を購入し、多数の大きさ18mm×45mmの長方形片に切断し、鋼材片とした。この鋼材片の端部に穴を開け、十数個に対し塩化ビニルでコートした銅線を通し、鋼材片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%を含む水溶液を60℃とし、鋼材片を5分浸漬して水道水(群馬県太田市)で水洗した。
[Experimental Example 11] (Surface treatment of general steel materials)
A commercially available 1.6 mm thick cold rolled steel “SPCC” plate was purchased and cut into a large number of 18 mm × 45 mm rectangular pieces to form steel pieces. Drill holes in the ends of this steel piece, pass through copper wires coated with vinyl chloride to dozens, and bend the copper wires so that the steel pieces do not overlap each other, so that all can be hung at the same time did. An aqueous solution containing 7.5% of an aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” at 60 ° C. was immersed in the tank for 5 minutes and washed with tap water (Ota City, Gunma Prefecture).

次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これの鋼材片を1分浸漬し水洗した。次いで別の槽に50℃とした98%硫酸を10%含む水溶液を用意し、これに鋼材片を6分浸漬し、イオン交換水で十分に水洗した。次いで25℃とした1%濃度のアンモニア水に1分浸漬して水洗し、次いで45℃とした2%濃度の過マンガン酸カリ、1%濃度の酢酸、0.5%濃度の水和酢酸ナトリウムを含む水溶液に1分浸漬して十分に水洗した。これを90℃とした温風乾燥機内に15分入れて乾燥させた。   Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the steel piece was immersed for 1 minute and washed with water. Next, an aqueous solution containing 10% of 98% sulfuric acid at 50 ° C. was prepared in another tank, and a steel piece was immersed in this for 6 minutes and sufficiently washed with ion-exchanged water. Next, it was immersed in 1% aqueous ammonia at 25 ° C. for 1 minute, washed with water, then at 45 ° C. 2% potassium permanganate, 1% acetic acid, 0.5% sodium hydroxide hydrate It was immersed in an aqueous solution containing 1 minute and washed thoroughly with water. This was placed in a warm air dryer at 90 ° C. for 15 minutes and dried.

同じ処理をしたSPCC鋼片の10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜200nmで幅が数百〜数千nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることがわかる。パーライト構造が剥き出しになった様子であり化成処理層はごく薄いことがわかる。1万倍、10万倍電顕写真を図11に示した。一方、走査型プローブ顕微鏡による走査解析では山谷平均間隔RSmが1〜3μm、最大粗さ高さRzが0.3〜1.0μmの粗度が観察された。   From the observation result of the SPCC steel slab treated with the same treatment by a 100,000 times electron microscope, it is almost an ultra-fine concavo-convex shape in which the height and depth are 80 to 200 nm and the width is several hundred to several thousand nm infinite steps. It can be seen that the entire surface is covered. It can be seen that the pearlite structure is exposed and the chemical conversion treatment layer is very thin. The 10,000 times and 100,000 times electron micrographs are shown in FIG. On the other hand, in the scanning analysis with a scanning probe microscope, roughness with a mountain-valley average interval RSm of 1 to 3 μm and a maximum roughness height Rz of 0.3 to 1.0 μm was observed.

〔実験例12〕(一般鋼材の表面処理)
市販の厚さ1.6mmの熱間圧延鋼材「SPHC」板材を購入し、多数の大きさ18mm×45mmの長方形片に切断し、鋼材片とした。この鋼材片の端部に穴を開け、十数個に対し塩化ビニルでコートした銅線を通し、鋼材片同士が互いに重ならないように銅線を曲げて加工し、全てを同時にぶら下げられるようにした。槽にアルミニウム合金用脱脂剤「NE−6(メルテックス社製)」7.5%を含む水溶液を60℃とし、鋼材片を5分浸漬して水道水(群馬県太田市)で水洗した。
[Experiment 12] (Surface treatment of general steel)
A commercially available 1.6 mm thick hot rolled steel “SPHC” plate was purchased and cut into a large number of 18 mm × 45 mm rectangular pieces to obtain steel pieces. Drill holes in the ends of this steel piece, pass through copper wires coated with vinyl chloride to dozens, and bend the copper wires so that the steel pieces do not overlap each other, so that all can be hung at the same time did. An aqueous solution containing 7.5% of an aluminum alloy degreasing agent “NE-6 (manufactured by Meltex)” at 60 ° C. was immersed in the tank for 5 minutes and washed with tap water (Ota City, Gunma Prefecture).

次いで別の槽に40℃とした1.5%苛性ソーダ水溶液を用意し、これの鋼材片を1分浸漬し水洗した。次いで別の槽に65℃とした98%硫酸を10%と1水素2弗化アンモニウム1%を含む水溶液を用意し、これに鋼材片を2分浸漬し、イオン交換水で十分に水洗した。次いで25℃とした1%濃度のアンモニア水に1分浸漬して水洗し、次いで55℃とした80%正リン酸を1.5%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、塩基性炭酸ニッケルを0.23%含む水溶液に1分浸漬して十分に水洗した。これを90℃とした温風乾燥機内に15分入れて乾燥させた。   Next, a 1.5% aqueous solution of caustic soda at 40 ° C. was prepared in another tank, and the steel piece was immersed for 1 minute and washed with water. Next, an aqueous solution containing 10% 98% sulfuric acid at 65 ° C. and 1% ammonium hydrogen fluoride and 1% was prepared in another tank, and a steel piece was immersed in this for 2 minutes and washed thoroughly with ion-exchanged water. Next, it was immersed in 1% ammonia water at 25 ° C. for 1 minute and washed with water, then at 55 ° C., 80% normal phosphoric acid was 1.5%, zinc white was 0.21%, and sodium silicofluoride was 0%. It was immersed in an aqueous solution containing 16% and 0.23% basic nickel carbonate for 1 minute and thoroughly washed with water. This was placed in a warm air dryer at 90 ° C. for 15 minutes and dried.

同じ処理をしたSPHC鋼片の10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜500nmで幅が数百〜数万nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが分かり、これもやはりパーライト構造であった。1万倍、10万倍電顕写真を図12に示した。一方、走査型プローブ顕微鏡による走査解析では山谷平均間隔RSmが1〜3μm、最大粗さ高さRzが0.3〜1.0μmの粗度が観察された。   From the observation results of the SPHC steel slab, which was processed in the same manner, with a 100,000-fold electron microscope, it was found to be an extremely fine concavo-convex shape having a height and depth of 80 to 500 nm and a width of several hundred to several tens of thousands of stairs. It was found that the entire surface was covered, and this was also a pearlite structure. The 10,000 times and 100,000 times electron micrographs are shown in FIG. On the other hand, in the scanning analysis with a scanning probe microscope, roughness with a mountain-valley average interval RSm of 1 to 3 μm and a maximum roughness height Rz of 0.3 to 1.0 μm was observed.

[実験例13](1液性エポキシ接着剤の塗布からエポキシ系樹脂の射出接合まで)
実験例1と同じ処理をした45mm×18mm×3mm厚のA7075アルミニウム合金の端部に硬化剤をイミダゾール類とする1液性エポキシ接着剤「EP160(セメダイン社製)」を塗布した。予め60℃に暖めておいたデシケータにこのアルミニウム合金片を入れて真空ポンプで減圧し、3分おいてから常圧に戻した。再度真空にして数分おいて常圧に戻し、さらに同じことを繰り返し、結局、減圧/常圧戻し操作を3回繰り返した。これが本発明者らの言う接着剤の染込まし処理である。デシケータから取り出し、接着剤塗布面にはポリエチフィルムを乗せてゴミの付着を防ぐ形とし、そのまま保管した。
[Experimental Example 13] (From application of one-component epoxy adhesive to injection bonding of epoxy resin)
A one-component epoxy adhesive “EP160 (manufactured by Cemedine Co., Ltd.)” having a curing agent as an imidazole was applied to an end portion of an A7075 aluminum alloy having a thickness of 45 mm × 18 mm × 3 mm treated in the same manner as Experimental Example 1. The aluminum alloy piece was placed in a desiccator that had been heated to 60 ° C. in advance, and the pressure was reduced with a vacuum pump. After 3 minutes, the pressure was returned to normal pressure. The vacuum was again applied and the pressure was returned to normal pressure after a few minutes, and the same process was repeated. Eventually, the decompression / normal pressure return operation was repeated three times. This is the adhesive soaking process referred to by the present inventors. The product was taken out from the desiccator, and a polyethylene film was placed on the adhesive-coated surface to prevent the adhesion of dust and stored as it was.

図13に示した形状の射出成形品が得られる射出成形金型を使用した。金型に前記で得たエポキシ接着剤塗布面付きA7075アルミニウム合金をインサートした。なお、金型温度は180℃とし、射出筒のノズル温度は90℃、使用樹脂はエポキシ系熱硬化型樹脂組成物「KE−4200(京セラケミカル社製)」であった。インサート後、直ぐに金型を閉め、同時に射出筒の接近を開始した。射出ノズルが金型に接触し、樹脂を射出したのは金型を閉じてから15秒後であった。使用した熱硬化性樹脂用の射出成形機は「PN40−2AK(日精樹脂工業社製)」だった。   An injection mold for obtaining an injection molded product having the shape shown in FIG. 13 was used. The A7075 aluminum alloy with the epoxy adhesive application surface obtained above was inserted into the mold. The mold temperature was 180 ° C., the nozzle temperature of the injection cylinder was 90 ° C., and the resin used was an epoxy thermosetting resin composition “KE-4200 (manufactured by Kyocera Chemical Co.)”. Immediately after insertion, the mold was closed, and at the same time, the injection cylinder approached. The injection nozzle contacted the mold and the resin was injected 15 seconds after the mold was closed. The injection molding machine for the thermosetting resin used was “PN40-2AK (manufactured by Nissei Plastic Industry Co., Ltd.)”.

射出1分後に射出筒ノズルを金型から離し、さらに1.5分経って金型を開いて成形物を離型した。成形品は一体化していたが、さらに安定化させるため150℃とした熱風乾燥機内に1時間おいてアニールした。放冷し、翌日に引っ張り試験機でせん断破断力を測定したところ50MPaあった。   One minute after injection, the injection cylinder nozzle was released from the mold, and after 1.5 minutes, the mold was opened to release the molded product. Although the molded product was integrated, it was annealed in a hot air dryer set at 150 ° C. for 1 hour for further stabilization. It stood to cool and when the shear breaking force was measured with the tensile tester the next day, it was 50 MPa.

[実験例14](1液性エポキシ接着剤の塗布からエポキシ系熱硬化型樹脂組成物の射出接合まで)
実験例1と同じ処理をした45mm×18mm×3mm厚のA7075アルミニウム合金の端部に硬化剤をジシアンジアミドとする1液性エポキシ接着剤「EP106NL(セメダイン社製)」を塗布した。予め60℃に暖めておいたデシケータにこのアルミニウム合金片を入れて真空ポンプで減圧し、3分おいてから常圧に戻した。再度真空にして数分おいて常圧に戻し、さらに同じことを繰り返し、結局、減圧/常圧戻し操作を3回繰り返した。これが本発明者らの言う接着剤の染込まし処理である。デシケータから取り出し、接着剤塗布面にはポリエチフィルムを載せてゴミの付着を防ぐ形とし、そのまま保管した。
[Experimental Example 14] (From application of one-component epoxy adhesive to injection bonding of epoxy thermosetting resin composition)
A one-component epoxy adhesive “EP106NL (manufactured by Cemedine)” having a curing agent of dicyandiamide was applied to an end portion of an A7075 aluminum alloy having a thickness of 45 mm × 18 mm × 3 mm treated in the same manner as in Experimental Example 1. The aluminum alloy piece was placed in a desiccator that had been heated to 60 ° C. in advance, and the pressure was reduced with a vacuum pump. After 3 minutes, the pressure was returned to normal pressure. The vacuum was again applied and the pressure was returned to normal pressure after a few minutes, and the same process was repeated. Eventually, the decompression / normal pressure return operation was repeated three times. This is the adhesive soaking process referred to by the present inventors. The product was taken out from the desiccator, and a polyethylene film was placed on the adhesive-coated surface to prevent the adhesion of dust, and stored as it was.

図13に示した形状の射出成形品が得られる射出成形金型を使用した。金型に前記で得たエポキシ接着剤塗布面付きA7075アルミニウム合金をインサートした。なお、金型温度は180℃とし、射出筒のノズル温度は90℃、使用樹脂はエポキシ系熱硬化型樹脂組成物「KE−4200(京セラケミカル社製)」であった。インサート後、直ぐに金型を閉め、1分待ってから射出筒の接近を開始した。それゆえ、射出ノズルが金型に接触し、樹脂を射出したのは金型を閉じてから75秒後であった。   An injection mold for obtaining an injection molded product having the shape shown in FIG. 13 was used. The A7075 aluminum alloy with the epoxy adhesive application surface obtained above was inserted into the mold. The mold temperature was 180 ° C., the nozzle temperature of the injection cylinder was 90 ° C., and the resin used was an epoxy thermosetting resin composition “KE-4200 (manufactured by Kyocera Chemical Co.)”. Immediately after the insertion, the mold was closed, and after waiting for one minute, the injection cylinder approached. Therefore, the injection nozzle contacted the mold and the resin was injected 75 seconds after the mold was closed.

射出1分後に射出筒ノズルを金型から離し、さらに1.5分経って金型を開いて成形物を離型した。成形品は一体化していたが、さらに安定化させるため150℃とした熱風乾燥機内に1時間おいてアニールした。放冷し、翌日に引っ張り試験機でせん断破断力を測定したところ53MPaあった。   One minute after injection, the injection cylinder nozzle was released from the mold, and after 1.5 minutes, the mold was opened to release the molded product. Although the molded product was integrated, it was annealed in a hot air dryer set at 150 ° C. for 1 hour for further stabilization. It stood to cool, and when the shear breaking force was measured with the tensile tester the next day, it was 53 MPa.

[実験例15](フェノール樹脂接着剤の塗布からフェノール樹脂系熱硬化型樹脂組成物の射出接合まで)
実験例1と同じ処理をした45mm×18mm×3mm厚のA7075アルミニウム合金の端部に溶剤MEKを50%近く含むレゾール樹脂型のフェノール樹脂接着剤「110(セメダイン社製)」を筆塗りした。風乾してMEKを揮発させてから再度接着剤「110」を筆塗りした。10分常温下で放置してから予め60℃に暖めておいたデシケータにこのアルミニウム合金片を入れて真空ポンプで減圧し、3分おいてから常圧に戻した。再度真空にして数分おいて常圧に戻し、さらに同じことを繰り返し、結局、減圧/常圧戻し操作を3回繰り返した。
[Experimental Example 15] (From application of phenol resin adhesive to injection joining of phenol resin thermosetting resin composition)
A resol resin type phenol resin adhesive “110 (manufactured by Cemedine)” containing nearly 50% of the solvent MEK was applied to the end of a 45 mm × 18 mm × 3 mm thick A7075 aluminum alloy treated in the same manner as in Experimental Example 1. After air drying and volatilizing MEK, the adhesive “110” was painted again. The aluminum alloy piece was placed in a desiccator that had been allowed to stand at room temperature for 10 minutes and then preheated to 60 ° C., and the pressure was reduced with a vacuum pump. After 3 minutes, the pressure was returned to normal pressure. The vacuum was again applied and the pressure was returned to normal pressure after a few minutes, and the same process was repeated. Eventually, the decompression / normal pressure return operation was repeated three times.

デシケータから取り出し、次は90℃とした熱風乾燥機に10分おいて接着剤塗布層を反応させた。すなわち、この温度でレゾール樹脂は溶融し、かつ、脱水縮合反応を起してゲル化が進んだ。ただ10分経過するころには水蒸気発生によるクレーター状物の生成数は減っていた。熱風乾燥機から出して放冷すると接着剤塗布面は固化した樹脂面となった。アルミ箔で包んだだけでそのまま保管した。   After taking out from the desiccator, next, the adhesive coating layer was reacted in a hot air dryer at 90 ° C. for 10 minutes. That is, the resol resin melted at this temperature, and gelation progressed due to a dehydration condensation reaction. However, the number of crater-like products produced by the generation of water vapor was reduced by about 10 minutes. When it was taken out from the hot air dryer and allowed to cool, the adhesive-coated surface became a solidified resin surface. Just wrapped in aluminum foil and stored as it is.

図13に示した形状の射出成形品が得られる射出成形金型を使用した。金型に前記で得たフェノール樹脂系接着剤塗布面付きA7075アルミニウム合金をインサートした。なお、金型温度は180℃とし、射出筒のノズル温度は80℃、使用樹脂はフェノール樹脂系熱硬化型樹脂組成物「CY3312(パナソニック電工社製)」であった。インサート後、直ぐに金型を閉め、1分待ってから射出筒の接近を開始した。それゆえ、射出ノズルが金型に接触し、樹脂を射出したのは金型を閉じてから75秒後であった。   An injection mold for obtaining an injection molded product having the shape shown in FIG. 13 was used. The A7075 aluminum alloy with the phenol resin adhesive-coated surface obtained above was inserted into the mold. The mold temperature was 180 ° C., the nozzle temperature of the injection cylinder was 80 ° C., and the resin used was a phenol resin thermosetting resin composition “CY3312 (manufactured by Panasonic Electric Works)”. Immediately after the insertion, the mold was closed, and after waiting for one minute, the injection cylinder approached. Therefore, the injection nozzle contacted the mold and the resin was injected 75 seconds after the mold was closed.

射出1分後に射出筒ノズルを金型から離し、さらに1.5分経って金型を開いて成形物を離型した。成形品は一体化していたが、さらに安定化させるため150℃とした熱風乾燥機内に1時間おいてアニールした。放冷し、翌日に引っ張り試験機でせん断破断力を測定したところ58MPaあった。   One minute after injection, the injection cylinder nozzle was released from the mold, and after 1.5 minutes, the mold was opened to release the molded product. Although the molded product was integrated, it was annealed in a hot air dryer set at 150 ° C. for 1 hour for further stabilization. It stood to cool, and when the shear breaking force was measured with the tensile tester the next day, it was 58 MPa.

[実験例16](不飽和ポリエステル樹脂系接着剤の作製)
ビニルエステル樹脂とスチレンモノマーからなるFRPマトリックス樹脂用の主液「リポキシR802(昭和高分子社製)」を400gだけ湿式粉砕機であるサンドグラインドミル「ミニツエア(アシザワ・ファインテック社製)」に充填した。ミルの粉砕室にはその80容積%分の0.3mmφの球形ジルコニアビーズを入れておいた。
[Experimental Example 16] (Preparation of unsaturated polyester resin adhesive)
Filled with 400g of the main liquid "Lipoxy R802 (made by Showa Polymer Co., Ltd.)" for FRP matrix resin consisting of vinyl ester resin and styrene monomer into the sand grind mill "Minitsu Air (made by Ashizawa Finetech Co., Ltd.)" did. In the mill grinding chamber, 80% by volume of 0.3 mmφ spherical zirconia beads were placed.

周速11〜12m/秒で湿式粉砕運転を開始し、系に微粉タルク「ハイミクロンHE5(竹原化学工業社製)」を12g、ヒュームドシリカ「アエロジルR805(日本アエロジル社製)」を2g加えて30分間粉砕運転を続け、液をポリ瓶に抜き出した。この液は、本来は懸濁液であると思われたが、湿式粉砕機によって分散が非常に良くなったせいか、液は透明に見えた。かつ、5℃とした冷蔵庫内だが3週間保管しても沈殿物は確認できなかった。   Wet grinding operation was started at a peripheral speed of 11-12 m / sec, and 12 g of fine talc “Hi-micron HE5 (manufactured by Takehara Chemical Co., Ltd.)” and 2 g of fumed silica “Aerosil R805 (Nippon Aerosil Co., Ltd.)” were added to the system. The pulverization operation was continued for 30 minutes, and the liquid was extracted into a plastic bottle. This liquid originally seemed to be a suspension, but the liquid appeared to be transparent because the dispersion was greatly improved by the wet pulverizer. And although it was in the refrigerator set to 5 degreeC, even if it stored for 3 weeks, the deposit was not able to be confirmed.

一方、有機過酸化物であるt−ブチルパーオキシベンゾエート「パーブチルZ(日油社製)」を入手した。前記の無機充填材入りの主液10gに対して「パーブチルZ」を0.1g加えよく掻き混ぜて接着剤とした。この硬化剤(重合開始剤)の添加は使用直前に行う。実験例14、15の例と異なって、不飽和ポリエステル樹脂系の接着剤は明らかに2液性である。   On the other hand, t-butyl peroxybenzoate “Perbutyl Z (manufactured by NOF Corporation)” which is an organic peroxide was obtained. 0.1 g of “Perbutyl Z” was added to 10 g of the main liquid containing the inorganic filler, and the mixture was stirred well to obtain an adhesive. This curing agent (polymerization initiator) is added immediately before use. Unlike the experimental examples 14 and 15, the unsaturated polyester resin adhesive is clearly two-component.

[実験例17](不飽和ポリエステル樹脂系接着剤の塗布から不飽和ポリエステル樹脂系熱硬化型樹脂組成物の射出接合まで)
実験例1と同じ処理をした45mm×18mm×3mm厚のA7075アルミニウム合金の端部に実験例16で作った不飽和ポリエステル樹脂系接着剤を筆塗りした。10分ほど風乾し、デシケータにアルミニウム合金片を入れて真空ポンプで減圧し、3分おいてから常圧に戻した。再度真空にして数分おいて常圧に戻し、さらに同じことを繰り返し、結局、減圧/常圧戻し操作を3回繰り返した。そして常圧下でデシケータ内に保管した。
[Experimental Example 17] (From application of unsaturated polyester resin adhesive to injection joining of unsaturated polyester resin thermosetting resin composition)
The unsaturated polyester resin adhesive prepared in Experimental Example 16 was applied by brushing to the end of a 45 mm × 18 mm × 3 mm thick A7075 aluminum alloy that had been treated in the same manner as in Experimental Example 1. It was air-dried for about 10 minutes, an aluminum alloy piece was put in a desiccator, the pressure was reduced with a vacuum pump, and after 3 minutes, the pressure was returned to normal pressure. The vacuum was again applied and the pressure was returned to normal pressure after a few minutes, and the same process was repeated. Eventually, the decompression / normal pressure return operation was repeated three times. And it stored in the desiccator under normal pressure.

前記の接着剤塗布操作などと平行して図13に示した形状の射出成形品が得られる射出成形金型を熱硬化性樹脂用射出成形機に取り付け、金型温度を150℃としておいた。前記で得た不飽和ポリエステル樹脂系接着剤塗布面付きA7075アルミニウム合金をインサートし、直後に金型を閉じた。射出筒のノズル温度は80℃、使用樹脂は不飽和ポリエステル樹脂系熱硬化型樹脂組成物「プリミックスAP−700(京セラケミカル社製)」とし、金型を閉め、直後に射出筒の接近を開始した。それゆえ、射出ノズルが金型に接触し、樹脂を射出したのは金型を閉じてから15秒後であった。   In parallel with the adhesive application operation and the like, an injection mold for obtaining an injection molded product having the shape shown in FIG. 13 was attached to an injection molding machine for thermosetting resin, and the mold temperature was set to 150 ° C. The A7075 aluminum alloy with unsaturated polyester resin adhesive applied surface obtained above was inserted, and the mold was closed immediately. The nozzle temperature of the injection cylinder is 80 ° C., and the resin used is an unsaturated polyester resin thermosetting resin composition “Premix AP-700 (manufactured by Kyocera Chemical Co.)”. Started. Therefore, the injection nozzle contacted the mold and the resin was injected 15 seconds after the mold was closed.

射出1分後に射出筒ノズルを金型から離し、さらに1.5分経って金型を開いて成形物を離型した。成形品は一体化していたが、さらに安定化させるため150℃とした熱風乾燥機内に1時間おいてアニールした。放冷し、翌日に引っ張り試験機でせん断破断力を測定したところ49MPaあった。   One minute after injection, the injection cylinder nozzle was released from the mold, and after 1.5 minutes, the mold was opened to release the molded product. Although the molded product was integrated, it was annealed in a hot air dryer set at 150 ° C. for 1 hour for further stabilization. It stood to cool, and when the shear fracture strength was measured with the tensile tester the next day, it was 49 MPa.

[実験例18](1液性エポキシ接着剤の塗布からフェノール樹脂系熱硬化型樹脂組成物の射出接合試験まで:比較例)
実験例14と全く同様にして45mm×18mm×3mm厚のA7075アルミニウム合金の端部に1液性エポキシ接着剤「EP106NL」を塗布し、染み込まし処理をした。
[Experimental Example 18] (From application of one-component epoxy adhesive to injection bonding test of phenol resin thermosetting resin composition: comparative example)
In exactly the same manner as in Experimental Example 14, a one-component epoxy adhesive “EP106NL” was applied to the end of an A7075 aluminum alloy having a thickness of 45 mm × 18 mm × 3 mm, and was soaked and treated.

図13に示した形状の射出成形品が得られる射出成形金型を使用し、金型に上記のエポキシ接着剤塗布面付きA7075アルミニウム合金をインサートした。なお、金型温度は180℃とし、射出筒のノズル温度は80℃として射出用樹脂はエポキシ系熱硬化型樹脂組成物「KE−4200(京セラケミカル社製)」ではなく、フェノール樹脂系の熱硬化性樹脂組成物「CY3221(パナソニック電工社製)」とした。インサート後、すぐに金型を閉め、1分待ってから射出筒の接近を開始した。それゆえ、射出ノズルが金型に接触し、樹脂を射出したのは金型を閉じてから75秒後であった。   An injection mold that provides an injection-molded article having the shape shown in FIG. 13 was used, and the above-mentioned A7075 aluminum alloy with an epoxy adhesive application surface was inserted into the mold. The mold temperature is set to 180 ° C., the nozzle temperature of the injection cylinder is set to 80 ° C., and the injection resin is not an epoxy thermosetting resin composition “KE-4200 (manufactured by Kyocera Chemical Co.)” but a phenol resin-based heat. The curable resin composition “CY3221 (manufactured by Panasonic Electric Works Co., Ltd.)” was used. Immediately after the insertion, the mold was closed, and after waiting for one minute, the injection cylinder started to approach. Therefore, the injection nozzle contacted the mold and the resin was injected 75 seconds after the mold was closed.

射出1分後に射出筒ノズルを金型から離し、さらに1.5分経って金型を開いて成形物を離型した。成形品は一体化しており、さらに安定化させるため150℃とした熱風乾燥機内に1時間おいてアニールした。これを放冷し、翌日に引っ張り試験機でせん断破断力を測定せんとしたところその扱い中に壊れた。アルミニウム合金側に接着剤硬化物層が厚みを持って残っており、接着剤も射出樹脂も硬化したが、ともに混ざり合って接合しながら硬化するということはなかった模様であった。   One minute after injection, the injection cylinder nozzle was released from the mold, and after 1.5 minutes, the mold was opened to release the molded product. The molded product was integrated and annealed in a hot air dryer set at 150 ° C. for 1 hour for further stabilization. When this was allowed to cool and the shear breaking strength was measured with a tensile tester the next day, it broke during handling. The cured adhesive layer remained thick on the aluminum alloy side, and both the adhesive and the injection resin were cured, but it seemed that they were not mixed and cured while being joined together.

[実験例19〜29](フェノール樹脂系接着剤を塗布した各種金属合金へのフェノール樹脂系熱硬化性樹脂の射出接合)
実験例15と全く同様に実験を進めたが、異なるのは金属合金種である。実験例15では実験例1で得たのと同じ方法のA7075アルミニウム合金を使用したが、実験例19〜30では実験例2〜12に示すアルミニウム合金、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、一般鋼材等を使用した。インサート時に厚みの薄いものはスペーサーを外側に置いて金属合金部の厚さを3mmとした。これらの実験で得た一体化物のせん断破断力を表1に示す。
[Experimental Examples 19 to 29] (Injection joining of phenol resin thermosetting resin to various metal alloys coated with phenol resin adhesive)
The experiment was carried out in exactly the same way as in Experimental Example 15, but the difference was the metal alloy type. In Experimental Example 15, A7075 aluminum alloy of the same method as that obtained in Experimental Example 1 was used, but in Experimental Examples 19 to 30, the aluminum alloy, magnesium alloy, copper alloy, titanium alloy, stainless steel shown in Experimental Examples 2 to 12 were used. General steel materials were used. When the insert was thin, the spacer was placed outside and the thickness of the metal alloy part was 3 mm. Table 1 shows the shear breaking force of the integrated product obtained in these experiments.

<表1> フェノール樹脂系接着剤「110(セメダイン社製)」塗布済み金属合金片を射出成形金型にインサートし、フェノール樹脂系熱硬化型樹脂組成物「CY3221(パナソニック電工社製)」を射出接合したもののせん断破断力
<Table 1> A phenol resin adhesive “110 (Cemedine)” coated metal alloy piece is inserted into an injection mold, and a phenol resin thermosetting resin composition “CY3221 (Panasonic Electric Works)” is used. Shear breaking force of injection bonded

61…金属合金片
62…硬化した熱硬化性樹脂組成物の射出成形片
63…接着剤層
71…金属合金部分
72…超微細凹凸部
73…樹脂組成物
DESCRIPTION OF SYMBOLS 61 ... Metal alloy piece 62 ... Injection-molded piece of the cured thermosetting resin composition 63 ... Adhesive layer 71 ... Metal alloy part 72 ... Super fine uneven part 73 ... Resin composition

Claims (23)

表面に化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜500nmの不定期な周期の微細凹凸形状で覆われた形状であり、かつ、該表面が金属酸化物または金属リン酸化物の薄層である金属形状物と、
射出成形で得られたエポキシ樹脂系熱硬化性樹脂組成物製の成形物と、
がエポキシ系接着剤の硬化物層を間に挟んで一体化してなることを特徴とする金属合金と熱硬化性樹脂の接着複合体。
The surface has a roughness on the order of microns by chemical etching, and the surface is covered with a fine irregular shape having an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal layer that is a thin layer;
Molded product made of epoxy resin thermosetting resin composition obtained by injection molding,
Is an adhesive composite of a metal alloy and a thermosetting resin, which is formed by integrating a cured product layer of an epoxy adhesive.
表面に化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜500nmの不定期な周期の微細凹凸形状で覆われた形状であり、かつ、該表面が金属酸化物または金属リン酸化物の薄層である金属形状物と、
射出成形で得られたフェノール樹脂系熱硬化性樹脂組成物製の成形物と、
がフェノール樹脂系接着剤の硬化物層を間に挟んで一体化してなることを特徴とする金属合金と熱硬化性樹脂の接着複合体。
The surface has a roughness on the order of microns by chemical etching, and the surface is covered with a fine irregular shape having an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal layer that is a thin layer;
Molded product made of phenol resin thermosetting resin composition obtained by injection molding,
Is an adhesive composite of a metal alloy and a thermosetting resin, characterized by being integrated with a cured layer of a phenol resin adhesive in between.
表面に化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜500nmの不定期な周期の微細凹凸形状で覆われた形状であり、かつ、該表面が金属酸化物または金属リン酸化物の薄層である金属形状物と、
射出成形で得られた不飽和ポリエステル樹脂系熱硬化性樹脂組成物製の成形物と、
が、1)不飽和ポリエステル樹脂及び/またはビニルエステル樹脂と、2)スチレン系モノマーと、3)無機充填材と、4)有機過酸化物とからなる熱硬化性樹脂組成物である不飽和ポリエステル樹脂系接着剤の硬化物層を間に挟んで一体化してなることを特徴とする金属合金と熱硬化性樹脂の接着複合体。
The surface has a roughness on the order of microns by chemical etching, and the surface is covered with a fine irregular shape having an irregular period of 5 to 500 nm, and the surface is made of metal oxide or metal phosphorous oxide. A metal layer that is a thin layer;
Molded product made of unsaturated polyester resin thermosetting resin composition obtained by injection molding,
Is a thermosetting resin composition comprising 1) an unsaturated polyester resin and / or vinyl ester resin, 2) a styrene monomer, 3) an inorganic filler, and 4) an organic peroxide. An adhesive composite of a metal alloy and a thermosetting resin, which is integrated with a cured product layer of a resin adhesive interposed therebetween.
請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が10〜100nm径で同等の深さまたは高さの凹部もしくは凸部である超微細凹凸面で覆われた形状であり、かつ、該表面がナトリウムイオンを含まない厚さ2nm以上の酸化アルミニウム薄層を有しているアルミニウム合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite body of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shape has a surface having a roughness on the order of microns by chemical etching and a surface of 10 to 10. It has a shape covered with an ultra-fine irregular surface that is a concave or convex portion with a diameter of 100 nm and an equivalent depth or height, and the surface has a thin aluminum oxide layer with a thickness of 2 nm or more that does not contain sodium ions. An adhesive composite of a metal alloy and a thermosetting resin, characterized by being made of an aluminum alloy. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともにその表面が5〜20nm径で20〜200nm長さの棒状物が無数に錯綜した形の超微細凹凸面で覆われた形状であり、かつ、該表面がマンガン酸化物の薄層を有しているマグネシウム合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shaped product has a surface roughness of 5 microns by chemical etching and a surface of 5 to 5. Made of a magnesium alloy having a 20 nm diameter and 20 to 200 nm long rod-shaped material covered with an infinite number of complex ultra-fine irregular surfaces, and the surface having a thin layer of manganese oxide An adhesive composite of a metal alloy and a thermosetting resin, characterized in that 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が5〜20nm径で10〜30nm長さの棒状凸部が無数に有する直径80〜100nmの球状物が不規則に積み重なった形状の超微細凹凸面で覆われた形状であり、かつ、該表面がマンガン酸化物の薄層を有しているマグネシウム合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite body of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shape has a surface roughness of 5 microns by chemical etching and a surface of 5 to 5. It is a shape covered with an ultrafine irregular surface of an irregularly stacked spherical object with a diameter of 80 to 100 nm, which has an infinite number of rod-shaped convex portions with a diameter of 20 nm and a length of 10 to 30 nm, and the surface is oxidized with manganese An adhesive composite of a metal alloy and a thermosetting resin, characterized by being made of a magnesium alloy having a thin layer of material. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が20〜40nmの粒径物や不定多角形状物が積み重なった形状の超微細凹凸面で覆われた形状であり、かつ、該表面がマンガン酸化物の薄層を有しているマグネシウム合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shaped product has a surface having a roughness of micron order by chemical etching and a surface of 20˜ It is made of a magnesium alloy having a shape covered with an ultrafine irregular surface of 40 nm particle size and indefinite polygonal shape, and the surface of which has a thin layer of manganese oxide. An adhesive composite of a metal alloy and a thermosetting resin. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径または長径短径の平均が10〜150nmである孔開口部または凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shape has a surface having a roughness of a micron order by chemical etching and a surface having a diameter or Hole openings or recesses having an average of a major axis and a minor axis of 10 to 150 nm are almost entirely covered with ultra-fine irregularities existing on the entire surface at irregular intervals of 30 to 300 nm, and the surface is mainly oxidized. An adhesive composite of a metal alloy and a thermosetting resin, which is made of a copper alloy that is a thin layer of cupric copper. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径または長径短径の平均が10〜200nmである凸部が混在して全面に存在する超微細凹凸形状であり、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shape has a surface having a roughness of a micron order by chemical etching and a surface having a diameter or It is made of a copper alloy in which convex portions having an average major axis and minor axis of 10 to 200 nm are mixed and present on the entire surface, and the surface is mainly a thin layer of cupric oxide. An adhesive composite of a metal alloy and a thermosetting resin. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径または長径短径の平均が10〜150nmである粒径物または不定多角形状物が連なり一部融け合って積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shape has a surface having a roughness of a micron order by chemical etching and a surface having a diameter or The entire surface is covered with an ultra-fine irregular shape of a shape in which particles having an average major axis and minor axis of 10 to 150 nm or an indefinite polygonal shape are continuously fused and stacked, and the surface is mainly oxidized. An adhesive composite of a metal alloy and a thermosetting resin, which is made of a copper alloy that is a thin layer of cupric copper. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混在して積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が主として酸化第2銅の薄層である銅合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the surface of the metal shape has a roughness of a micron order by chemical etching and the surface has a diameter of 10 The entire surface is covered with an ultra-fine irregular shape of a shape in which particles having a particle diameter of ˜20 nm and indefinite polygons having a diameter of 50 to 150 nm are mixed and the surface is mainly a thin layer of cupric oxide An adhesive composite of a metal alloy and a thermosetting resin, characterized by being made of a copper alloy. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ及び幅が10〜350nm、長さが10nm以上の山状または連山状凸部が10〜350nm周期で全面に存在する超微細凹凸形状であり、かつ、該表面が主としてチタン酸化物の薄層であるチタン合金製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the surface of the metal shape has a roughness of a micron order by chemical etching and a height of the surface. And a ridge-like or ridge-like convex part having a width of 10 to 350 nm and a length of 10 nm or more is present on the entire surface with a period of 10 to 350 nm, and the surface is a thin layer mainly of titanium oxide. An adhesive composite of a metal alloy and a thermosetting resin, characterized by being made of a titanium alloy. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによる山谷平均間隔(RSm)が1〜10μm、最大粗さ高さ(Rz)が1〜5μmである粗度があるとともに該表面が10μm角の面積内に円滑なドーム状形状と枯葉状形状の双方が混在する微細凹凸形状であり、かつ、該表面が主としてチタンとアルミニウムを含む金属酸化物薄層であるα−β型チタン合金のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite body of a metal alloy and a thermosetting resin according to claim 1, wherein the metal shape has a surface having a peak-to-valley average interval (RSm) of 1 to 10 μm by chemical etching and a maximum roughness. The surface has a roughness with a height (Rz) of 1 to 5 μm, and the surface has a fine concavo-convex shape in which both a smooth dome shape and a dead leaf shape are mixed within an area of 10 μm square, and the surface Is an α-β type titanium alloy which is a metal oxide thin layer mainly containing titanium and aluminum, and is an adhesive composite of a metal alloy and a thermosetting resin. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が直径20〜70nmの粒径物や不定多角形状物が積み重なった形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面が金属酸化物の薄層であるステンレス鋼部品のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the surface of the metal shaped product has a micron-order roughness due to chemical etching, and the surface has a diameter of 20 mm. It is of a stainless steel part that is almost entirely covered with an ultrafine uneven shape of a shape in which particles having a particle diameter of ˜70 nm or indefinite polygonal shapes are stacked, and the surface is a thin layer of metal oxide. An adhesive composite of a metal alloy and a thermosetting resin. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ80〜150nm、奥行き80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面がマンガン酸化物、クロム酸化物、亜鉛リン酸化物または亜鉛とカルシウムのリン酸化物の薄層である鋼材製のものであることを特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the surface of the metal shape has a roughness of a micron order by chemical etching and a height of the surface. The entire surface is covered with an ultra-fine irregular shape of 80 to 150 nm, a depth of 80 to 200 nm, and a width of several hundred to several thousand nm, and the surface is covered with manganese oxide and chromium oxide. An adhesive composite of a metal alloy and a thermosetting resin, which is made of a steel material which is a thin layer of zinc phosphate or zinc phosphate and zinc phosphate. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ80〜150nm、奥行きが80〜500nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面がマンガン酸化物、クロム酸化物、亜鉛リン酸化物または亜鉛とカルシウムのリン酸化物の薄層である鋼材製のものであること を特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the surface of the metal shape has a roughness of a micron order by chemical etching and a height of the surface. The entire surface is covered with an ultra-fine concavo-convex shape having a shape of 80 to 150 nm, a depth of 80 to 500 nm, and a width of several hundred to several thousand nm, and the surface is covered with manganese oxide and chromium. An adhesive composite of a metal alloy and a thermosetting resin, characterized by being made of a steel material that is a thin layer of oxide, zinc phosphate, or zinc and calcium phosphate. 請求項1ないし3のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体において、前記金属形状物は、表面が化学エッチングによるミクロンオーダーの粗度があるとともに該表面が高さ50〜100nm、奥行きが80〜200nmで幅が数百〜数千nmの段差が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われており、かつ、該表面がマンガン酸化物、クロム酸化物、亜鉛リン酸化物または亜鉛とカルシウムのリン酸化物の薄層である鋼材製のものであること を特徴とする金属合金と熱硬化性樹脂の接着複合体。   4. The bonded composite of a metal alloy and a thermosetting resin according to claim 1, wherein the surface of the metal shape has a roughness of a micron order by chemical etching and a height of the surface. The entire surface is covered with an ultra-fine uneven shape of 50-100 nm, a depth of 80-200 nm, and a width of several hundred to several thousand nm, and the surface is covered with manganese oxide and chromium. An adhesive composite of a metal alloy and a thermosetting resin, characterized by being made of a steel material that is a thin layer of oxide, zinc phosphate, or zinc and calcium phosphate. 金属合金材を機械的加工で所定形状に形状化する工程と、
前記形状化された前記金属合金材の表面に5〜500nmの不定期な周期の微細凹凸形状で覆われるとともに該微細凹凸面で構成される大きな凹凸の山谷平均間隔(RSm)が1〜10μmで最大粗さ高さ(Rz)が0.2〜5μmとなる粗度を与える化学エッチング含む各種液処理を施す表面処理工程と、
前記金属合金材に1液性エポキシ系接着剤を塗布する工程と、
前記接着剤塗布済み金属合金材を射出成形用金型内にインサートする工程と、
前記射出成形用金型を装填した射出成形機にてエポキシ系熱硬化性樹脂を射出し金型を開いて金属合金材と熱硬化性樹脂成形物の一体化品を離型させる工程と、
を含むことを特徴とする金属合金と熱硬化性樹脂の接着複合体の製造方法。
Forming a metal alloy material into a predetermined shape by mechanical processing;
The surface of the shaped metal alloy material is covered with a fine irregular shape having an irregular period of 5 to 500 nm and has a large irregularity crest and valley mean interval (RSm) of 1 to 10 μm. A surface treatment step for performing various liquid treatments including chemical etching that gives a roughness with a maximum roughness height (Rz) of 0.2 to 5 μm;
Applying a one-component epoxy adhesive to the metal alloy material;
Inserting the adhesive-coated metal alloy material into an injection mold; and
A step of injecting an epoxy thermosetting resin in an injection molding machine loaded with the injection mold, opening the mold, and releasing an integrated product of the metal alloy material and the thermosetting resin molding;
A method for producing a bonded composite of a metal alloy and a thermosetting resin, comprising:
金属合金材を機械的加工で所定形状に形状化する工程と、
前記形状化された前記金属合金材の表面に5〜500nmの不定期な周期の微細凹凸形状で覆われるとともに該微細凹凸面で構成される大きな凹凸の山谷平均間隔(RSm)が1〜10μmで最大粗さ高さ(Rz)が0.2〜5μmの粗度を与える化学エッチング含む各種液処理を施す表面処理工程と、
前記金属合金材にフェノール樹脂系接着剤を塗布する工程と、
前記接着剤塗布済み金属合金材を射出成形用金型内にインサートする工程と、
前記射出成形用金型を装填した射出成形機にてフェノール樹脂系熱硬化性樹脂を射出し金型を開いて金属合金材と熱硬化性樹脂成形物の一体化品を離型させる工程と、
を含むことを特徴とする金属合金と熱硬化性樹脂の接着複合体の製造方法。
Forming a metal alloy material into a predetermined shape by mechanical processing;
The surface of the shaped metal alloy material is covered with a fine irregular shape having an irregular period of 5 to 500 nm and has a large irregularity crest and valley mean interval (RSm) of 1 to 10 μm. A surface treatment step for performing various liquid treatments including chemical etching that gives a roughness having a maximum roughness height (Rz) of 0.2 to 5 μm;
Applying a phenolic resin adhesive to the metal alloy material;
Inserting the adhesive-coated metal alloy material into an injection mold; and
A step of injecting a phenolic resin thermosetting resin with an injection molding machine loaded with the injection mold, opening the mold, and releasing an integrated product of the metal alloy material and the thermosetting resin molding;
A method for producing a bonded composite of a metal alloy and a thermosetting resin, comprising:
金属合金材を機械的加工で所定形状に形状化する工程と、
前記形状化された前記金属合金材の表面に5〜500nmの不定期な周期の微細凹凸形状で覆われるとともに該微細凹凸面で構成される大きな凹凸の山谷平均間隔(RSm)が1〜10μmで最大粗さ高さ(Rz)が0.2〜5μmの粗度を与える化学エッチング含む各種液処理を施す表面処理工程と、
1)不飽和ポリエステル樹脂及び/またはビニルエステル樹脂と、2)スチレン系モノマーと、3)無機充填材と、4)有機過酸化物とからなる不飽和ポリエステル樹脂系接着剤を作製する工程と、
前記金属合金材に前記不飽和ポリエステル樹脂系接着剤を塗布する工程と、
前記不飽和ポリエステル樹脂系接着剤塗布済み金属合金材を射出成形用金型内にインサートする工程と、
前記金型を装填した射出成形機または塊状成形コンパウンド成形機にて不飽和ポリエステル系熱硬化性樹脂または塊状成形コンパウンドを射出し、金型を開いて金属合金材と熱硬化性樹脂成形物の一体化品を離型させる工程と、
を含むことを特徴とする金属合金と熱硬化性樹脂の接着複合体の製造方法。
Forming a metal alloy material into a predetermined shape by mechanical processing;
The surface of the shaped metal alloy material is covered with a fine irregular shape having an irregular period of 5 to 500 nm and has a large irregularity crest and valley mean interval (RSm) of 1 to 10 μm. A surface treatment step for performing various liquid treatments including chemical etching that gives a roughness having a maximum roughness height (Rz) of 0.2 to 5 μm;
A step of producing an unsaturated polyester resin adhesive comprising 1) an unsaturated polyester resin and / or vinyl ester resin, 2) a styrene monomer, 3) an inorganic filler, and 4) an organic peroxide,
Applying the unsaturated polyester resin adhesive to the metal alloy material;
Inserting the unsaturated polyester resin adhesive-coated metal alloy material into an injection mold; and
Unsaturated polyester-based thermosetting resin or block molding compound is injected by an injection molding machine or block molding compound molding machine loaded with the mold, the mold is opened, and the metal alloy material and the thermosetting resin molding are integrated. A step of releasing the chemical product,
A method for producing a bonded composite of a metal alloy and a thermosetting resin, comprising:
請求項18ないし20のいずれか1項に記載の金属合金と熱硬化性樹脂の接着複合体の製造方法において、前記の金属合金材に接着剤を塗布する工程後に、これを風乾し、さらに風乾後に密閉容器に収納し、容器内を減圧しその後に加圧する操作を繰り返し行う、金属合金表面への樹脂組成物染み込まし工程を付加したことを特徴とする金属合金と熱硬化性樹脂の接着複合体の製造方法。   21. The method for producing an adhesive composite of a metal alloy and a thermosetting resin according to any one of claims 18 to 20, wherein after the step of applying an adhesive to the metal alloy material, this is air-dried, and further air-dried. An adhesive composite of a metal alloy and a thermosetting resin, characterized in that a step of immersing the resin composition into the surface of the metal alloy is repeated, which is then housed in a sealed container, and the inside of the container is decompressed and then repeatedly pressurized. Body manufacturing method. 請求項19に記載の金属合金と熱硬化性樹脂の接着複合体の製造方法において、
前記の金属合金材に接着剤を塗布する工程後に、これを風乾し、さらに80〜100℃とした熱風乾燥機内に5〜15分入れてフェノール樹脂接着剤を予備硬化させることを特徴とする金属合金と熱硬化性樹脂の接着複合体の製造方法。
In the manufacturing method of the adhesion complex of the metal alloy according to claim 19, and a thermosetting resin,
After the step of applying the adhesive to the metal alloy material, the metal is air-dried and further placed in a hot-air dryer at 80 to 100 ° C. for 5 to 15 minutes to pre-harden the phenol resin adhesive A method for producing an adhesive composite of an alloy and a thermosetting resin.
請求項20に記載の金属合金と熱硬化性樹脂の接着複合体の製造方法において、
前記の不飽和ポリエステル樹脂系接着剤を作成する工程内に、サンドグラインドミルを使用して不飽和ポリエステル樹脂主液に無機充填材等を強制分散させる工程を含むことを特徴とする金属合金と熱硬化性樹脂の接着複合体の製造方法。
In the manufacturing method of the adhesion composite_body | complex of the metal alloy of Claim 20, and a thermosetting resin,
The step of creating the unsaturated polyester resin adhesive includes a step of forcibly dispersing an inorganic filler or the like in the unsaturated polyester resin main liquid using a sand grind mill. A method for producing an adhesive composite of a curable resin.
JP2009008380A 2009-01-19 2009-01-19 Adhesive-bonded composite containing metal alloy, and manufacturing method for the same Pending JP2012066383A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009008380A JP2012066383A (en) 2009-01-19 2009-01-19 Adhesive-bonded composite containing metal alloy, and manufacturing method for the same
PCT/JP2010/050537 WO2010082660A1 (en) 2009-01-19 2010-01-19 Adhesive-bonded composite containing metal alloy, and process for production of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008380A JP2012066383A (en) 2009-01-19 2009-01-19 Adhesive-bonded composite containing metal alloy, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2012066383A true JP2012066383A (en) 2012-04-05

Family

ID=42339911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008380A Pending JP2012066383A (en) 2009-01-19 2009-01-19 Adhesive-bonded composite containing metal alloy, and manufacturing method for the same

Country Status (2)

Country Link
JP (1) JP2012066383A (en)
WO (1) WO2010082660A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071451A (en) * 2011-09-27 2013-04-22 Ichia Technologies Inc Composite parts formed of metal case having plastic member
JP2014141021A (en) * 2013-01-24 2014-08-07 Nisshin Steel Co Ltd Coated metal shaped material, composite body and method of producing the same
KR20150034480A (en) * 2013-09-26 2015-04-03 주식회사 신광화학산업 Between the two kinds of metal and resin material is maintained and denatured urethane thermal compression adhesive compound and method using the same metal and resin boned
CN105538596A (en) * 2016-01-28 2016-05-04 深圳市纳明特科技有限公司 Composite plastic material and preparing method thereof
KR101622502B1 (en) 2012-02-24 2016-05-18 쉔젠 비와이디 오토 알앤디 컴퍼니 리미티드 Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
US20160211051A1 (en) * 2013-10-03 2016-07-21 Furukawa Electric Co., Ltd. Aluminum-resin composite, insulated aluminum wire, flat cable and processes for producing the same
KR101669399B1 (en) 2012-05-21 2016-10-25 미쯔이가가꾸가부시끼가이샤 Complex and method for manufacturing complex
CN106903839A (en) * 2013-07-18 2017-06-30 三井化学株式会社 Metal/resin complex structure body, hardware and application
WO2020059128A1 (en) * 2018-09-21 2020-03-26 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
KR102104580B1 (en) * 2019-10-31 2020-04-24 주식회사 에디스플레이 Bonding method for display liquid crystal glass and brackets using hot-melt adhesive composition
CN111801442A (en) * 2018-03-08 2020-10-20 三井化学株式会社 Magnesium alloy/resin composite structure and method for producing same
KR20210056755A (en) * 2019-11-11 2021-05-20 주식회사 엘지화학 Specimens for measurement of ultrasonic welding strength
JPWO2022050001A1 (en) * 2020-09-07 2022-03-10

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018658B2 (en) 2011-06-07 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. Optical semiconductor package and method of manufacturing the same
KR101469899B1 (en) * 2014-11-04 2014-12-08 (주)일광폴리머 Method for production of metal-resin complex
JP2017047542A (en) * 2015-08-31 2017-03-09 中西金属工業株式会社 Method for producing protective cover having sensor holder part
CN106553360B (en) 2015-09-25 2020-03-31 比亚迪股份有限公司 Metal resin complex and preparation method thereof
CN110065199A (en) * 2019-04-12 2019-07-30 金华职业技术学院 A kind of configuration of auxiliary agent and the direct technique for sticking of aluminium alloy-PP

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4452220B2 (en) * 2005-08-19 2010-04-21 東ソー株式会社 Composite and production method thereof
JP2008173967A (en) * 2006-12-18 2008-07-31 Taisei Plas Co Ltd Composite of metal and resin, and its manufacturing method
KR101161928B1 (en) * 2007-03-12 2012-07-03 다이세이 플라스 가부시끼가이샤 Aluminum alloy composite and method of bonding therefor
ES2405979T3 (en) * 2007-04-06 2013-06-04 Taisei Plas Co., Ltd. Copper alloy composite material and manufacturing procedure
US20100112287A1 (en) * 2007-04-13 2010-05-06 Taisei Plas Co., Ltd. Magnesium alloy composite and method for manufacturing same
WO2008133030A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Titanium alloy compound material, and its jointing method
US20100119836A1 (en) * 2007-04-24 2010-05-13 Taisei Plas Co., Ltd. Stainless steel composite and manufacturing method thereof
KR101216800B1 (en) * 2007-05-28 2013-01-10 다이세이 플라스 가부시끼가이샤 Steel product composite and process for producing the steel product composite
JP4965347B2 (en) * 2007-06-18 2012-07-04 大成プラス株式会社 Tubular composite and manufacturing method thereof
WO2009116484A1 (en) * 2008-03-17 2009-09-24 大成プラス株式会社 Bonded body of galvanized steel sheet and adherend, and manufacturing method therefor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071451A (en) * 2011-09-27 2013-04-22 Ichia Technologies Inc Composite parts formed of metal case having plastic member
KR101622502B1 (en) 2012-02-24 2016-05-18 쉔젠 비와이디 오토 알앤디 컴퍼니 리미티드 Method for integrally molding metal and resin and metal-resin composite structure obtainable by the same
KR101669399B1 (en) 2012-05-21 2016-10-25 미쯔이가가꾸가부시끼가이샤 Complex and method for manufacturing complex
JP2014141021A (en) * 2013-01-24 2014-08-07 Nisshin Steel Co Ltd Coated metal shaped material, composite body and method of producing the same
CN106903839A (en) * 2013-07-18 2017-06-30 三井化学株式会社 Metal/resin complex structure body, hardware and application
CN106903839B (en) * 2013-07-18 2019-01-04 三井化学株式会社 Metal/resin complex structure body, metal component and application
KR20150034480A (en) * 2013-09-26 2015-04-03 주식회사 신광화학산업 Between the two kinds of metal and resin material is maintained and denatured urethane thermal compression adhesive compound and method using the same metal and resin boned
KR101577580B1 (en) 2013-09-26 2015-12-28 주식회사 신광화학산업 Bonding method of a metal and a resin using a denatured urethane thermal compression adhesive composition between the two kinds of material and the adhesive force holding the metal and the resin
US20160211051A1 (en) * 2013-10-03 2016-07-21 Furukawa Electric Co., Ltd. Aluminum-resin composite, insulated aluminum wire, flat cable and processes for producing the same
US11114216B2 (en) * 2013-10-03 2021-09-07 Furukawa Electric Co., Ltd. Aluminum-resin composite, insulated aluminum wire, flat cable and processes for producing the same
CN105538596A (en) * 2016-01-28 2016-05-04 深圳市纳明特科技有限公司 Composite plastic material and preparing method thereof
CN111801442A (en) * 2018-03-08 2020-10-20 三井化学株式会社 Magnesium alloy/resin composite structure and method for producing same
WO2020059128A1 (en) * 2018-09-21 2020-03-26 三井化学株式会社 Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
CN112639167A (en) * 2018-09-21 2021-04-09 三井化学株式会社 Metal/resin composite structure, method for producing metal/resin composite structure, and cooling device
JPWO2020059128A1 (en) * 2018-09-21 2021-08-30 三井化学株式会社 Metal / resin composite structure, metal / resin composite structure manufacturing method and cooling device
EP3854909A4 (en) * 2018-09-21 2022-05-04 Mitsui Chemicals, Inc. Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device
JP7074868B2 (en) 2018-09-21 2022-05-24 三井化学株式会社 Cooling system
KR102104580B1 (en) * 2019-10-31 2020-04-24 주식회사 에디스플레이 Bonding method for display liquid crystal glass and brackets using hot-melt adhesive composition
KR20210056755A (en) * 2019-11-11 2021-05-20 주식회사 엘지화학 Specimens for measurement of ultrasonic welding strength
KR102786644B1 (en) * 2019-11-11 2025-03-27 주식회사 엘지화학 Specimens for measurement of ultrasonic welding strength
JPWO2022050001A1 (en) * 2020-09-07 2022-03-10
WO2022050001A1 (en) * 2020-09-07 2022-03-10 ナミックス株式会社 Copper foil and laminate, and manufacturing methods therefor

Also Published As

Publication number Publication date
WO2010082660A1 (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2010082660A1 (en) Adhesive-bonded composite containing metal alloy, and process for production of same
JP5139426B2 (en) Steel composite and manufacturing method thereof
JP5108891B2 (en) Method for producing metal resin composite
KR101115786B1 (en) Process for production of highly corrosion-resistant composite
JP5426932B2 (en) Composite of metal alloy and thermosetting resin and method for producing the same
JP5372469B2 (en) Metal alloy laminate
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP5129903B2 (en) Magnesium alloy composite and manufacturing method thereof
JP4527196B2 (en) Composite and production method thereof
TWI463039B (en) Method of preparing aluminum alloy resin composite and aluminum alloy-resin composite obtainable by the same
JP4903897B2 (en) Zinc-based plated steel sheet and adherend bonded body and method for producing the same
JP5237303B2 (en) Composite of steel and resin and method for producing the same
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
JP4903881B2 (en) Joined body of metal alloy and adherend and method for producing the same
JP5008040B2 (en) Titanium alloy composite and its joining method
JP5108904B2 (en) Composite of metal and polyamide resin composition and method for producing the same
JP5191961B2 (en) One-component epoxy adhesive and bonding method
CN109421207B (en) Method for manufacturing metal-polymer resin bonded member
JP2007050630A (en) Composite and production method thereof
JP4906004B2 (en) Method for producing composite of metal alloy and fiber reinforced plastic
JP2010269534A (en) Bonded composite containing metal, and method for manufacturing the same
JP2009061648A (en) Joint composite material including metal alloy and manufacturing method thereof
JP2010131789A (en) Adhesion composite containing metal alloy, and method for producing the same
JP2004216609A (en) Composite comprising metal and thermoplastic resin composition and its manufacturing method
JP2009241569A (en) Tubular joining composite