[go: up one dir, main page]

JP2012046370A - Method of forming optical lens - Google Patents

Method of forming optical lens Download PDF

Info

Publication number
JP2012046370A
JP2012046370A JP2010189009A JP2010189009A JP2012046370A JP 2012046370 A JP2012046370 A JP 2012046370A JP 2010189009 A JP2010189009 A JP 2010189009A JP 2010189009 A JP2010189009 A JP 2010189009A JP 2012046370 A JP2012046370 A JP 2012046370A
Authority
JP
Japan
Prior art keywords
molding
optical material
temperature
pressure
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010189009A
Other languages
Japanese (ja)
Inventor
Norito Tanno
史人 丹野
Masami Kita
雅己 北
Akira Morimoto
章 森本
Yoshifumi Morimoto
吉文 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010189009A priority Critical patent/JP2012046370A/en
Publication of JP2012046370A publication Critical patent/JP2012046370A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】本発明は、光学材料を加熱加圧成形する光学レンズの成形方法に関し、光学レンズの生産性を向上させることを目的とする。
【解決手段】この目的を達成するために、光学材料1を加熱加圧して光学レンズを形成する成形方法であって、光学材料1を加熱する加熱工程7と、光学材料1を成形金型で加圧変形させる加圧工程8と、加圧変形した光学材料を冷却する冷却工程9を含み、加圧工程8における加圧開始時点で光学材料1は内側部分の温度が外側部分の温度より低い温度分布を有するとともに、少なくとも加圧開始時点での加圧方法として成形金型4の加圧速度を制御して加圧変形させるとしたのである。
【選択図】図2
The present invention relates to a method for molding an optical lens in which an optical material is heated and pressure-molded, and an object thereof is to improve the productivity of the optical lens.
In order to achieve this object, a molding method for forming an optical lens by heating and pressing an optical material 1, a heating step 7 for heating the optical material 1, and the optical material 1 with a molding die. A pressure process 8 for pressure deformation and a cooling process 9 for cooling the pressure-deformed optical material are included, and the temperature of the inner part of the optical material 1 is lower than the temperature of the outer part at the start of pressurization in the pressure process 8 In addition to having a temperature distribution, at least as a pressurizing method at the start of pressurization, the pressurizing speed of the molding die 4 is controlled to cause the pressurizing deformation.
[Selection] Figure 2

Description

本発明は、光学材料を加熱加圧して光学レンズを成形する光学レンズの成形方法に関する。   The present invention relates to an optical lens molding method for molding an optical lens by heating and pressing an optical material.

この種の光学レンズの成形方法としては、所望の光学レンズの体積に応じた光学材料を一対の成形金型間に配置し、成形金型に取り付けられたヒータブロックの温度を制御し光学材料をガラス転移点温度以上の成形可能な温度まで加熱し、光学材料の全体が成形可能な温度まで十分に加熱してから所定の成形圧力で加圧成形を行い、その後冷却し取り出す方法が知られている。   As a molding method of this type of optical lens, an optical material corresponding to a desired volume of the optical lens is arranged between a pair of molding dies, and the temperature of the heater block attached to the molding dies is controlled to control the optical material. It is known to heat up to a moldable temperature above the glass transition temperature, sufficiently heat the entire optical material to a moldable temperature, perform pressure molding at a predetermined molding pressure, and then cool and take it out. Yes.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2008−50184号公報JP 2008-50184 A

しかしながら、このような加熱加圧成形において、光学材料は成形金型を介して外側部分から加熱されるため光学材料の内側部分まで成形可能な温度となるよう十分に昇温させるためには多くの時間が掛かり、ヒータブロックの設定温度を上げて昇温速度を速めたとしても光学材料の熱伝導率により光学材料の内側部分と外側部分とで温度分布が生じてしまい、この温度分布の差が小さくなるのを待つ必要があり多くの時間が掛かってしまうという問題があった。   However, in such heat and pressure molding, since the optical material is heated from the outer part through the molding die, it is necessary to increase the temperature sufficiently so that the temperature can be molded up to the inner part of the optical material. Even if the time is increased and the temperature rise rate is increased by increasing the set temperature of the heater block, the temperature distribution occurs between the inner part and the outer part of the optical material due to the thermal conductivity of the optical material. There was a problem that it took a lot of time to wait for it to become smaller.

そこで、本発明はこのような問題を解決し、光学材料の昇温時間を短縮し光学レンズの生産性を高めることを目的とする。   Therefore, the present invention aims to solve such problems and to shorten the temperature raising time of the optical material and increase the productivity of the optical lens.

この目的を達成するために本発明は、光学材料を加熱加圧して光学レンズを成形する成形方法であって、光学材料を一対の成形金型間に投入して加熱する加熱工程と、加熱された光学材料を成形金型で加圧変形させる加圧工程と、加圧変形した光学材料を冷却する冷却工程を含み、加圧工程における加圧開始時点で光学材料は内側の温度が外側の温度より低い温度分布を有するとともに、少なくとも加圧開始時点での加圧方法として成形金型の加圧速度を制御して加圧変形させるとしたのである。   In order to achieve this object, the present invention provides a molding method for molding an optical lens by heating and pressurizing an optical material, a heating process in which the optical material is placed between a pair of molding dies and heated, A pressure process for pressurizing and deforming the optical material with a molding die, and a cooling process for cooling the pressure-deformed optical material. In addition to having a lower temperature distribution, as a pressurization method at least at the start of pressurization, the pressurization speed of the molding die is controlled to cause pressurization and deformation.

これにより本発明は、光学レンズの生産性を高めることが出来るのである。   Thus, the present invention can increase the productivity of the optical lens.

本発明に係る光学レンズの成形装置を示す断面図Sectional drawing which shows the shaping | molding apparatus of the optical lens which concerns on this invention 同成形装置を用いた光学レンズの成形方法を示す模式図Schematic diagram showing a method of molding an optical lens using the molding apparatus 同成形方法における金型温度と金型間距離の関係を示す図The figure which shows the relationship between the mold temperature and the distance between molds in the molding method

以下、本発明の一実施の形態について図を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は光学ガラスや光学樹脂などの光学材料1を加熱加圧して光学レンズを成形する成形装置2を示したものであり、この成形装置2の基本構造は、貫通孔を有する円筒状の胴型3の一端に成形金型4aを固定し、胴型3の他端側より貫通孔の内周面に沿って成形金型4bを摺動可能に挿入する構成となっており、上下一対の成形金型4a,4bと胴型3で囲まれた成形空間で光学材料1を加熱加圧成形するものである。なお、それぞれの成形金型4a,4bの端部にはそれぞれ加熱冷却温度を制御するヒータブロック5が取り付けられている。   FIG. 1 shows a molding apparatus 2 for molding an optical lens by heating and pressing an optical material 1 such as optical glass or optical resin. The basic structure of the molding apparatus 2 is a cylindrical body having a through hole. The molding die 4a is fixed to one end of the die 3, and the molding die 4b is slidably inserted along the inner peripheral surface of the through hole from the other end side of the barrel die 3. The optical material 1 is heated and pressed in a molding space surrounded by the molding dies 4a and 4b and the body die 3. In addition, the heater block 5 which controls heating / cooling temperature is each attached to the edge part of each molding die 4a, 4b.

次にこの成形装置2を用いた光学レンズの成形方法を説明する。この成形方法は図2に示すように、まず成形金型4bの成形面上に光学材料1を配置する投入工程6と、ヒータブロック5で温度制御して光学材料1を昇温させる加熱工程7と、昇温された光学材料1に対して下側の成形金型4bを上昇させ加圧変形させる加圧工程8と、加圧変形された光学材料1を冷却する冷却工程9と、下側の成形金型4bを下降させ光学材料1(光学レンズ)を成形装置2から取り出す取出工程10を順に行うものである。   Next, a method for molding an optical lens using the molding apparatus 2 will be described. As shown in FIG. 2, in this molding method, first, an injection process 6 in which the optical material 1 is arranged on the molding surface of the molding die 4b, and a heating process 7 in which the temperature is controlled by the heater block 5 to raise the temperature of the optical material 1. A pressurizing step 8 for raising and lowering the lower molding die 4b with respect to the heated optical material 1, a cooling step 9 for cooling the optically deformed optical material 1, and a lower side The molding step 4b is lowered, and an extraction step 10 for taking out the optical material 1 (optical lens) from the molding apparatus 2 is sequentially performed.

また、各工程における成形金型4a,4bの温度と金型間距離の関係を図3に示す。この成形装置2を用いた加熱加圧成形は、先ず成形金型4a,4bが低温である時に成形金型4bの成形面上に光学材料1を配置し、成形金型4aの成形面が光学材料1の表面に近接するところまで成形金型4bを上昇させた状態でヒータブロック5の温度を昇温させ成形金型4a,4b、胴型3および光学材料1を加熱する加熱工程7を行う。ついで光学材料1の温度がガラス転移点温度以上の成形温度となるようヒータブロック5の温度を昇温させ、その後、成形金型4bをさらに上昇させ光学材料1を加圧変形させる加圧工程8を行う。次いで光学材料1を取り出し可能温度まで冷却する冷却工程9を行い、成形金型4bを下降させ成形後の光学材料1である光学レンズを取り出す取出工程10を行う。なお、加圧工程8は成形金型4の冷却を開始しガラス転移点温度の近傍となった時点で加圧完了とし冷却工程9における光学材料1の収縮変形を抑制している。   FIG. 3 shows the relationship between the temperature of the molding dies 4a and 4b and the distance between the dies in each process. In the heat and pressure molding using this molding apparatus 2, first, the optical material 1 is placed on the molding surface of the molding die 4b when the molding dies 4a and 4b are at a low temperature, and the molding surface of the molding die 4a is optical. A heating step 7 is performed in which the temperature of the heater block 5 is raised while the molding die 4b is raised to a position close to the surface of the material 1 to heat the molding dies 4a and 4b, the body die 3 and the optical material 1. . Subsequently, the temperature of the heater block 5 is raised so that the temperature of the optical material 1 becomes equal to or higher than the glass transition temperature, and then the pressing die 8 is further raised to pressurize and deform the optical material 1. I do. Next, a cooling step 9 is performed in which the optical material 1 is cooled to a temperature at which the optical material 1 can be taken out, and a molding die 4b is lowered to take out an optical lens that is the optical material 1 after molding. Note that the pressurization step 8 starts the cooling of the molding die 4 and completes the pressurization when the temperature becomes close to the glass transition temperature, and suppresses shrinkage deformation of the optical material 1 in the cooling step 9.

そして、この一実施の形態においては、図3に示す成形金型4a,4bの温度が所定の成形温度に達してから加圧開始するまでの待機時間11を短縮したことにある。すなわち、この待機時間11は成形金型4を介して光学材料1の外側部分から昇温される内側部分までの温度分布が小さくなるように均熱化するための時間であり、この待機時間11を短縮することで生産時間を大幅に短縮出来るのであるが、上述したように均熱化のための待機時間11を短縮した場合、加圧工程8での加圧開始時点で光学材料1の内側部分が外側部分に比べ温度が低くなりこれに伴い粘度も高くなることから、加圧開始時点で加圧成形に必要な所定の成形圧力を光学材料1に加えてしまうと内側部分の高粘度領域に大きな押圧力が加わり成形後の光学レンズの割れの原因となってしまう。   In this embodiment, the waiting time 11 from when the temperature of the molding dies 4a and 4b shown in FIG. 3 reaches a predetermined molding temperature until the start of pressurization is shortened. That is, the waiting time 11 is a time for soaking so that the temperature distribution from the outer part of the optical material 1 through the molding die 4 to the inner part to be heated is reduced. However, when the standby time 11 for soaking is shortened as described above, the inner side of the optical material 1 at the start of pressurization in the pressurization step 8 can be shortened. Since the temperature of the portion is lower than that of the outer portion and the viscosity increases accordingly, if a predetermined molding pressure required for pressure molding is applied to the optical material 1 at the start of pressurization, the high viscosity region of the inner portion A large pressing force is applied to the optical lens to cause cracking of the optical lens after molding.

そこで、待機時間11を短縮し温度分布を有する光学材料1を加圧成形するにあたり、成形金型4による加圧方法をエアーシリンダやオイルシリンダといった圧力制御での加圧手法とするのではなく、サーボモータやカム機構により成形金型4bの加圧速度つまり成形金型4bの移動速度を制御する加圧手法を用いたのである。   Therefore, when pressurizing the optical material 1 having a temperature distribution by shortening the waiting time 11, the pressurizing method by the molding die 4 is not a pressurizing method by pressure control such as an air cylinder or an oil cylinder. A pressurizing method is used in which the pressurizing speed of the molding die 4b, that is, the moving speed of the molding die 4b is controlled by a servo motor or a cam mechanism.

すなわち、成形金型4bによる加圧を移動速度により制御したことで、光学材料1に加わる圧力は粘度や変形量により変化するため、加圧開始時点で光学材料1に大きな成形圧力が一気に加わるのではなく、変形速度に応じた圧力が加わるので、加圧開始時点での圧力は小さく光学材料1の当接部分もしくはその近傍から変形が始まり、またこの変形に伴い光学材料1と成形金型4との当接面積が増すことから成形金型4からの熱伝達が高まり、これにより光学材料1の内側部分の温度上昇が進み、更なる変形が可能となるのである。   That is, since the pressure applied to the molding die 4b is controlled by the moving speed, the pressure applied to the optical material 1 changes depending on the viscosity and the deformation amount, so that a large molding pressure is applied to the optical material 1 at a time when pressing is started. Instead, since pressure corresponding to the deformation speed is applied, the pressure at the start of pressurization is small, and deformation starts from the contact portion of the optical material 1 or the vicinity thereof, and the optical material 1 and the molding die 4 are accompanied by this deformation. As a result, the heat transfer from the molding die 4 is increased, thereby increasing the temperature of the inner portion of the optical material 1 and enabling further deformation.

つまり、成形開始時点で光学材料1が温度分布を有した状態であっても、加圧成形の進捗に応じて温度分布が小さくなるので、加圧開始前において光学材料1を均熱化するための待機時間11を短縮し光学レンズの生産性を向上させることが出来るのである。   That is, even if the optical material 1 has a temperature distribution at the start of molding, the temperature distribution becomes smaller according to the progress of pressure molding, so that the optical material 1 is soaked before the pressurization starts. The waiting time 11 can be shortened and the productivity of the optical lens can be improved.

また、このように待機時間11を短縮することについては、アッベ数が大きい低分散のガラスの組成がリン酸塩系、フッ化系、フツリン酸塩系ガラスに属しガラス組成に多くのアルカリ性修飾酸化物を含みガラス本来のネットワーク構造が弱くなっていることから熱伝導率も0.80W・m-1・k-1以下と低く、このような熱伝導率が低い光学材料1に対して特に有効となる。 Further, in order to shorten the waiting time 11 in this way, the composition of the low dispersion glass having a large Abbe number belongs to phosphate glass, fluorinated glass, and fluorophosphate glass, and the glass composition has many alkaline modified oxidations. In particular, it has a low thermal conductivity of 0.80 W · m -1 · k -1 or less because the original network structure including glass is weak, and it is particularly effective for such an optical material 1 having a low thermal conductivity. It becomes.

なお、加圧工程における加圧速度の制御は光学材料1の外側部分と内側部分で温度分布を有する際に有用な加圧手段であり、この温度分布が小さくなり実質的に差が無くなった後は圧力による制御に切り換えてもよい。   The pressurization speed control in the pressurizing step is a pressurizing means useful when the outer portion and the inner portion of the optical material 1 have a temperature distribution, and after this temperature distribution becomes small and there is substantially no difference. May be switched to pressure control.

本発明は、光学レンズの成形時間を短縮する効果を有し、特に熱伝導率が低い低分散ガラスの加熱加圧成形に有用となる。   The present invention has an effect of shortening the molding time of an optical lens, and is particularly useful for heat-pressure molding of low dispersion glass having low thermal conductivity.

1 光学材料
4a,4b 成形金型
7 加熱工程
8 加圧工程
9 冷却工程
DESCRIPTION OF SYMBOLS 1 Optical material 4a, 4b Molding die 7 Heating process 8 Pressurizing process 9 Cooling process

Claims (2)

光学材料を加熱加圧して光学レンズを形成する成形方法であって、前記光学材料を一対の成形金型間に配置して加熱する加熱工程と、加熱された光学材料を前記成形金型で加圧変形させる加圧工程と、加圧変形した光学材料を冷却する冷却工程を含み、前記加圧工程における加圧開始時点で前記光学材料は内側部分の温度が外側部分の温度より低い温度分布を有するとともに、少なくとも前記加圧開始時点での加圧方法として前記成形金型の加圧速度を制御して加圧変形させたことを特徴とする光学レンズの成形方法。 A molding method for forming an optical lens by heating and pressurizing an optical material, the heating step of placing the optical material between a pair of molding dies and heating, and adding the heated optical material with the molding dies. A pressure step for pressure deformation, and a cooling step for cooling the pressure-deformed optical material, and the optical material has a temperature distribution in which the temperature of the inner portion is lower than the temperature of the outer portion at the start of pressurization in the pressure step. And a method of molding an optical lens, wherein at least the pressurization method at the start of pressurization is controlled by pressurizing and deforming by controlling the pressurization speed of the mold. 光学材料の熱伝導率が0.80W・m-1・k-1以下であることを特徴とする請求項1に記載の光学レンズの成形方法。 The method of molding an optical lens according to claim 1, wherein the thermal conductivity of the optical material is 0.80 W · m −1 · k −1 or less.
JP2010189009A 2010-08-26 2010-08-26 Method of forming optical lens Pending JP2012046370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189009A JP2012046370A (en) 2010-08-26 2010-08-26 Method of forming optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189009A JP2012046370A (en) 2010-08-26 2010-08-26 Method of forming optical lens

Publications (1)

Publication Number Publication Date
JP2012046370A true JP2012046370A (en) 2012-03-08

Family

ID=45901693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189009A Pending JP2012046370A (en) 2010-08-26 2010-08-26 Method of forming optical lens

Country Status (1)

Country Link
JP (1) JP2012046370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240246849A1 (en) * 2023-01-19 2024-07-25 Aac Optics (Changzhou) Co., Ltd. Lens forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240246849A1 (en) * 2023-01-19 2024-07-25 Aac Optics (Changzhou) Co., Ltd. Lens forming method

Similar Documents

Publication Publication Date Title
CN104093538A (en) Lens shaping apparatus
JP3917362B2 (en) Molding method for precision molded products
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JP4363626B2 (en) How to blank press optical components
JP2012046370A (en) Method of forming optical lens
JP4563942B2 (en) Molding method of thermoplastic material
CN110372182B (en) 3D hot bending forming process for glass screen production
JP2011116632A (en) Method and device for molding optical element
JP5298749B2 (en) Molding method
JP6016523B2 (en) Plastic optical component press mold and plastic optical component manufacturing method
WO2019150844A1 (en) Optical element forming method
JP2008247671A (en) Optical element molding apparatus
JP2009202348A (en) Molding equipment
CN101624257A (en) Heating process and equipment for molded glass
JP2011178618A (en) Method for molding optical lens
JP2004091281A (en) Apparatus for manufacturing glass lens
JP2004331471A (en) Method and apparatus for molding optical device
JP2008150266A (en) Method of molding optical device
JP5453200B2 (en) Molding apparatus and molding method
JP2008083190A (en) Method for molding optical element
JP6653135B2 (en) Method and apparatus for manufacturing optical element
JP2002249328A (en) Method for forming optical element
JP4030799B2 (en) Optical element molding method
JP2009249273A (en) Method for manufacturing optical device
JP2009056605A (en) Thermoplastic resin molding apparatus