JP2012050940A - Method for manufacturing hydrogen storage body - Google Patents
Method for manufacturing hydrogen storage body Download PDFInfo
- Publication number
- JP2012050940A JP2012050940A JP2010196309A JP2010196309A JP2012050940A JP 2012050940 A JP2012050940 A JP 2012050940A JP 2010196309 A JP2010196309 A JP 2010196309A JP 2010196309 A JP2010196309 A JP 2010196309A JP 2012050940 A JP2012050940 A JP 2012050940A
- Authority
- JP
- Japan
- Prior art keywords
- libh
- hydrogen storage
- hydrogen
- storage body
- melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 70
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 70
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 238000003860 storage Methods 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title abstract description 16
- 239000011148 porous material Substances 0.000 claims abstract description 57
- 238000002844 melting Methods 0.000 claims abstract description 28
- 230000008018 melting Effects 0.000 claims abstract description 28
- 239000011232 storage material Substances 0.000 claims abstract description 26
- 238000011049 filling Methods 0.000 claims abstract description 21
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000012448 Lithium borohydride Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000013590 bulk material Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
【課題】複雑なプロセスを必要とせず、溶媒への溶解度に限定されない高い充填量で多孔質材料の細孔内へ水素貯蔵材料LiBH4を充填できる水素貯蔵体の製造方法を提供する。
【解決手段】水素貯蔵材料であるLiBH4を融解させて多孔質材料に充填して水素貯蔵体を製造する方法であって、
LiBH4の熱分解反応式の平衡水素圧力に基づいて決定される水素圧力下で上記融解を行なうことを特徴とする水素貯蔵体の製造方法。
【選択図】図1Provided is a method for producing a hydrogen storage body that does not require a complicated process and can be filled with a hydrogen storage material LiBH 4 into pores of a porous material with a high filling amount that is not limited to solubility in a solvent.
A method for producing a hydrogen storage body by melting LiBH 4 which is a hydrogen storage material and filling it in a porous material, comprising:
A method for producing a hydrogen storage body, wherein the melting is performed under a hydrogen pressure determined based on an equilibrium hydrogen pressure in a thermal decomposition reaction formula of LiBH 4 .
[Selection] Figure 1
Description
本発明は、水素貯蔵材料を多孔質材料の細孔内に充填して水素貯蔵体を製造する方法に関する。 The present invention relates to a method for producing a hydrogen storage body by filling a hydrogen storage material into pores of a porous material.
水素はクリーンなエネルギー材料として注目されており、水素を安全に貯蔵する材料として種々の水素貯蔵材料が提案されている。中でもLiBH4は水素貯蔵量が大きいため特に有望な水素貯蔵材料として期待されている。 Hydrogen is attracting attention as a clean energy material, and various hydrogen storage materials have been proposed as materials for safely storing hydrogen. Among them, LiBH 4 is expected as a particularly promising hydrogen storage material because of its large hydrogen storage capacity.
実際の使用に際しては、水素貯蔵材料であるLiBH4を多孔質材料の細孔内に充填して水素貯蔵体とする必要がある。これは、水素貯蔵材料の分解反応が細孔内ではより低温でかつ高速で起こることを利用するためである。 In actual use, it is necessary to fill the pores of the porous material with LiBH 4 which is a hydrogen storage material to form a hydrogen storage body. This is to take advantage of the fact that the decomposition reaction of the hydrogen storage material occurs at a lower temperature and higher speed in the pores.
すなわち、非特許文献1には、水素貯蔵材料としてLiBH4を多孔質カーボンの細孔内に充填することで、LiBH4の分解がより低温かつ高速で起きることが報告されている。また、特許文献1には、水素貯蔵材料としてNH4BH4をSiO2の細孔内に充填することで、やはり分解がより低温かつ高速で起きることが開示されている。 That is, Non-Patent Literature 1 reports that LiBH 4 is decomposed at a lower temperature and higher speed by filling LiBH 4 as a hydrogen storage material in the pores of porous carbon. Patent Document 1 discloses that decomposition occurs at a lower temperature and at a higher speed by filling NH 4 BH 4 in the pores of SiO 2 as a hydrogen storage material.
非特許文献1および特許文献1の充填方法は、水素貯蔵材料を溶媒に溶かし、この溶液中に多孔質材料を浸漬することで、毛管現象により溶液を細孔内に充填した後、乾燥させて溶媒を除去する方法である。 In the filling method of Non-Patent Document 1 and Patent Document 1, the hydrogen storage material is dissolved in a solvent, and the porous material is immersed in this solution, so that the solution is filled into the pores by capillary action and then dried. This is a method for removing the solvent.
しかし、この方法では、溶媒への溶解限があるため、細孔内への水素貯蔵材料の充填量にも限界があった。また、水素貯蔵材料自体を融解して充填しようとしても、融解過程において水素貯蔵材料が熱分解されてしまうという問題が発生する。 However, this method has a limit in the amount of hydrogen storage material filled in the pores due to the limited solubility in the solvent. Further, even if the hydrogen storage material itself is melted and filled, there is a problem that the hydrogen storage material is thermally decomposed during the melting process.
特許文献2には、組成式Li(B,N,Al)Hxから成る水素貯蔵材料が開示されているが、細孔内への充填量を高めることは特に配慮されていない。 Patent Document 2 discloses a hydrogen storage material composed of the composition formula Li (B, N, Al) Hx, but no particular consideration is given to increasing the filling amount into the pores.
特許文献3には、水素貯蔵材料としてLiNH2を利用するときに、細孔内に充填する方法として、Liを融解して細孔内に充填させ、空気中の窒素と反応させた後に、水素と反応させる方法が開示されている。しかし、充填処理のプロセスが複雑であり実用的でない。 In Patent Document 3, when LiNH 2 is used as a hydrogen storage material, as a method of filling the pores, Li is melted and filled into the pores, and after reacting with nitrogen in the air, hydrogen is used. A method of reacting with is disclosed. However, the filling process is complicated and impractical.
本発明は、複雑なプロセスを必要とせず、溶媒への溶解度に限定されない高い充填量で多孔質材料の細孔内へ水素貯蔵材料LiBH4を充填できる水素貯蔵体の製造方法を提供することを目的とする。 The present invention provides a method for producing a hydrogen storage body that does not require a complicated process and can be filled with the hydrogen storage material LiBH 4 into the pores of the porous material with a high filling amount that is not limited to the solubility in a solvent. Objective.
上記の目的を達成するために、本発明によれば、水素貯蔵材料であるLiBH4を融解させて多孔質材料に充填して水素貯蔵体を製造する方法であって、
LiBH4の熱分解反応式の平衡水素圧力に基づいて決定される水素圧力下で上記融解を行なうことを特徴とする水素貯蔵体の製造方法が提供される。
In order to achieve the above object, according to the present invention, a method for producing a hydrogen storage body by melting LiBH 4 which is a hydrogen storage material and filling it in a porous material,
A method for producing a hydrogen storage body is provided, wherein the melting is performed under a hydrogen pressure determined based on an equilibrium hydrogen pressure in a thermal decomposition reaction formula of LiBH 4 .
本発明によれば、LiBH4の熱分解を抑止するのに十分な水素圧力下でLiBH4の融解を行なうので、分解させることなくLiBH4自体を融解させて細孔内に充填できるので、溶媒へのLiBH4の溶解度に限定されず高い充填量が実現できる。 According to the present invention, because the melting of LiBH 4 under sufficient hydrogen pressure to suppress the thermal decomposition of LiBH 4, because by melting LiBH 4 itself without degrading can be filled into the pores, the solvent higher loadings are not limited to solubility of LiBH 4 to can be achieved.
LiBH4は、下記の式(A)または(B)により結合・分解する。 LiBH 4 is bound and decomposed by the following formula (A) or (B).
LiBH4→LiH+B+(3/2)H2・・・(A)
(LiBH4→LiH+B+(3/2)H2)in pore・・・(B)
開放された状態での反応Aに比べて、細孔内に充填された状態での反応Bのほうが反応温度が低下するという利点があるため、本発明ではBの状態を採用した。細孔によるこの効果は細孔が微細なほど顕著であり、細孔径がナノオーダー(数nm〜数十nm)の微細な場合に特に有利である。
LiBH 4 → LiH + B + (3/2) H 2 (A)
(LiBH 4 → LiH + B + (3/2) H 2 ) in pore (B)
Compared with the reaction A in the open state, the reaction B in the state filled in the pores has an advantage that the reaction temperature is lowered, so the state B is adopted in the present invention. This effect due to the pores is more remarkable as the pores are finer, and is particularly advantageous when the pore diameter is as fine as nano-order (several nm to several tens of nm).
本発明は、LiBH4を融解させて多孔質材料に充填して水素貯蔵体を製造する際に、
LiBH4の熱分解を抑止するのに十分な水素圧力下で上記融解を行なう。
In the present invention, when a hydrogen storage body is manufactured by melting LiBH 4 and filling a porous material,
The melting is performed under a hydrogen pressure sufficient to inhibit thermal decomposition of LiBH 4 .
典型的には、上記水素圧力は、融解させる温度において、下記式(1)で表されるLiBH4の分解反応について下記式(2)で表される平衡水素圧力PH2より大きい。 Greater Typically, the hydrogen pressure is at a temperature to melt, the equilibrium hydrogen pressure P for the decomposition reaction of LiBH 4 represented by the following formula (1) represented by the following formula (2) H2.
(2/3)LiBH4→(2/3)LiH+(2/3)B+H2・・・式(1)
PH2=exp(−ΔHT/RT+ΔST/R)・・・式(2)
式(2)において、温度T〔K〕における、
ΔHT:分解に伴うエンタルピー変化〔kJ・molH2 −1〕
ΔST:分解に伴うエントロピー変化〔J・K−1・molH2 −1〕
R:気体定数〔J・K−1・mol−1〕
PH2:平衡水素圧力〔atm〕。
(2/3) LiBH 4 → (2/3) LiH + (2/3) B + H 2 Formula (1)
P H2 = exp (−ΔH T / RT + ΔS T / R) Expression (2)
In the formula (2), at the temperature T [K],
ΔH T : Enthalpy change accompanying decomposition [kJ · mol H2 −1 ]
ΔS T : Entropy change accompanying decomposition [J · K −1 · mol H2 −1 ]
R: Gas constant [J · K −1 · mol −1 ]
PH2 : equilibrium hydrogen pressure [atm].
望ましい形態においては、上記水素圧力は0.01MPa以上である。 In a desirable form, the hydrogen pressure is 0.01 MPa or more.
望ましい形態においては、上記融解させる温度が290℃以下である。そうすることによって、多孔質材料とLiBH4との反応を最小限に抑えることができる。 In a desirable form, the melting temperature is 290 ° C. or lower. By doing so, the reaction between the porous material and LiBH 4 can be minimized.
本発明にしたがって、下記の条件および手順で、LiBH4を融解して多孔質材料の細孔内に充填した。 In accordance with the present invention, LiBH 4 was melted and filled into the pores of the porous material under the following conditions and procedures.
<用いた材料>
LiBH4:Aldrich社製、純度95%
バルク材料SiO2:ナカライテスク社製(粉末)
多孔質材料Al2O3:BAM社製、ERM−FD122
バルク材料と多孔質材料の特性を下記の表1に示す。
<Materials used>
LiBH 4 : Aldrich, purity 95%
Bulk material SiO 2 : Nacalai Tesque (powder)
Porous material Al 2 O 3 : manufactured by BAM, ERM-FD122
The properties of the bulk material and the porous material are shown in Table 1 below.
図1に本実施例のフローチャートを示す。 FIG. 1 shows a flowchart of this embodiment.
(1)前処理
まず、多孔質材料(Al2O3)を300℃にて2時間ターボ分子ポンプを用いて真空にて保持することにより、付着した水分などの吸着ガス除去した。
(1) Pretreatment First, the adsorbed gas such as adhering moisture was removed by holding the porous material (Al 2 O 3 ) at 300 ° C. for 2 hours in a vacuum using a turbo molecular pump.
(2)混合
その後、表2に示す割合で多孔質材料(Al2O3)とLiBH4をメノウ乳鉢により手混ぜを5分間行なった。
(2) Mixing Thereafter, the porous material (Al 2 O 3 ) and LiBH 4 were mixed by hand in an agate mortar at a ratio shown in Table 2 for 5 minutes.
(3)細孔内へ充填(融解法)
混合後の試料をステンレス容器に入れ、290℃にて1.0MPaの水素圧力下で1時間保持することにより、LiBH4を融解させてAl2O3の細孔内に充填した。
(3) Filling the pores (melting method)
The mixed sample was put in a stainless steel container and held at 290 ° C. under a hydrogen pressure of 1.0 MPa for 1 hour to melt LiBH 4 and fill the pores of Al 2 O 3 .
(4)充填の確認
充填を確認するために、窒素ガス吸着法により細孔容積および比表面積を測定した。窒素ガス吸着法には、ユアサ アイオニクス社製AUTOSORB−1を用いた。
(4) Confirmation of filling In order to confirm the filling, the pore volume and the specific surface area were measured by a nitrogen gas adsorption method. For the nitrogen gas adsorption method, AUTOSORB-1 manufactured by Yuasa Ionics was used.
<融解処理温度の検討>
本実施例に用いたLiBH4の融点は287℃であった。多孔質材料としてAl2O3を用いて、細孔容積に対するLiBH4の容積が33.33vol%LiBH4となるように両者を秤量し、メノウ乳鉢で混合した。次に、試料をステンレス製の容器に入れて、温度285℃、290℃とし、1.0MPa水素雰囲気下で1h保持して、充填の可否を調査した。
<Examination of melting temperature>
The melting point of LiBH 4 used in this example was 287 ° C. Using Al 2 O 3 as the porous material, the volume of LiBH 4 for pore volume weighed both so that 33.33vol% LiBH4, were mixed in an agate mortar. Next, the sample was put in a stainless steel container, and the temperature was set to 285 ° C. and 290 ° C., and the sample was held for 1 h in a 1.0 MPa hydrogen atmosphere to investigate whether filling was possible.
窒素ガス吸着法により細孔容積を測定した。図2に、細孔容積に対するLiBH4の容積と細孔容積および比表面積の関係を示す。 The pore volume was measured by nitrogen gas adsorption method. FIG. 2 shows the relationship between the volume of LiBH 4 with respect to the pore volume, the pore volume, and the specific surface area.
図2の結果から、285℃では細孔容積が変化していないことから、細孔内に充填はできておらず、290℃では細孔容積が減少していることから充填できていると考えられる。したがって、細孔内に水素貯蔵材料を充填するには、少なくとも融点以上の温度が必要であることが分かる。 From the results shown in FIG. 2, the pore volume does not change at 285 ° C., so that the pores are not filled, and the pore volume is reduced at 290 ° C. It is done. Therefore, it can be seen that a temperature of at least the melting point or higher is required to fill the pores with the hydrogen storage material.
<融解処理圧力の検討>
LiBH4の融点(287℃)に比べ、分解生成物であるLiHの融点(680℃)およびBの融点(2180℃)は高温であるため、LiBH4の融解前に分解反応が起こると融解を利用した充填はできなくなるので、LiBH4→LiH+B+(3/2)H2(式(1))の分解反応を抑止する必要がある。
<Examination of melting pressure>
Since the melting point of LiH (680 ° C.) and the melting point of B (2180 ° C.) are higher than the melting point of LiBH 4 (287 ° C.), if the decomposition reaction occurs before the melting of LiBH 4 , the melting occurs. Since the filling cannot be performed, it is necessary to inhibit the decomposition reaction of LiBH 4 → LiH + B + (3/2) H 2 (formula (1)).
平衡状態における温度と水素圧力の関係式は、PH2=exp(−ΔHT/RT+ΔST/R)(式(2))で表すことができ、反応式(1)の各温度におけるΔH、ΔSを代入することで、図3に示す平衡水素圧力と温度との関係が得られる。例えば、反応式(1)の290℃における熱力学的な値(ΔH290℃=−67kJ/mol、ΔS290℃=−98J/mol)より、290℃における式(1)の分解反応の抑止には、0.01MPa以上の水素圧力が必要であることが分かる。 The relational expression between the temperature and the hydrogen pressure in the equilibrium state can be expressed as P H2 = exp (−ΔH T / RT + ΔS T / R) (Equation (2)), and ΔH and ΔS at each temperature of the reaction equation (1). By substituting, the relationship between the equilibrium hydrogen pressure and temperature shown in FIG. 3 is obtained. For example, the thermodynamic values (ΔH 290 ° C. = − 67 kJ / mol, ΔS 290 ° C. = − 98 J / mol) of the reaction formula (1) at 290 ° C. can be used to suppress the decomposition reaction of the formula (1) at 290 ° C. Indicates that a hydrogen pressure of 0.01 MPa or more is required.
このように、水素貯蔵材料の分解を回避しながら融解による充填を行なうには、水素貯蔵材料の融点以上の温度Tmにおいて、水素貯蔵材料の分解を抑止できる水素圧力(>平衡水素圧力PH2)をかけることが必要である。 Thus, in order to perform filling by melting while avoiding the decomposition of the hydrogen storage material, the hydrogen pressure (> equilibrium hydrogen pressure PH2 ) that can suppress the decomposition of the hydrogen storage material at a temperature Tm equal to or higher than the melting point of the hydrogen storage material. It is necessary to apply.
<LiBH4と多孔質材料との反応温度の検討>
本発明により水素貯蔵材料の融解を利用して多孔質材料の細孔内に充填する方法を行なうには、LiBH4と多孔質材料との反応を極力抑制することが重要である。
<Examination of reaction temperature between LiBH 4 and porous material>
In order to perform the method of filling the pores of the porous material using the melting of the hydrogen storage material according to the present invention, it is important to suppress the reaction between LiBH 4 and the porous material as much as possible.
LiBH4とSiO2との反応する温度を調査するために、LiBH4とSiO2(バルク:*)とをメノウ乳鉢で5min間手混ぜした試料を、290℃、320℃、380℃でそれぞれ3h保持した。(*:反応性のみを調べるため多孔質ではないSiO2を用いた。)図4に、反応生成物のXRDチャートを示す。 To investigate the temperature at which reaction between LiBH 4 and SiO 2, LiBH 4 and SiO 2 (bulk: *) hand mixed samples between 5min in an agate mortar and, 290 ℃, 320 ℃, respectively 380 ° C. 3h Retained. (*: Non-porous SiO 2 was used to examine only the reactivity.) FIG. 4 shows an XRD chart of the reaction product.
図4に示すように、290℃保持の場合は、LiBH4の分解生成物であるLiHおよびBのピークが観測されたが、320℃以上で保持した場合は、SiO2とLiBH4の反応生成物であるLi2SiO3の生成が確認できた。LiBH4とSiO2とは320℃以上の温度で反応しているので、多孔質のSiO2を用いてその細孔内にLiBH4を充填する場合の温度は、少なくとも320℃より低温とする必要がある。温度が高くなるほど反応性は高まるから、融解による充填処理の温度は、少なくとも290℃以下とすることが望ましく、融点287℃とすることが最も望ましい。 As shown in FIG. 4, in the case of holding at 290 ° C., peaks of LiH and B, which are decomposition products of LiBH 4 , were observed, but in the case of holding at 320 ° C. or higher, the reaction product of SiO 2 and LiBH 4 generation of the is Li 2 SiO 3 things could be confirmed. Since LiBH 4 and SiO 2 react at a temperature of 320 ° C. or higher, the temperature when filling the pores with LiBH 4 using porous SiO 2 must be at least lower than 320 ° C. There is. Since the higher the temperature, the higher the reactivity, the temperature of the filling process by melting is preferably at least 290 ° C., and most preferably the melting point is 287 ° C.
本発明によれば、複雑なプロセスを必要とせず、溶媒への溶解度に限定されない高い充填量で多孔質材料の細孔内へ水素貯蔵材料LiBH4を充填できる水素貯蔵体の製造方法が提供される。 According to the present invention, without requiring a complex process, a manufacturing method of a porous hydrogen storage material can be filled with hydrogen storage material LiBH 4 into pores of the material is provided with high loadings are not limited to solubility in solvents The
Claims (4)
LiBH4の熱分解反応式の平衡水素圧力に基づいて決定される水素圧力下で上記融解を行なうことを特徴とする水素貯蔵体の製造方法。 A method for producing a hydrogen storage body by melting LiBH 4 which is a hydrogen storage material and filling a porous material,
A method for producing a hydrogen storage body, wherein the melting is performed under a hydrogen pressure determined based on an equilibrium hydrogen pressure in a thermal decomposition reaction formula of LiBH 4 .
(2/3)LiBH4→(2/3)LiH+(2/3)B+H2・・・式(1)
PH2=exp(−ΔHT/RT+ΔST/R)・・・式(2)
式(2)において、温度T〔K〕における、
ΔHT:分解に伴うエンタルピー変化〔kJ・molH2 −1〕
ΔST:分解に伴うエントロピー変化〔J・K−1・molH2 −1〕
R:気体定数〔J・K−1・mol−1〕
PH2:平衡水素圧力〔atm〕 Characterized in claim 1, said hydrogen pressure is at a temperature T to melt, is greater than the equilibrium hydrogen pressure P H2 represented by the following formula (2) Decomposition reaction of LiBH 4 represented by the following formula (1) A method for producing a hydrogen storage body.
(2/3) LiBH 4 → (2/3) LiH + (2/3) B + H 2 Formula (1)
P H2 = exp (−ΔH T / RT + ΔS T / R) Expression (2)
In the formula (2), at the temperature T [K],
ΔH T : Enthalpy change accompanying decomposition [kJ · mol H2 −1 ]
ΔS T : Entropy change accompanying decomposition [J · K −1 · mol H2 −1 ]
R: Gas constant [J · K −1 · mol −1 ]
PH2 : equilibrium hydrogen pressure [atm]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196309A JP5494365B2 (en) | 2010-09-02 | 2010-09-02 | Method for producing hydrogen storage body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196309A JP5494365B2 (en) | 2010-09-02 | 2010-09-02 | Method for producing hydrogen storage body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012050940A true JP2012050940A (en) | 2012-03-15 |
JP5494365B2 JP5494365B2 (en) | 2014-05-14 |
Family
ID=45904948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010196309A Expired - Fee Related JP5494365B2 (en) | 2010-09-02 | 2010-09-02 | Method for producing hydrogen storage body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5494365B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS538393A (en) * | 1976-06-28 | 1978-01-25 | Raffinage Cie Francaise | Store*manufacture and application of bonded hydrogen |
JP2006143537A (en) * | 2004-11-22 | 2006-06-08 | Materials & Energy Research Institute Tokyo Ltd | Method for producing tetrahydroborate |
JP2007152278A (en) * | 2005-12-07 | 2007-06-21 | Taiheiyo Cement Corp | Hydrogen storage material and method for producing the same |
WO2007091894A1 (en) * | 2006-01-26 | 2007-08-16 | Institutt For Energiteknikk | Adjusting the stability of complex metal hydrides |
JP2007330903A (en) * | 2006-06-15 | 2007-12-27 | Electric Power Dev Co Ltd | Method for producing hydrogen storage composite |
-
2010
- 2010-09-02 JP JP2010196309A patent/JP5494365B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS538393A (en) * | 1976-06-28 | 1978-01-25 | Raffinage Cie Francaise | Store*manufacture and application of bonded hydrogen |
JP2006143537A (en) * | 2004-11-22 | 2006-06-08 | Materials & Energy Research Institute Tokyo Ltd | Method for producing tetrahydroborate |
JP2007152278A (en) * | 2005-12-07 | 2007-06-21 | Taiheiyo Cement Corp | Hydrogen storage material and method for producing the same |
WO2007091894A1 (en) * | 2006-01-26 | 2007-08-16 | Institutt For Energiteknikk | Adjusting the stability of complex metal hydrides |
JP2007330903A (en) * | 2006-06-15 | 2007-12-27 | Electric Power Dev Co Ltd | Method for producing hydrogen storage composite |
Also Published As
Publication number | Publication date |
---|---|
JP5494365B2 (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baldé et al. | Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers | |
Zhang et al. | The synthesis and hydrogen storage properties of aMgH2 incorporated carbon aerogel scaffold | |
JP6556695B2 (en) | Ammonia synthesis catalyst and ammonia synthesis method | |
Srinivas et al. | Nanoconfined ammonia borane in a flexible metal–organic framework Fe–MIL-53: clean hydrogen release with fast kinetics | |
US8865619B2 (en) | Method for storing hydrogen in a porous monolithic material, composite material obtained, and applications | |
Song et al. | Improvement in the hydrogen storage properties of Mg by mechanical grinding with Ni, Fe and V under H2 atmosphere | |
Huang et al. | Increased air stability and decreased dehydrogenation temperature of LiBH 4 via modification within poly (methylmethacrylate) | |
Han et al. | The enhanced hydrogen storage of micro-nanostructured hybrids of Mg (BH4) 2–carbon nanotubes | |
Wang et al. | Catalysis and hydrolysis properties of perovskite hydride NaMgH3 | |
US10000377B1 (en) | Nanostructured metal amides and nitrides for hydrogen storage | |
Gao et al. | Interface effects in NaAlH4–carbon nanocomposites for hydrogen storage | |
Niaz et al. | Synthesis of nanostructured Mg–Ni alloy and its hydrogen storage properties | |
JP4764885B2 (en) | Hydrogen storage composite material and hydrogen reversible storage device | |
Galey et al. | Impact of the addition of poly-dihydrogen ruthenium precursor complexes on the hydrogen storage properties of the Mg/MgH 2 system | |
Wang et al. | Improved dehydrogenation cycle performance of the 1.1 MgH2-2LiNH2-0.1 LiBH4 system by addition of LaNi4. 5Mn0. 5 alloy | |
JP5494365B2 (en) | Method for producing hydrogen storage body | |
Suárez-Alcántara et al. | Mg–M–LiH alloys prepared by mechanical milling and their hydrogen storage characteristics | |
JP2008013375A (en) | Hydride composite and hydrogen storage material | |
KR101273495B1 (en) | Tuning method of interlayer spacing in graphene oxide composites for hydrogen storage | |
Lai et al. | Borohydrides as solid-state hydrogen storage materials: Past, current approaches and future perspectives | |
US20070231254A1 (en) | Direct synthesis and methods of using hydrogen storage materials | |
JP2011079689A (en) | Hydrogen storage material and method of using the same | |
JP4888777B2 (en) | Method for producing hydrogen storage material | |
Xiong et al. | Production of nitrogen-doped graphite from carbon dioxide using polyaminoborane | |
JP5346014B2 (en) | Method for producing Ti-doped hydride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140217 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5494365 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |