[go: up one dir, main page]

JP2012066238A - Scr catalyst, exhaust gas cleaning filter, and exhaust gas cleaning apparatus - Google Patents

Scr catalyst, exhaust gas cleaning filter, and exhaust gas cleaning apparatus Download PDF

Info

Publication number
JP2012066238A
JP2012066238A JP2011171752A JP2011171752A JP2012066238A JP 2012066238 A JP2012066238 A JP 2012066238A JP 2011171752 A JP2011171752 A JP 2011171752A JP 2011171752 A JP2011171752 A JP 2011171752A JP 2012066238 A JP2012066238 A JP 2012066238A
Authority
JP
Japan
Prior art keywords
component
compound
catalyst
exhaust gas
scr catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011171752A
Other languages
Japanese (ja)
Other versions
JP5716603B2 (en
Inventor
Kenji Mori
研二 森
Yasushi Satake
康 佐竹
Masaoki Iwasaki
正興 岩崎
Hisayuki Tanaka
寿幸 田中
Hirobumi Shinjo
博文 新庄
Takanori Murazaki
孝則 村崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2011171752A priority Critical patent/JP5716603B2/en
Priority to PCT/JP2011/068875 priority patent/WO2012026425A1/en
Publication of JP2012066238A publication Critical patent/JP2012066238A/en
Application granted granted Critical
Publication of JP5716603B2 publication Critical patent/JP5716603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2094Tin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

【課題】低温域におけるNOx除去率を向上し、かつ高温の水熱雰囲気に長時間曝されたときのNOx除去率の低下を抑えたSCR触媒、排ガス浄化フィルタ、及び排ガス浄化装置を提供する。
【解決手段】DPF4にコーティングされたSCR触媒は、第1成分及び第2成分からなる担体に、第3成分が担持されたものである。ここで、第1成分は、SnまたはSnO等のSn化合物の少なくとも一方からなる。第2成分は、Ce、CeO等のCe化合物、Fe、Fe等のFe化合物、Cu、CuO等のCu化合物のうちの少なくとも1つからなる。第3成分は、W、WO等のW化合物、Mo、MoO等のMo化合物、V、V等のV化合物、Nb、Nb等のNb化合物、Ta、Ta等のTa化合物のうちの少なくとも1つからなる。
【選択図】図1
An SCR catalyst, an exhaust gas purification filter, and an exhaust gas purification device that improve the NOx removal rate in a low temperature region and suppress the decrease in the NOx removal rate when exposed to a high-temperature hydrothermal atmosphere for a long time.
An SCR catalyst coated with DPF4 is obtained by supporting a third component on a carrier composed of a first component and a second component. Here, the first component is composed of at least one of Sn compounds such as Sn or SnO 2 . The second component consists Ce, Ce compounds such CeO 2, Fe, Fe compounds such as Fe 2 O 3, Cu, from at least one of Cu compound such as CuO. The third component, W, W compound, such as WO 3, Mo, Mo compounds such as MoO 3, V, V compounds such as V 2 O 5, Nb, Nb compound such as Nb 2 O 5, Ta, Ta 2 O It consists of at least one of Ta compounds such as 5 .
[Selection] Figure 1

Description

この発明は、アンモニアを還元剤とするSCR(Selective Catalytic Reduction)触媒、排ガス浄化フィルタ、及び排ガス浄化装置に関する。   The present invention relates to an SCR (Selective Catalytic Reduction) catalyst using ammonia as a reducing agent, an exhaust gas purification filter, and an exhaust gas purification device.

希薄燃焼エンジンは、排ガスも酸素が過剰なリーン雰囲気となるため、酸化触媒や三元触媒などでは、窒素酸化物(NOx)を還元浄化することが困難である。そこで、アンモニアを還元剤として用いて、リーン雰囲気下でNOxを選択的に還元するSCR触媒が開発されている。SCR触媒としては、非特許文献1に開示されるV−WO/TiO触媒、非特許文献2及び3に開示されるゼオライト系触媒、特許文献1に開示される酸化タングステンと酸化セリウムと酸化チタンと酸化ジルコニウムとからなる複合金属酸化物を含有する触媒、特許文献2に開示されるチタニア−ジルコニア型複合酸化物と金属とを含有する触媒、同特許文献2に開示される酸化タングステン−ジルコニア型複合酸化物と金属とを含有する触媒、非特許文献4に開示されるWO/CeO−ZrO触媒、非特許文献5に開示されるTiOにV、Cr、Ni、Cuなどの酸化物を担持した触媒等が提案されている。 Since the lean combustion engine has a lean atmosphere in which exhaust gas also contains excess oxygen, it is difficult to reduce and purify nitrogen oxides (NOx) with an oxidation catalyst or a three-way catalyst. Thus, an SCR catalyst has been developed that selectively reduces NOx under a lean atmosphere using ammonia as a reducing agent. Examples of the SCR catalyst include V 2 O 5 —WO 3 / TiO 2 catalyst disclosed in Non-Patent Document 1, zeolite-based catalysts disclosed in Non-Patent Documents 2 and 3, tungsten oxide and oxidation disclosed in Patent Document 1. Catalyst containing composite metal oxide comprising cerium, titanium oxide and zirconium oxide, catalyst containing titania-zirconia type composite oxide and metal disclosed in Patent Document 2, oxidation disclosed in Patent Document 2 Catalyst containing tungsten-zirconia type composite oxide and metal, WO 3 / CeO 2 —ZrO 2 catalyst disclosed in Non-Patent Document 4, TiO 2 disclosed in Non-Patent Document 5 with V, Cr, Ni, A catalyst carrying an oxide such as Cu has been proposed.

しかしながら、ゼオライト系触媒は、水存在下の高温(例えば750℃以上)では劣化が激しいという問題があり、非ゼオライト系の酸化物系触媒は、ゼオライト系触媒に比べて耐水熱性は高いものの、浄化率は十分ではないといった問題点がある。これに対し、耐熱性及び活性を向上するために、硫−耐性耐火性触媒である担体(例えばSnO等)及び触媒金属(例えばPt等)を含み固体酸(例えばWO等)及び/又は硫酸が担持されている排ガス浄化用触媒が特許文献3に開示され、また、担体(例えばSnO等)と塩基性金属(例えばMg等)またはその酸化物と酸性金属またはその酸化物(例えばW等)とからなる触媒であって、炭化水素を還元剤として酸化窒素を還元する触媒が特許文献4に開示されている。特許文献3の触媒は、耐熱性を有するものの、NOxを低温(200℃〜240℃)で効果的に除去するための触媒であり、特許文献4の触媒のNOx浄化最適温度は、550℃〜700℃である。 However, zeolitic catalysts have a problem of severe deterioration at high temperatures in the presence of water (for example, 750 ° C. or higher), and non-zeolitic oxide catalysts have higher hydrothermal resistance than zeolitic catalysts. There is a problem that the rate is not enough. On the other hand, in order to improve heat resistance and activity, a solid acid (eg WO 3 etc.) and / or a support containing a sulfur-resistant refractory catalyst (eg SnO 2 etc.) and a catalytic metal (eg Pt etc.) and / or An exhaust gas purifying catalyst carrying sulfuric acid is disclosed in Patent Document 3, and a carrier (for example, SnO 2 ) and a basic metal (for example, Mg) or an oxide thereof and an acid metal or an oxide (for example, W) And the like, and a catalyst for reducing nitrogen oxide using a hydrocarbon as a reducing agent is disclosed in Patent Document 4. Although the catalyst of Patent Document 3 has heat resistance, it is a catalyst for effectively removing NOx at a low temperature (200 ° C. to 240 ° C.). The optimum temperature for NOx purification of the catalyst of Patent Document 4 is 550 ° C. to 700 ° C.

特開2010−481号公報JP 2010-481 A 特開2005−238196号公報JP 2005-238196 A 特表2004−513771号公報JP-T-2004-513771 特開平6−190276号公報JP-A-6-190276

C.Ciardelli et al. Applied Catalysis B: Environmental 70 (2007) 80-90C. Ciardelli et al. Applied Catalysis B: Environmental 70 (2007) 80-90 Gongshin Qi and Ralph T.Yang: Catalysis Letters Vol. 100, Nos. 3-4, April 2005Gongshin Qi and Ralph T. Yang: Catalysis Letters Vol. 100, Nos. 3-4, April 2005 辰巳敬/西村陽一監修 ゼオライト触媒開発の新展開、260頁、2004年発行、シーエムシー出版Akatsuki / Supervised by Yoichi Nishimura New development of zeolite catalyst, 260 pages, 2004 issue, CM Publishing Chem.Commun., 2008, 1470-1472Chem. Commun., 2008, 1470-1472 Smirniotis PG, Pena DA, Uphade BS: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 40巻 13号 2479頁、2001年発行Smirniotis PG, Pena DA, Uphade BS: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION Vol.40, No.13, p.2479, 2001

しかしながら、特許文献4に記載の触媒は、低温域(例えば250℃程度)におけるNOx除去率が低いといった問題点があった。また、SCR触媒とディーゼルパティキュレートフィルタ(DPF)とを別体にする場合には、SCR触媒に必要な耐熱温度は650℃程度であるため、特許文献4の触媒でも問題ないが、排ガス浄化装置のコンパクト化を目的に、SCR触媒をDPFにコーティングして一体化する場合には、SCR触媒に必要な耐熱温度は750℃程度となるため、さらなる耐熱性の向上が必要となる。   However, the catalyst described in Patent Document 4 has a problem that the NOx removal rate is low in a low temperature range (for example, about 250 ° C.). In addition, when the SCR catalyst and the diesel particulate filter (DPF) are separately provided, the heat resistant temperature required for the SCR catalyst is about 650 ° C., so there is no problem with the catalyst of Patent Document 4, but the exhaust gas purification device When the SCR catalyst is coated and integrated on the DPF for the purpose of compacting, the heat resistance temperature required for the SCR catalyst is about 750 ° C., and thus further heat resistance needs to be improved.

この発明はこのような問題点を解決するためになされたもので、低温域におけるNOx除去率を向上し、かつ高温の水熱雰囲気に長時間曝されたときのNOx除去率の低下を抑えたアンモニアを還元剤とするSCR触媒、排ガス浄化フィルタ、及び排ガス浄化装置を提供することを目的とする。尚、本願発明において、還元剤のアンモニアは、尿素由来のアンモニアも含む。   The present invention was made to solve such problems, and improved the NOx removal rate in a low temperature region and suppressed the decrease in the NOx removal rate when exposed to a high temperature hydrothermal atmosphere for a long time. It aims at providing the SCR catalyst which uses ammonia as a reducing agent, an exhaust gas purification filter, and an exhaust gas purification apparatus. In the present invention, ammonia as the reducing agent includes urea-derived ammonia.

この発明に係るSCR触媒は、SnまたはSn化合物の少なくとも一方からなる第1成分と、酸化物の酸化還元反応におけるギブスエネルギー変化の金属1モル当たり量が、40(kcal/Metal mol)以下である元素、若しくはその化合物からなる第2成分と、周期表中で第5族元素、第5族元素化合物、第6族元素、第6族元素化合物のうちの少なくとも1つからなる第3成分とからなる。   In the SCR catalyst according to the present invention, the amount per 1 mol of metal of the Gibbs energy change in the oxidation-reduction reaction of the first component composed of at least one of Sn or Sn compound is 40 (kcal / Metal mol) or less. A second component composed of an element or a compound thereof, and a third component composed of at least one of a Group 5 element, a Group 5 element compound, a Group 6 element, and a Group 6 element compound in the periodic table. Become.

ここで「酸化還元反応におけるギブスエネルギー変化の金属1モル当たり量」とは、元素の酸化物のうち大気雰囲気下で250℃で安定な酸化物の状態から、1価還元された状態となる場合のギブスエネルギー変化を金属1モルあたりに割り付けた量である。たとえば、Ce,Fe,Cuに関しては以下の様な還元反応になる。
4CeO = 2Ce + O(g) Ce(IV→III)
2Fe = 4FeO + O(g) Fe(III→II)
4CuO = 2Cu2O + O(g) Cu(II→I)
それぞれの還元反応のギブスエネルギー変化(kcal)はCe:144.2,Fe:102.1,Cu:42.7であるから、1モル当たり量(ΔG(kcal/Metal mol))は、Ce:144.2/4=36.1,Fe:102.1/4=25.5,Cu:42.7/4=10.7である。なおギブスエネルギー変化は、HSC Chemistry(Outotec Research Oy.社)を使用して計算できる。
アンモニアSCR反応は、NOx中のNOとNOの比率がNO:NO=1:1の時高い浄化率(いわゆるFast反応)が得られるが、NOがNOより多いと、一部のNOをNOに酸化させる必要があり、その反応が律速となり浄化率が低下する(いわゆるStandard反応)ことが知られている。
実際の希薄燃焼エンジンの排ガスではNOはNOよりも少なく、SCR触媒の前に高価な貴金属等を使用した酸化触媒を配置し、出来るだけFast反応を進行させようとする場合がある。しかし本来は、NOが少ない場合、あるいは全くない場合でも、SCR触媒自体に高い活性がある方が好ましい。第2成分の目的の一つは、NOからNOへ酸化を促進さることにより、Standard反応の活性を高めることである。そのために、鋭意研究をした結果、酸化物の酸化還元反応におけるギブスエネルギー変化の金属1モル当たり量が、40(kcal/Metal mol)以下が好ましいことを見出した。つまり、ギブスエネルギーの変化量がこのように小さいと、NOをNOへ酸化させやすいので、Standard反応の活性を高めることができる。
Here, “amount of Gibbs energy change per 1 mol of metal in oxidation-reduction reaction” refers to the case where the oxide of an element is converted to a monovalent reduced state from an oxide state stable at 250 ° C. in an air atmosphere. The amount of Gibbs energy change was assigned per mole of metal. For example, with respect to Ce, Fe, and Cu, the reduction reaction is as follows.
4CeO 2 = 2Ce 2 O 3 + O 2 (g) Ce (IV → III)
2Fe 2 O 3 = 4FeO + O 2 (g) Fe (III → II)
4CuO = 2Cu2O + O 2 (g ) Cu (II → I)
Since the Gibbs energy change (kcal) of each reduction reaction is Ce: 144.2, Fe: 102.1, Cu: 42.7, the amount per mole (ΔG (kcal / Metal mol)) is Ce: 144.2 / 4 = 36.1, Fe: 102.1 / 4 = 25.5, Cu: 42.7 / 4 = 10.7. The Gibbs energy change can be calculated using HSC Chemistry (Outotec Research Oy.).
Ammonia SCR reaction, the ratio of NO and NO 2 in NOx is NO: NO 2 = 1: when high purification rate of 1 (so-called Fast reaction) but is obtained, if NO is more than NO 2, part of the NO Is required to be oxidized to NO 2 , and the reaction is rate-limiting and the purification rate is known to decrease (so-called Standard reaction).
In an actual exhaust gas of a lean combustion engine, NO 2 is less than NO, and an oxidation catalyst using an expensive noble metal or the like is disposed in front of the SCR catalyst, and the Fast reaction may be advanced as much as possible. However, originally, it is preferable that the SCR catalyst itself has high activity even when NO 2 is low or not at all. One purpose of the second component, by monkey promote the oxidation of NO to NO 2, it is to increase the activity of Standard reactions. Therefore, as a result of intensive studies, it has been found that the amount of Gibbs energy change in the oxidation-reduction reaction of oxide is preferably 40 (kcal / Metal mol) or less. That is, when the amount of change in Gibbs energy is small, NO can be easily oxidized to NO 2, and the activity of the Standard reaction can be increased.

第2成分は、Ce、Ce化合物、Fe、Fe化合物、Cu、Cu化合物のうちの少なくとも1つからなる。
第3成分は、W、W化合物、Mo、Mo化合物、V、V化合物、Nb、Nb化合物、Ta、Ta化合物のうちの少なくとも1つからなる。
第1成分及び第2成分の合計質量に対する第2成分の質量の比が7〜90質量%であることが好ましい。
第2成分はCeまたはCe化合物を含み、第1成分及び第2成分中の合計質量に対するCeまたはCe化合物の質量の比が7〜90質量%であってもよい。
第2成分はFeまたはFe化合物を含み、第1成分及び第2成分中の合計質量に対するFeまたはFe化合物の質量の比が7.5〜80質量%であってもよい。
第1成分及び第2成分が担体を構成し、担体に第3成分が担持されてもよい。
750℃で30時間水熱処理した後のSCR触媒の1次粒子平均径が20nm以下であることが好ましい。
SCR触媒は、排ガス浄化フィルタにコーティングすることができる。
排ガス浄化フィルタにコーティングされるSCR触媒は、1.0μm以下のメジアン径を有することが好ましい。
排ガス浄化装置に、上記排ガス浄化フィルタを設けることができる。
The second component is made of at least one of Ce, Ce compound, Fe, Fe compound, Cu, and Cu compound.
The third component is composed of at least one of W, W compound, Mo, Mo compound, V, V compound, Nb, Nb compound, Ta, and Ta compound.
The ratio of the mass of the second component to the total mass of the first component and the second component is preferably 7 to 90% by mass.
The second component includes Ce or a Ce compound, and the ratio of the mass of the Ce or Ce compound to the total mass in the first component and the second component may be 7 to 90% by mass.
The second component includes Fe or an Fe compound, and the ratio of the mass of the Fe or Fe compound to the total mass of the first component and the second component may be 7.5 to 80% by mass.
The first component and the second component may constitute a carrier, and the third component may be supported on the carrier.
It is preferable that the average primary particle diameter of the SCR catalyst after hydrothermal treatment at 750 ° C. for 30 hours is 20 nm or less.
The SCR catalyst can be coated on the exhaust gas purification filter.
The SCR catalyst coated on the exhaust gas purification filter preferably has a median diameter of 1.0 μm or less.
The exhaust gas purification device can be provided with the exhaust gas purification filter.

この発明によれば、SCR触媒が、SnまたはSn化合物の少なくとも一方からなる第1成分と、酸化物の酸化還元反応におけるギブスエネルギー変化の金属1モル当たりの量が、40(kcal/Metal mol)以下である元素、若しくはその化合物からなる第2成分と、周期表中で第5族元素、第5族元素化合物、第6族元素、第6族元素化合物のうちの少なくとも1つからなる第3成分とからなることにより、低温域におけるNOx除去率を向上し、かつ高温の水熱雰囲気に長時間曝されたときのNOx除去率の低下を抑えることができる。   According to the present invention, the SCR catalyst has a first component composed of at least one of Sn or an Sn compound, and the amount of Gibbs energy change in the oxidation-reduction reaction of the oxide is 40 (kcal / Metal mol) per mole of metal. A second component comprising the following element or a compound thereof and a third component comprising at least one of a Group 5 element, a Group 5 element compound, a Group 6 element, and a Group 6 element compound in the periodic table By comprising the components, it is possible to improve the NOx removal rate in a low temperature region and to suppress a decrease in the NOx removal rate when exposed to a high-temperature hydrothermal atmosphere for a long time.

この発明の実施の形態に係るSCR触媒がコーティングされた排ガス浄化フィルタを備えた排ガス浄化装置の構成模式図である。1 is a schematic configuration diagram of an exhaust gas purification apparatus including an exhaust gas purification filter coated with an SCR catalyst according to an embodiment of the present invention. この実施の形態に係るSCR触媒がコーティングされた排ガス浄化フィルタを備えた排ガス浄化装置の変形例の構成模式図である。It is a structure schematic diagram of the modification of the exhaust gas purification apparatus provided with the exhaust gas purification filter coated with the SCR catalyst which concerns on this embodiment. 水熱処理後の触媒について、担体中のCeOの含有量とNOx除去率との関係を示す図である。The catalyst for after the hydrothermal treatment is a diagram showing the relationship between the content and the NOx removal rate of CeO 2 in the carrier. 水熱処理後の触媒について、担体中のFeの含有量とNOx除去率との関係を示す図である。The catalyst for after the hydrothermal treatment is a diagram showing the relationship between the content and the NOx removal rate of Fe 2 O 3 in the carrier. 担体中のCeOの含有量と活性保持率との関係を示す図である。Is a graph showing the relationship between the content and the activity retention of CeO 2 in the carrier. 担体中のFeの含有量と活性保持率との関係を示す図である。It is a graph showing the relationship between the content and the activity retention rate of Fe 2 O 3 in the carrier. 水熱処理前後の実施例3及び比較例7に係る触媒のTEM写真である。It is a TEM photograph of the catalyst concerning Example 3 and comparative example 7 before and after hydrothermal treatment. 実施例3及び22と比較例10とに係る触媒のそれぞれについて、水熱処理前後でのX線回折(XRD)測定結果(XRDスペクトル)を示す図である。It is a figure which shows the X-ray-diffraction (XRD) measurement result (XRD spectrum) before and behind hydrothermal processing about each of the catalyst which concerns on Example 3 and 22 and the comparative example 10. FIG.

以下、この発明の実施の形態を添付図面に基づいて説明する。
図1に示されるように、ディーゼルエンジン1から排出された排ガスが流通する排気管2に、酸化触媒3と、SCR触媒がコーティングされた排ガス浄化フィルタであるDPF4と、酸化触媒5とが設けられている。酸化触媒3とDPF4との間には、尿素水を噴射する噴射ノズル7が設けられており、噴射ノズル7は、配管8を介して、尿素水を貯留する尿素水タンク9に連通している。配管8には、尿素水タンク9内の尿素水を噴射ノズル7に供給するための尿素水添加システム10が設けられている。尿素水添加システム10は、制御装置であるECU14に電気的に接続されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, an exhaust pipe 2 through which exhaust gas discharged from a diesel engine 1 flows is provided with an oxidation catalyst 3, a DPF 4 that is an exhaust gas purification filter coated with an SCR catalyst, and an oxidation catalyst 5. ing. An injection nozzle 7 for injecting urea water is provided between the oxidation catalyst 3 and the DPF 4, and the injection nozzle 7 communicates with a urea water tank 9 for storing urea water through a pipe 8. . The pipe 8 is provided with a urea water addition system 10 for supplying urea water in the urea water tank 9 to the injection nozzle 7. The urea water addition system 10 is electrically connected to an ECU 14 that is a control device.

DPF4にコーティングされたSCR触媒は、第1成分及び第2成分からなる担体に、第3成分が担持されたものである。ここで、第1成分は、SnまたはSn化合物の少なくとも一方からなり、Sn化合物は、例えばSnOである。第2成分は、酸化物の酸化還元反応におけるギブスエネルギー変化の金属1モル当たり量が、40(kcal/Metal mol)以下である元素、若しくはその化合物、特に、Ce、Ce化合物、Fe、Fe化合物、Cu、Cu化合物のうちの少なくとも1つからなり、Ce化合物は、例えばCeOであり、Fe化合物は、例えばFeであり、Cu化合物は、例えばCuOである。第3成分は、周期表中で第5族元素、第5族元素化合物、第6族元素、第6族元素化合物のうちの少なくとも1つ、特に、W、W化合物、Mo、Mo化合物、V、V化合物、Nb、Nb化合物、Ta、Ta化合物のうちの少なくとも1つからなり、W化合物は、例えばWOであり、Mo化合物は、例えばMoOであり、V化合物は、例えばVであり、Nb化合物は、例えばNbであり、Ta化合物は、例えばTaである。 The SCR catalyst coated with DPF 4 is obtained by supporting a third component on a carrier composed of a first component and a second component. Here, the first component is composed of at least one of Sn or a Sn compound, and the Sn compound is, for example, SnO 2 . The second component is an element in which the amount of Gibbs energy change in the oxidation-reduction reaction of the oxide is 40 (kcal / Metal mol) or less, or a compound thereof, in particular, Ce, Ce compound, Fe, Fe compound The Ce compound is, for example, CeO 2 , the Fe compound is, for example, Fe 2 O 3 , and the Cu compound is, for example, CuO. The third component is at least one of Group 5 element, Group 5 element compound, Group 6 element, Group 6 element compound in the periodic table, in particular, W, W compound, Mo, Mo compound, V , V compound, Nb, Nb compound, Ta, Ta compound, W compound is, for example, WO 3 , Mo compound is, for example, MoO 3 , and V compound is, for example, V 2 O 5 , the Nb compound is, for example, Nb 2 O 5 , and the Ta compound is, for example, Ta 2 O 5 .

SCR触媒のDPF4へのコーティングは、次の手順に従って行われる。まず、調製されたSCR触媒を、ボールミル装置を用いて微粉化する。このとき、レーザ回折・錯乱法で測定されるメジアン径が1.0μm以下となるように微粉化するのが好ましい。次に、微粉化されたSCR触媒と、バインダーと、イオン交換水とから触媒スラリーを調製する。DPF4を構成するDPF担体にこの触媒スラリーをコーティングして、モノリス触媒を作成する。   The coating of SCR catalyst onto DPF4 is performed according to the following procedure. First, the prepared SCR catalyst is pulverized using a ball mill apparatus. At this time, it is preferable to pulverize so that the median diameter measured by the laser diffraction / confusion method is 1.0 μm or less. Next, a catalyst slurry is prepared from the pulverized SCR catalyst, a binder, and ion-exchanged water. The catalyst slurry is coated on the DPF carrier constituting the DPF 4 to produce a monolith catalyst.

バインダーには、市販されている任意のバインダーが使用可能であり、例えば、コロイダルシリカ、コロイダルアルミナ、酸化チタンゾル、酸化セリウムゾル、酸化すずゾル、その他の金属酸化物ゾル等が使用可能である。バインダーの選択は、触媒をスラリー化したときの粘度や付着力等を考慮して選択してもよいし、触媒組成に合わせて選択してもよい。後者の場合には、バインダーとして酸化すずゾルや酸化セリウムゾルが好適である。   As the binder, any commercially available binder can be used. For example, colloidal silica, colloidal alumina, titanium oxide sol, cerium oxide sol, tin oxide sol, and other metal oxide sols can be used. The selection of the binder may be selected in consideration of the viscosity and adhesion when the catalyst is slurried, or may be selected according to the catalyst composition. In the latter case, tin oxide sol or cerium oxide sol is suitable as the binder.

また、触媒スラリーの組成は、DPF4の細孔分布、バインダーの種類、作業性等を考慮して適宜決定する。特に、(バインダー固形分の質量+触媒質量)/(バインダー固形分質量+触媒質量+水分質量)は、50%以下が好ましく、20%以下がさらに好ましい。また、(バインダー固形分の質量)/(バインダー固形分質量+触媒質量)は、2〜20%が好ましい。   The composition of the catalyst slurry is appropriately determined in consideration of the pore distribution of DPF4, the type of binder, workability, and the like. In particular, (mass of binder solids + mass of catalyst) / (mass of binder solids + mass of catalyst + mass of water) is preferably 50% or less, and more preferably 20% or less. Further, (mass of binder solid content) / (mass of binder solid content + mass of catalyst) is preferably 2 to 20%.

次に、この実施の形態に係る排ガス浄化装置の動作について説明する。
図1に示されるように、ディーゼルエンジン1の始動後、排出された排ガスは、排気管2を流通する。排ガスが酸化触媒3を流通することにより、排ガス中の一酸化窒素(NO)の一部が二酸化窒素(NO)に酸化される。続いて排ガスがDPF4を流通することにより、排ガス中のパティキュレートマター(PM)がDPF4に捕捉される。また、ECU14は適切なタイミングで尿素水添加システム10を作動させ、尿素水タンク9内の尿素水を、配管8を介して噴射ノズル7に供給し、噴射ノズル7から尿素水が間欠的にDPF4に供給される。DPF4に添加された尿素水は、DPF4にコーティングされたSCR触媒によって加水分解されてアンモニアと二酸化炭素(CO)となり、生成したアンモニアと排ガス中のNOxとが反応して、窒素(N)及び水(HO)となる。DPF4において消費されずに残ったアンモニアは、酸化触媒5において酸化される。このようにしてNOxが浄化された排ガスは、排気管2を流通して大気中へ排気される。
Next, the operation of the exhaust gas purification apparatus according to this embodiment will be described.
As shown in FIG. 1, after the diesel engine 1 is started, the exhaust gas discharged passes through the exhaust pipe 2. As the exhaust gas flows through the oxidation catalyst 3, a part of the nitrogen monoxide (NO) in the exhaust gas is oxidized to nitrogen dioxide (NO 2 ). Subsequently, the exhaust gas flows through the DPF 4, whereby particulate matter (PM) in the exhaust gas is captured by the DPF 4. Further, the ECU 14 operates the urea water addition system 10 at an appropriate timing to supply the urea water in the urea water tank 9 to the injection nozzle 7 through the pipe 8, and the urea water is intermittently supplied from the injection nozzle 7 to the DPF 4. To be supplied. The urea water added to the DPF 4 is hydrolyzed by the SCR catalyst coated on the DPF 4 to become ammonia and carbon dioxide (CO 2 ), and the generated ammonia reacts with NOx in the exhaust gas to react with nitrogen (N 2 ). And water (H 2 O). Ammonia remaining without being consumed in the DPF 4 is oxidized in the oxidation catalyst 5. The exhaust gas from which NOx has been purified in this way flows through the exhaust pipe 2 and is exhausted to the atmosphere.

この実施の形態では、SCR触媒はDPF4にコーティングされていたが、この形態に限定するものではない。図2に示されるように、DPF4と酸化触媒5との間に、SCR触媒をコーティングした選択還元型NOx触媒6を設け、選択還元型NOx触媒6に噴射ノズル7から尿素水を添加するようにしてもよい。また、図1及び2の酸化触媒5は、添加する尿素水の量を制御することにより省略することも可能である。
また、この実施の形態では、還元剤として尿素水を供給したが、アンモニアを直接供給するようにしてもよい。
In this embodiment, the SCR catalyst is coated on DPF4, but this is not a limitation. As shown in FIG. 2, a selective reduction type NOx catalyst 6 coated with an SCR catalyst is provided between the DPF 4 and the oxidation catalyst 5, and urea water is added to the selective reduction type NOx catalyst 6 from the injection nozzle 7. May be. Moreover, the oxidation catalyst 5 of FIGS. 1 and 2 can be omitted by controlling the amount of urea water to be added.
In this embodiment, urea water is supplied as a reducing agent, but ammonia may be supplied directly.

次に、この発明のSCR触媒の効果を実施例で説明する。
1.触媒の組成についての考察
表1〜3に、この発明に係るSCR触媒である実施例1〜21の組成を示し、表4に、比較例1〜9に係る触媒の組成を示す。
Next, the effect of the SCR catalyst of the present invention will be described with reference to examples.
1. Consideration about a composition of a catalyst Tables 1-3 show the composition of Examples 1-21, which are SCR catalysts according to the present invention, and Table 4 shows compositions of catalysts according to Comparative Examples 1-9.

Figure 2012066238
Figure 2012066238

Figure 2012066238
Figure 2012066238

Figure 2012066238
Figure 2012066238

Figure 2012066238
Figure 2012066238

[触媒調製方法]
実施例1〜6
表1に記載された質量の塩化すず(IV)五水和物及び硝酸セリウム(III)六水和物をイオン交換水1.4リットルに溶かし、攪拌しながらアンモニア水溶液(25%)を徐々に滴下してpH7以上とし、沈殿物を得た。この沈殿物から塩化物イオンを除去するために、この沈殿物を水洗し、100℃以上で24時間乾燥した後、20g秤量し、これをタングステン酸アンモニウム水溶液0.2リットル(WO含有量1.84g)に浸した。その後、蒸発乾固し、大気圧雰囲気下にて、550℃で5時間焼成することによりタングステンを担持した。
[Catalyst preparation method]
Examples 1-6
Dissolve tin chloride (IV) pentahydrate and cerium (III) nitrate hexahydrate in the masses listed in Table 1 in 1.4 liters of ion-exchanged water, and gradually add an aqueous ammonia solution (25%) while stirring. Dropped to pH 7 or higher to obtain a precipitate. In order to remove chloride ions from the precipitate, the precipitate was washed with water, dried at 100 ° C. or more for 24 hours, then weighed 20 g, and 0.2 g of an aqueous solution of ammonium tungstate (WO 3 content 1). .84 g). Thereafter, it was evaporated to dryness and baked at 550 ° C. for 5 hours in an atmospheric pressure atmosphere to support tungsten.

実施例7
タングステン酸アンモニウム水溶液の代わりにモリブデン酸アンモニウム水溶液0.2リットル(MoO含有量1.14g)を用いた以外は、実施例3と同じ方法で調製した。
Example 7
It was prepared in the same manner as in Example 3 except that 0.2 liter of ammonium molybdate aqueous solution (MoO 3 content 1.14 g) was used instead of the ammonium tungstate aqueous solution.

実施例8
タングステン酸アンモニウム水溶液の代わりにバナジン(V)酸アンモニウム水溶液0.2リットル(V含有量1.44g)を用いた以外は、実施例3と同じ方法で調製した。
Example 8
It was prepared in the same manner as in Example 3 except that 0.2 liter of vanadium (V) ammonium aqueous solution (V 2 O 5 content 1.44 g) was used instead of the ammonium tungstate aqueous solution.

実施例9
タングステン酸アンモニウム水溶液の代わりにシュウ酸ニオブ水溶液0.2リットル(Nb含有量2.11g)を用いた以外は、実施例3と同じ方法で調製した。
Example 9
It was prepared in the same manner as in Example 3 except that 0.2 liter of niobium oxalate aqueous solution (Nb 2 O 5 content 2.11 g) was used instead of the ammonium tungstate aqueous solution.

実施例10
タングステン酸アンモニウム水溶液の代わりにタンタルエトキシドのエタノール溶液0.2リットル(Ta含有量3.50g)を用いた以外は、実施例3と同じ方法で調製した。
Example 10
It was prepared in the same manner as in Example 3 except that 0.2 liter of ethanol solution of tantalum ethoxide (Ta 2 O 5 content 3.50 g) was used instead of the ammonium tungstate aqueous solution.

実施例11〜13
表2に記載された質量の塩化すず(IV)五水和物及び硝酸鉄(III)九水和物をイオン交換水1.4リットルに溶かした以外は、実施例1〜6と同じ方法で調製した。
Examples 11-13
In the same manner as in Examples 1 to 6, except that the tin (IV) chloride pentahydrate and iron (III) nitrate nonahydrate having the masses shown in Table 2 were dissolved in 1.4 liters of ion-exchanged water. Prepared.

実施例14
タングステン酸アンモニウム水溶液の代わりにバナジン(V)酸アンモニウム水溶液0.2リットル(V含有量1.44g)を用いた以外は、実施例11と同じ方法で調製した。
Example 14
It was prepared in the same manner as in Example 11 except that 0.2 liter of vanadate (V) ammonium aqueous solution (V 2 O 5 content 1.44 g) was used instead of the ammonium tungstate aqueous solution.

実施例15
タングステン酸アンモニウム水溶液の代わりにシュウ酸ニオブ水溶液0.2リットル(Nb含有量2.11g)を用いた以外は、実施例11と同じ方法で調製した。
Example 15
It was prepared in the same manner as in Example 11 except that 0.2 liter of niobium oxalate aqueous solution (Nb 2 O 5 content 2.11 g) was used instead of the ammonium tungstate aqueous solution.

実施例16
タングステン酸アンモニウム水溶液の代わりにタンタルエトキシドのエタノール溶液0.2リットル(Ta含有量3.50g)を用いた以外は、実施例11と同じ方法で調製した。
Example 16
It was prepared in the same manner as in Example 11 except that 0.2 liter of ethanol solution of tantalum ethoxide (Ta 2 O 5 content 3.50 g) was used instead of the ammonium tungstate aqueous solution.

実施例17及び18
表3に記載された質量の塩化すず(IV)五水和物及び酢酸銅(II)一水和物をイオン交換水1.4リットルに溶かした以外は、実施例1〜6と同じ方法で調製した。
Examples 17 and 18
In the same manner as in Examples 1 to 6, except that the tin (IV) chloride pentahydrate and copper (II) acetate monohydrate having the masses shown in Table 3 were dissolved in 1.4 liters of ion-exchanged water. Prepared.

実施例19
タングステン酸アンモニウム水溶液の代わりにバナジン(V)酸アンモニウム水溶液0.2リットル(V含有量1.44g)を用いた以外は、実施例17と同じ方法で調製した。
Example 19
It was prepared in the same manner as in Example 17 except that 0.2 liter of vanadate (V) ammonium aqueous solution (V 2 O 5 content 1.44 g) was used instead of the ammonium tungstate aqueous solution.

実施例20
タングステン酸アンモニウム水溶液の代わりにシュウ酸ニオブ水溶液0.2リットル(Nb含有量2.11g)を用いた以外は、実施例17と同じ方法で調製した。
Example 20
It was prepared in the same manner as in Example 17 except that 0.2 liter of niobium oxalate aqueous solution (Nb 2 O 5 content 2.11 g) was used instead of the ammonium tungstate aqueous solution.

実施例21
タングステン酸アンモニウム水溶液の代わりにタンタルエトキシドのエタノール溶液0.2リットル(Ta含有量3.50g)を用いた以外は、実施例17と同じ方法で調製した。
Example 21
It was prepared in the same manner as in Example 17, except that 0.2 liter of ethanol solution of tantalum ethoxide (Ta 2 O 5 content 3.50 g) was used instead of the ammonium tungstate aqueous solution.

比較例1
塩化すず(IV)五水和物60gをイオン交換水1.4リットルに溶かした以外は、実施例1〜6と同じ方法で調製した。
Comparative Example 1
It was prepared in the same manner as in Examples 1 to 6, except that 60 g of tin (IV) chloride pentahydrate was dissolved in 1.4 liters of ion exchange water.

比較例2〜7
BET比表面積が170m/gのアルミナ20g、110m/gのジルコニア20g、130m/gのチタニア20g、220m/gのシリカ20g、85m/gのα−FeO(OH)22.3g(Fe換算で20g)、130m/gの酸化セリウム20gをそれぞれ、タングステン酸アンモニウム水溶液0.2リットル(WO含有量1.84g)に浸し、蒸発乾固することによりタングステンを担持した。これを大気圧雰囲気下、550℃で5時間焼成した。
Comparative Examples 2-7
20 g of alumina having a BET specific surface area of 170 m 2 / g, 20 g of 110 m 2 / g zirconia, 20 g of 130 m 2 / g titania, 20 g of 220 m 2 / g silica, 22.3 g of 85 m 2 / g α-FeO (OH) (20 g in terms of Fe 2 O 3 ) and 20 g of 130 m 2 / g of cerium oxide were each immersed in 0.2 liter of an aqueous solution of ammonium tungstate (WO 3 content 1.84 g), and evaporated to dryness to support tungsten. did. This was calcined at 550 ° C. for 5 hours in an atmospheric pressure atmosphere.

比較例8
シリカ/アルミナ比が40のプロトン型ZSM5にCVD法でFeをイオン交換し、水洗後、550℃で5時間焼成した。
Comparative Example 8
The proton-type ZSM5 having a silica / alumina ratio of 40 was subjected to ion exchange of Fe by the CVD method, washed with water, and calcined at 550 ° C. for 5 hours.

比較例9
触媒化成株式会社(現:日揮触媒化成株式会社)製のV−WO/TiO触媒(型番:NRU−5)を使用した。
Comparative Example 9
A V 2 O 5 —WO 3 / TiO 2 catalyst (model number: NRU-5) manufactured by Catalyst Kasei Co., Ltd. (currently JGC Catalysts & Chemicals Co., Ltd.) was used.

[ペレット触媒の作成方法]
実施例1〜21及び比較例1〜9に係る触媒粉体をそれぞれ、約1000kgf/cmの圧力で圧粉成形後、破砕及び整粒して、粒径0.5〜1.0nmのペレット触媒を作成した。
[Preparation method of pellet catalyst]
Each of the catalyst powders according to Examples 1 to 21 and Comparative Examples 1 to 9 was compacted at a pressure of about 1000 kgf / cm 2 , crushed and sized, and pellets having a particle size of 0.5 to 1.0 nm A catalyst was prepared.

[触媒をコーティングしたDPFの作成方法]
実施例3及び比較例8に係る触媒粉体のそれぞれについて、レーザ回折・錯乱法で測定されるメジアン径が1.0μm以下となるように、ボールミル装置を用いて微粒化した。微粒化した触媒45gと、バインダー(実施例3に係る触媒については、酸化セリウムゾル U15(多木化学株式会社)33g(固形分約5g相当)を使用し、比較例8に係る触媒については、コロイダルシリカ スノーテック N(日産化学工業株式会社)25g(固形分約5g相当)を使用した)と、イオン交換水300gとにより、触媒スラリー(実施例3に係る触媒スラリーの固形分は約13%、比較例8に係る触媒スラリーの固形分は約14%)を調製した。コーディライトDPF担体(日本ガイシ株式会社製、12mil/300cpsi、35cc)にこの触媒スラリーをコーティングして、モノリス触媒を作成した。コーティング作業は複数回に分けて行い、コーティング量については、コーティング前におけるモノリス触媒の圧力損失に対しコーティング後のモノリス触媒の圧力損失が30±3%程度上昇するように調整した(実際の圧力損失上昇率は、後述する表7に記載した)。
[Production method of DPF coated with catalyst]
Each of the catalyst powders according to Example 3 and Comparative Example 8 was atomized using a ball mill apparatus so that the median diameter measured by the laser diffraction / confusion method was 1.0 μm or less. 45 g of the atomized catalyst and 33 g (corresponding to about 5 g of solid content) of a binder (ceramic oxide sol U15 (Taki Chemical Co., Ltd.) for the catalyst according to Example 3) and colloidal for the catalyst according to Comparative Example 8 Silica Snow Tech N (Nissan Chemical Industry Co., Ltd.) 25g (equivalent to about 5g solid content) and 300g ion-exchanged water, the catalyst slurry (the solid content of the catalyst slurry according to Example 3 is about 13%, The solid content of the catalyst slurry according to Comparative Example 8 was about 14%. The catalyst slurry was coated on a cordierite DPF carrier (manufactured by NGK Co., Ltd., 12 mil / 300 cpsi, 35 cc) to prepare a monolith catalyst. The coating operation was performed in multiple steps, and the coating amount was adjusted so that the pressure loss of the monolith catalyst after coating increased by about 30 ± 3% relative to the pressure loss of the monolith catalyst before coating (actual pressure loss The rate of increase is described in Table 7 below).

[触媒の水熱処理方法]
実施例1〜21及び比較例1〜9に係る触媒のペレット触媒と、実施例3及び比較例8に係る触媒粉体のそれぞれをコーディライトDPF担体にコーティングして作成されたモノリス触媒とを、高温の水熱雰囲気に長時間曝された場合の影響を検討するモデルとして、10vol%の酸素及び10vol%の水を含む窒素雰囲気下、750℃で30時間水熱処理を行った。
[Method of hydrothermal treatment of catalyst]
A pellet catalyst of the catalysts according to Examples 1 to 21 and Comparative Examples 1 to 9, and a monolith catalyst prepared by coating each of the catalyst powders according to Example 3 and Comparative Example 8 on a cordierite DPF carrier, As a model for studying the effects when exposed to a high-temperature hydrothermal atmosphere for a long time, hydrothermal treatment was performed at 750 ° C. for 30 hours in a nitrogen atmosphere containing 10 vol% oxygen and 10 vol% water.

[ペレット触媒のNOx除去率の測定方法]
上記水熱処理の前後の各ペレット触媒2.1ccを常圧固定床流通型反応装置に設置し、430ppmのNOと、530ppmのアンモニアと、10vol%の酸素と、10vol%のCOと、10vol%の水と、残部が窒素とからなる250℃の触媒評価ガスを、常圧固定床流通型反応装置に5.0リットル/分で流通させ、ペレット触媒に流入する触媒評価ガス及びペレット触媒から流出する触媒評価ガスのそれぞれの各成分の濃度を測定し、ペレット触媒前後におけるNO濃度の変化から、NOx除去率を算出した。また、水熱処理後のNOx除去率を水熱処理前のNOx除去率で割ることにより、活性保持率を算出した。
[Method for measuring NOx removal rate of pellet catalyst]
2.1 cc of each pellet catalyst before and after the hydrothermal treatment was placed in an atmospheric pressure fixed bed flow reactor, 430 ppm NO, 530 ppm ammonia, 10 vol% oxygen, 10 vol% CO 2 , 10 vol% A 250 ° C catalyst evaluation gas consisting of water and the balance nitrogen is circulated through an atmospheric pressure fixed bed flow type reactor at 5.0 liters / minute, and flows out from the catalyst evaluation gas and pellet catalyst flowing into the pellet catalyst. The concentration of each component of the catalyst evaluation gas to be measured was measured, and the NOx removal rate was calculated from the change in the NO concentration before and after the pellet catalyst. In addition, the activity retention rate was calculated by dividing the NOx removal rate after hydrothermal treatment by the NOx removal rate before hydrothermal treatment.

[DPFにコーティングされた触媒のNOx除去率の測定方法]
実施例3及び比較例8に係る触媒粉体のそれぞれをコーディライトDPF担体にコーティングして作成されたモノリス触媒を常圧固定床流通型反応装置に設置し、上記水熱処理の前後で、430ppmのNOと、530ppmのアンモニアと、10vol%の酸素と、10vol%のCOと、10vol%の水と、残部が窒素とからなる250℃の触媒評価ガスを、常圧固定床流通型反応装置に20リットル/分で流通させ、モノリス触媒に流入する触媒評価ガス及びモノリス触媒から流出する触媒評価ガスのそれぞれの各成分の濃度を測定し、モノリス触媒前後におけるNO濃度の変化から、NOx除去率を算出した。また、水熱処理後のNOx除去率を水熱処理前のNOx除去率で割ることにより、活性保持率を算出した。
実施例1〜21に係るペレット触媒についてのNOx除去率の測定結果を表5に示し、比較例1〜9に係るペレット触媒についてのNOx除去率の測定結果を表6に示す。また、実施例3及び9と比較例8とに係る触媒粉体のそれぞれをコーディライトDPF担体にコーティングして作成されたモノリス触媒についてのNOx除去率の測定結果を表7に示す。
[Method for measuring NOx removal rate of catalyst coated on DPF]
A monolith catalyst prepared by coating each of the catalyst powders according to Example 3 and Comparative Example 8 on a cordierite DPF carrier was placed in an atmospheric pressure fixed bed flow type reactor, and before and after the hydrothermal treatment, 430 ppm A catalyst evaluation gas at 250 ° C. consisting of NO, 530 ppm ammonia, 10 vol% oxygen, 10 vol% CO 2 , 10 vol% water, and the balance nitrogen is supplied to an atmospheric pressure fixed bed flow reactor. The concentration of each component of the catalyst evaluation gas flowing into the monolith catalyst and the catalyst evaluation gas flowing out of the monolith catalyst is measured at a rate of 20 liters / minute, and the NOx removal rate is determined from the change in the NO concentration before and after the monolith catalyst. Calculated. In addition, the activity retention rate was calculated by dividing the NOx removal rate after hydrothermal treatment by the NOx removal rate before hydrothermal treatment.
The measurement results of the NOx removal rates for the pellet catalysts according to Examples 1 to 21 are shown in Table 5, and the measurement results of the NOx removal rates for the pellet catalysts according to Comparative Examples 1 to 9 are shown in Table 6. Table 7 shows the measurement results of the NOx removal rate for the monolith catalyst prepared by coating each of the catalyst powders according to Examples 3 and 9 and Comparative Example 8 on the cordierite DPF carrier.

Figure 2012066238
Figure 2012066238

Figure 2012066238
Figure 2012066238

Figure 2012066238
Figure 2012066238

表5及び6に示された実施例1〜6と比較例1及び7とについての結果に基づいて、WO/SnO−CeOの組成をもつ水熱処理後の触媒について、担体中のCeOの含有量とNOx除去率との関係を図3に示す。また、実施例11〜13と比較例1及び6とについての結果に基づいて、WO/SnO−Feの組成をもつ水熱処理後の触媒について、担体中のFeの含有量とNOx除去率との関係を図4に示す。さらに、表5及び6に示された実施例1〜6と比較例1及び7とについての結果に基づいて、担体中のCeOの含有量と活性保持率との関係を図5に示し、実施例11〜13と比較例1及び6とについての結果に基づいて、担体中のFeの含有量と活性保持率との関係を図6に示す。 Based on the results for Examples 1 to 6 and Comparative Examples 1 and 7 shown in Tables 5 and 6, for the hydrothermally treated catalyst having the composition of WO 3 / SnO 2 —CeO 2 , CeO in the support The relationship between the content of 2 and the NOx removal rate is shown in FIG. Further, based on the results of Examples 11 to 13 and Comparative Examples 1 and 6, the catalyst after hydrothermal treatment having the composition of WO 3 / SnO 2 —Fe 2 O 3 was used for Fe 2 O 3 in the support. The relationship between the content and the NOx removal rate is shown in FIG. Furthermore, based on the results for Examples 1 to 6 and Comparative Examples 1 and 7 shown in Tables 5 and 6, the relationship between the content of CeO 2 in the carrier and the activity retention rate is shown in FIG. Based on the results of Examples 11 to 13 and Comparative Examples 1 and 6, the relationship between the content of Fe 2 O 3 in the support and the activity retention is shown in FIG.

図3から、担体中のCeOの含有量が7〜90質量%であれば、水熱処理後であっても50%を超えるNOx除去率が得られ、さらに好ましくは、担体中のCeOの含有量が15〜80質量%であれば、水熱処理後であっても65%以上のNOx除去率が得られており、担体にCeOを含まない(SnOのみを含む)比較例1及び担体にSnOを含まない(CeOのみを含む)比較例7に係る触媒に比べて、250℃程度の低温域において高いNOx除去率が得られることが分かった。また、図4から、担体中のFeの含有量が7.5〜80質量%であれば、水熱処理後であっても27%以上のNOx除去率が得られており、担体にFeを含まない(SnOのみを含む)比較例1及び担体にSnOを含まない(Feのみを含む)比較例6に係る触媒に比べて、低温域において高いNOx除去率が得られることが分かった。さらに、図5から、担体中のCeOの含有量が7〜90質量%であれば、0.6を超える活性保持率が示されており、比較例7に比べて活性保持率が高いことがわかった。また、図6から、担体中のFeの含有量が7.5〜80質量%であれば、0.7を超える活性保持率が示されており、比較例6に比べて活性保持率が高いことがわかった。したがって、実施例1〜6及び11〜13に係る触媒は、低温域におけるNOx除去率が高く、高温の水熱雰囲気に長時間曝されたときのNOx除去率の低下が小さいことが分かった。 From Figure 3, if the content of CeO 2 in the carrier is 7-90 wt%, even after hydrothermal treatment exceeds 50% NOx removal rate is obtained, more preferably, of CeO 2 in the carrier If the content is 15 to 80% by mass, a NOx removal rate of 65% or more is obtained even after hydrothermal treatment, and the support does not contain CeO 2 (including only SnO 2 ) and Comparative Example 1 It was found that a higher NOx removal rate can be obtained in a low temperature range of about 250 ° C. compared to the catalyst according to Comparative Example 7 that does not contain SnO 2 in the support (including only CeO 2 ). Further, from FIG. 4, when the content of Fe 2 O 3 in the support is 7.5 to 80% by mass, a NOx removal rate of 27% or more is obtained even after hydrothermal treatment. Compared with the catalyst according to Comparative Example 1 not containing Fe 2 O 3 (including only SnO 2 ) and Comparative Example 6 not including SnO 2 in the support (including only Fe 2 O 3 ), the NOx removal is higher in a low temperature range It turns out that rate is obtained. Furthermore, from FIG. 5, when the content of CeO 2 in the carrier is 7 to 90% by mass, an activity retention rate exceeding 0.6 is shown, and the activity retention rate is higher than that of Comparative Example 7. I understood. In addition, from FIG. 6, when the content of Fe 2 O 3 in the carrier is 7.5 to 80% by mass, an activity retention rate exceeding 0.7 is shown, and the activity retention is higher than that of Comparative Example 6. It turns out that the rate is high. Therefore, it was found that the catalysts according to Examples 1 to 6 and 11 to 13 have a high NOx removal rate in a low temperature range and a small decrease in the NOx removal rate when exposed to a high temperature hydrothermal atmosphere for a long time.

また、表5から、実施例7に係る触媒は、水熱処理後のNOx除去率が55%であり、かつ、算出される活性保持率が0.66であることから、実施例1〜6及び11〜13に係る触媒と同様の効果があることが分かった。実施例8に係る触媒は、水熱処理後のNOx除去率が42%であり、かつ、算出される活性保持率が0.88であることから、実施例1〜6及び11〜13に係る触媒と同様の効果があることが分かった。実施例9に係る触媒は、水熱処理後のNOx除去率が68%であり、かつ、算出される活性保持率が0.79であることから、実施例1〜6及び11〜13に係る触媒と同様の効果があることが分かった。実施例10に係る触媒は、水熱処理後のNOx除去率が38%であり、かつ、算出される活性保持率が0.90であることから、実施例1〜6及び11〜13に係る触媒と同様の効果があることが分かった。実施例14〜16に係る触媒も、熱水処理後のNOx除去率、活性保持率が実施例11〜13とほぼ同じであることから、実施例11〜13に係る触媒と同様の効果があることが分かった。さらに、表7によれば、コーディライトDPF担体にコーティングした状態でも同様の結果が得られるので、DPF一体型SCRモノリスとしても有用であることが分かった。また、実施例17〜21に係る触媒は、実施例1〜16に係る触媒と比較して活性保持率が低いものの、比較例2〜5と比較すると、低温域におけるNOx除去率が高いことが分かった。   Further, from Table 5, the catalyst according to Example 7 has a NOx removal rate after hydrothermal treatment of 55% and a calculated activity retention rate of 0.66. It turned out that there exists an effect similar to the catalyst which concerns on 11-13. Since the catalyst according to Example 8 has a NOx removal rate after hydrothermal treatment of 42% and the calculated activity retention rate is 0.88, the catalysts according to Examples 1 to 6 and 11 to 13 It turned out that there is the same effect. Since the catalyst according to Example 9 has a NOx removal rate after hydrothermal treatment of 68% and the calculated activity retention rate is 0.79, the catalyst according to Examples 1 to 6 and 11 to 13 It turned out that there is the same effect. Since the catalyst according to Example 10 has a NOx removal rate after hydrothermal treatment of 38% and the calculated activity retention rate is 0.90, the catalysts according to Examples 1 to 6 and 11 to 13 It turned out that there is the same effect. The catalysts according to Examples 14 to 16 also have the same effects as the catalysts according to Examples 11 to 13 because the NOx removal rate and the activity retention rate after the hot water treatment are almost the same as those of Examples 11 to 13. I understood that. Furthermore, according to Table 7, since the same result was obtained even when the cordierite DPF carrier was coated, it was found that it was useful as a DPF integrated SCR monolith. Moreover, although the catalyst which concerns on Examples 17-21 has a low activity retention compared with the catalyst which concerns on Examples 1-16, compared with Comparative Examples 2-5, it may have a high NOx removal rate in a low temperature range. I understood.

また、実施例3及び比較例7に係る触媒粉体のそれぞれについて、水熱処理前後の透過型電子顕微鏡(TEM)観察を行った。実施例3に係る触媒のTEM写真を図7(c)、(d)に示し、比較例7に係る触媒のTEM写真を図7(a)、(b)に示す。図7(a)〜(d)の各写真において、任意に30個の1次粒子の画像を選んで直径を測定し、それらの平均値を算出した。その結果、実施例3に係る触媒の1次粒子平均径は、水熱処理によって、10nm程度から15nm程度への成長にとどまっているのに対し、比較例7に係る触媒の1次粒子平均径は、水熱処理によって、10nm程度から20〜30nm程度へ成長し、実施例3に比べて、水熱処理による1次粒子平均径の成長の度合いが大きいことが分かった。このような水熱処理による1次粒子平均径の成長の違いが、水熱処理後のNOx除去率及び活性保持率に影響を与えているものと考えられ、触媒の1次粒子平均径の観点から、実施例1〜16に係る触媒は、750℃で30時間水熱処理した後の触媒の1次粒子平均径が20nm以下の微細形状を有することにより、水熱処理後のNOx除去率及び活性保持率について優れた効果が得られるものと予想される。   Further, each of the catalyst powders according to Example 3 and Comparative Example 7 was observed with a transmission electron microscope (TEM) before and after hydrothermal treatment. FIGS. 7C and 7D show TEM photographs of the catalyst according to Example 3, and FIGS. 7A and 7B show TEM photographs of the catalyst according to Comparative Example 7, respectively. In each photograph of FIGS. 7A to 7D, 30 primary particle images were arbitrarily selected to measure the diameter, and an average value thereof was calculated. As a result, the average primary particle diameter of the catalyst according to Example 3 was only increased from about 10 nm to about 15 nm by hydrothermal treatment, whereas the average primary particle diameter of the catalyst according to Comparative Example 7 was As a result of the hydrothermal treatment, it grew from about 10 nm to about 20 to 30 nm, and it was found that the degree of growth of the average primary particle diameter by the hydrothermal treatment was larger than that in Example 3. The difference in the growth of the average primary particle diameter due to such hydrothermal treatment is considered to affect the NOx removal rate and the activity retention after hydrothermal treatment. From the viewpoint of the average primary particle diameter of the catalyst, The catalysts according to Examples 1 to 16 have a fine shape with an average primary particle diameter of 20 nm or less after hydrothermal treatment at 750 ° C. for 30 hours, so that the NOx removal rate and activity retention rate after hydrothermal treatment are It is expected that an excellent effect will be obtained.

2.触媒の調製方法についての考察
[触媒調製方法]
実施例22
塩化すず(IV)五水和物及び硝酸セリウム(III)六水和物の混合水溶液を少しずつ、攪拌されたアンモニア水溶液(25%)に滴下して沈殿物を得た(逆共沈法)以外は、実施例3(共沈法)と同じ方法で調製した。
2. Consideration of catalyst preparation method [Catalyst preparation method]
Example 22
A mixed aqueous solution of tin chloride (IV) pentahydrate and cerium nitrate (III) hexahydrate was added dropwise to a stirred aqueous ammonia solution (25%) to obtain a precipitate (reverse coprecipitation method). Except for the above, it was prepared in the same manner as in Example 3 (coprecipitation method).

比較例10
BET比表面積が30m/gの酸化すず17.5gと、BET比表面積が130m/gの酸化セリウム7.5gとを、アルミナ製乳鉢を用いて混ぜ合わせて物理混合させた。これをタングステン酸アンモニウム水溶液0.4リットル(WO含有量2.56g)に浸し、蒸発乾固後、大気圧雰囲気下、550℃で5時間焼成した。
Comparative Example 10
17.5 g of tin oxide having a BET specific surface area of 30 m 2 / g and 7.5 g of cerium oxide having a BET specific surface area of 130 m 2 / g were mixed using an alumina mortar and physically mixed. This was immersed in 0.4 liter of an aqueous solution of ammonium tungstate (WO 3 content 2.56 g), evaporated to dryness, and calcined at 550 ° C. for 5 hours in an atmospheric pressure atmosphere.

[触媒のNOx除去率及び活性保持率の評価]
実施例22と比較例10とに係る触媒のそれぞれについて、実施例1〜21及び比較例1〜9に係る触媒と同様の方法にて、ペレット触媒を作成し、また、同様の方法にて、これらのペレット触媒を水熱処理し、さらに、同様の方法にて、水熱処理前後のNOx除去率を測定すると共に活性保持率を算出した。その結果を表8に示す。
[Evaluation of NOx removal rate and activity retention rate of catalyst]
For each of the catalysts according to Example 22 and Comparative Example 10, a pellet catalyst was prepared in the same manner as the catalysts according to Examples 1 to 21 and Comparative Examples 1 to 9, and in the same manner, These pellet catalysts were hydrothermally treated, and the NOx removal rate before and after hydrothermal treatment was measured and the activity retention rate was calculated by the same method. The results are shown in Table 8.

Figure 2012066238
Figure 2012066238

表8より、実施例22に係る触媒は、比較例10に係る触媒に比べて、水熱処理後の低温域におけるNOx除去率が高く、さらに活性保持率も高いことが分かった。また、表3に示された実施例3に係る触媒についても、同様である。従って、同じ触媒組成(WO/SnO−CeO(30%))であっても、調製方法の違いによって低温域におけるNOx除去率及び活性保持率が異なり、特に、実施例3及び22に係る触媒の調製方法(共沈法及び逆共沈法)が、低温域におけるNOx除去率及び活性保持率について、有利であることが分かった。これは、SnOとCeOとの複合化が、物理混合に比べて、より微細に進むためと考えられる。 From Table 8, it was found that the catalyst according to Example 22 had a higher NOx removal rate in the low temperature region after the hydrothermal treatment and higher activity retention than the catalyst according to Comparative Example 10. The same applies to the catalyst according to Example 3 shown in Table 3. Therefore, even with the same catalyst composition (WO 3 / SnO 2 —CeO 2 (30%)), the NOx removal rate and the activity retention rate in the low temperature range differ depending on the preparation method, and in particular, in Examples 3 and 22 It has been found that such catalyst preparation methods (coprecipitation method and reverse coprecipitation method) are advantageous in terms of NOx removal rate and activity retention rate at low temperatures. This is thought to be because the composite of SnO 2 and CeO 2 proceeds more finely than physical mixing.

また、実施例3及び22と比較例10とに係る触媒のそれぞれについて、水熱処理前後でXRD測定を行った。XRD測定結果(XRDスペクトル)を図8に示す。図8(a)に示されるように、水熱処理前において、共沈法及び逆共沈法により調製された実施例3及び22に係る触媒は、比較例10に係る触媒に比べて、SnO及びCeOのピークが幅広い形状であることから、XRD測定で検出されるサイズの粒子が極めて少ないことが分った。そして、図8(b)に示されるように、実施例3及び22に係る触媒は、水熱処理後においても、比較例10に係る触媒よりもSnO及びCeOのピークが幅広い関係は保持されており、XRD測定で検出されるサイズの粒子が依然として少ないことが分かった。 Further, for each of the catalysts according to Examples 3 and 22 and Comparative Example 10, XRD measurement was performed before and after hydrothermal treatment. The XRD measurement result (XRD spectrum) is shown in FIG. As shown in FIG. 8 (a), the catalysts according to Examples 3 and 22 prepared by the coprecipitation method and the reverse coprecipitation method before the hydrothermal treatment were more SnO 2 than the catalyst according to Comparative Example 10. In addition, since the peak of CeO 2 has a wide shape, it was found that the size of particles detected by XRD measurement is extremely small. As shown in FIG. 8 (b), the catalysts according to Examples 3 and 22 have a broader relationship of SnO 2 and CeO 2 peaks than the catalyst according to Comparative Example 10 even after hydrothermal treatment. It was found that the size of particles detected by XRD measurement is still small.

4 DPF(排ガス浄化フィルタ)。   4 DPF (exhaust gas purification filter).

Claims (12)

SnまたはSn化合物の少なくとも一方からなる第1成分と、
酸化物の酸化還元反応におけるギブスエネルギー変化の金属1モル当たり量が、40(kcal/Metal mol)以下である元素、若しくはその化合物からなる第2成分と、
周期表中で第5族元素、第5族元素化合物、第6族元素、第6族元素化合物のうちの少なくとも1つからなる第3成分と
からなるSCR触媒。
A first component comprising at least one of Sn or a Sn compound;
An element whose amount of Gibbs energy change in the oxidation-reduction reaction of the oxide is 40 (kcal / Metal mol) or less, or a second component made of a compound thereof;
An SCR catalyst comprising a third component comprising at least one of Group 5 element, Group 5 element compound, Group 6 element, and Group 6 element compound in the periodic table.
前記第2成分は、Ce、Ce化合物、Fe、Fe化合物、Cu、Cu化合物のうちの少なくとも1つからなる、請求項1に記載のSCR触媒。   The SCR catalyst according to claim 1, wherein the second component is made of at least one of Ce, Ce compound, Fe, Fe compound, Cu, and Cu compound. 前記第3成分は、W、W化合物、Mo、Mo化合物、V、V化合物、Nb、Nb化合物、Ta、Ta化合物のうちの少なくとも1つからなる、請求項1または2に記載のSCR触媒。   The SCR catalyst according to claim 1 or 2, wherein the third component comprises at least one of W, W compound, Mo, Mo compound, V, V compound, Nb, Nb compound, Ta, Ta compound. 前記第1成分及び前記第2成分の合計質量に対する前記第2成分の質量の比が7〜90質量%である、請求項1〜3のいずれか一項に記載のSCR触媒。   The SCR catalyst according to any one of claims 1 to 3, wherein a ratio of a mass of the second component to a total mass of the first component and the second component is 7 to 90% by mass. 前記第2成分はCeまたはCe化合物を含み、前記第1成分及び前記第2成分中の合計質量に対するCeまたはCe化合物の質量の比が7〜90質量%である、請求項4に記載のSCR触媒。   The SCR according to claim 4, wherein the second component includes Ce or a Ce compound, and a ratio of the mass of the Ce or Ce compound to the total mass in the first component and the second component is 7 to 90% by mass. catalyst. 前記第2成分はFeまたはFe化合物を含み、前記第1成分及び前記第2成分中の合計質量に対するFeまたはFe化合物の質量の比が7.5〜80質量%である、請求項4に記載のSCR触媒。   The said 2nd component contains Fe or a Fe compound, The ratio of the mass of Fe or the Fe compound with respect to the total mass in the said 1st component and the said 2nd component is 7.5-80 mass%. SCR catalyst. 前記第1成分及び前記第2成分が担体を構成し、該担体に前記第3成分が担持される、請求項1〜6のいずれか一項に記載のSCR触媒。   The SCR catalyst according to any one of claims 1 to 6, wherein the first component and the second component constitute a carrier, and the third component is supported on the carrier. 750℃で30時間水熱処理した後の前記SCR触媒の1次粒子平均径が20nm以下である、請求項1〜7のいずれか一項に記載のSCR触媒。   The SCR catalyst according to any one of claims 1 to 7, wherein an average primary particle diameter of the SCR catalyst after hydrothermal treatment at 750 ° C for 30 hours is 20 nm or less. 請求項1〜8のいずれか一項に記載のSCR触媒がコーティングされた排ガス浄化フィルタ。   An exhaust gas purification filter coated with the SCR catalyst according to any one of claims 1 to 8. 前記SCR触媒は、1.0μm以下のメジアン径を有する、請求項9に記載の排ガス浄化フィルタ。   The exhaust gas purification filter according to claim 9, wherein the SCR catalyst has a median diameter of 1.0 μm or less. 請求項1〜8のいずれか一項に記載のSCR触媒を備えた排ガス浄化装置。   An exhaust gas purification device comprising the SCR catalyst according to any one of claims 1 to 8. 請求項9または10に記載の排ガス浄化フィルタを備えた排ガス浄化装置。   An exhaust gas purification device comprising the exhaust gas purification filter according to claim 9 or 10.
JP2011171752A 2010-08-24 2011-08-05 SCR catalyst, exhaust gas purification filter, and exhaust gas purification device Active JP5716603B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011171752A JP5716603B2 (en) 2010-08-24 2011-08-05 SCR catalyst, exhaust gas purification filter, and exhaust gas purification device
PCT/JP2011/068875 WO2012026425A1 (en) 2010-08-24 2011-08-22 Scr catalyst, exhaust gas purification filter, and exhaust gas purification device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010187378 2010-08-24
JP2010187378 2010-08-24
JP2011171752A JP5716603B2 (en) 2010-08-24 2011-08-05 SCR catalyst, exhaust gas purification filter, and exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2012066238A true JP2012066238A (en) 2012-04-05
JP5716603B2 JP5716603B2 (en) 2015-05-13

Family

ID=45723425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171752A Active JP5716603B2 (en) 2010-08-24 2011-08-05 SCR catalyst, exhaust gas purification filter, and exhaust gas purification device

Country Status (2)

Country Link
JP (1) JP5716603B2 (en)
WO (1) WO2012026425A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052637A (en) * 2014-09-04 2016-04-14 株式会社アルバック Method of producing exhaust gas purification catalyst
JP2016516660A (en) * 2013-03-19 2016-06-09 ローディア オペレーションズ Compositions based on oxides of zirconium, cerium, niobium and tin, preparation methods and use in catalysis
CN112473682A (en) * 2020-11-24 2021-03-12 南京大学 High-performance medium-low temperature NH3-SCR catalyst, preparation method and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103769080B (en) * 2014-01-22 2017-01-25 东风商用车有限公司 Diesel vehicle tail gas purification SCR catalyst and preparation method thereof
CN104190432B (en) * 2014-09-10 2017-02-01 清华大学 Low-temperature denitration and synergetic desulfurization active carbon catalyst and preparation method thereof
CN106040226B (en) * 2016-06-15 2017-11-14 北京化工大学 A kind of cerium antimony composite oxide catalysts and its preparation method and application
CN106268779A (en) * 2016-08-11 2017-01-04 重庆大学 A kind of middle high temperature SCR denitration with alkali resistant metal poisoning and preparation method thereof
CN114534747B (en) * 2022-01-25 2024-08-02 中国科学院城市环境研究所 Vulcanized metal oxide catalyst and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051992A (en) * 1973-09-04 1975-05-09
JPS50110992A (en) * 1974-12-04 1975-09-01
JPS51149892A (en) * 1975-06-19 1976-12-23 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for removing nox
JP2009291764A (en) * 2008-06-09 2009-12-17 Tokyo Roki Co Ltd Exhaust gas cleaning filter for internal engine and exhaust gas cleaning device for internal engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502020A (en) * 1994-10-13 1998-02-24 ローヌプーラン シミ Catalyst compositions for reducing nitrogen oxides based on tantalum, vanadium, niobium, copper or antimony
JPH0910555A (en) * 1995-06-28 1997-01-14 Sakai Chem Ind Co Ltd Removal of nitrogen oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051992A (en) * 1973-09-04 1975-05-09
JPS50110992A (en) * 1974-12-04 1975-09-01
JPS51149892A (en) * 1975-06-19 1976-12-23 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for removing nox
JP2009291764A (en) * 2008-06-09 2009-12-17 Tokyo Roki Co Ltd Exhaust gas cleaning filter for internal engine and exhaust gas cleaning device for internal engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516660A (en) * 2013-03-19 2016-06-09 ローディア オペレーションズ Compositions based on oxides of zirconium, cerium, niobium and tin, preparation methods and use in catalysis
JP2016052637A (en) * 2014-09-04 2016-04-14 株式会社アルバック Method of producing exhaust gas purification catalyst
CN112473682A (en) * 2020-11-24 2021-03-12 南京大学 High-performance medium-low temperature NH3-SCR catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
JP5716603B2 (en) 2015-05-13
WO2012026425A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5716603B2 (en) SCR catalyst, exhaust gas purification filter, and exhaust gas purification device
US10260395B2 (en) Nitrous oxide removal catalysts for exhaust systems
KR101735851B1 (en) Catalyst composition for selective catalytic reduction of exhaust gases
KR100326747B1 (en) Device for Purifying Oxygen Rich Exhaust Gas
TWI566829B (en) Niobium-free and vanadium-free mobile deNOx (DeNOx) catalyst
CN101528324B (en) Ce-ZR-R-O catalysts, articles comprising the Ce-ZR-R-O catalysts and methods of making and using the Ce-ZR-R-O catalysts
EP2990115A1 (en) Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
CN101522298A (en) Catalyst, method and apparatus for purifying nitrogen oxide
US10030559B2 (en) Oxidation catalyst and exhaust gas purification device using same
JP7187654B2 (en) Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst
CN106040287B (en) Exhaust gas purification catalyst
JP5880682B2 (en) Exhaust gas purification catalyst system using base metal and its control method
JP4432588B2 (en) Catalyst and method for producing catalyst
CN102266773B (en) Exhaust gas purification catalyst
JP5806157B2 (en) Exhaust gas purification catalyst composition
CN102179243A (en) Catalyst for selective catalytic reduction of nitrogen oxide in moderate/low temperature environment
CN103252232A (en) Zirconium-doped vanadium-based oxide catalyst, and preparation method and application thereof
JP2007203160A (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2010284597A (en) Diesel exhaust gas oxidation catalyst and diesel exhaust gas oxidation catalyst honeycomb structure
CN119425668A (en) A rare earth manganese zirconium composite catalytic material and preparation method thereof, and catalyst
JP2006110402A (en) Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas
CN120205232A (en) Monolithic carbon monoxide catalyst and preparation method and application thereof
JP2010094626A (en) Catalyst for cleaning exhaust gas
KR20120052052A (en) Perovskite-based catalyst with improved thermal stability

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5716603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150