[go: up one dir, main page]

JP2012062778A - 電動過給機 - Google Patents

電動過給機 Download PDF

Info

Publication number
JP2012062778A
JP2012062778A JP2010205536A JP2010205536A JP2012062778A JP 2012062778 A JP2012062778 A JP 2012062778A JP 2010205536 A JP2010205536 A JP 2010205536A JP 2010205536 A JP2010205536 A JP 2010205536A JP 2012062778 A JP2012062778 A JP 2012062778A
Authority
JP
Japan
Prior art keywords
motor
control device
housing
electric supercharger
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010205536A
Other languages
English (en)
Inventor
Jun Tawara
潤 田原
Yasushi Nakajima
泰 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010205536A priority Critical patent/JP2012062778A/ja
Publication of JP2012062778A publication Critical patent/JP2012062778A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

【課題】配線のインダクタンスを低減させて、損失を低減し効率を向上させた小型化が可能な電動過給機を提供することを目的としている。
【解決手段】電動過給機1は、エンジンの排気ガスによって駆動するタービンインペラ10と、空気を圧縮してエンジンに過給するコンプレッサインペラ20と、一端がタービンインペラ10の回転軸11に連結され、他端がコンプレッサインペラ20の回転軸21に連結された連結軸30と、連結軸30に固定されたモータロータ400とモータステータ401とで構成されるモータ40と、モータハウジング104の外周壁部に取り付けられた直流電力を交流電力に変換すると共にモータ40を制御する制御装置50と、制御装置50を冷却する冷却装置800とにより構成されている。配線長の短縮により損失を低減することができる。
【選択図】図1

Description

本発明は、圧縮機を駆動する過給機に関し、電動機を内蔵した電動過給機に関するものである。
一般的に、過給機は、圧縮機(コンプレッサ)とタービンからなり、圧縮機のコンプレッサインペラとタービンのタービンインペラは互いに連結軸で連結され、エンジンの排気ガスでタービンインペラを駆動し、この回転力を連結軸を介してコンプレッサインペラを回転させることにより空気を圧縮してエンジンに過給する構成になっている。このエンジンの排気ガスを利用した過給機において、効率の落ちる低速回転時に補助するための電動機を内蔵した電動過給機が提案されている。ここで使用される電動機は、タービンとコンプレッサ軸上に配設され、運転状態に応じて電動機の駆動による過給圧の増大、または排気エネルギを利用した発電による電力回生が行われている。
排気タービン過給機の回転速度は、例えば、10〜20万rpmと高速であり、電動過給機に内蔵される電動機は、この高速回転に対応して高速で回転駆動と回生駆動ができることが求められる。このため、車輌に搭載されたバッテリの直流電力を任意の周波数の交流電力に変換するインバータが必要とされる。インバータで変換された交流電力は、インバータと電動過給機を接続する電源供給ケーブルの電気抵抗やインダクタンスによる電力損失が大きいことが問題であり、特に、周波数が高い場合には、これらによる損失が顕著となり、電動機で消費する電力よりも大きな電力が必要となり、インバータが大型化する。
この対策として、例えば、特許文献1に示される電動過給機では、モータを電気的に制御するインバータとインバータ制御器はドーナツ型もしくはU字型の容器に収容され、断熱連結部材によりコンプレッサハウジングに連結されている。断熱連結部材は、コンプレッサ吐出空気の高温がドライバ容器に伝熱されないようにその間を断熱する空冷又は水冷の断熱層を有している。電動過給機がモータステータ、インバータ及びインバータ制御器を備えているので、インバータと電動過給機を接続する電源供給ケーブルの長さを大幅に短縮でき、電動機とインバータの距離が最小となるため、電源供給ケーブルの電気抵抗やインダクタンスが無視できる程度まで低減できる。また、インバータが電動過給機と一体化されているので、インバータを別に設置する場所を不要としている。
特開2007−46479号公報
しかしながら、特許文献1に示される電動過給機においては、モータと制御装置間の配線が、コンプレッサ内を経由するため、空気が漏れないように密閉を保つ必要があり、構造が複雑となる。また、電動過給機の回転数は10万〜20万rpmに達し、その制御も高周波で行われるため、配線がコンプレッサを経由する分だけ長くなったことにより、配線インダクタンスが増加し、損失が増大してしまう。さらに、制御装置においては、半導体素子やコンデンサなどが発熱するが、その熱の放熱経路が少なく、温度上昇が著しくなり素子の寿命の保証時間が短くなり、電流を抑制して性能を下げなければならない、という問題がある。また、上記高速回転に対応して、インバータ駆動のキャリア周波数を高め
る必要があり、例えば通常のインバータ機器の数倍以上のスイッチング周波数で用いる必要があるため、スイッチング損失が非常に増大してしまうという電動過給器特有の問題もあった。
このようなスイッチング損失を低減するためには、さらなる配線のインダクタンスを低減することが重要である。配線のインダクタンスが大きいと、インダクタンスに電流変化率dI/dtを乗じた誘起電圧が発生する。電動過給機のモータの回転数は10万rpm以上にも達し、この制御を行うためには、通常のインバータの数倍から十数倍のキャリア周波数での制御が必要となる。その場合、通常のインバータでは考えられない電流の立ち上がりが要求され、すなわち大きな電流変化率dI/dtとなる。スイッチング損失は、このサージと呼ばれる誘起電圧が大きいほどスイッチオフ時の損失が大きくなる。このように、電動過給機においては、通常では考え難いスイッチング周波数を実現する必要があるが、dI/dtを小さくすることが困難であり、スイッチング損失が大きくなってしまうために、インダクタンスの低減が非常に重要となってくる。
本発明は、上記のような問題を解決するためになされたものであり、冷却性を改善することにより、電動機と電動機を制御する制御装置との配線長を短縮させ、インダクタンスを低減させて、損失を減らし、効率を向上させた小型化が可能な電動過給機を提供することを目的としている。
上記課題を解決するために、請求項1に係る本発明の電動過給機は、コンプレッサインペラと、前記コンプレッサインペラの回転軸に連結され前記回転軸と共に回転する連結軸と、前記連結軸に固定されたモータロータと、前記モータロータを囲みモータハウジングに固定されたモータステータと、前記モータハウジングの外周壁部に取り付けられ、直流電力を交流電力に変換すると共に前記モータロータ及び前記モータステータとで構成されるモータを制御する制御装置と、前記制御装置を冷却油にて冷却する冷却装置と、を備えたものである。
また、請求項3に係る本発明の電動過給機は、タービンインペラと、コンプレッサインペラと、一端が前記タービンインペラの回転軸に連結され、他端が前記コンプレッサインペラの回転軸に連結され、これらの回転軸と共に回転する連結軸と、前記連結軸に固定されたモータロータと、前記モータロータを囲みモータハウジングに固定されたモータステータと、前記モータハウジングの外周壁部に取り付けられ、直流電力を交流電力に変換すると共に前記モータロータ及び前記モータステータとで構成されるモータを制御する制御装置と、前記制御装置を冷却油にて冷却する冷却装置と、を備えたものである。
本発明によれば、電力変換とモータの制御を行う制御装置を冷却油にて冷却することにより、半導体素子やコンデンサからの発熱を効率よく放散させることが可能となり、制御装置をモータハウジングの外周壁部に配置することにより、モータと制御装置間の配線の長さを最小限に抑え、配線によるインダクタンスを低減することができ、その結果、インバータのスイッチング損失を低減することができ電動過給機の性能を向上させることができるといった顕著な効果を奏するものである。
実施の形態1における電動過給機の全体を示す模式断面図である。 実施の形態1における電動過給機の冷却装置の冷却経路例を示す概略図である。 実施の形態1における電動過給機内の冷却油の流れを示す概略図である。 実施の形態1における電動過給機の制御装置の半導体素子の実装例を示す略断面図である。 実施の形態1における電動過給機の制御装置の半導体素子の他の実装例を示す略断面図である。 実施の形態1における電動過給機の半導体素子とモータとの配線の接続機構を示す略部分断面図である。 実施の形態2における電動過給機の制御装置の配置を示す略断面図である。 実施の形態3における電動過給機の全体を示す模式断面図である。
以下、本発明の実施の形態に係る電動過給機について図1〜図8に基づいて説明する。
実施の形態1.
図1は、実施の形態1における電動過給機の全体を示す模式断面図である。図2は、実施の形態1における電動過給機の冷却経路の例を示す概略図である。図3は、実施の形態1における電動過給機内の冷却油の流れを示す概略図である。図4は、実施の形態1における電動過給機の制御装置の半導体素子の実装例を示す略断面図である。
図1において、電動過給機1は、エンジン(図示せず)の排気ガスの風力によって駆動するタービンインペラ10と、タービンインペラ10を収容するタービンハウジング102と、空気を圧縮してエンジンに過給するコンプレッサインペラ20と、コンプレッサインペラ20を収容するコンプレッサハウジング101と、一端がタービンインペラ10の回転軸11に連結され、他端がコンプレッサインペラ20の回転軸21に連結された連結軸30と、連結軸30に固定されたモータロータ400とモータロータ400を囲みモータハウジング104に固定されたモータステータ401とで構成されるモータ40と、モータハウジング104の外周壁部に取り付けられた直流電力を交流電力に変換すると共にモータ40を制御する制御装置50と、モータ40の配線の配線端子451と、制御装置50の配線の配線端子551と、配線端子451と配線端子551とが嵌め合いにより接続される接続機構45及び接続機構55とにより構成されている。
次に、実施の形態1における電動過給機の動作について、図1を参照して説明する。なお、本発明の主体は電動過給機の制御装置の配置や冷却による損失低減にあるので、エンジン回りやインバータ回路の動作の説明は省略する。
電動過給機1は、エンジンにより多くの吸入空気を過給して、高出力化だけでなく低燃費化を図るものである。エンジンからの排気ガスによりタービンインペラ10が回転駆動され、タービンインペラ10の回転軸11と連結軸30で繋がったコンプレッサインペラ20の回転軸21を回転駆動させることにより、コンプレッサインペラ20を駆動させて過給圧を増大させる。電動過給機1では、モータステータ401の界磁巻線に流れる電流により磁場が調整される三相交流モータ40(以下、モータと称する)を持ち、排気ガスにより駆動されるタービンインペラ10の回転軸11とコンプレッサインペラ20の回転軸21に繋がった連結軸30上にあり、モータ40によりコンプレッサインペラ20を駆動させ過給圧を増大させる。排気ガスにより十分な回転数が得られる場合は排気エネルギを利用した発電による電力回生を行う。モータ40に電力を供給するバッテリ(図示せず)は、直流電源であり、例えば、制御装置50の平滑コンデンサを備えたインバータ回路に電力が供給され、U相、V相、W相のそれぞれに接続された3対の(6つ)のパワーMOSFET、および界磁巻線の1対の(2つ)のパワーMOSFETを制御回路からの制御信号に基づいてスイッチングして交流電力に変換され、モータステータ401の界磁巻線への供給電力を制御することでモータロータ400を駆動させ、連結軸30を回転させてコンプレッサインペラ20を駆動させてエンジンへの過給を補助させている。
モータロータ400は軸30上のタービンインペラ10とコンプレッサインペラ20の中間に備える。好ましくは、モータロータ400はコンプレッサインペラ20側にオフセットして配置すると、高温となるタービンインペラ10との熱抵抗を大きくでき、受熱量を減らすことができる。モータステータ401はモータロータ400を囲むようにモータハウジング104に固定されている。
また、モータ40を制御する制御装置50の配線端子551は、モータ40からの配線端子451と電気的に接続され、電力源であるバッテリから供給された直流電力は交流電力に変換され、モータ40に供給される。
ハウジング100は、タービンハウジング101とコンプレッサハウジング102及びモータハウジング104で構成され、制御装置50がモータハウジング104に取付けられている。制御装置50に搭載される半導体素子70には、耐熱性に優れたSiC(炭化珪素)により作られた半導体を用い、さらに、制御装置50の冷却には、冷却油を用いた冷却方式を採用している。タービンハウジング101に送り込まれるエンジンの排ガスは高温であるため、その熱が制御装置50に伝わり、制御装置50に搭載された半導体素子70の温度を上昇させるが、半導体素子70には、高耐熱半導体素子であるSiCが使われていることと、さらに、高温の冷却に適した冷却油による冷却方式が採用されたことにより、水冷ではせいぜい100℃程度までしか使用できないのに対して油冷の使用可能温度領域は200℃程度まであるため、冷却器の耐熱性を大幅に向上させ100℃以上になっても問題なく使用できるので、制御装置50をモータハウジング104の外周壁面に配置することが可能となった。
これにより、モータ40から配線端子451が半径方向に突出され、これに応じるように制御装置50からも配線端子551が突出され、モータ40の配線端子451と制御装置50の配線端子551とは、それぞれの接続機構45と接続機構55とにより配線端子451,551同志は互いに嵌め合い、機械的に固定され、電気的に接続されている。モータ40と制御装置50との間の配線は、配線端子451と配線端子551によるモータハウジング104の円周部分を介するのみになるため、簡易な構造で配線長を短くすることができ、高周波においても配線によるインダクタンスや抵抗を低減することができ、損失を低減することができる。電動過給機で問題となる高キャリア周波数でのスイッチングにおいて、この配線長が低減されることにより、インダクタンスを大幅に低減することができる。その結果、スイッチング時のサージ電圧が低減され、スイッチング損失を低減できるため、非常に有効である。このように、耐熱性を向上させ損失を低減できるため、電動過給機の性能、信頼性を向上することができる。
また、配線端子451,551を互いに嵌め合いによる接続機構45,55により接続することにより、モータステータ401と制御装置50との間の配線を短くできるだけでなく、配線接続の組立作業性を大幅に改善できる効果もある。
次に、図2に電動過給機の冷却装置の冷却経路を示す。油冷により制御装置50とハウジング100及びモータ40を含む冷却を必要とするすべてを冷却対象とし、冷却装置800により循環させて冷却することにより、ラジエータ801やポンプ802などを冷却するための冷却装置を増やすことなく、冷却効果を高めることができる。この場合、冷却装置800における冷却の経路は、上限温度が低い順にすることが好ましく、図2に示すように、制御装置50、コンプレッサハウジング102、モータ40、タービンハウジング101の順とすることで、不必要に放熱性を高める必要性がなくなるため経済的である。
電動過給機1に流れる冷却油の経路の一例を図3に示す。ポンプ802から送り出された冷却油80は、まず、タービンハウジング101側に設けられた制御装置50の入口851から制御装置50内を循環、半導体素子70やベース(基板)72等を冷却し、制御装置50の出口852から出て、制御装置50に近い入口811からコンプレッサハウジング102に流入され、コンプレッサハウジング102内を循環してコンプレッサインペラ20やコンプレッサ回転軸21等を冷却する。続いて、冷却油80は、制御装置50とは逆側のモータハウジング104の側壁にあるコンプレッサハウジング102の出口及びモータハウジング104の入口812からモータハウジング104内及びモータ40を循環、モータステータ401やモータロータ400及び連結軸30等を冷却後、制御装置50側の側壁にあるモータハウジング104の出口及びタービンハウジング101の入口821からタービンハウジング101に流入され、タービンハウジング101内を循環、タービンインペラ10やタービン回転軸11等を冷却した後、出口822から排出される。
ここで使用する冷却油80としては、植物油でもよいが、水と分離し難い鉱物油が好ましく、導電部と直接接触する場合には絶縁性の油を用いればよい。また、故障や定期的な点検時に制御装置50を取り外す必要が生じた場合に、冷却油80の油漏れを抑える必要があるが、入口851と出口852に開閉弁V1,V2を設けることにより作業性を損なうことなく実施することができる。
モータ40の冷却部を複数に分ける場合は、ハウジング104とモータ40の冷却部を交互に通って冷却すればよい。ただし、エンジンルーム内の搭載制約によっては、必ずしもこの順番にする必要はないが、よりラジエータを大型化させる必要性が生じる。
図4に制御装置の半導体素子の実装例を示す。半導体素子の配線は、ワイヤボンディングでもよいが、図4の実施例に示すように、半導体素子70は、ベース72上に形成された絶縁体73、その上に形成されたアルミや銅などの導電体74に、はんだや銀ペーストなどの接合材75を用いて接合されている。さらに、半導体素子70の配線として、接合材76を介してリード71を直接接合させることにより、放熱性を向上させることができ耐熱疲労性を向上させることができるため、耐熱性をさらに向上することができる。半導体素子70やベース72を冷却させるためにベース72と制御装置ハウジング77の空間に冷却油80を循環させる。
ゲートのように接合面積が小さい配線が要求される場合には、図5に示す他の半導体素子の実装例のように、ゲートリード78にバンプ79を設けて半導体素子70のゲートに接触、あるいは接続する構造にするとよい。さらに、好ましくは半導体素子70及びゲートリード78を樹脂材料で封止することにより、接合部の熱応力が低減され、更に耐熱疲労性を向上させることができる。半導体素子70を封止する場合には、封止材のTgが使用環境温度よりも大きい高耐熱樹脂材を用いることにより耐熱性を向上することができる。
また、半導体素子70とリード71の接合材76、あるいは半導体素子70とベース72との接合材75には、熱膨張率がSiCと近い材質を用いた方が耐熱疲労性が高いため望ましく、特に、インバー材を用いる方がよい。
制御装置50の冷却構造は、半導体素子70あるいは半導体素子70を搭載した基板(ベース72)に高熱伝導体であるアルミや銅などのヒートシンクを設置して冷媒である冷却油80を流してもよく、さらに冷却効果を高めるためには、半導体素子70あるいは半導体素子70を搭載した基板72に冷却油80が直接触れるようにするとよく、半導体素子70あるいは半導体素子70を搭載した基板72に密閉空間に設けて冷却油80を流すようにするとよい。
モータステータ40の配線端子451は、コンプレッサハウジング102に近い側に配置する方が、ハウジング100の中では比較的温度が低いため好ましい。
制御装置50には、インバータ回路があり、電源のプラス側とモータ40に接続する上アーム用半導体素子702と、モータと電源のマイナス側に接続する下アーム用半導体素子701とを有し、上アーム用半導体素子702と下アーム用半導体素子701が軸方向に並べて配置されることが多い。図6に示すように、半導体素子701と702は、温度の低いコンプレッサ寄りに配置することで耐熱性を向上させることができる。
配線端子451は、モータステータ401の軸方向の端部に配線の終端をもってくることにより、ステータコアの構成上最も小型化できる。接続機構45,55は、図6に示すように嵌め合い構造として雄雌のコネクタで構成してもよく、ねじ止めであっても構わない。また、配線端子451,551自体に嵌め合いによる接続機構45,55の機能を持たせてもよく、例えば、制御装置50に接続機構55として端子台を設け、配線端子451に接続機構45として貫通穴を開け、端子台にねじ止めしてもよい。制御装置50は、接続機構45,55によりモータハウジング104に固定できるとよいが、耐震性を強化するためには、制御装置50の4隅などに貫通穴を設け、モータハウジング104にねじ穴を設け、ねじ止めをして制御装置50をモータハウジング104に固定するとよい。制御装置50の取付け位置は、より低い温度であるコンプレッサハウジング102側にすることが好ましい。なお、制御装置50がモータハウジング104より上側に配置された場合、モータハウジング104の熱が対流により制御装置50に伝わり、制御装置50の温度を上昇させる可能性があるため、制御装置50はモータハウジング104より下側に配置することが好ましい。
このように、実施の形態1における過給機の電動過給機では、電力変換とモータの制御を行う制御装置を冷却油にて冷却することにより、半導体素子やコンデンサからの発熱を効率よく放散させることが可能となり、制御装置をモータハウジングの外周壁部に配置することにより、モータと制御装置間の配線の長さを最小限に抑え、配線によるインダクタンスを低減することができ、その結果、インバータのスイッチング損失を低減することができ電動過給機の性能を向上させることができるといった顕著な効果を奏するものである。
なお、モータが高回転であることと、制御装置の耐熱性を向上したことによりモータの温度は上昇し、磁石を用いている場合は減磁により出力が低下するため、好ましくは磁石レス構造のモータを使用することにより、温度上昇に対する耐性を高めることができる。
実施の形態2.
図7は、実施の形態2における電動過給機の制御装置の配置を示す略断面図である。
図7に示すように、実施の形態2における電動過給機1では、制御装置が制御装置50a,50b,50cの各相毎に3分割され、それぞれがモータハウジング104の外周壁面に放射状に配設されている点を除いて、他の構成要素は、図1で示す実施の形態1の電動過給機1と同様であるので説明を省略する。
実施の形態2では、モータステータ401の各相の配線端子451a,451b,451c(図示せず、図6の451と同様)と制御装置50a,50b,50cの配線端子551a,551b,551c(図示せず、図6の551と同様)とがそれぞれモータステータ401側の接続機構45a,45b,45cと制御装置50側の55a,55b,55cを介して接続される。これにより、モータステータ401と制御装置50を結ぶ配線長を短縮することができ、損失をさらに低減することができる。
このように、実施の形態2における電動過給機では、三相交流の相に合わせて制御装置を3分割してそれぞれモータハウジングの外周壁部に配置し、モータステータと制御装置を最短の配線長で接続することにより、配線によるインダクタンスを低減することができ、さらに損失を低減できることができるという顕著な効果がある。
実施の形態3.
図8は、実施の形態3における電動過給機の全体を示す模式断面図である。
図8に示すように、実施の形態3における電動過給機2では、空気を圧縮してエンジンに過給するコンプレッサインペラ20と、コンプレッサインペラ20を収容するコンプレッサハウジング101と、コンプレッサインペラ20の回転軸21に連結された連結軸30と、連結軸30に固定されたモータロータ400とモータロータ400を囲みモータハウジング104に固定されたモータステータ401とで構成されるモータ40と、モータハウジング104の外周壁部に取り付けられた直流電力を交流電力に変換すると共にモータ40を制御する制御装置50と、モータ40の配線の配線端子451と、制御装置50の配線の配線端子551と、配線端子451と配線端子551とが嵌め合いにより接続される接続機構45及び接続機構55とにより構成されている。
実施の形態3の電動過給機2では、モータステータ401の界磁巻線に流れる電流により磁場が調整される三相交流モータ40(以下、モータと称する)を持ち、コンプレッサインペラ20の回転軸21に繋がった連結軸30上にあり、モータ40によりコンプレッサインペラ20を駆動させ過給圧を増大させる。実施の形態1と同様、モータ40に電力を供給するバッテリ(図示せず)は、直流電源であり、例えば、制御装置50の平滑コンデンサを備えたインバータ回路に電力が供給され、U相、V相、W相のそれぞれに接続された3対の(6つ)のパワーMOSFET、および界磁巻線の1対の(2つ)のパワーMOSFETを制御回路からの制御信号に基づいてスイッチングして交流電力に変換され、モータステータ401の界磁巻線への供給電力を制御することでモータロータ400を駆動させ、連結軸30を回転させてコンプレッサインペラ20を駆動させてエンジンへの過給を補助させている。
モータステータ401はモータロータ400を囲むようにモータハウジング104に固定されている。また、モータ40を制御する制御装置50の配線端子551は、モータ40からの配線端子451と電気的に接続され、電力源であるバッテリから供給された直流電力は交流電力に変換されて、モータ40に供給される。
モータ40からの配線端子451と制御装置50の配線端子551との接続の詳細については、実施の形態1と同様であるので説明を省略する。
実施の形態3における冷却装置は、図2の実施の形態1の冷却装置800の冷却経路からタービンハウジング101を除いたものであり、冷却効果を高めるため、上限温度が低い順にすることが好ましく、ラジエータ801、ポンプ802、制御装置50、コンプレッサハウジング102、モータ40の順に冷却油を循環させる。
実施の形態1と同様、制御装置50に搭載される半導体素子70には、耐熱性に優れたSiC(炭化珪素)により作られた半導体を用い、さらに、制御装置50の冷却には、冷却油を用いた冷却方式を採用している。半導体素子70には、高耐熱半導体素子であるSiCが使われていることと、さらに、高温の冷却に適した冷却油による冷却方式が採用されたことにより、耐熱性を大幅に向上させることができるので、制御装置50をモータハウジング104の外周壁面に配置することが可能となった。
このように、実施の形態3における電動過給機では、電力変換とモータの制御を行う制御装置を冷却油にて冷却することにより、半導体素子やコンデンサからの発熱を効率よく放散させることが可能となり、制御装置をモータハウジングの外周壁部に配置することにより、モータと制御装置間の配線の長さを最小限に抑え、配線によるインダクタンスを低減することができ、その結果、インバータのスイッチング損失を低減することができ電動過給機の性能を向上させることができるといった顕著な効果を奏するものである。また、エンジンからの排気ガスにより駆動するタービンインペラがないため、排ガスに起因する温度上昇を伴わないため、冷却系の冷却ポンプのサイズを小さくすることができ、電動過給機を小型化することができるという顕著な効果もある。
なお、制御装置50に使用される半導体素子は、シリコン(Si)を基材とした一般的な素子でもよいが、本発明では、炭化珪素(SiC)や窒化ガリウム(GaN)、またはダイアモンドといったシリコンと比べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体を適用した場合により一層の効果を発揮する。ワイドバンドギャップ半導体は、シリコン半導体によって形成された素子よりも電力損失が小さいため、インバータ回路における高効率化が可能であり、配線のインダクタンスの低減と半導体素子の電力損失の低減の点からも制御装置50の効率化が実現できる。さらに、ワイドバンドギャップ半導体は、耐電圧性が高く、許容電流密度も高いためインバータ回路等の小型化が可能であり、制御装置50の小型化が図れる。また、耐熱性が高く、高温動作も可能であることから、発熱体の近傍に設置することができ、ヒートシンク等も小型で済み放熱対策も容易である。
また、図において、同一符号は、同一または相当部分を示す。
1,2 電動過給機
10 タービンインペラ
11 タービン回転軸
100 ハウジング
101 タービンハウジング
102 コンプレッサハウジング
104 モータハウジング
20 コンプレッサインペラ
21 コンプレッサ回転軸
30 連結軸
40 モータ
400 モータロータ
401 モータステータ
451,551 配線端子
50 制御装置
70 半導体素子
80 冷却油
800 冷却装置

Claims (8)

  1. コンプレッサインペラと、
    前記コンプレッサインペラの回転軸に連結され前記回転軸と共に回転する連結軸と、
    前記連結軸に固定されたモータロータと、
    前記モータロータを囲みモータハウジングに固定されたモータステータと、
    前記モータハウジングの外周壁部に取り付けられ、直流電力を交流電力に変換すると共に前記モータロータ及び前記モータステータとで構成されるモータを制御する制御装置と、
    前記制御装置を冷却油にて冷却する冷却装置と、
    を備えたことを特徴とする電動過給機。
  2. タービンインペラと、
    一端が前記タービンインペラの回転軸に連結され、他端が前記コンプレッサインペラの回転軸に連結され、これらの回転軸と共に回転する連結軸と、
    を備えたことを特徴とする請求項1に記載の電動過給機。
  3. 前記タービンインペラはタービンハウジングに収容され、前記コンプレッサインペラはコンプレッサハウジングに収容されており、前記冷却油は、前記制御装置内、前記コンプレッサハウジング内と前記モータハウジング内及び前記タービンハウジング内を順次循環されることを特徴とする請求項2に記載の電動過給機。
  4. 前記コンプレッサインペラはコンプレッサハウジングに収容されており、前記冷却油は、前記制御装置内と前記コンプレッサハウジング内及び前記モータハウジング内を順次循環されることを特徴とする請求項1に記載の電動過給機。
  5. 前記制御装置は、交流電力の相数に分割されており、前記分割された制御装置がそれぞれ前記モータハウジングの外周壁部に取り付けられていることを特徴とする請求項1乃至4のいずれかに記載の電動過給機。
  6. 前記モータの設けられた配線端子と前記制御装置の設けられた配線端子とが嵌め合いにより接続されていることを特徴とする請求項1乃至5のいずれかに記載の電動過給機。
  7. 前記制御装置に使用される半導体素子が、ワイドバンドギャプ半導体で構成されていることを特徴とする請求項1乃至6のいずれかに記載の電動過給機。
  8. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム又はダイアモンドであることを特徴とする請求項7に記載の電動過給機。

JP2010205536A 2010-09-14 2010-09-14 電動過給機 Pending JP2012062778A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205536A JP2012062778A (ja) 2010-09-14 2010-09-14 電動過給機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205536A JP2012062778A (ja) 2010-09-14 2010-09-14 電動過給機

Publications (1)

Publication Number Publication Date
JP2012062778A true JP2012062778A (ja) 2012-03-29

Family

ID=46058745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205536A Pending JP2012062778A (ja) 2010-09-14 2010-09-14 電動過給機

Country Status (1)

Country Link
JP (1) JP2012062778A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045295A (ja) * 2013-08-29 2015-03-12 本田技研工業株式会社 内燃機関の多段過給装置
JP2019029140A (ja) * 2017-07-27 2019-02-21 トヨタ自動車株式会社 電池冷却システム
JP2021505111A (ja) * 2017-11-23 2021-02-15 カーエスベー ソシエタス ヨーロピア ウント コンパニー コマンディート ゲゼルシャフト アウフ アクチェンKSB SE & Co. KGaA 一体型モータ電子機器
US11177489B2 (en) 2017-11-01 2021-11-16 Ihi Corporation Centrifugal compressor with diffuser
US11248612B2 (en) 2017-11-01 2022-02-15 Ihi Corporation Centrifugal compressor with gas and liquid cooling lines
US11289747B2 (en) 2017-07-27 2022-03-29 Toyota Jidosha Kabushiki Kaisha Battery cooling system
JP2022077005A (ja) * 2020-11-10 2022-05-20 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト 排気ターボチャージャ
US11339800B2 (en) 2017-11-01 2022-05-24 Ihi Corporation Centrifugal compressor with heat exchanger
DE112022000190T5 (de) 2021-02-12 2023-09-14 Ihi Corporation Elektrischer Turbolader

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090130A (ja) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd TiAl基合金と鋼材の接合方法
JP2004336845A (ja) * 2003-05-01 2004-11-25 Sumitomo Electric Ind Ltd 車載電力変換装置
JP2005020881A (ja) * 2003-06-25 2005-01-20 Aisin Aw Co Ltd 駆動装置
JP2005226469A (ja) * 2004-02-10 2005-08-25 Komatsu Ltd コンプレッサインペラとシャフトとの結合構造
JP2007046570A (ja) * 2005-08-11 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd 電動機付過給機
JP2007280913A (ja) * 2006-03-15 2007-10-25 Hitachi Cable Ltd コネクタ構造
JP2008179285A (ja) * 2007-01-25 2008-08-07 Toshiba Corp 鉄道車両駆動用モータドライブシステム
JP2009041443A (ja) * 2007-08-08 2009-02-26 Toyota Motor Corp ターボチャージャの冷却装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090130A (ja) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd TiAl基合金と鋼材の接合方法
JP2004336845A (ja) * 2003-05-01 2004-11-25 Sumitomo Electric Ind Ltd 車載電力変換装置
JP2005020881A (ja) * 2003-06-25 2005-01-20 Aisin Aw Co Ltd 駆動装置
JP2005226469A (ja) * 2004-02-10 2005-08-25 Komatsu Ltd コンプレッサインペラとシャフトとの結合構造
JP2007046570A (ja) * 2005-08-11 2007-02-22 Ishikawajima Harima Heavy Ind Co Ltd 電動機付過給機
JP2007280913A (ja) * 2006-03-15 2007-10-25 Hitachi Cable Ltd コネクタ構造
JP2008179285A (ja) * 2007-01-25 2008-08-07 Toshiba Corp 鉄道車両駆動用モータドライブシステム
JP2009041443A (ja) * 2007-08-08 2009-02-26 Toyota Motor Corp ターボチャージャの冷却装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045295A (ja) * 2013-08-29 2015-03-12 本田技研工業株式会社 内燃機関の多段過給装置
JP2019029140A (ja) * 2017-07-27 2019-02-21 トヨタ自動車株式会社 電池冷却システム
US11289747B2 (en) 2017-07-27 2022-03-29 Toyota Jidosha Kabushiki Kaisha Battery cooling system
US11177489B2 (en) 2017-11-01 2021-11-16 Ihi Corporation Centrifugal compressor with diffuser
US11248612B2 (en) 2017-11-01 2022-02-15 Ihi Corporation Centrifugal compressor with gas and liquid cooling lines
US11339800B2 (en) 2017-11-01 2022-05-24 Ihi Corporation Centrifugal compressor with heat exchanger
JP2021505111A (ja) * 2017-11-23 2021-02-15 カーエスベー ソシエタス ヨーロピア ウント コンパニー コマンディート ゲゼルシャフト アウフ アクチェンKSB SE & Co. KGaA 一体型モータ電子機器
JP2022077005A (ja) * 2020-11-10 2022-05-20 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト 排気ターボチャージャ
JP7284238B2 (ja) 2020-11-10 2023-05-30 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフト 排気ターボチャージャ
DE112022000190T5 (de) 2021-02-12 2023-09-14 Ihi Corporation Elektrischer Turbolader
US12276226B2 (en) 2021-02-12 2025-04-15 Ihi Corporation Electric turbocharger

Similar Documents

Publication Publication Date Title
JP2012062778A (ja) 電動過給機
US5742498A (en) Motor vehicle alternator having sealed rectifiers for efficient high-temperature operation
CN106233589B (zh) 机电一体型马达装置
US8704415B2 (en) Controller-integrated electric rotating machine with a shifted control circuit
JP4147987B2 (ja) 多相式交流回転電機
WO2009113298A1 (ja) 電力変換装置
US6198187B1 (en) Automotive alternator
JP5586707B2 (ja) 電力変換回路内蔵モーター、この電力変換回路内蔵モーターを搭載した流体ポンプ、この流体ポンプを搭載した空気調和機、給湯器、電力変換回路内蔵モーターを搭載した機器
JP6621491B2 (ja) 回転電機
US8319381B2 (en) Automotive electric motor-generator with radial plates and circuit boards disposed in a fan shape in a common plane around shaft of rotor
JP2009219267A (ja) 電力変換装置
CN113141088B (zh) 旋转电机
JP4166804B2 (ja) 制御装置一体型回転電機
JP2012210153A (ja) 電力変換装置
JP6485705B2 (ja) 電力変換装置および回転電機
AU2012201818B2 (en) Indoor equipment of air-conditioner
JP2008187853A (ja) 回転電機装置
JP5554395B2 (ja) 電動過給機
JP5330296B2 (ja) 電動過給機
JP3972855B2 (ja) インバータモジュール
JP2021507672A (ja) フローで冷却されるトロイダルまたは円形のパワーエレクトロニクス
JP2007325341A (ja) モータ及び発電機
JP3972768B2 (ja) 交流発電機
US11323012B2 (en) Flow-cooled power electronics
JP4089421B2 (ja) 車両用交流発電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203