[go: up one dir, main page]

JP2012046772A - Mist cvd device and method for generating mist - Google Patents

Mist cvd device and method for generating mist Download PDF

Info

Publication number
JP2012046772A
JP2012046772A JP2010187019A JP2010187019A JP2012046772A JP 2012046772 A JP2012046772 A JP 2012046772A JP 2010187019 A JP2010187019 A JP 2010187019A JP 2010187019 A JP2010187019 A JP 2010187019A JP 2012046772 A JP2012046772 A JP 2012046772A
Authority
JP
Japan
Prior art keywords
mist
collision member
liquid column
generating container
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010187019A
Other languages
Japanese (ja)
Inventor
Koji Nakahama
康治 中濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010187019A priority Critical patent/JP2012046772A/en
Publication of JP2012046772A publication Critical patent/JP2012046772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Special Spraying Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mist chemical vapor deposition (CVD) method that is compact and has high efficiency, and to provide a mist CVD device.SOLUTION: In the mist CVD device, ultrasonic vibration is applied to a raw material solution in a mist generation vessel, in which an ultrasonic transducer 6 is place on a bottom surface thereof, obliquely upward from the bottom surface so as to form a liquid column 7 toward an obliquely upward direction and generate mist 8, wherein a collision member is provided near the top of the liquid column formed obliquely upward, thus reducing the installation interval between ultrasonic transducers.

Description

本発明は、超音波振動により原料溶液を霧化して得られる微小なミストを利用して薄膜を形成するミストCVD法、およびミストCVD装置に関するものである。   The present invention relates to a mist CVD method and a mist CVD apparatus for forming a thin film using fine mist obtained by atomizing a raw material solution by ultrasonic vibration.

液晶表示装置、太陽電池などに用いられる金属酸化物薄膜は、一般的に、スパッタリング法や蒸着法、有機金属化合物を用いたCVD(化学気相成長法)などで作製される。スパッタリング法や蒸着法は、真空プロセスであるため、真空装置が必要である。有機金属化学気相成長法は、真空装置が必要な上、原料である有機金属化合物が爆発性・毒性などを有するため取り扱いが困難で、排ガス処理装置など付随する設備が必要で、成膜システム全体として高度な安全設計が要求される。いずれの要求も低コスト化を妨げる要因として大きな課題となっている。また、最近は基板が大型化しており特に大きな課題となっている。   A metal oxide thin film used for a liquid crystal display device, a solar cell or the like is generally produced by sputtering, vapor deposition, CVD (chemical vapor deposition) using an organometallic compound, or the like. Since the sputtering method and the vapor deposition method are vacuum processes, a vacuum apparatus is necessary. The metalorganic chemical vapor deposition method requires a vacuum apparatus and is difficult to handle because the organometallic compound as a raw material has explosive properties and toxicity, and requires an accompanying facility such as an exhaust gas treatment system. Overall, advanced safety design is required. All of these requirements are major issues that hinder cost reduction. Recently, the size of the substrate is increasing, which is a particularly big problem.

そのため、ミストCVD法を、特に金属酸化物薄膜の作製に適用しようとする研究開発が行われ始めている。ここで、ミストCVD法とは、原料溶液に超音波振動を与えて微小なミストを発生させ、発生したミストをキャリアガスとともに搬送し、ミストを成膜基板表面に接触させて、成膜基板表面に所望の膜を形成するものである。   For this reason, research and development has been started to apply the mist CVD method particularly to the production of metal oxide thin films. Here, the mist CVD method is a method in which a raw material solution is subjected to ultrasonic vibration to generate a minute mist, the generated mist is transported together with a carrier gas, and the mist is brought into contact with the film formation substrate surface. To form a desired film.

ミストCVD法は、大気圧雰囲気で成膜が可能なので、真空容器やポンプ類など真空雰囲気を形成・維持するのに必要な装備が不要である。また、有機金属化合物のような危険な原料を用いることなく成膜が可能である。それゆえ、装置構成が簡便で低コストを実現しうる成膜方法であり、特に、金属酸化物薄膜の成膜方法として期待されている。   Since the mist CVD method can form a film in an atmospheric pressure atmosphere, equipment necessary for forming and maintaining a vacuum atmosphere such as a vacuum vessel and pumps is unnecessary. In addition, film formation is possible without using a dangerous raw material such as an organometallic compound. Therefore, it is a film forming method with a simple apparatus configuration and capable of realizing low cost, and is particularly expected as a film forming method for a metal oxide thin film.

従来技術として、特許文献1には、STO(チタン酸ストロンチウム)膜やITO(錫ドープ酸化インジウム)膜等の作製にエアゾル法を用いたものが記載されている。また、非特許文献1には、純水に酢酸亜鉛を溶かした溶液を原料溶液として、ミストCVDを用いてガラス基板上にZnO(酸化亜鉛)膜を形成したものが報告されている。なお、ミストCVD法に関するものではないが、特許文献2には、原料溶液から目的物質を分離する方法・装置において、原料溶液を超音波で霧化して回収する方法について記載がある。   As a conventional technique, Patent Document 1 describes a technique using an aerosol method for producing an STO (strontium titanate) film, an ITO (tin-doped indium oxide) film, or the like. Further, Non-Patent Document 1 reports that a ZnO (zinc oxide) film is formed on a glass substrate using mist CVD using a solution obtained by dissolving zinc acetate in pure water as a raw material solution. Although not related to the mist CVD method, Patent Document 2 describes a method for recovering a raw material solution by atomizing with ultrasonic waves in a method and apparatus for separating a target substance from the raw material solution.

特開2007−46155(平成19年2月22日公開)JP2007-46155 (published February 22, 2007) 特開2008−30026(平成20年2月14日公開)JP 2008-30026 (published February 14, 2008)

Journal of Crystal Growth 299 (2007) 1−10頁Journal of Crystal Growth 299 (2007) 1-10

ミストCVD法を工業的に実用化するには、大型基板に見合う大量処理能力を実現する必要があり、そのためにはミスト発生容器に多数の超音波振動子を設置し、大量のミストを発生させなければならない。特許文献1及び非特許文献1は、一般的なエアゾルあるいはミスト法の製膜方法についての記載はあるもののミストの大量発生についての記載はない。   In order to put the mist CVD method into practical use, it is necessary to realize a large processing capacity suitable for a large substrate. For this purpose, a large number of ultrasonic vibrators are installed in a mist generating container to generate a large amount of mist. There must be. Patent Document 1 and Non-Patent Document 1 describe a general aerosol or mist film forming method, but do not describe a large amount of mist generation.

また、特許文献2に記載の方法は超音波振動子を複数配置することによりミストを大量発生できるようにしている。しかしながら、超音波振動子を液面と水平に配置しているため液柱が垂直にでき、落下した液滴は液柱と衝突して液柱を乱し、ミストの発生を妨げるという問題がある。また、各振動子を障壁により分割し区画室に分けているため、送風機構を各室に設ける必要があるため送風機構の設置が大掛かりとなり、またメンテナンス性が悪いという問題があった。これは、太陽電池のような大型基板に金属酸化膜を製膜するような大掛かりな装置であると特に問題となる。   In addition, the method described in Patent Document 2 can generate a large amount of mist by arranging a plurality of ultrasonic transducers. However, since the ultrasonic vibrator is arranged horizontally to the liquid surface, the liquid column can be made vertical, and the dropped liquid droplet collides with the liquid column, disturbs the liquid column, and has a problem of preventing the generation of mist. . In addition, since each vibrator is divided by a barrier and divided into compartments, it is necessary to provide a blower mechanism in each chamber. Therefore, there is a problem that installation of the blower mechanism becomes large and maintenance is poor. This is particularly problematic when the apparatus is a large-scale apparatus that forms a metal oxide film on a large substrate such as a solar cell.

本発明は、上記課題を解決しコンパクトなミスト発生器を提供するものである。   The present invention solves the above problems and provides a compact mist generator.

本発明は、複数の超音波振動子を備えたミスト発生容器を備えたミストCVD装置において、前記超音波振動子を原料溶液の液面に対して斜めに配置し、発生した液柱を衝突させるための衝突部材を備えたことを特徴とする。   The present invention provides a mist CVD apparatus including a mist generating container including a plurality of ultrasonic vibrators, wherein the ultrasonic vibrators are arranged obliquely with respect to a liquid surface of a raw material solution, and the generated liquid columns collide with each other. It is characterized by having a collision member.

衝突部材が中空の管であって、ミスト発生容器へのキャリアガス供給配管として機能してもよい。   The collision member may be a hollow tube and function as a carrier gas supply pipe to the mist generating container.

衝突部材が中空の管であって、ミスト発生容器からのミスト含有ガス排出配管として機能してもよい。   The collision member may be a hollow tube and function as a mist-containing gas discharge pipe from the mist generating container.

衝突部材が中空の管であって、ミスト発生容器へのキャリアガス供給配管として機能する配管と、ミスト発生容器からのミスト含有ガス排出配管として機能する配管の両方が混在していることを特徴としてもよい。   The collision member is a hollow pipe, and both a pipe that functions as a carrier gas supply pipe to the mist generation container and a pipe that functions as a mist-containing gas discharge pipe from the mist generation container are mixed. Also good.

また、複数の超音波振動子を備えたミスト発生容器に原料溶液を配し、超音波振動子によりミストを発生させるミスト発生方法において、原料溶液の液面に対して斜め上方に液柱を形成し、液柱を衝突部材に衝突させてミストを発生させる。   In addition, in the mist generation method in which the raw material solution is arranged in a mist generating container equipped with a plurality of ultrasonic vibrators and the mist is generated by the ultrasonic vibrator, a liquid column is formed obliquely above the liquid surface of the raw material solution Then, the liquid column is caused to collide with the collision member to generate mist.

本発明のミストCVD法、およびミストCVD装置は、原料溶液から斜め上方に形成された液柱の頂点付近に、液柱を衝突させる衝突部材を設置する。ある超音波振動子によって形成された液柱が衝突部材に衝突し、液滴が衝突部材の下方に落下するため、他の超音波振動子による液柱の形成を阻害しない。また、ミストは液柱から発生するが、液柱の根元から頂点に至るまでの領域で発生しており、頂点付近で液柱を衝突部材に衝突させても、ミスト発生量に変化はない。このことにより、超音波振動子の設置間隔を従来よりも小さくすることができる。それゆえ、ミスト発生容器のコンパクト化という効果が得られる。   In the mist CVD method and the mist CVD apparatus of the present invention, a collision member that collides a liquid column is installed near the apex of the liquid column formed obliquely upward from the raw material solution. Since the liquid column formed by a certain ultrasonic transducer collides with the collision member and the liquid droplet falls below the collision member, formation of the liquid column by another ultrasonic transducer is not hindered. Moreover, although mist is generated from the liquid column, it is generated in the region from the base to the apex of the liquid column, and even if the liquid column collides with the collision member in the vicinity of the apex, the amount of mist generated does not change. Thereby, the installation interval of the ultrasonic transducers can be made smaller than before. Therefore, the effect of making the mist generating container compact is obtained.

また、本発明のミストCVD法、およびミストCVD装置は、液柱を衝突させる衝突部材を中空の管とし、ミスト発生容器へのキャリアガスの供給配管として使用したり、ミスト発生容器からのミスト含有ガスの排出配管として使用したり、あるいは、その両方として使用する。このことにより、ミスト発生容器内に多数のキャリアガス供給部およびミスト含有ガス排出部を配置でき、発生したミストを素早く排出配管から排出して成膜基板へ搬送することができる。それゆえ、ミスト発生容器のコンパクト化という効果に加えて、発生したミストを効率的に排出・搬送するという効果も併せ持つ。   Further, the mist CVD method and the mist CVD apparatus of the present invention use a collision member that collides a liquid column as a hollow tube, and is used as a carrier gas supply pipe to the mist generation container, or contains mist from the mist generation container Use as gas exhaust piping or both. Thus, a large number of carrier gas supply units and mist-containing gas discharge units can be arranged in the mist generating container, and the generated mist can be quickly discharged from the discharge pipe and transferred to the film formation substrate. Therefore, in addition to the effect of making the mist generating container compact, it also has the effect of efficiently discharging and transporting the generated mist.

本発明におけるミストCVD装置の実施の一形態を示す構成図である。It is a block diagram which shows one Embodiment of the mist CVD apparatus in this invention. 本発明におけるミストCVD装置の実施の一形態において、ミスト発生容器を上から見たときの、超音波振動子と衝突部材の位置関係を示す模式図である。In one embodiment of the mist CVD apparatus in the present invention, it is a schematic diagram showing a positional relationship between an ultrasonic vibrator and a collision member when a mist generating container is viewed from above. 本発明におけるミストCVD装置の実施の一形態において、衝突部材の固定方式の例を示す構成図である。It is a block diagram which shows the example of the fixing method of a collision member in one Embodiment of the mist CVD apparatus in this invention. 本発明におけるミストCVD装置の他の実施の形態を示す構成図である。It is a block diagram which shows other embodiment of the mist CVD apparatus in this invention. 本発明における実施例において、効果確認実験に用いたミスト発生容器の形態を示す構成図である。In the Example in this invention, it is a block diagram which shows the form of the mist generating container used for the effect confirmation experiment. 本発明における実施例において、効果確認実験に用いたミスト発生容器の形態を示す構成図である。In the Example in this invention, it is a block diagram which shows the form of the mist generating container used for the effect confirmation experiment. 本発明における実施例において、ミスト発生容器に設置する超音波振動子の配置を示す構成図である。In the Example in this invention, it is a block diagram which shows arrangement | positioning of the ultrasonic vibrator installed in a mist generating container. 本発明における実施例において、ミスト発生容器に設置する超音波振動子の配置を示す構成図である。In the Example in this invention, it is a block diagram which shows arrangement | positioning of the ultrasonic vibrator installed in a mist generating container.

以下、本発明の実施の形態を説明するが、本発明は実施の形態に限定されるものではない。   Embodiments of the present invention will be described below, but the present invention is not limited to the embodiments.

〔実施形態1〕
本発明の一実施形態について説明する。図1は、ミストCVD装置の概略図である。ミストCVD装置は、ミストを発生させるミスト容器3と、ミスト容器3内で発生したミストを搬送するためのキャリアガスを供給するボンベ1があり、成膜ノズル12を備え、基板13にミストを吹き付けて成膜を行う。ミストCVD装置は常圧で成膜を行うことができるため装置構造が比較的簡易で安価に提供できる。
Embodiment 1
An embodiment of the present invention will be described. FIG. 1 is a schematic view of a mist CVD apparatus. The mist CVD apparatus includes a mist container 3 that generates mist and a cylinder 1 that supplies a carrier gas for transporting the mist generated in the mist container 3. The mist CVD apparatus includes a film forming nozzle 12 and sprays mist onto a substrate 13. To form a film. Since the mist CVD apparatus can perform film formation at normal pressure, the apparatus structure is relatively simple and can be provided at low cost.

詳細に説明すると、ミストを搬送するためのキャリアガスのボンベ1があり、キャリアガス供給配管2がキャリアガスボンベ1からミスト発生容器3に連結されている。キャリアガスの流量はキャリアガス供給配管2の途中に設置した流量計4で制御する。ミスト発生容器3には原料溶液5が蓄えられ、底面には超音波振動子6が複数設置されている。超音波振動子6を作動させると、超音波が原料溶液5の中を斜め上方に発生し、原料溶液5から斜め上方に液柱7が形成される。形成された液柱7からミスト8が発生する。液柱7は普通に発生されると、斜め上方に発生した後、斜め下方に下がり弓状になる。このように斜めに液柱7を発生させると、落下してくる液滴10により液柱7が乱れることによりミスト8の発生を妨げることがない。   More specifically, there is a carrier gas cylinder 1 for transporting mist, and a carrier gas supply pipe 2 is connected from the carrier gas cylinder 1 to a mist generating container 3. The flow rate of the carrier gas is controlled by a flow meter 4 installed in the middle of the carrier gas supply pipe 2. A raw material solution 5 is stored in the mist generating container 3, and a plurality of ultrasonic vibrators 6 are installed on the bottom surface. When the ultrasonic vibrator 6 is operated, ultrasonic waves are generated obliquely upward in the raw material solution 5, and a liquid column 7 is formed obliquely upward from the raw material solution 5. Mist 8 is generated from the formed liquid column 7. When the liquid column 7 is normally generated, it is generated obliquely upward and then falls obliquely downward to form an arcuate shape. When the liquid column 7 is generated obliquely in this way, the generation of the mist 8 is not hindered by the liquid column 7 being disturbed by the falling droplet 10.

ここで、本発明の実施の形態では、液柱7の弓状の頂点付近に衝突部材9aを設けた。ミスト8は、液柱7から発生するが弓状の液柱7から均等に発生するのではなく、斜め上方の部分まででその大半が発生することが、本発明者らの実験で判明した。そのため、頂点付近に衝突部材9aを設け、液柱7が他の超音波振動子6により発生した液柱7と衝突することによりミストの発生を妨げないようにした。このようにすれば、一つの超音波振動子から発生するミスト8の量をほぼ減少させることなく、超音波振動子6同士を近付けて配置することができるため装置のフットスペースを小さくすることができる。   Here, in the embodiment of the present invention, the collision member 9 a is provided near the arcuate apex of the liquid column 7. It has been found through experiments by the present inventors that the mist 8 is generated from the liquid column 7 but is not generated uniformly from the arcuate liquid column 7 but most of the mist 8 is generated up to an obliquely upper portion. Therefore, a collision member 9a is provided in the vicinity of the apex so that the liquid column 7 does not interfere with the generation of mist by colliding with the liquid column 7 generated by another ultrasonic transducer 6. In this way, since the ultrasonic transducers 6 can be arranged close to each other without substantially reducing the amount of mist 8 generated from one ultrasonic transducer, the foot space of the apparatus can be reduced. it can.

液柱7はその頂点付近で衝突部材9aに衝突し、衝突部材9aの下方に液滴10となって落下する。そのため、衝突部材9aを垂直ではなく傾斜させて緩やかな速度で原料溶液5が落下するようにすることが望ましい。また、衝突部材9aの表面を原料溶液5の濡れ性がよい材質にすることが望ましい。このようにすれば、衝突部材9aに衝突した液柱7から落下した原料溶液5が再び原料溶液5の水面に戻るときに波面ができることによるミスト8の発生を妨げることを避けることができる。   The liquid column 7 collides with the collision member 9a in the vicinity of the apex, and falls as a droplet 10 below the collision member 9a. Therefore, it is desirable that the collision member 9a is inclined rather than vertical so that the raw material solution 5 falls at a moderate speed. Further, it is desirable that the surface of the collision member 9a is made of a material with good wettability of the raw material solution 5. If it does in this way, it can avoid preventing generation | occurrence | production of the mist 8 by the wave front being made when the raw material solution 5 which fell from the liquid column 7 which collided with the collision member 9a returns to the water surface of the raw material solution 5 again.

ミスト発生容器3内で発生したミスト8は、キャリアガスとともにミスト含有ガス排出配管11に排出され、成膜ノズル12に搬送される。そして成膜ノズル12から成膜基板13に向けて、ミスト含有ガスが吹き付けられる。成膜基板13は基板加熱ステージ14上に設置され、成膜基板13を適切な温度に加熱維持する。吹き付けられたミストは、成膜基板13表面で反応を起こし、成膜基板13表面に膜15が形成される。基板加熱ステージ14は走査機構を有し、基板加熱ステージ14を走査することで大型基板の成膜に対応することができる。   The mist 8 generated in the mist generating container 3 is discharged together with the carrier gas to the mist-containing gas discharge pipe 11 and conveyed to the film forming nozzle 12. A mist-containing gas is sprayed from the film formation nozzle 12 toward the film formation substrate 13. The film formation substrate 13 is installed on the substrate heating stage 14, and the film formation substrate 13 is heated and maintained at an appropriate temperature. The sprayed mist reacts on the surface of the film formation substrate 13, and a film 15 is formed on the surface of the film formation substrate 13. The substrate heating stage 14 has a scanning mechanism, and scanning the substrate heating stage 14 can cope with film formation of a large substrate.

図1におけるミスト発生容器3を上から見たときの、超音波振動子6と衝突部材9aの位置関係の模式図を図2に示す。衝突部材9aは、液柱7を遮るだけの幅があればよい。そして、衝突部材の固定方式について、図3に例を示す。例えば、衝突部材9aのようにミスト発生容器3の底面に衝突部材を固定してもよいし、また、ミスト発生容器3の天井に衝突部材を固定する場合は、衝突部材9bのように、衝突部材の下端が原料溶液5の中に入っている場合も考えられるし、衝突部材9cのように、衝突部材の下端が原料溶液5よりも上に位置する場合も考えられる。   FIG. 2 shows a schematic diagram of the positional relationship between the ultrasonic transducer 6 and the collision member 9a when the mist generating container 3 in FIG. 1 is viewed from above. The collision member 9 a only needs to have a width that can block the liquid column 7. FIG. 3 shows an example of the collision member fixing method. For example, the collision member may be fixed to the bottom surface of the mist generating container 3 as in the collision member 9a, and when the collision member is fixed to the ceiling of the mist generating container 3, the collision is performed as in the collision member 9b. There may be a case where the lower end of the member is in the raw material solution 5, or a case where the lower end of the collision member is located above the raw material solution 5 as in the collision member 9 c.

キャリアガスは、ガスボンベ1よりキャリアガス供給配管2を通じてミスト発生容器内に送風される。本実施形態では、キャリアガスの送風方向を液柱7の発生方向と同一にした。このようにすれば、ミスト8の発生方向と送風方向を揃えることができ効率的にミストを取り出すことができる。ミスト8の粒子の大きさは均一でなく、少し粒子の大きなものも発生する。このような大きな粒子が送風されると周囲のミストも吸収してミスト8の粒子が互いにくっつくことにより、発生したミスト8が再び溶液5に戻り、ミスト8の回収効率が悪くなる。また、大きな粒子があると成膜する際に均一性な膜が形成できなくなる。そのため、このような大きな粒子のミスト8が送風されないようにするため、本発明では衝突部材9aを設けた。大きな粒子のミスト8は重さがあるため衝突部材9aに衝突する。粒子の小さなミスト8は風に乗り送風されることになる。このようにすれば大きな粒子のミスト8が送風されることを防止することができる。   The carrier gas is blown into the mist generating container from the gas cylinder 1 through the carrier gas supply pipe 2. In the present embodiment, the blowing direction of the carrier gas is the same as the generation direction of the liquid column 7. If it does in this way, the generation | occurrence | production direction and blast direction of mist 8 can be arrange | equalized, and mist can be taken out efficiently. The size of the particles of the mist 8 is not uniform, and some of the particles are slightly larger. When such large particles are blown, the surrounding mist is absorbed and the particles of the mist 8 adhere to each other, so that the generated mist 8 returns to the solution 5 again, and the recovery efficiency of the mist 8 is deteriorated. Also, if there are large particles, a uniform film cannot be formed when the film is formed. Therefore, in order to prevent such large particle mist 8 from being blown, a collision member 9a is provided in the present invention. Since the large particle mist 8 is heavy, it collides with the collision member 9a. The mist 8 with small particles is blown by the wind. In this way, it is possible to prevent a large particle mist 8 from being blown.

〔実施形態2〕
本発明の他の実施の形態について図4に基づいて説明する。なお、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の番号を付し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described with reference to FIG. Configurations other than those described in the present embodiment are the same as those in the first embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.

実施の形態1との相違点は、液柱の衝突部材として送風やミスト回収用の中空の管を用いることである。送風系の配管を兼ねる衝突部材9pは、ミスト発生容器3の天井に設置され、キャリアガス供給配管2に連結されている。ミスト回収用の配管を兼ねる衝突部材9qは、ミスト発生容器3の底面に設置され、ミスト含有ガス排出配管11に連結されている。つまり、キャリアガスは、中空の衝突部材9pの中を通過してミスト発生容器3内に供給され、ミスト発生容器3内で発生したミストは、キャリアガスとともに中空の衝突部材9qの中を通過して、ミスト含有ガス排出配管11に排出される。排出されたミスト含有ガスは、実施の形態1と同じく、成膜ノズル12に搬送されて成膜基板13上に膜15が形成される。   A difference from the first embodiment is that a hollow tube for blowing air or collecting mist is used as a collision member of the liquid column. The impingement member 9p that also serves as the air system piping is installed on the ceiling of the mist generating container 3 and connected to the carrier gas supply piping 2. The collision member 9q serving also as a mist recovery pipe is installed on the bottom surface of the mist generating container 3 and connected to the mist-containing gas discharge pipe 11. That is, the carrier gas passes through the hollow collision member 9p and is supplied into the mist generating container 3, and the mist generated in the mist generating container 3 passes through the hollow collision member 9q together with the carrier gas. The mist-containing gas discharge pipe 11 is discharged. The discharged mist-containing gas is transferred to the film forming nozzle 12 as in the first embodiment, and a film 15 is formed on the film forming substrate 13.

上記の実施の形態での効果を確認するための検討を行ったので、以下に説明する。   A study for confirming the effect of the above embodiment has been made and will be described below.

最初に、原料溶液の液柱を衝突部材に衝突させて、ミスト発生量が減少しないかどうかを確認することを目的に、図5および図6に示すミスト発生容器を用いて検討を行った。図5と図6とは、配置する超音波振動子32の数は同じであるが、図5は発生する液柱同士が衝突しないような距離で配置し、図6は衝突部材35を有する。図6の衝突部材35は原料溶液34の液柱36の頂点付近に配置した。これらから発生するミスト量が同じであるか比較する。同じであれば、ミスト33の発生量を維持したまま超音波振動子32の配置距離を短くすることができる。そのため、装置のフットスペースを小さくすることができることになる。   First, for the purpose of confirming whether the liquid column of the raw material solution collided with the collision member and confirming whether or not the amount of mist generation is reduced, the mist generation container shown in FIGS. 5 and 6 was used. 5 and FIG. 6 are the same in the number of ultrasonic transducers 32 to be arranged, but FIG. 5 is arranged at such a distance that the generated liquid columns do not collide with each other, and FIG. The collision member 35 in FIG. 6 was arranged near the apex of the liquid column 36 of the raw material solution 34. It is compared whether the amount of mist generated from these is the same. If they are the same, the arrangement distance of the ultrasonic transducer 32 can be shortened while maintaining the generation amount of the mist 33. Therefore, the foot space of the device can be reduced.

ミスト発生容器31の底面に超音波振動子32を設置し、ミスト発生容器31は天井を密閉せずに全面開放状態とし、発生したミスト33は自由拡散させた。超音波振動子32は本多電子製の超音波振動子を設置した。発振周波数は2.4MHzである。原料溶液34として純水を使用した。ミスト発生量は、超音波発振開始前のミスト発生容器31内の純水量から、超音波発振終了後のミスト発生容器31内の純水量を差し引いて純水の減少量で評価した。超音波発振時間は30分とした。   An ultrasonic vibrator 32 was installed on the bottom surface of the mist generating container 31, and the mist generating container 31 was left open without sealing the ceiling, and the generated mist 33 was freely diffused. As the ultrasonic transducer 32, an ultrasonic transducer manufactured by Honda Electronics Co., Ltd. was installed. The oscillation frequency is 2.4 MHz. Pure water was used as the raw material solution 34. The amount of mist generated was evaluated by subtracting the amount of pure water in the mist generating container 31 after the end of ultrasonic oscillation from the amount of pure water in the mist generating container 31 before the start of ultrasonic oscillation, and evaluating the amount of mist generated. The ultrasonic oscillation time was 30 minutes.

まず、図5に示すように、衝突部材が無い場合、30分間のミスト発生で減少した純水量は、振動子1個あたり24mLであった。次に、図6に示すように、衝突部材35を設置し、新たな純水と入れ替えて、超音波発振開始時の純水の液面高さ、液温が上記と同じであることを確認した後、上記と同様に30分間、ミストを発生させた。そのとき、減少した純水量は振動子1個あたり26mLであった。この差は測定誤差の範囲内である。ミスト33は液柱36の根元から頂点に至るまでの領域37から発生しているため、衝突部材35の設置によってミスト発生量は変化しないことが確認できた。これにより、装置のフットスペースを小さくすることができる。   First, as shown in FIG. 5, when there was no collision member, the amount of pure water decreased by mist generation for 30 minutes was 24 mL per transducer. Next, as shown in FIG. 6, the collision member 35 is installed and replaced with new pure water, and it is confirmed that the liquid surface height and liquid temperature at the start of ultrasonic oscillation are the same as above. After that, mist was generated for 30 minutes in the same manner as described above. At that time, the decreased amount of pure water was 26 mL per transducer. This difference is within the measurement error. Since the mist 33 is generated from the region 37 from the base to the apex of the liquid column 36, it was confirmed that the amount of mist generated does not change due to the installation of the collision member 35. Thereby, the foot space of an apparatus can be made small.

超音波振動子の配置について具体的に検討を行った。多数の超音波振動子を格子状に設置することを想定して、図7および図8を用いて説明する。図7に示すように、衝突部材を設置しない従来の設置方法の場合、超音波振動子51によって、液柱が紙面右方向に形成されるとして、液柱の液滴が落下する領域を点線52で示した。隣接する超音波振動子53は、超音波振動51によって形成される液柱からの液滴落下によって液面および液柱が乱されないよう、液滴落下領域52を回避して設置する必要があるため、超音波振動子を設置する間隔54として10cm程度が必要である。図8のように、衝突部材55を設けた場合、液柱の頂点の位置は超音波振動子56の中心から約3cm程度なので、その位置に衝突部材55を設ければ、超音波振動子の設置間隔57を5〜6cm程度まで小さくすることが可能である。つまり、衝突部材55の設置により、ミスト発生容器の底面面積を従来設計の約50〜60%にすることができる。このようにして設計されたミスト発生容器は、従来設計よりもコンパクトでありながら、先の実験結果からも明らかなように、ミスト発生能力は従来設計のミスト発生容器と同等である。   The arrangement of ultrasonic transducers was examined specifically. A description will be given with reference to FIGS. 7 and 8 on the assumption that a large number of ultrasonic transducers are installed in a grid pattern. As shown in FIG. 7, in the case of the conventional installation method in which no collision member is installed, the liquid crystal column is formed in the right direction on the paper surface by the ultrasonic vibrator 51, and the region where the liquid column droplets fall is indicated by the dotted line 52. It showed in. The adjacent ultrasonic transducer 53 needs to be installed avoiding the droplet dropping region 52 so that the liquid surface and the liquid column are not disturbed by the droplet dropping from the liquid column formed by the ultrasonic vibration 51. The interval 54 for installing the ultrasonic transducers needs to be about 10 cm. As shown in FIG. 8, when the collision member 55 is provided, the position of the top of the liquid column is about 3 cm from the center of the ultrasonic transducer 56. Therefore, if the collision member 55 is provided at that position, the ultrasonic transducer The installation interval 57 can be reduced to about 5 to 6 cm. That is, by installing the collision member 55, the bottom area of the mist generating container can be reduced to about 50 to 60% of the conventional design. Although the mist generating container designed in this way is more compact than the conventional design, the mist generating capacity is equivalent to the mist generating container of the conventional design, as is clear from the previous experimental results.

上記のような設計思想に基づき、加えて、実施の形態2で説明したような構成でミスト発生容器を構成すれば、キャリアガスの供給箇所を多数設けることができ、また、ミスト含有ガスの排出箇所をミスト発生の近くに多数配置できるので、ミスト発生容器からミストを素早く排出でき、ミストを無駄にすることがない。   Based on the above design philosophy, in addition, if the mist generating container is configured with the configuration described in the second embodiment, a large number of carrier gas supply locations can be provided, and the mist-containing gas can be discharged. Since many places can be arranged near the mist generation, the mist can be quickly discharged from the mist generation container, and the mist is not wasted.

本発明は、原料溶液を超音波振動で霧化して発生したミストを利用して膜を形成するミストCVD法において、ミスト発生容器に多数の超音波振動子を設置する場合に、超音波振動子の設置間隔を小さくすることができ、ミスト発生容器をコンパクト化すると同時に、発生したミストを効率的に回収することを可能とする。このため、ミストCVD法、およびミストCVD装置に適用することができる。     In the mist CVD method in which a film is formed using mist generated by atomizing a raw material solution by ultrasonic vibration, the ultrasonic vibrator is provided when a large number of ultrasonic vibrators are installed in a mist generating container. It is possible to make the mist generating container compact and at the same time efficiently recover the generated mist. Therefore, it can be applied to a mist CVD method and a mist CVD apparatus.

1 キャリアガスボンベ
2 キャリアガス供給配管
3 ミスト発生容器
4 ガス流量計
5 原料溶液
6 超音波振動子
7 液柱
8 ミスト
9a 衝突部材
9b 衝突部材
9c 衝突部材
9p 中空の衝突部材
9q 中空の衝突部材
10 落下液滴
11 ミスト含有ガス排出配管
12 成膜ノズル
13 成膜基板
14 基板加熱ステージ
15 膜
31 ミスト発生容器
32 超音波振動子
33 ミスト
34 原料溶液
35 衝突部材
36 液柱
37 ミスト発生領域
51 超音波振動子
52 液滴落下領域
53 超音波振動子
54 注音波振動子設置間隔
55 衝突部材
56 超音波振動子
57 超音波振動子設置間隔
DESCRIPTION OF SYMBOLS 1 Carrier gas cylinder 2 Carrier gas supply piping 3 Mist generation container 4 Gas flow meter 5 Raw material solution 6 Ultrasonic vibrator 7 Liquid column 8 Mist 9a Collision member 9b Collision member 9c Collision member 9p Hollow collision member 9q Hollow collision member 10 Falling Droplet 11 Mist-containing gas discharge pipe 12 Film forming nozzle 13 Film forming substrate 14 Substrate heating stage 15 Film 31 Mist generating container 32 Ultrasonic vibrator 33 Mist 34 Raw material solution 35 Colliding member 36 Liquid column 37 Mist generating area 51 Ultrasonic vibration Child 52 Droplet drop area 53 Ultrasonic transducer 54 Injection ultrasonic transducer installation interval 55 Colliding member 56 Ultrasonic transducer 57 Ultrasonic transducer installation interval

Claims (5)

複数の超音波振動子を備えたミスト発生容器を備えたミストCVD装置において、
前記超音波振動子を原料溶液の液面に対して斜めに配置し、
発生した液柱を衝突させるための衝突部材を備えたことを特徴とするミストCVD装置。
In a mist CVD apparatus including a mist generating container including a plurality of ultrasonic transducers,
The ultrasonic vibrator is disposed obliquely with respect to the liquid surface of the raw material solution,
A mist CVD apparatus comprising a collision member for colliding the generated liquid column.
衝突部材が中空の管であって、ミスト発生容器へのキャリアガス供給配管として機能することを特徴とする請求項1に記載のミストCVD装置。   2. The mist CVD apparatus according to claim 1, wherein the collision member is a hollow tube and functions as a carrier gas supply pipe to the mist generating container. 衝突部材が中空の管であって、ミスト発生容器からのミスト含有ガス排出配管として機能することを特徴とする請求項1に記載のミストCVD装置。   The mist CVD apparatus according to claim 1, wherein the collision member is a hollow tube and functions as a mist-containing gas discharge pipe from the mist generating container. 衝突部材が中空の管であって、ミスト発生容器へのキャリアガス供給配管として機能する配管と、ミスト発生容器からのミスト含有ガス排出配管として機能する配管の両方が混在していることを特徴とする請求項1に記載のミストCVD装置。   The collision member is a hollow pipe, and both a pipe that functions as a carrier gas supply pipe to the mist generating container and a pipe that functions as a mist-containing gas discharge pipe from the mist generating container are mixed. The mist CVD apparatus according to claim 1. 複数の超音波振動子を備えたミスト発生容器に原料溶液を配し、超音波振動子によりミストを発生させるミスト発生方法において、
原料溶液の液面に対して斜め上方に液柱を形成し、液柱を衝突部材に衝突させてミストを発生させるミスト発生方法。
In the mist generating method in which the raw material solution is arranged in a mist generating container equipped with a plurality of ultrasonic vibrators, and mist is generated by the ultrasonic vibrators,
A mist generating method in which a liquid column is formed obliquely above a liquid surface of a raw material solution, and the liquid column collides with a collision member to generate mist.
JP2010187019A 2010-08-24 2010-08-24 Mist cvd device and method for generating mist Pending JP2012046772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010187019A JP2012046772A (en) 2010-08-24 2010-08-24 Mist cvd device and method for generating mist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187019A JP2012046772A (en) 2010-08-24 2010-08-24 Mist cvd device and method for generating mist

Publications (1)

Publication Number Publication Date
JP2012046772A true JP2012046772A (en) 2012-03-08

Family

ID=45901962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187019A Pending JP2012046772A (en) 2010-08-24 2010-08-24 Mist cvd device and method for generating mist

Country Status (1)

Country Link
JP (1) JP2012046772A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051002A1 (en) 2015-01-29 2016-08-03 Flosfia Inc. Apparatus and method for forming film
KR20160093510A (en) 2015-01-29 2016-08-08 가부시키가이샤 플로스피아 Apparatus and method for forming film
WO2017098651A1 (en) * 2015-12-11 2017-06-15 東芝三菱電機産業システム株式会社 Mist applying film forming device and mist applying film forming method
WO2018011854A1 (en) * 2016-07-11 2018-01-18 東芝三菱電機産業システム株式会社 Mist-coating film formation apparatus and mist-coating film formation method
WO2018207676A1 (en) * 2017-05-09 2018-11-15 株式会社Flosfia Thermistor film and method for forming same
WO2018220756A1 (en) * 2017-05-31 2018-12-06 東芝三菱電機産業システム株式会社 Coating head for mist coating and film forming device, and maintenance method therefor
CN110828553A (en) * 2014-07-22 2020-02-21 株式会社Flosfia Crystalline semiconductor film, plate-shaped body, and semiconductor device
WO2020044730A1 (en) 2018-08-27 2020-03-05 信越化学工業株式会社 Film deposition method
WO2020129625A1 (en) 2018-12-18 2020-06-25 信越化学工業株式会社 Method for manufacturing gallium oxide film
WO2021210350A1 (en) 2020-04-13 2021-10-21 信越化学工業株式会社 Film-forming device and film-forming method
WO2022009524A1 (en) 2020-07-08 2022-01-13 信越化学工業株式会社 Method for producing gallium oxide semiconductor film and film formation device
WO2022039017A1 (en) 2020-08-20 2022-02-24 信越化学工業株式会社 Film formation method and raw material solution
WO2022191277A1 (en) 2021-03-12 2022-09-15 信越化学工業株式会社 Film formation device, film formation method, gallium oxide film, and laminate
WO2022191230A1 (en) 2021-03-12 2022-09-15 信越化学工業株式会社 Semiconductor device
WO2022234750A1 (en) 2021-05-04 2022-11-10 信越化学工業株式会社 Method for producing source solution, method for forming film, and product lot
WO2023062889A1 (en) 2021-10-14 2023-04-20 信越化学工業株式会社 Film deposition device and manufacturing method
WO2023079787A1 (en) 2021-11-02 2023-05-11 信越化学工業株式会社 Film forming device, film forming method, oxide semiconductor film and multilayer body

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828553A (en) * 2014-07-22 2020-02-21 株式会社Flosfia Crystalline semiconductor film, plate-shaped body, and semiconductor device
KR20160093510A (en) 2015-01-29 2016-08-08 가부시키가이샤 플로스피아 Apparatus and method for forming film
EP3051002A1 (en) 2015-01-29 2016-08-03 Flosfia Inc. Apparatus and method for forming film
WO2017098651A1 (en) * 2015-12-11 2017-06-15 東芝三菱電機産業システム株式会社 Mist applying film forming device and mist applying film forming method
JPWO2017098651A1 (en) * 2015-12-11 2018-04-26 東芝三菱電機産業システム株式会社 Mist coating film forming apparatus and mist coating film forming method
KR20180080295A (en) * 2015-12-11 2018-07-11 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Mist coating film forming apparatus and mist coating film forming method
TWI629107B (en) * 2015-12-11 2018-07-11 東芝三菱電機產業系統股份有限公司 Mist coating film forming apparatus and mist coating film forming method
CN108472676A (en) * 2015-12-11 2018-08-31 东芝三菱电机产业系统株式会社 Droplet coating film forming device and droplet coating film forming method
CN108472676B (en) * 2015-12-11 2021-04-09 东芝三菱电机产业系统株式会社 Droplet coating and film forming apparatus and droplet coating and film forming method
US20180326436A1 (en) * 2015-12-11 2018-11-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Mist coating forming apparatus and mist coating forming method
KR102151325B1 (en) * 2015-12-11 2020-09-02 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Mist coating film forming apparatus and mist coating film forming method
KR102282119B1 (en) * 2016-07-11 2021-07-27 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Mist coating film forming apparatus and mist coating film forming method
KR20190016088A (en) * 2016-07-11 2019-02-15 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Mist coating film forming apparatus and mist coating film forming method
CN109414718A (en) * 2016-07-11 2019-03-01 东芝三菱电机产业系统株式会社 Droplet coating film forming device and droplet coating film forming method
WO2018011854A1 (en) * 2016-07-11 2018-01-18 東芝三菱電機産業システム株式会社 Mist-coating film formation apparatus and mist-coating film formation method
JPWO2018011854A1 (en) * 2016-07-11 2019-02-14 東芝三菱電機産業システム株式会社 Mist coating film forming apparatus and mist coating film forming method
JPWO2018207676A1 (en) * 2017-05-09 2020-03-26 株式会社Flosfia Thermistor film and method for forming the same
WO2018207676A1 (en) * 2017-05-09 2018-11-15 株式会社Flosfia Thermistor film and method for forming same
US10989609B2 (en) 2017-05-09 2021-04-27 Flosfia Inc. Thermistor film and method of depositing the same
JP7358719B2 (en) 2017-05-09 2023-10-11 株式会社Flosfia Thermistor film and its deposition method
CN110769941B (en) * 2017-05-31 2022-05-10 东芝三菱电机产业系统株式会社 Coating head of mist coating film forming apparatus and maintenance method thereof
WO2018220756A1 (en) * 2017-05-31 2018-12-06 東芝三菱電機産業システム株式会社 Coating head for mist coating and film forming device, and maintenance method therefor
JPWO2018220756A1 (en) * 2017-05-31 2019-11-07 東芝三菱電機産業システム株式会社 Coating head of mist coating film forming apparatus and maintenance method thereof
CN110769941A (en) * 2017-05-31 2020-02-07 东芝三菱电机产业系统株式会社 Coating head of mist coating film forming apparatus and maintenance method thereof
WO2020044730A1 (en) 2018-08-27 2020-03-05 信越化学工業株式会社 Film deposition method
US12037683B2 (en) 2018-08-27 2024-07-16 Shin-Etsu Chemical Co., Ltd. Film forming method
KR20210044796A (en) 2018-08-27 2021-04-23 신에쓰 가가꾸 고교 가부시끼가이샤 Method of film formation
US12209309B2 (en) 2018-08-27 2025-01-28 Shin-Etsu Chemical Co., Ltd. Film forming method
US12327725B2 (en) 2018-12-18 2025-06-10 Shin-Etsu Chemical Co., Ltd. Method for manufacturing gallium oxide film
KR20210101232A (en) 2018-12-18 2021-08-18 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing method of gallium oxide film
WO2020129625A1 (en) 2018-12-18 2020-06-25 信越化学工業株式会社 Method for manufacturing gallium oxide film
WO2021210350A1 (en) 2020-04-13 2021-10-21 信越化学工業株式会社 Film-forming device and film-forming method
KR20220166283A (en) 2020-04-13 2022-12-16 신에쓰 가가꾸 고교 가부시끼가이샤 Film formation device and film formation method
WO2022009524A1 (en) 2020-07-08 2022-01-13 信越化学工業株式会社 Method for producing gallium oxide semiconductor film and film formation device
KR20230035263A (en) 2020-07-08 2023-03-13 신에쓰 가가꾸 고교 가부시끼가이샤 Gallium oxide semiconductor film manufacturing method and film forming apparatus
WO2022039017A1 (en) 2020-08-20 2022-02-24 信越化学工業株式会社 Film formation method and raw material solution
US12247285B2 (en) 2020-08-20 2025-03-11 Shin-Etsu Chemical Co., Ltd. Film-forming method and raw material solution
KR20230053592A (en) 2020-08-20 2023-04-21 신에쓰 가가꾸 고교 가부시끼가이샤 Film formation method and raw material solution
WO2022191277A1 (en) 2021-03-12 2022-09-15 信越化学工業株式会社 Film formation device, film formation method, gallium oxide film, and laminate
KR20230154178A (en) 2021-03-12 2023-11-07 신에쓰 가가꾸 고교 가부시끼가이샤 Film formation device, film formation method, gallium oxide film and laminate
KR20230155442A (en) 2021-03-12 2023-11-10 신에쓰 가가꾸 고교 가부시끼가이샤 Oxide semiconductor film and its deposition method, semiconductor device
WO2022191230A1 (en) 2021-03-12 2022-09-15 信越化学工業株式会社 Semiconductor device
KR20240004411A (en) 2021-05-04 2024-01-11 신에쓰 가가꾸 고교 가부시끼가이샤 Raw material solution manufacturing method, film forming method, and product lot
WO2022234750A1 (en) 2021-05-04 2022-11-10 信越化学工業株式会社 Method for producing source solution, method for forming film, and product lot
KR20240074787A (en) 2021-10-14 2024-05-28 신에쓰 가가꾸 고교 가부시끼가이샤 Film formation device and manufacturing method
WO2023062889A1 (en) 2021-10-14 2023-04-20 信越化学工業株式会社 Film deposition device and manufacturing method
KR20240101567A (en) 2021-11-02 2024-07-02 신에쓰 가가꾸 고교 가부시끼가이샤 Film formation equipment and film formation method, oxide semiconductor film and laminate
WO2023079787A1 (en) 2021-11-02 2023-05-11 信越化学工業株式会社 Film forming device, film forming method, oxide semiconductor film and multilayer body

Similar Documents

Publication Publication Date Title
JP2012046772A (en) Mist cvd device and method for generating mist
CN1325177C (en) A cleaning device and cleaning method
JP5049625B2 (en) Structure manufacturing method and structure manufacturing apparatus using the same
JP5149437B1 (en) Film forming apparatus and film forming method
JP4972657B2 (en) Vaporizer and film forming apparatus
US10157754B2 (en) Liquid knife cleaning device
CN101399197A (en) Chamber lining
CN101906619B (en) Chemical vapor deposition apparatus
WO2017098823A1 (en) Substrate cleaning apparatus
TW445539B (en) Method and device for washing by fluid spraying
CN102310063A (en) Honeycomb Plasma Radical Cleaning System
CN103649368A (en) Gas-injection apparatus, atomic layer deposition apparatus, and atomic layer deposition method using the apparatus
JP2010161316A (en) Plasma processing device
JP2016508442A (en) Pull-in device and reaction system including the same
TWI579405B (en) Plasma deposition apparatus
KR101757652B1 (en) Apparatus for etching glass using laser
CN100465331C (en) Sputtering device with gas injection assembly
US20100175712A1 (en) Showerhead cleaning rack and an ultrasonic cleaning method therefor
JP2013215720A (en) Apparatus and method for treating powder
JP2012062527A (en) Method for producing metal oxide thin film, and metal oxide thin film formation device using the method
KR101230241B1 (en) Method of Aerosol Deposition for Ceramic Powder
CN206070000U (en) A kind of depositing device
TWI704325B (en) Apparatus and method for multistaged heat exchange
JP4991950B1 (en) Mist deposition system
JP2017020076A (en) Film deposition apparatus and method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130131