[go: up one dir, main page]

JP2012045507A - Continuous dehydration method of liquid - Google Patents

Continuous dehydration method of liquid Download PDF

Info

Publication number
JP2012045507A
JP2012045507A JP2010191677A JP2010191677A JP2012045507A JP 2012045507 A JP2012045507 A JP 2012045507A JP 2010191677 A JP2010191677 A JP 2010191677A JP 2010191677 A JP2010191677 A JP 2010191677A JP 2012045507 A JP2012045507 A JP 2012045507A
Authority
JP
Japan
Prior art keywords
liquid
raw material
adsorption
moisture
effluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010191677A
Other languages
Japanese (ja)
Inventor
Kanji Yamaji
寛司 山路
Kenji Kurata
兼司 蔵田
Hideo Noda
秀夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Chemical Engineering Co Ltd
Original Assignee
Kansai Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co Ltd filed Critical Kansai Chemical Engineering Co Ltd
Priority to JP2010191677A priority Critical patent/JP2012045507A/en
Publication of JP2012045507A publication Critical patent/JP2012045507A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Drying Of Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous dehydration method for removing moisture from liquid containing water efficiently and inexpensively.SOLUTION: The continuous dehydration method of raw material liquid containing moisture includes: a process (1) of supplying raw material liquid or vapor originated from the raw material liquid to one end of an adsorption tube filled with a moisture adsorbent and recovering effluent from the other end of the adsorption tube; a process (2) of measuring a moisture concentration in the effluent and calculating a cumulative moisture concentration; a process (3) of stopping the supply of the raw material liquid or vapor originated from the raw material liquid when the cumulative moisture concentration in the effluent has reached the predetermined concentration or higher in the process (2) and liberating the moisture from the adsorbent in the adsorption tube; a process (4) of supplying the vapor remaining in the adsorption tube to a distillation column and recovering concentrated liquid from the overhead of the distillation column; and a further process (5) of returning the concentrated liquid to the process (1).

Description

本発明は、吸着剤を利用した液体の連続式脱水方法に関する。   The present invention relates to a continuous liquid dehydration method using an adsorbent.

水分を含む液体(含水液体)から水分を除去する方法として、回分式の脱水方法または連続式の脱水方法がある。   As a method for removing water from a liquid containing water (hydrous liquid), there are a batch-type dehydration method and a continuous dehydration method.

回分式の脱水方法は、例えば、フラスコ、試験管などにモレキュラーシーブおよび含水液体を入れ、モレキュラーシーブに水分のみを吸着させることにより、含水液体から水分を除去する方法である。回分式の脱水方法は、通常、必要量の液体を必要に応じて脱水するときに用いられるため、工業的に用いられることは少なく実験室で頻繁に用いられる。   The batch-type dehydration method is a method of removing moisture from a water-containing liquid by, for example, putting a molecular sieve and a water-containing liquid into a flask, a test tube, or the like and adsorbing only water to the molecular sieve. The batch-type dehydration method is usually used when a necessary amount of liquid is dehydrated as necessary, and thus is rarely used industrially and frequently used in a laboratory.

連続式の脱水方法は、回分式の脱水方法とは異なり、水分が除去された液体を工業的規模などで多量に得るために用いられる。例えば、特許文献1に記載の方法は、含水液体を蒸気の状態で加圧して脱水する方法であり、高温・高圧条件が必要である。含水液体を蒸気の状態にして加圧するには大量のエネルギーを要し、さらに加熱・加圧装置、耐熱・耐圧容器など特別な装置、容器が必要となり、コストアップにつながる。   Unlike the batch-type dehydration method, the continuous dehydration method is used to obtain a large amount of liquid from which moisture has been removed on an industrial scale or the like. For example, the method described in Patent Document 1 is a method of dehydrating by pressurizing a water-containing liquid in a vapor state, and requires high temperature and high pressure conditions. A large amount of energy is required to pressurize the hydrated liquid in a vapor state, and a special device and container such as a heating / pressurizing device and a heat-resistant / pressure-resistant vessel are required, leading to an increase in cost.

特開2008−55386号公報JP 2008-55386 A

本発明の目的は、低コストで効率よく含水液体から水分を除去する連続式脱水方法を提供することにある。   An object of the present invention is to provide a continuous dehydration method that efficiently removes moisture from a water-containing liquid at low cost.

本発明は、水分を含む原料液体の連続式脱水方法を提供し、該方法は、(1)該原料液体または該原料液体由来の蒸気を、水分吸着剤を充填した吸着管の一端に供給し、該吸着管の他端から流出液を回収する工程、および(2)該流出液中の水分濃度を測定して累積水分濃度を算出する工程を含む方法であり、該工程(2)において、該流出液中の該累積水分濃度が所定濃度以上になった場合に、(3)該原料液体または該原料液体由来の蒸気の供給を停止し、該吸着管内の該吸着剤から水分を離脱させる工程、(4)該吸着管内に残存する蒸気が蒸留塔に供給され、該蒸留塔の塔頂から濃縮液が回収される工程、および(5)該濃縮液が、該原料液体と混合され、該工程(1)に戻る工程をさらに含む。   The present invention provides a continuous dehydration method for a raw material liquid containing moisture, the method comprising: (1) supplying the raw material liquid or vapor derived from the raw material liquid to one end of an adsorption tube filled with a moisture adsorbent. A step of recovering an effluent from the other end of the adsorption tube, and (2) a method of calculating a cumulative moisture concentration by measuring a moisture concentration in the effluent, and in the step (2), When the accumulated water concentration in the effluent becomes equal to or higher than a predetermined concentration, (3) the supply of the raw material liquid or the vapor derived from the raw material liquid is stopped, and the water is released from the adsorbent in the adsorption pipe. A step, (4) a step in which the vapor remaining in the adsorption pipe is supplied to a distillation column, and a concentrated solution is recovered from the top of the distillation column; and (5) the concentrated solution is mixed with the raw material liquid; The method further includes returning to the step (1).

1つの実施態様では、上記工程(3)において、上記吸着管内の滞留液を抜き出し回収する工程、および上記工程(4)の後に、該滞留液を該吸着管の一端に供給する工程、をさらに含む。   In one embodiment, in the step (3), the step of extracting and collecting the staying liquid in the adsorption tube, and the step of supplying the staying liquid to one end of the adsorption tube after the step (4) are further performed. Including.

1つの実施態様では、上記工程(4)は、上記吸着管内を室温よりも高い温度に加温し、かつ減圧にして行われる。   In one embodiment, the step (4) is performed by heating the inside of the adsorption tube to a temperature higher than room temperature and reducing the pressure.

1つの実施態様では、上記工程(4)は、上記吸着管内をガスでパージした後、大気圧または減圧にして行われる。   In one embodiment, the step (4) is carried out at atmospheric pressure or reduced pressure after purging the inside of the adsorption tube with gas.

他の実施態様では、上記吸着管は、2つ以上用いられる   In another embodiment, two or more adsorption tubes are used.

ある実施態様では、上記吸着管は、3つ以上用いられ、上記工程(5)において、上記滞留液は、該滞留液を抜き出した吸着管とは異なる吸着管の一端に供給される。   In one embodiment, three or more adsorption tubes are used, and in the step (5), the staying liquid is supplied to one end of an adsorption tube different from the adsorption tube from which the staying liquid has been drawn.

本発明によれば、低コストで効率よく含水液体から水分を除去する連続式脱水方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the continuous dehydration method which removes a water | moisture content from a water-containing liquid efficiently at low cost can be provided.

本発明の脱水方法に用いられる脱水システムの一実施態様を示す概略図である。It is the schematic which shows one embodiment of the dehydration system used for the dehydration method of this invention. 本発明の脱水方法に用いられる脱水システムの他の実施態様を示す概略図である。It is the schematic which shows the other embodiment of the dehydration system used for the dehydration method of this invention. 従来の脱水方法に用いられる脱水システムの実施態様を示す概略図である。It is the schematic which shows the embodiment of the dehydration system used for the conventional dehydration method.

本発明の脱水方法は、(1)原料液体または原料液体由来の蒸気を、水分吸着剤を充填した吸着管の一端に供給し、吸着管の他端から流出液を回収する工程、および(2)流出液を定期的にサンプリングし、流出液中の水分濃度を測定して累積水分濃度を算出する工程を含む方法であり、工程(2)において、流出液中の累積水分濃度が所定濃度以上になった場合に、(3)原料液体または原料液体由来の蒸気の供給を停止し、吸着管内の吸着剤から水分を離脱させる工程、(4)吸着管内に残存する蒸気が蒸留塔に供給され、蒸留塔の塔頂から濃縮液が回収される工程、および(5)濃縮液が、原料液体と混合され、該工程(1)に戻る工程をさらに含む。   The dehydration method of the present invention includes (1) a step of supplying a raw material liquid or vapor derived from a raw material liquid to one end of an adsorption tube filled with a moisture adsorbent, and collecting an effluent from the other end of the adsorption tube; ) A method including a step of periodically sampling the effluent and measuring a water concentration in the effluent to calculate a cumulative water concentration. In step (2), the cumulative water concentration in the effluent is a predetermined concentration or more. (3) a step of stopping the supply of the raw material liquid or the vapor derived from the raw material liquid to release moisture from the adsorbent in the adsorption tube, and (4) the vapor remaining in the adsorption tube is supplied to the distillation column. A step of recovering the concentrate from the top of the distillation column, and (5) a step of mixing the concentrate with the raw material liquid and returning to the step (1).

(工程(1))
工程(1)では、水分を含む原料液体または原料液体由来の蒸気(以下、単に「原料液体」と記載する場合がある)を、水分吸着剤(以下、単に「吸着剤」と記載する場合がある)を充填した吸着管の一端に供給し、吸着管の他端から流出液を回収する。
(Process (1))
In the step (1), a raw material liquid containing moisture or vapor derived from the raw material liquid (hereinafter sometimes simply referred to as “raw material liquid”) may be referred to as a moisture adsorbent (hereinafter simply referred to as “adsorbent”). Is supplied to one end of an adsorption tube filled with a), and the effluent is recovered from the other end of the adsorption tube.

水分を含む原料液体としては、特に限定されず、例えば有機溶媒と水との混合液が挙げられる。好ましくは、蒸留では水分が完全に除去できない共沸混合物が挙げられる。有機溶媒としては、例えば、メタノール、エタノール、イソプロパノールなどの低級アルコール類;アセトアルデヒド、プロピオンアルデヒドなどのアルデヒド類;アセトン、メチルエチルケトンなどのケトン類;ギ酸、酢酸などの有機酸類などが挙げられる。   It does not specifically limit as a raw material liquid containing a water | moisture content, For example, the liquid mixture of an organic solvent and water is mentioned. Preferably, an azeotropic mixture in which water cannot be completely removed by distillation is exemplified. Examples of the organic solvent include lower alcohols such as methanol, ethanol and isopropanol; aldehydes such as acetaldehyde and propionaldehyde; ketones such as acetone and methyl ethyl ketone; organic acids such as formic acid and acetic acid.

原料液体中の水分濃度は特に限定されず、好ましくは1質量%〜15質量%である。本発明の脱水方法を用いると、原料液体から、効率よく無水(例えば、水分濃度が0.5質量%未満)の流出液(製品)が得られる。   The water concentration in the raw material liquid is not particularly limited, and is preferably 1% by mass to 15% by mass. When the dehydration method of the present invention is used, an effluent (product) that is efficiently anhydrous (for example, the water concentration is less than 0.5% by mass) is obtained from the raw material liquid.

吸着剤としては、水分を吸着し得る吸着剤であれば特に限定されず、例えば、ゼオライト(モレキュラーシーブ)、シリカゲルなどが挙げられる。特許文献1に記載のハニカム形状の吸着剤なども用い得る。市販されている吸着剤としては、例えば、モレキュラーシーブ13X(ユニオン昭和株式会社製)、モレキュラーシーブ3Aペレット1.6(ユニオン昭和株式会社製)、ハニクルMSXおよびMSA(ニチアス株式会社製)などが挙げられる。   The adsorbent is not particularly limited as long as it can adsorb moisture, and examples thereof include zeolite (molecular sieve) and silica gel. A honeycomb-shaped adsorbent described in Patent Document 1 can also be used. Commercially available adsorbents include, for example, molecular sieve 13X (manufactured by Union Showa Co., Ltd.), molecular sieve 3A pellet 1.6 (manufactured by Union Showa Co., Ltd.), Hanicle MSX and MSA (manufactured by NICHIAS Corporation), and the like. It is done.

吸着管は、吸着剤が充填され、原料液体と吸着剤とが接触し得るように構成されている。吸着管は、例えば、円筒形など中空の柱状の構造を有する。   The adsorption tube is filled with an adsorbent so that the raw material liquid and the adsorbent can come into contact with each other. The adsorption tube has, for example, a hollow columnar structure such as a cylindrical shape.

原料液体を吸着管の一端に供給する方法は、特に限定されない。例えば、ポンプ、バルブなどを用いて、供給し得る。吸着管を地面に対して垂直に設置して使用する場合、原料液体は、吸着管の下端から供給されることが好ましい。   The method for supplying the raw material liquid to one end of the adsorption tube is not particularly limited. For example, it can be supplied using a pump, a valve or the like. When the adsorption tube is installed perpendicular to the ground and used, the raw material liquid is preferably supplied from the lower end of the adsorption tube.

原料液体の供給速度は、原料液体中の水分濃度、吸着管の大きさなどに応じて、適宜設定され得る。液体の状態で供給する場合は、好ましくは、吸着剤1gあたり0.5mL/h〜4mL/hの流量で吸着管に供給される。蒸気の状態で供給する場合は、好ましくは、吸着剤1gあたり0.1mL/h〜4mL/hの流量で吸着管に供給される。例えば、含水エタノールの脱水を行う場合は、吸着剤1gあたり約1mL/hの流量(液体の状態)、または吸着剤1gあたり約0.19mL/hの流量(蒸気の状態)が好ましい。   The supply speed of the raw material liquid can be appropriately set according to the moisture concentration in the raw material liquid, the size of the adsorption tube, and the like. When supplying in a liquid state, it is preferably supplied to the adsorption tube at a flow rate of 0.5 mL / h to 4 mL / h per 1 g of the adsorbent. When supplying in the state of steam, it is preferably supplied to the adsorption tube at a flow rate of 0.1 mL / h to 4 mL / h per 1 g of the adsorbent. For example, when dehydrating hydrous ethanol, a flow rate of about 1 mL / h per 1 g of adsorbent (liquid state) or a flow rate of about 0.19 mL / h per 1 g of adsorbent (vapor state) is preferable.

原料の供給は、液体の状態では室温で行われ、蒸気の状態では供給される原料の沸点以上の温度で行われる。原料を蒸気の状態にするために、例えば、図1に示すような全蒸発器が用いられる。水分の吸着は、原料の供給が液体の状態で行われる場合、室温で行ってもよく、加温して行ってもよい。好ましくは、20℃〜98℃程度で行う。   The supply of the raw material is performed at room temperature in the liquid state, and is performed at a temperature equal to or higher than the boiling point of the supplied raw material in the vapor state. In order to make a raw material into a vapor | steam state, the full evaporator as shown, for example in FIG. 1 is used. When the raw material is supplied in a liquid state, moisture adsorption may be performed at room temperature or may be performed by heating. Preferably, it is performed at about 20 ° C to 98 ° C.

吸着管内の吸着剤によって水分が除去された流出液(製品)は、吸着管の他端から流出し回収される。   The effluent (product) from which moisture has been removed by the adsorbent in the adsorption tube flows out from the other end of the adsorption tube and is collected.

(工程(2))
工程(2)では、工程(1)で吸着管の他端から流出する流出液中の水分濃度を測定して累積水分濃度を算出する。水分濃度を測定する方法としては、例えば、密度計(センサー)を流出口に設置して連続的に流出液の密度を測定し、水分濃度を求める方法、流出液を定期的にサンプリングしてカールフィッシャー水分計、ポータブル密度比重計などで測定する方法などが挙げられる。水分濃度の測定値から累積水分濃度を算出する。累積水分濃度は、測定した水分濃度の積算値を、測定開始から経過した時間で除した値である。流出液を定期的にサンプリングして水分濃度を測定する場合は、サンプリング開始からの測定値の平均値である。
(Process (2))
In step (2), the water concentration in the effluent flowing out from the other end of the adsorption tube in step (1) is measured to calculate the cumulative water concentration. As a method of measuring the moisture concentration, for example, a density meter (sensor) is installed at the outlet and the density of the effluent is continuously measured to determine the moisture concentration. The effluent is periodically sampled and curled. Examples include a method using a Fischer moisture meter and a portable density / specific gravity meter. Cumulative moisture concentration is calculated from the measured value of moisture concentration. The cumulative water concentration is a value obtained by dividing the integrated value of the measured water concentration by the time elapsed from the start of measurement. When the effluent is sampled periodically to measure the water concentration, it is the average value of the measured values from the start of sampling.

工程(2)で、累積水分濃度が所定濃度を超えた場合に、後述する工程(3)〜(5)に進む。   When the accumulated water concentration exceeds the predetermined concentration in step (2), the process proceeds to steps (3) to (5) described later.

後述の工程(3)〜(5)に進むか否かを判断するための累積水分濃度の所定濃度は特に限定されず、流出液(製品)の用途に応じて適宜設定され得る。例えば、液体を無水物の製品として用いる場合、累積水分濃度の所定濃度は、好ましくは0.5質量%未満に設定される。   The predetermined concentration of the cumulative moisture concentration for determining whether or not to proceed to steps (3) to (5) described later is not particularly limited, and can be set as appropriate according to the use of the effluent (product). For example, when the liquid is used as an anhydrous product, the predetermined concentration of the cumulative moisture concentration is preferably set to less than 0.5% by mass.

(工程(3))
工程(3)では、原料液体または原料液体由来の蒸気の供給を停止し、吸着管内の吸着剤から水分を離脱させる。原料液体の供給が進むにつれて、吸着剤に吸着される水分も増加し、吸着剤の水分吸着能が低下する。その結果、工程(1)で回収される流出液中の水分濃度が増加する。
(Process (3))
In the step (3), the supply of the raw material liquid or the vapor derived from the raw material liquid is stopped, and moisture is desorbed from the adsorbent in the adsorption tube. As the supply of the raw material liquid proceeds, the moisture adsorbed on the adsorbent increases, and the moisture adsorbing ability of the adsorbent decreases. As a result, the water concentration in the effluent recovered in step (1) increases.

吸着剤から水分を離脱させる方法は、特に限定されない。例えば、吸着管内を室温よりも高い温度に加温(例えば、100℃〜140℃)し、かつ最終的に50mmHg程度まで減圧して吸着剤から水分を離脱させる方法;吸着管内をガス(例えば、窒素などの不活性ガス)でパージした後、大気圧または最終的に50mmHg程度まで減圧して吸着剤から水分を離脱させる方法などが挙げられる。   A method for releasing moisture from the adsorbent is not particularly limited. For example, a method in which the inside of the adsorption tube is heated to a temperature higher than room temperature (for example, 100 ° C. to 140 ° C.) and finally depressurized to about 50 mmHg to desorb moisture from the adsorbent; And a method of releasing moisture from the adsorbent by purging with an inert gas such as nitrogen) and then reducing the pressure to atmospheric pressure or finally about 50 mmHg.

吸着管内を加温するために、吸着管の外壁面に蒸気などの熱媒が供給され得る加熱装置(ジャケット)などが用いられ得る。   In order to heat the inside of the adsorption tube, a heating device (jacket) or the like that can supply a heat medium such as steam to the outer wall surface of the adsorption tube can be used.

吸着管内を減圧にするために、真空ポンプ、ブロアーなどが用いられる。装置が小型の場合、好ましくは真空ポンプが用いられ、装置が大型の場合、好ましくは数台直列に並べたブロアーが用いられる。   In order to reduce the pressure in the adsorption tube, a vacuum pump, a blower or the like is used. When the apparatus is small, a vacuum pump is preferably used. When the apparatus is large, several blowers arranged in series are preferably used.

このように、吸着剤から水分を離脱させることによって、吸着剤の水分吸収能を回復させることができる。   As described above, the moisture absorbing ability of the adsorbent can be recovered by releasing the moisture from the adsorbent.

好ましくは、回収される流出液中の累積水分濃度が設定した所定濃度を超えると、吸着管への原料液体の供給を停止し、吸着管内に残存する滞留液を抜き出し回収する。滞留液を抜き出し回収する方法は、特に限定されない。例えば、ポンプ、バルブなどを用いて抜き出し回収し得る。また、吸着管内に窒素ガスを導入して、窒素ガスの圧力によって吸着管内に残存する滞留液を押し出してもよい。   Preferably, when the accumulated water concentration in the recovered effluent exceeds a predetermined concentration, the supply of the raw material liquid to the adsorption tube is stopped, and the remaining liquid remaining in the adsorption tube is extracted and collected. The method for extracting and collecting the staying liquid is not particularly limited. For example, it can be extracted and collected using a pump, a valve or the like. Further, nitrogen gas may be introduced into the adsorption tube, and the staying liquid remaining in the adsorption tube may be pushed out by the pressure of the nitrogen gas.

(工程(4))
工程(4)では、吸着管内に残存する蒸気が蒸留塔に供給され、蒸留塔の塔頂から濃縮液が回収される。
(Process (4))
In step (4), the vapor remaining in the adsorption pipe is supplied to the distillation column, and the concentrated liquid is recovered from the top of the distillation column.

吸着管内に残存する蒸気(原料液体の蒸気および水蒸気)は、蒸留塔に供給される。蒸気は、蒸留塔の底部(塔底)に供給されて蒸留され、原料液体の蒸気を主として含む蒸気が蒸留塔の上部(塔頂)のコンデンサー(例えば、冷却器など)で液化されて蒸留塔に還流され、水蒸気を主として含む蒸気が液化して塔底に滞留する。   The vapor remaining in the adsorption pipe (raw material liquid vapor and water vapor) is supplied to the distillation column. The vapor is supplied to the bottom of the distillation column (column bottom) and distilled, and the vapor mainly containing the raw material vapor is liquefied by a condenser (for example, a cooler) at the top (top) of the distillation column. The steam mainly containing water vapor is liquefied and stays at the bottom of the tower.

原料液体の蒸気を主として含む蒸気は、上記のように、コンデンサー(例えば、冷却器など)で液化されて蒸留塔に還流されることによって濃縮され、濃縮液として回収される。この濃縮液は、再度、原料液体として用いられる。   As described above, the vapor mainly containing the raw material liquid vapor is liquefied by a condenser (for example, a cooler or the like) and refluxed to a distillation column to be concentrated and recovered as a concentrated liquid. This concentrated liquid is again used as a raw material liquid.

このように、濃縮液を、再度原料液体として用いることによって、含水液体から高収率で無水物が得られる。   Thus, an anhydride can be obtained in high yield from a water-containing liquid by using the concentrated liquid again as a raw material liquid.

(工程(5))
工程(5)では、濃縮液が、原料液体と混合され、工程(1)に戻る。
(Process (5))
In step (5), the concentrated liquid is mixed with the raw material liquid, and the process returns to step (1).

好ましくは、工程(3)で回収される滞留液を吸着管の一端に供給し、滞留液の供給後、工程(1)に戻り、濃縮液と混合された原料液体を吸着管の一端に供給する。滞留液についても、原料液体と同様、バルブなどで供給速度(流量)を調節して供給することが好ましい。   Preferably, the staying liquid recovered in step (3) is supplied to one end of the adsorption tube, and after the staying liquid is supplied, the process returns to step (1) and the raw material liquid mixed with the concentrated solution is supplied to one end of the adsorption tube. To do. As with the raw material liquid, the staying liquid is preferably supplied by adjusting the supply rate (flow rate) with a valve or the like.

本発明の脱水方法では、上記工程(1)〜(5)によって、原料液体を連続的に脱水することが可能である。   In the dehydration method of the present invention, the raw material liquid can be continuously dehydrated by the above steps (1) to (5).

本発明の脱水方法は、好ましくは図1に示すように、2つ以上の吸着管を用いる。特に、図1に示すような2つの吸着管を用いる方法は、原料液体を蒸気として用いる場合に好ましく用いられる。   The dehydration method of the present invention preferably uses two or more adsorption tubes as shown in FIG. In particular, the method using two adsorption tubes as shown in FIG. 1 is preferably used when the raw material liquid is used as vapor.

本発明の脱水方法は、より好ましくは3つ以上の吸着管を用いる。この場合、工程(5)において、滞留液は、該滞留液を抜き出した吸着管とは異なる吸着管の一端に供給される。   More preferably, the dehydration method of the present invention uses three or more adsorption tubes. In this case, in step (5), the staying liquid is supplied to one end of an adsorption pipe different from the adsorption pipe from which the staying liquid has been extracted.

例えば、3つの吸着管(第1の吸着管、第2の吸着管および第3の吸着管)を用いる場合、第1の吸着管から回収された滞留液を第2の吸着管に供給し、第2の吸着管から回収された滞留液を第3の吸着管に供給し、そして第3の吸着管から回収された滞留液を第1の吸着管に供給することが好ましい。このように、回収された滞留液を回収した吸着管とは異なる吸着管に供給することによって、より連続的に脱水することが可能となる。   For example, when using three adsorption tubes (a first adsorption tube, a second adsorption tube, and a third adsorption tube), the staying liquid recovered from the first adsorption tube is supplied to the second adsorption tube, It is preferable that the staying liquid recovered from the second adsorption tube is supplied to the third adsorption tube, and the staying liquid recovered from the third adsorption tube is supplied to the first adsorption tube. Thus, by supplying the collected staying liquid to an adsorption tube different from the collected adsorption tube, it becomes possible to dehydrate more continuously.

(実施例1)
以下、本発明の脱水方法の一実施態様を、図2に示す脱水システムを参照して説明する。
Example 1
Hereinafter, one embodiment of the dehydration method of the present invention will be described with reference to the dehydration system shown in FIG.

図2に示す脱水システムは、吸着塔を3本用いたシステムであり、吸着塔21、31、41、原料タンク11、中間タンク12、流出液タンク13、真空ポンプ14、コンデンサー15、凝縮液タンク16、蒸留塔17および水タンクを備える。   The dehydration system shown in FIG. 2 is a system using three adsorption towers, and is composed of adsorption towers 21, 31, 41, raw material tank 11, intermediate tank 12, effluent tank 13, vacuum pump 14, condenser 15, and condensate tank. 16. A distillation column 17 and a water tank are provided.

吸着塔21、31、41は、吸着剤を充填する内側の円筒管および内側の円筒管を覆う外側の円筒管でなる二重管構造を有する。内側の円筒管は、内径が200mmであり、長さが700mmである。外側の円筒管は、内径が250mmであり、長さが700mmである。内側の円筒管と外側の円筒管との隙間に、蒸気、温水などの熱媒が供給され得、内側の円筒管を加熱できるように構成されている。   The adsorption towers 21, 31, and 41 have a double tube structure including an inner cylindrical tube filled with an adsorbent and an outer cylindrical tube covering the inner cylindrical tube. The inner cylindrical tube has an inner diameter of 200 mm and a length of 700 mm. The outer cylindrical tube has an inner diameter of 250 mm and a length of 700 mm. A heat medium such as steam or hot water can be supplied to the gap between the inner cylindrical tube and the outer cylindrical tube, and the inner cylindrical tube can be heated.

吸着塔21、31、41の内側の円筒管の下部に網を設置し、その上に約3500gの吸着剤(ユニオン昭和株式会社製:モレキュラーシーブ3Aペレット1.6)を充填した。吸着剤の充填後、内側の円筒管内を窒素で満たした。   A net was installed in the lower part of the cylindrical tube inside the adsorption towers 21, 31, 41, and about 3500 g of adsorbent (manufactured by Union Showa Co., Ltd .: Molecular Sieve 3A pellet 1.6) was packed thereon. After filling with the adsorbent, the inside cylindrical tube was filled with nitrogen.

(前処理)
原料液体を脱水する前に、吸着剤に吸着している水分を離脱させた。バルブ285を開き、バルブ286を閉じて、吸着塔21の内側の円筒管と外側の円筒管との隙間に0.45Mpaの蒸気を供給し、吸着塔21を加熱した。次いで、バルブ281をa−c方向に開き、バルブ282をb−a方向に開き、バルブ283を閉じ、そしてバルブ284を開いて、真空ポンプ14を運転した。真空ポンプ14は、蒸留塔17とバルブ282との間に備えられている。真空ポンプ14によって、窒素ガスと共に水蒸気を吸引して蒸留塔17に供給し、凝縮された水を水タンクに溜めた。
(Preprocessing)
Before dehydrating the raw material liquid, the moisture adsorbed on the adsorbent was released. The valve 285 was opened and the valve 286 was closed, and 0.45 Mpa of steam was supplied to the gap between the inner cylindrical tube and the outer cylindrical tube of the adsorption tower 21 to heat the adsorption tower 21. Then, the valve 281 was opened in the ac direction, the valve 282 was opened in the ba direction, the valve 283 was closed, and the valve 284 was opened, and the vacuum pump 14 was operated. The vacuum pump 14 is provided between the distillation column 17 and the valve 282. Water vapor was sucked together with nitrogen gas by the vacuum pump 14 and supplied to the distillation tower 17, and the condensed water was stored in a water tank.

蒸留塔17は、塔の内径が50mmおよび高さが1000mmの円筒形であり、内部にステンレス製のマクマホン充填物が、底から500mmの高さまで充填されている。   The distillation column 17 has a cylindrical shape with an inner diameter of 50 mm and a height of 1000 mm, and is filled with a McMahon packing made of stainless steel to a height of 500 mm from the bottom.

なお、吸着塔21の内部温度は100℃〜120℃で推移し、水分の離脱終了時の温度は、吸着塔21の上部付近が約100℃であり、下部付近が約20℃であった。   In addition, the internal temperature of the adsorption tower 21 changed from 100 ° C. to 120 ° C., and the temperature at the end of the desorption of water was about 100 ° C. near the upper portion of the adsorption tower 21 and about 20 ° C. near the lower portion.

吸着塔31、41についても、吸着塔21と同様の手順で吸着剤に吸着している水分を離脱させた。   Also for the adsorption towers 31 and 41, the moisture adsorbed on the adsorbent was released in the same procedure as the adsorption tower 21.

(吸着塔21の運転)
次いで、バルブ284を閉じて、吸着塔21の圧力を減圧し、原料液体の供給を行った。また、バルブ285を閉じて、バルブ286を開き、蒸気の供給を停止した。原料液体として、エタノール90質量%および水10質量%の含水エタノールを用いた。
(Operation of adsorption tower 21)
Next, the valve 284 was closed, the pressure in the adsorption tower 21 was reduced, and the raw material liquid was supplied. Further, the valve 285 was closed, the valve 286 was opened, and the supply of steam was stopped. As the raw material liquid, hydrous ethanol containing 90% by mass of ethanol and 10% by mass of water was used.

バルブ281をa−b方向に開き、ポンプ191を用いて、原料タンク11から含水エタノールを吸着塔21に供給した。   The valve 281 was opened in the ab direction, and water-containing ethanol was supplied from the raw material tank 11 to the adsorption tower 21 using the pump 191.

吸着塔21の圧力が常圧になれば、バルブ283を開いて流出液を回収した。流出液が流出液タンク13に回収される前に、数回、3〜5mLずつサンプリングを行い、カールフィッシャー水分計(平沼産業株式会社製、AQV−2100S)によって流出液中の水分濃度を測定し、累積水分濃度を算出した。また、瞬時にエタノール濃度が測定できるポータブル密度比重計(京都電子工業株式会社製、DA−130N)でエタノール濃度を監視した。なお、流出液を流出液タンク13に回収するか否かを判断するための累積水分濃度の所定濃度は、0.5質量%未満と設定した。   When the pressure in the adsorption tower 21 reached normal pressure, the valve 283 was opened to collect the effluent. Before the effluent is collected in the effluent tank 13, sampling is performed 3 to 5 mL several times, and the moisture concentration in the effluent is measured by a Karl Fischer moisture meter (AQV-2100S, manufactured by Hiranuma Sangyo Co., Ltd.). The cumulative water concentration was calculated. Moreover, the ethanol concentration was monitored with a portable density specific gravity meter (manufactured by Kyoto Electronics Co., Ltd., DA-130N) that can measure the ethanol concentration instantaneously. The predetermined concentration of the cumulative moisture concentration for determining whether or not to collect the effluent in the effluent tank 13 was set to be less than 0.5% by mass.

累積水分濃度が0.5質量%を超えた時点で、流出液の回収を停止し、バルブ283を閉じて、含水エタノールの供給を停止した。   When the cumulative water concentration exceeded 0.5% by mass, the recovery of the effluent was stopped, the valve 283 was closed, and the supply of hydrous ethanol was stopped.

次いで、バルブ289をa−c方向に開き、バルブ282をb−c方向に開いて、吸着塔21内の滞留液を抜き出し中間タンク12に回収した。   Next, the valve 289 was opened in the ac direction, the valve 282 was opened in the bc direction, and the staying liquid in the adsorption tower 21 was extracted and collected in the intermediate tank 12.

滞留液を抜き出した後、バルブ285を開き、バルブ286を閉じて、吸着塔21の内側の円筒管と外側の円筒管との隙間に0.45Mpaの蒸気を供給し、吸着塔21を加熱した。次いで、バルブ281をa−c方向に開き、バルブ282をb−a方向に開き、そしてバルブ284を開いて、真空ポンプ14を運転した。真空ポンプ14によって、吸着塔21内に残存するエタノールの蒸気および水蒸気が蒸留塔17に供給し、蒸留を行った。   After the accumulated liquid was extracted, the valve 285 was opened and the valve 286 was closed, and 0.45 Mpa of steam was supplied to the gap between the inner cylindrical tube and the outer cylindrical tube of the adsorption tower 21 to heat the adsorption tower 21. . Then, the valve 281 was opened in the ac direction, the valve 282 was opened in the ba direction, and the valve 284 was opened, and the vacuum pump 14 was operated. Distillation was performed by supplying the vapor and water vapor of ethanol remaining in the adsorption tower 21 to the distillation tower 17 by the vacuum pump 14.

蒸留塔17の塔頂に滞留する蒸気をコンデンサー15(5℃の冷却水)で冷却し、凝縮液を凝縮液タンク16に回収しながら、溜まった液を蒸留塔17に還流液として戻した。回収された凝縮液のエタノール濃度を、ポータブル密度比重計で測定すると、約90質量%であった。この凝縮液を原料として再利用するため、原料タンク11に戻した。   The vapor staying at the top of the distillation column 17 was cooled by a condenser 15 (cooling water at 5 ° C.), and the collected liquid was returned to the distillation column 17 as a reflux liquid while collecting the condensate in the condensate tank 16. When the ethanol concentration of the collected condensate was measured with a portable density specific gravity meter, it was about 90% by mass. In order to reuse this condensate as a raw material, it was returned to the raw material tank 11.

蒸留塔17の塔底に滞留する蒸気の凝縮液を、水タンクに回収した。回収された凝縮液のエタノール濃度は、約30質量%であった。   The vapor condensate staying at the bottom of the distillation column 17 was collected in a water tank. The ethanol concentration of the collected condensate was about 30% by mass.

(吸着塔31の運転)
バルブ384を閉じて、吸着塔31の圧力を減圧した。また、バルブ385を閉じて、バルブ386を開き、蒸気の供給を停止した。バルブ381をa−c方向に開き、バルブ382および389をb−c方向に開き、吸着塔21内から抜き出し中間タンク12に回収した滞留液を、ポンプ192を用いて吸着塔31に供給した。
(Operation of adsorption tower 31)
The valve 384 was closed and the pressure in the adsorption tower 31 was reduced. Further, the valve 385 was closed, the valve 386 was opened, and the supply of steam was stopped. The valve 381 was opened in the ac direction, the valves 382 and 389 were opened in the bc direction, and the staying liquid extracted from the adsorption tower 21 and collected in the intermediate tank 12 was supplied to the adsorption tower 31 using the pump 192.

滞留液を全て吸着塔31に供給し終わると、バルブ389をa−b方向に開いた。次いで、バルブ381をa−b方向に開き、ポンプ191を用いて、原料タンク11から含水エタノールを吸着塔31に供給した。   When all the staying liquid was supplied to the adsorption tower 31, the valve 389 was opened in the ab direction. Next, the valve 381 was opened in the ab direction, and water-containing ethanol was supplied from the raw material tank 11 to the adsorption tower 31 using the pump 191.

吸着塔31の圧力が常圧になれば、バルブ383を開いて流出液を回収した。流出液が流出液タンク13に回収される前に、数回、3〜5mLずつサンプリングを行い、カールフィッシャー水分計によって流出液中の水分濃度を測定し、累積水分濃度を算出した。なお、流出液を流出液タンク13に回収するか否かを判断するための累積水分濃度の所定濃度は、0.5質量%未満と設定した。   When the pressure in the adsorption tower 31 reached normal pressure, the valve 383 was opened to collect the effluent. Before the effluent was collected in the effluent tank 13, sampling was performed 3 to 5 mL several times, and the moisture concentration in the effluent was measured with a Karl Fischer moisture meter to calculate the cumulative moisture concentration. The predetermined concentration of the cumulative moisture concentration for determining whether or not to collect the effluent in the effluent tank 13 was set to be less than 0.5% by mass.

累積水分濃度が0.5質量%を超えた時点で、流出液の回収を停止し、バルブ381をa−c方向に開き、そしてバルブ383を閉じて、含水エタノールの供給を停止した。   When the cumulative moisture concentration exceeded 0.5% by mass, the recovery of the effluent was stopped, the valve 381 was opened in the ac direction, and the valve 383 was closed to stop the supply of hydrous ethanol.

次いで、バルブ389をa−c方向に開き、バルブ382をb−c方向に開いて、吸着塔31内の滞留液を抜き出し中間タンク12に回収した。   Subsequently, the valve 389 was opened in the ac direction, the valve 382 was opened in the bc direction, and the staying liquid in the adsorption tower 31 was extracted and collected in the intermediate tank 12.

滞留液を抜き出した後、上記の吸着塔21の場合と同様に、吸着塔31に残存する蒸気を蒸留塔17に供給し、蒸留を行った。蒸留塔17の塔頂から回収された凝縮液のエタノール濃度は約90質量%であった。この凝縮液を、原料タンク11に戻した。蒸留塔17の塔底から回収された凝縮液のエタノール濃度は30質量%であった。   After extracting the staying liquid, the steam remaining in the adsorption tower 31 was supplied to the distillation tower 17 and distilled as in the case of the adsorption tower 21 described above. The ethanol concentration in the condensate recovered from the top of the distillation column 17 was about 90% by mass. This condensate was returned to the raw material tank 11. The ethanol concentration in the condensate recovered from the bottom of the distillation column 17 was 30% by mass.

(吸着塔41の運転)
バルブ484を閉じて、吸着塔41の圧力を減圧した。また、バルブ485を閉じて、バルブ486を開き、蒸気の供給を停止した。バルブ481をa−c方向に開き、バルブ482および489をb−c方向に開き、吸着塔31内から抜き出し中間タンク12に回収した滞留液を、ポンプ192を用いて吸着塔41に供給した。
(Operation of adsorption tower 41)
The valve 484 was closed and the pressure in the adsorption tower 41 was reduced. Further, the valve 485 was closed, the valve 486 was opened, and the supply of steam was stopped. The valve 481 was opened in the ac direction, the valves 482 and 489 were opened in the bc direction, and the staying liquid extracted from the adsorption tower 31 and collected in the intermediate tank 12 was supplied to the adsorption tower 41 using the pump 192.

滞留液を全て吸着塔41に供給し終わると、バルブ489をa−b方向に開いた。次いで、バルブ481をa−b方向に開き、ポンプ191を用いて、原料タンク11から含水エタノールを吸着塔41に供給した。   When all the staying liquid was supplied to the adsorption tower 41, the valve 489 was opened in the ab direction. Next, the valve 481 was opened in the ab direction, and water-containing ethanol was supplied from the raw material tank 11 to the adsorption tower 41 using the pump 191.

吸着塔41の圧力が常圧になれば、バルブ483を開いて流出液を回収した。流出液が流出液タンク13に回収される前に、数回、3〜5mLずつサンプリングを行い、カールフィッシャー水分計によって流出液中の水分濃度を測定し、累積水分濃度を算出した。なお、流出液を流出液タンク13に回収するか否かを判断するための累積水分濃度の所定濃度は、0.5質量%未満と設定した。   When the pressure in the adsorption tower 41 reached normal pressure, the valve 483 was opened to collect the effluent. Before the effluent was collected in the effluent tank 13, sampling was performed 3 to 5 mL several times, and the moisture concentration in the effluent was measured with a Karl Fischer moisture meter to calculate the cumulative moisture concentration. The predetermined concentration of the cumulative moisture concentration for determining whether or not to collect the effluent in the effluent tank 13 was set to be less than 0.5% by mass.

累積水分濃度が0.5質量%を超えた時点で、流出液の回収を停止し、バルブ483を閉じて、含水エタノールの供給を停止した。   When the cumulative water concentration exceeded 0.5% by mass, the recovery of the effluent was stopped, the valve 483 was closed, and the supply of hydrous ethanol was stopped.

次いで、バルブ489をa−c方向に開き、バルブ482をb−c方向に開いて、吸着塔41内の滞留液を抜き出し中間タンク12に回収した。   Subsequently, the valve 489 was opened in the ac direction, the valve 482 was opened in the bc direction, and the staying liquid in the adsorption tower 41 was extracted and collected in the intermediate tank 12.

滞留液を抜き出した後、上記の吸着塔21の場合と同様に、吸着塔41に残存する蒸気を蒸留塔17に供給し、蒸留を行った。蒸留塔17の塔頂から回収された凝縮液のエタノール濃度は約90質量%であった。この凝縮液を、原料タンク11に戻した。蒸留塔17の塔底から回収された凝縮液のエタノール濃度は30質量%であった。   After the staying liquid was extracted, the vapor remaining in the adsorption tower 41 was supplied to the distillation tower 17 in the same manner as in the case of the adsorption tower 21 to perform distillation. The ethanol concentration in the condensate recovered from the top of the distillation column 17 was about 90% by mass. This condensate was returned to the raw material tank 11. The ethanol concentration in the condensate recovered from the bottom of the distillation column 17 was 30% by mass.

(吸着塔21の運転)
バルブ284を閉じて、吸着塔21の圧力を減圧した。また、バルブ285を閉じて、バルブ286を開き、蒸気の供給を停止した。バルブ281をa−c方向に開き、バルブ282および289をb−c方向に開き、吸着塔41内から抜き出し中間タンク12に回収した滞留液を、ポンプ192を用いて吸着塔21に供給した。
(Operation of adsorption tower 21)
The valve 284 was closed and the pressure in the adsorption tower 21 was reduced. Further, the valve 285 was closed, the valve 286 was opened, and the supply of steam was stopped. The valve 281 was opened in the ac direction, the valves 282 and 289 were opened in the bc direction, and the staying liquid extracted from the adsorption tower 41 and collected in the intermediate tank 12 was supplied to the adsorption tower 21 using the pump 192.

滞留液を全て吸着塔21に供給し終わると、バルブ289をa−b方向に開いた。次いで、バルブ281をa−b方向に開き、ポンプ191を用いて、原料タンク11から含水エタノールを吸着塔21に供給した。   When all the staying liquid was supplied to the adsorption tower 21, the valve 289 was opened in the ab direction. Next, the valve 281 was opened in the ab direction, and water-containing ethanol was supplied from the raw material tank 11 to the adsorption tower 21 using the pump 191.

次いで、上記の流出液の回収、流出液中の水分濃度の測定、累積水分濃度の算出、滞留液の抜き出しおよび回収を繰り返した。   Subsequently, the recovery of the effluent, measurement of the water concentration in the effluent, calculation of the cumulative water concentration, extraction and collection of the staying liquid were repeated.

3本の吸着塔21、31、41を用いることにより、原料供給工程、流出液回収工程、水分離脱工程、濃縮液回収工程および原料再供給工程を、それぞれの吸着塔で時間差を設けて行うことによって、99.5質量%の無水エタノールが約90%の回収率で得られた。このように、本発明の方法を用いることによって、効率よく連続的に液体の脱水を行うことができる。   By using the three adsorption towers 21, 31, 41, the raw material supply process, the effluent recovery process, the moisture desorption process, the concentrated liquid recovery process, and the raw material resupply process are performed with a time difference in each adsorption tower. Yielded 99.5% by weight absolute ethanol with a recovery of about 90%. Thus, by using the method of the present invention, liquid can be dehydrated efficiently and continuously.

(比較例1)
従来の脱水方法、すなわち蒸留塔17を有さない図3の脱水システムを用いたこと以外は、実施例1と同様の手順で、エタノール90質量%および水10質量%の含水エタノールの脱水を行った。無水エタノールの回収率は、約60%であった。
(Comparative Example 1)
Except for using the conventional dehydration method, that is, the dehydration system of FIG. 3 without the distillation column 17, dehydration of water-containing ethanol of 90% by mass of ethanol and 10% by mass of water was performed in the same procedure as in Example 1. It was. The recovery rate of absolute ethanol was about 60%.

本発明によれば、低コストで効率よく含水液体から水分を除去する連続式脱水方法を提供することができる。したがって、本発明の方法は、溶媒の精製などの分野で有用である。   ADVANTAGE OF THE INVENTION According to this invention, the continuous dehydration method which removes a water | moisture content from a water-containing liquid efficiently at low cost can be provided. Therefore, the method of the present invention is useful in fields such as solvent purification.

11 原料タンク
12 中間タンク
13 流出液タンク
14 真空ポンプ
15 コンデンサー
16 凝縮液タンク
17 蒸留塔
191、192 ポンプ
21 吸着塔
281〜286、289 バルブ
31 吸着塔
381〜386、389 バルブ
41 吸着塔
481〜486、489 バルブ
DESCRIPTION OF SYMBOLS 11 Raw material tank 12 Intermediate tank 13 Outflow liquid tank 14 Vacuum pump 15 Condenser 16 Condensate tank 17 Distillation tower 191, 192 Pump 21 Adsorption tower 281-286, 289 Valve 31 Adsorption tower 381-386, 389 Valve 41 Adsorption tower 481-486 , 489 Valve

Claims (6)

水分を含む原料液体の連続式脱水方法であって、
(1)該原料液体または該原料液体由来の蒸気を、水分吸着剤を充填した吸着管の一端に供給し、該吸着管の他端から流出液を回収する工程、および
(2)該流出液中の水分濃度を測定して累積水分濃度を算出する工程、
を含む方法であり、
該工程(2)において、該流出液中の該累積水分濃度が所定濃度以上になった場合に、
(3)該原料液体または該原料液体由来の蒸気の供給を停止し、該吸着管内の該吸着剤から水分を離脱させる工程、
(4)該吸着管内に残存する蒸気が蒸留塔に供給され、該蒸留塔の塔頂から濃縮液が回収される工程、および
(5)該濃縮液が、該原料液体と混合され、該工程(1)に戻る工程、
をさらに含む、方法。
A continuous dehydration method for a raw material liquid containing moisture,
(1) supplying the raw material liquid or the vapor derived from the raw material liquid to one end of an adsorption tube filled with a moisture adsorbent, and collecting the effluent from the other end of the adsorption tube; and (2) the effluent. Measuring the water concentration in the water and calculating the cumulative water concentration,
Including
In the step (2), when the accumulated water concentration in the effluent becomes a predetermined concentration or more,
(3) a step of stopping the supply of the raw material liquid or the vapor derived from the raw material liquid to release moisture from the adsorbent in the adsorption pipe;
(4) a step in which steam remaining in the adsorption pipe is supplied to a distillation column, and a concentrated liquid is recovered from the top of the distillation column; and (5) the concentrated liquid is mixed with the raw material liquid, and the step Returning to (1),
Further comprising a method.
前記工程(3)において、前記吸着管内の滞留液を抜き出し回収する工程、および前記工程(4)の後に、該滞留液を該吸着管の一端に供給する工程、をさらに含む、請求項1に記載の方法。   The step (3) further includes a step of extracting and collecting the staying liquid in the adsorption tube, and a step of supplying the staying liquid to one end of the adsorption tube after the step (4). The method described. 前記工程(4)が、前記吸着管内を室温よりも高い温度に加温し、かつ減圧にして行われる、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the step (4) is performed by heating the inside of the adsorption tube to a temperature higher than room temperature and reducing the pressure. 前記工程(4)が、前記吸着管内をガスでパージした後、大気圧または減圧にして行われる、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the step (4) is performed at atmospheric pressure or reduced pressure after purging the inside of the adsorption tube with a gas. 前記吸着管が、2つ以上用いられる、請求項1から4のいずれかの項に記載の方法。   The method according to claim 1, wherein two or more adsorption tubes are used. 前記吸着管が、3つ以上用いられ、前記工程(5)において、前記滞留液が、該滞留液を抜き出した吸着管とは異なる吸着管の一端に供給される、請求項1から4のいずれかの項に記載の方法。   5. The method according to claim 1, wherein three or more adsorption tubes are used, and in the step (5), the staying liquid is supplied to one end of an adsorption tube different from the suction tube from which the staying liquid has been extracted. The method according to any of the above sections.
JP2010191677A 2010-08-30 2010-08-30 Continuous dehydration method of liquid Pending JP2012045507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010191677A JP2012045507A (en) 2010-08-30 2010-08-30 Continuous dehydration method of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191677A JP2012045507A (en) 2010-08-30 2010-08-30 Continuous dehydration method of liquid

Publications (1)

Publication Number Publication Date
JP2012045507A true JP2012045507A (en) 2012-03-08

Family

ID=45901021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191677A Pending JP2012045507A (en) 2010-08-30 2010-08-30 Continuous dehydration method of liquid

Country Status (1)

Country Link
JP (1) JP2012045507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368061A (en) * 2018-10-12 2019-02-22 安徽兴锂新能源有限公司 Head tank and its application method a kind of while that be dehydrated purification
JP2020123682A (en) * 2019-01-31 2020-08-13 株式会社日立製作所 Oil-immersed transformer and water removal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109368061A (en) * 2018-10-12 2019-02-22 安徽兴锂新能源有限公司 Head tank and its application method a kind of while that be dehydrated purification
JP2020123682A (en) * 2019-01-31 2020-08-13 株式会社日立製作所 Oil-immersed transformer and water removal device

Similar Documents

Publication Publication Date Title
CN102389683B (en) Method and device for separating krypton from xenon by using active carbon
CN102274672B (en) General partition wall vibrating process and device for recovering volatile organic matters
CN104083981B (en) The straight touch degree of depth cooling device that volatile organic compound from waste gas reclaims and recovery method
CN102007109B (en) Ethylene oxide plant operation
US20060000702A1 (en) Method for separating a krypton-xenon concentrate and a device for carrying out said method
Khunpolgrang et al. Alternative PSA process cycle with combined vacuum regeneration and nitrogen purging for CH4/CO2 separation
CN101857202A (en) Purification method of sulfur hexafluoride and equipment thereof
CN104944393B (en) A kind of apparatus and method of concentrate purifying high-purity helium
FI82200B (en) FOERFARANDE OCH ANORDNING FOER AOTERVINNING AV I GASER BEFINTLIGA FOERORENINGAR, ISYNNERHET LOESNINGSMEDEL.
CN101985081A (en) Method for separating radon from xenon by using carbon molecular sieve
JP2012045507A (en) Continuous dehydration method of liquid
WO1990011117A1 (en) Process for efficiently recovering adsorbable gas from gas which contains adsorbable gas at low concentration
CN101642724A (en) High-purity organic solvent preparing integrated device
CN102489108B (en) Method for separating and purifying xenon in atmosphere by use of active carbon and device thereof
CN111495177A (en) Tritium removal and purification treatment system for glove box and use method of tritium removal and purification treatment system
Cheng et al. Absorption of vinyl chloride by room temperature ionic liquids
CN215539629U (en) Industrial organic waste gas treatment system
JP2014113539A5 (en)
CN104383789B (en) Industrial tail gas treatment complete equipment of carbon fiber reinforced graphite
CN205759788U (en) Energy-saving single-action concentrates rectifier unit
CN103487297A (en) Device for catalytic oxidation of tritium in soil
CN219462585U (en) Device for concentrating krypton-xenon by low-temperature rectification
CN101071035B (en) Method for delivering purity raised gas and purity improved overheat gas
RU2482903C1 (en) Method of producing krypton-xenon mix and device to this end
CN101274148B (en) Volatile component extraction device and extraction method thereof